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The hadronic contribution to the eight forward amplitudes of light-by-light scattering (γ�γ� → γ�γ�) is
computed in lattice QCD. Via dispersive sum rules, the amplitudes are compared to a model of the
γ�γ� → hadrons cross sections in which the fusion process is described by hadronic resonances. Our
framework can provide an important test for the model estimates of hadronic light-by-light scattering in the
anomalousmagneticmoment of themuon, aHLbLμ . Using simple parametrizations of the resonanceM → γ�γ�

transition form factors, we determine the correspondingmonopole and dipole masses by performing a global
fit to all eight amplitudes. Together with a previous dedicated calculation of the π0 → γ�γ� transition form
factor, our calculation provides valuable information for phenomenological estimates of aHLbLμ . The
presented calculations are performed in two-flavor QCD with pion masses extending down to 190 MeVat
two different lattice spacings. In addition to the fully connectedWick contractions, on two lattice ensembles
we also compute the (2þ 2) disconnected class of diagrams, and find that their overall size is compatiblewith
a parameter-free, large-N inspired prediction, where N is the number of colors. Motivated by this
observation, we estimate in the same way the disconnected contribution to aHLbLμ .

DOI: 10.1103/PhysRevD.98.074501

I. INTRODUCTION

The nonvanishing probability of two photons scattering
off each other is a striking prediction of quantum electro-
dynamics (QED) [1,2]. The smallness of the cross section
has so far prohibited a direct experimental observation,
although evidence for the phenomenon has recently been
found by the ATLAS experiment in relativistic heavy-ion
collisions [3]. Equally interesting is the scattering of
spacelike virtual photons, γ�γ� → γ�γ�. While the contri-
butions of virtual leptons are calculable in QED perturba-
tively, the hadronic contributions require a nonperturbative
approach. When the photons are real or spacelike, dis-
persive sum rules can be used to express the forward γ�γ�
scattering amplitudes in terms of experimentally more
accessible γ�γ�-fusion cross sections [4–7]. The hadronic
contributions to the γ�γ� → γ�γ� amplitudes can also be
computed ab initio using lattice QCD [8].

One very timely application of hadronic light-by-light
(HLbL) scattering is the anomalousmagneticmoment of the
muon, aμ¼ 1

2
ðg−2Þμ. The current discrepancy between the

directmeasurement of aμ and the StandardModel prediction
amounts to about 3.6 standard deviations [9]. While the
current theory and experimental errors are comparable in
size, two new ðg−2Þμ experiments [10,11] in preparation at
Fermilab and J-PARCaimat reducing the experimental error
by a factor of four. The largest sources of theory error are
contributions from the hadronic vacuum polarization (HVP)
and from HLbL scattering. The latter is expected to
dominate in the future in view of the dedicated measure-
ments at eþe− colliders ever better constraining the former.
Although an active area of research, the experimental data
needed for the recently proposed data-driven dispersive
approaches toHLbL [12–16] are harder to obtain, and lattice
QCD calculations are in particularly high demand.
Lattice QCD calculations of hadron structure have been

steadily advancing in recent years. Several collaborations
calculate hadronic observables directly at physical values of
the quark masses. At least two collaborations are addressing
the HLbL contribution to ðg − 2Þμ on the lattice [8,17–22].
Although the calculation poses serious challenges due to the
complexity of the four-point function and the long-range
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nature of the dominant contribution, as a spacelike quantity it
is well suited for a first-principles treatment directly in the
Euclidean theory. A second role of lattice QCD is to provide
the necessary hadronic input for the model and dispersive
approaches to aHLbLμ . Model calculations (see e.g., [23] for a
recent overview) consistently suggest that the contribution of
the pseudoscalarmesons (π0, η; η0) is dominant, and therefore
determining their respective transition form factors is of
primary importance. A first calculation of the π0 → γ�γ�
transition form factor in the range of photon virtualities
relevant to ðg − 2Þμ has been carried out on the lattice [24].
An extension of this calculation to the η, η0 mesons is
possible, though more demanding, due to the appearance of
disconnected Wick-contraction diagrams. Computing the
spectrum and two-photon coupling of the scalar, axial-vector
and tensormesons is qualitativelymore complicated in lattice
QCD, since these states are resonances and require a
dedicated treatment.
In many ways, the light-by-light scattering amplitudes

are the more accessible observable in lattice calculations,
because they involve spacelike photons that can be treated
directly in the Euclidean theory. The lattice calculation of
the cross section γ�γ� → ππ is, for instance, more complex
than calculating the cross section γ�γ� → γ�γ� for spacelike
photons. In experiments, the weakness of the electromag-
netic coupling would make such a measurement imprac-
tical, but in lattice QCD the factor e4 merely multiplies a
four-point correlation function at the end of the calculation.
In this article, we compute the HLbL scattering ampli-

tude for spacelike photons in lattice QCD. Being para-
metrized by functions of six Lorentz invariants, it is a
complicated object. We focus on the forward amplitudes
because they are simpler functions of three invariants and,
using the optical theorem, they are related to γ�γ� →
hadrons cross sections. Our objectives are:

(i) Provide a test that the light-by-light amplitude for
spacelike photons is correctly described by the type
of hadronic model used so far to estimate aHLbLμ . The
model includes the exchange of pseudoscalar, scalar,
axial-vector and tensor mesons.

(ii) Provide information on their two-photon transition
form factors via global fits.

(iii) Compare the transition form factors to phenomeno-
logical determinations based on light-by-light sum
rules.

In [8], we laid out the method and computed the forward
amplitude sensitive to the total transverse γ�γ� cross
section, MTT, via a dispersive sum rule. Here we extend
the comparison between lattice data and phenomenological
parametrizations of the γ�γ� → hadrons cross sections to
encompass all eight forward amplitudes. This more exten-
sive analysis allows us to place much stronger constraints
on the size of the contributions of different resonances,
because they contribute to different amplitudes with differ-
ent weight factors, often even with opposite signs.

The present study is the first of its kind and the numerics
will certainly be improved in the future. Since the lattice
four-point functions are intrinsically inclusive observables,
the main objective concerning point (i) is to exclude the
possibility that a large contribution has been forgotten. The
statistical precision of the comparison is at the 15% to 20%
percent level. Some adjustments of the phenomenological
model will be necessary to enable a comparison with our
lattice data, as outlined below.
Our lattice calculation is performed in QCD with two

flavors of light quarks; it involves pion masses down to
190 MeV and two lattice spacings. While a fully realistic
lattice calculation would have to include at least a dynami-
cal strange quark, the present calculation does provide a
suitable test of hadronic models via dispersive sum rules,
since at the required level of precision it is fairly straight-
forward to adapt these models to QCD without the strange
quark, as discussed in Sec. V.
Here we have computed the fully connected and the

dominant disconnected Wick-contraction diagrams. We dis-
cuss what these classes of diagrams correspond to in terms of
the quantum numbers of the exchanged resonances. The
large-N inspired approximation that a quark loop containing a
single, vector-current insertiongives a negligible contribution,
corresponds, in two-flavor QCD, to including only isovector
resonances, enhanced by a factor of 34=9. This interpretation
of the fully connected class of diagrams was first pointed out
in [25,26], mainly concerning the pseudoscalar sector; see
also the arguments presented in [27].We rederive the result in
detail in the SU(2) and in the SU(3) flavor symmetric theory
under slightly weaker assumptions; see Sec. III B.
The paper is organized as follows. We begin by introduc-

ing the theoretical background for light-by-light scattering in
Sec. II.We then describe the latticemethod for computing the
hadronic light-by-light amplitude, including the analytic
continuation and the numerical method to obtain the fully
connected and the (2þ 2) disconnected four-point function
(Sec. III). Section IV presents our numerical results in two-
flavor QCD, while some additional material is provided in
Appendix B. After introducing the details of the hadronic
model for the γ�γ� → hadrons cross sections in Sec. V and
AppendixA, we perform fits to the lattice data in Sec. VI.We
compare the results for the transition form factors to existing
phenomenological estimates. In Sec. VII, we discuss our
results on the leading disconnected diagrams to the HLbL
amplitude and presentwhat resultswouldhave to be obtained
in lattice QCD for the connected and the leading discon-
nected diagram contributions to aHLbLμ in order to confirm the
state-of-the-art model estimate. We conclude in Sec. VIII.

II. FORWARD LIGHT-BY-LIGHT SCATTERING
AND SUM RULES

In order to establish our notation, we start by recalling
the dispersive sum rules for the scattering of spacelike
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photons [4,5]. Just as for real photons [28], they are
based on unitarity and analyticity of the forward scattering
amplitude. More specifically, the optical theorem
allows one to relate the absorptive part of the
γ�ðλ1; q1Þγ�ðλ2; q2Þ → γ�ðλ01; q1Þγ�ðλ02; q2Þ forward scatter-
ing amplitude to fusion cross sections for the process
γ�γ� → X, where X stands for any C-parity even final state.
The relevant kinematic variables are the photon virtualities,
q2i ¼ −Q2

i , (i ¼ 1, 2), and the crossing-symmetric variable
ν ¼ q1 · q2, which is related to the squared center-of-mass
energy by s ¼ 2ν −Q2

1 −Q2
2. Denoting the absorptive part

of the helicity amplitude Mλ0
1
λ0
2
;λ1λ2 by

Wλ0
1
λ0
2
;λ1λ2 ¼ ImðMλ0

1
λ0
2
;λ1λ2Þ; ð1Þ

the optical theorem yields (with a factor of one half because
both photons are identical, and dΓX is the phase space for a
final state X)

Wλ0
1
λ0
2
;λ1λ2 ¼

1

2

Z
dΓXð2πÞ4δ4ðq1 þ q2 − pXÞ

×Mλ1λ2ðq1; q2;pXÞM�
λ0
1
λ0
2
ðq1; q2;pXÞ; ð2Þ

where Mλ1λ2ðq1; q2;pXÞ denotes the invariant helicity
amplitude for the fusion process

γ�ðλ1; q1Þ þ γ�ðλ2; q2Þ → XðpXÞ: ð3Þ

The helicity amplitudes are related to the Feynman ampli-
tudes by

Mλ0
1
λ0
2
λ1λ2ðq1; q2Þ ¼ Mμνρσðq1; q2Þϵ�μðλ01; q1Þϵ�νðλ02; q2Þ

× ϵρðλ1; q1Þϵσðλ2; q2Þ: ð4Þ

Using parity and time-reversal invariance, we are left with
only eight independent amplitudesMλ0

1
λ0
2
;λ1λ2 [29]. Forming

linear combinations, we can consider eight amplitudes
which are either even (first six amplitudes) or odd
(last two amplitudes) with respect to the variable ν, as
follows:

MTT ¼ 1

2
ðMþþ;þþ þMþ−;þ−Þ; Mτ

TT ¼ Mþþ;−−;

MTL ¼ Mþ0;þ0; MLT ¼ M0þ;0þ;

Mτ
TL ¼ 1

2
ðMþþ;00 þM0þ;−0Þ; MLL ¼ M00;00;

Ma
TT ¼ 1

2
ðMþþ;þþ −Mþ−;þ−Þ;

Ma
TL ¼ 1

2
ðMþþ;00 −M0þ;−0Þ:

In terms of the Feynman amplitudes, the eight independent
helicity amplitudes are then given by [29]1

MTT ¼ 1

4
Rμμ0Rνν0Mμ0ν0μν; ð5aÞ

Mτ
TT ¼ 1

4
½RμνRμ0ν0 þ Rμν0Rμ0ν − Rμμ0Rνν0 �Mμ0ν0μν; ð5bÞ

Ma
TT ¼ 1

4
½RμνRμ0ν0 − Rμν0Rμ0ν�Mμ0ν0μν; ð5cÞ

MTL ¼ 1

2
Rμμ0kν2k

ν0
2Mμ0ν0μν; ð5dÞ

MLT ¼ 1

2
kμ1k

μ0
1 R

νν0Mμ0ν0μν; ð5eÞ

MLL ¼ kμ1k
μ0
1 k

ν
2k

ν0
2Mμ0ν0μν; ð5fÞ

Ma
TL ¼ −

1

8
½Rμνkμ

0
1 k

ν0
2 þ Rμν0kμ

0
1 k

ν
2 þ ðμν ↔ μ0ν0Þ�Mμ0ν0μν;

ð5gÞ

Mτ
TL ¼ −

1

8
½Rμνkμ

0
1 k

ν0
2 − Rμν0kμ

0
1 k

ν
2 þ ðμν ↔ μ0ν0Þ�Mμ0ν0μν;

ð5hÞ

where the projector Rμν onto the subspace orthogonal
to q1 and q2, and the vectors k1 and k2 are defined in
Appendix A. The eight helicity amplitudes are functions of
ðν; Q2

1; Q
2
2Þ. Then, for fixed photon virtualities Q2

1 and Q2
2,

the sum rules can be generically written as [5]

MevenðνÞ ¼
2

π

Z
∞

ν0

dν0
ν0

ν02 − ν2 − iϵ
Wevenðν0Þ; ð6aÞ

ModdðνÞ ¼
2ν

π

Z
∞

ν0

dν0
1

ν02 − ν2 − iϵ
Woddðν0Þ; ð6bÞ

assuming the convergence of the integral. Here ν0 ≡
1
2
ðQ2

1 þQ2
2Þ. If the integral does not converge, it is

necessary to introduce a subtraction

MevenðνÞ¼Mevenð0Þ

þ2ν2

π

Z
∞

ν0

dν0
1

ν0ðν02−ν2− iϵÞWevenðν0Þ; ð7aÞ

ModdðνÞ ¼ νM0
oddð0Þ

þ 2ν3

π

Z
∞

ν0

dν0
1

ν02ðν02− ν2 − iϵÞWoddðν0Þ: ð7bÞ

1Our definitions of Ma
TL and Mτ

TL are swapped relative to
[29], so that our Ma

TL is odd in ν and our Mτ
TL is even.
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Finally, the absorptive parts Wλ0
1
λ0
2
;λ1λ2 of those eight

independent amplitudes, given by Eq. (2), are expressed
in terms of the γ�γ� → X fusion cross sections [30],

Wþþ;þþ þWþ−;þ− ≡ 2
ffiffiffiffi
X

p
ðσ0 þ σ2Þ ¼ 2

ffiffiffiffi
X

p
ðσk þ σ⊥Þ

≡ 4
ffiffiffiffi
X

p
σTT; ð8aÞ

Wþþ;−−≡2
ffiffiffiffi
X

p
ðσk−σ⊥Þ≡2

ffiffiffiffi
X

p
τTT; ð8bÞ

Wþþ;þþ −Wþ−;þ− ≡ 2
ffiffiffiffi
X

p
ðσ0 − σ2Þ≡ 4

ffiffiffiffi
X

p
τaTT; ð8cÞ

Wþ0;þ0 ≡ 2
ffiffiffiffi
X

p
σTL; ð8dÞ

W0þ;0þ ≡ 2
ffiffiffiffi
X

p
σLT; ð8eÞ

Wþþ;00 þW0þ;−0 ≡ 4
ffiffiffiffi
X

p
τTL; ð8fÞ

Wþþ;00 −W0þ;−0 ≡ 4
ffiffiffiffi
X

p
τaTL; ð8gÞ

W00;00 ≡ 2
ffiffiffiffi
X

p
σLL; ð8hÞ

where X ¼ ν2 −Q2
1Q

2
2 is the virtual-photon flux factor.

Here L and T refer to longitudinal and transverse polar-
izations, respectively. The cross sections σ are positive, but
the interference terms τ are not sign-definite. The relevant
cross sections for resonance contributions in each channel
are explicitly given in Appendix A in terms of transition
form factors.
Thus, using Eqs. (6) and (8), we obtain the following

dispersive sum rules, valid for fixed photon virtualities Q2
1,

Q2
2 > 0 [5],

MTT ¼ 1

2
ðMþþ;þþðνÞ þMþ−;þ−ðνÞÞ

¼ 4ν2

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
σTTðν0Þ

ν0ðν02 − ν2 − iϵÞ ; ð9aÞ

Mτ
TT ¼Mþþ;−−ðνÞ¼

4ν2

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
τTTðν0Þ

ν0ðν02−ν2− iϵÞ ; ð9bÞ

Ma
TT ¼ 1

2
ðMþþ;þþðνÞ −Mþ−;þ−ðνÞÞ

¼ 4ν3

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
τaTTðν0Þ

ν02ðν02 − ν2 − iϵÞ ; ð9cÞ

MTL ¼Mþ0;þ0ðνÞ¼
4ν2

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
σTLðν0Þ

ν0ðν02−ν2− iϵÞ ; ð9dÞ

MLT ¼M0þ;0þðνÞ¼
4ν2

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
σLTðν0Þ

ν0ðν02−ν2− iϵÞ ; ð9eÞ

Mτ
TL ¼ 1

2
ðMþþ;00ðνÞ þM0þ;−0ðνÞÞ

¼ 4ν2

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
τTLðν0Þ

ν0ðν02 − ν2 − iϵÞ ; ð9fÞ

Ma
TL ¼ 1

2
ðMþþ;00ðνÞ −M0þ;−0ðνÞÞ

¼ 4ν3

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
τaTLðν0Þ

ν02ðν02 − ν2 − iϵÞ ; ð9gÞ

MLL ¼ M00;00ðνÞ ¼
4ν2

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
σLLðν0Þ

ν0ðν02 − ν2 − iϵÞ ; ð9hÞ

where we use the notation MðνÞ≡MðνÞ −Mð0Þ or
MðνÞ≡MðνÞ − νM0ð0Þ, respectively, for the even and
odd amplitudes. We always consider the subtracted sum
rules, even when the unsubtracted version is well defined,
since the subtraction has the effect of suppressing the high-
energy contributions. Evaluating the sum rules using
phenomenological inputs on the two-photon fusion proc-
esses, one can confront the results with the light-by-light
forward amplitudes computed on the lattice. In Sec. V, we
will present an empirical model for the description of the
two-photon fusion processes and subsequently, by compar-
ing it with our lattice results, we will be able to extract
information about the γ�γ� → M transition form factors.
Before coming to that, we describe the lattice QCD
approach to calculating HLbL scattering amplitudes in
the following two sections.

III. LATTICE QCD AND LIGHT-BY-LIGHT
SCATTERING

A. The scattering amplitude in Euclidean
field theory

The Feynman amplitudes can be obtained via the
calculation of the following Euclidean four-point correla-
tion function2

ΠE
μνρσðQ1; Q2Þ ¼

X
X1;X2;X3

hJμðX1ÞJνðX2ÞJρðX3ÞJσð0ÞiE

× eiQ1ðX1−X3ÞeiQ2X2 ; ð10Þ

where JμðXÞ is the Euclidean electromagnetic vector current
(J0 ¼ j0, Jk ¼ ijk) andQi are the Euclidean four-momenta
(q0i ¼ −iQ0

i , q⃗i ¼ Q⃗i). Indeed, using the Lehmann-
Symanzik-Zimmermann reduction formula in Minkowski
spacetime, the relation of this Euclidean correlator to the
Feynman forward amplitudes inMinkowski spacetime is [8]

2We use capital letters to denote “Euclidean” vectors, i.e., the
metric in the scalar product of two such vectors is understood to
be Euclidean.
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Mμνρσðq1; q2Þ ¼ e4in0ΠE
μνρσðQ1; Q2Þ; ð11Þ

wheren0 is the number of temporal indices. Each of the eight
helicity amplitudes can be written as

Mðq21; q22; νÞ ¼ Tμνμ0ν0 ðq1; q2ÞMμνμ0ν0 ðq1; q2Þ
¼ e4TE

μνμ0ν0 ðQ1; Q2ÞΠE
μνμ0ν0 ðQ1; Q2Þ; ð12Þ

for some Minkowski tensor T, defined above through
Eq. (5), and some Euclidean tensor TE given by

TE
μνμ0ν0 ðQ1; Q2Þ ¼ in0Tμνμ0ν0 ðq1; q2Þ: ð13Þ

Thus, we define

RE
μνðQ1; Q2Þ ¼ in0Rμνðq1; q2Þ

¼ δμν −
1

X
fðQ1 ·Q2ÞðQ1μQ2ν þQ1νQ2μÞ

−Q2
1Q2μQ2ν −Q2

2Q1μQ1νg: ð14Þ

The case of ki in Eq. (5) requires a bit more care, since
their definitions contain

ffiffiffiffi
X

p
and in Euclidean space

X ¼ ðQ1 ·Q2Þ2 −Q2
1Q

2
2 ≤ 0. In the Minkowski center of

mass frame, if q1 ¼ ðq01; q⃗Þ and q2 ¼ ðq02;−q⃗Þ, then X ¼
ðq01 þ q02Þ2q⃗2 and we can evaluate the ordinary positive
square root. Performing the Wick rotation, q0i → −iQ0

i , we
get

ffiffiffiffi
X

p
→ −iðQ0

1 þQ0
2Þjq⃗j ¼ −i

ffiffiffiffiffiffiffi
−X

p
. Therefore, in

Eq. (5), we perform the following replacements to obtain
the amplitudes in Euclidean space:

Mμ0ν0;μν → e4ΠE
μ0ν0;μνðQ1; Q2Þ; ð15aÞ

Rμν → RE
μν; ð15bÞ

k1 → K1 ≡ i

ffiffiffiffiffiffiffi
Q2

1

−X

r �
Q2 −

Q1 ·Q2

Q2
1

Q1

�
; ð15cÞ

k2 → K2 ≡ i

ffiffiffiffiffiffiffi
Q2

2

−X

r �
Q1 −

Q1 ·Q2

Q2
2

Q2

�
: ð15dÞ

These satisfyK2
i ¼ −1,Ki ·Qi ¼ 0, RE

μνQiν ¼ 0, RE
μαRE

αν ¼
RE
μν and RE

μμ ¼ 2.
The largest value of jνj that can be reached with

Euclidean kinematics is limited by the virtualities of the
photons,3 jνj ≤ ðQ2

1Q
2
2Þ1=2 ≤ 1

2
ðQ2

1 þQ2
2Þ≡ ν0, while the

nearest singularity is the s-channel π0 pole located
at νπ ¼ 1

2
ðm2

π þQ2
1 þQ2

2Þ.

1. Special case of (anti)parallel momenta

The tensors TE, resulting from Eq. (5) translated to
Euclidean space using Eq. (15), are not defined for
collinear Q1 and Q2, since in that case X ¼ 0. However,
if we start with noncollinear momenta and rotateQ2 toward
being (anti)parallel with Q1, then each tensor has such a
limit. This limit depends on the initial direction of Q2; we
will use the average over this direction to define TE in the
collinear limit.
We define the projector

R̄μν ¼ δμν −
Q1μQ1ν

Q2
1

; ð16Þ

and find that RE
μν → R̄μν − VμVν. Here V is a unit vector

orthogonal to Q1, pointing in the direction from which Q2

approached being collinear with Q1. Since K2 ·Q1 ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−X=Q2

2

p
→ 0, in the collinear limit any contraction of

TE
μνμ0ν0 withQ1 will vanish. Thus, after averaging over all V

orthogonal to Q1, each TE
μνμ0ν0 will be a linear combina-

tion of

R̄μμ0R̄νν0 ; R̄μνR̄μ0ν0 ; R̄μν0R̄μ0ν: ð17Þ

We obtain the prefactors by contracting the indices in three
different ways. For this, we will make use of

K1 ·K2¼
Q1 ·Q2ffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1Q
2
2

p → s≡
�
1 Q1;Q2 parallel

−1 Q1;Q2 antiparallel
: ð18Þ

Denoting by h…iV the average over V, we find

hRE
μμ0R

E
νν0 iV ¼

2

5
R̄μμ0R̄νν0 þ

1

15
ðR̄μνR̄μ0ν0 þ R̄μν0R̄μ0νÞ;

ð19aÞ

hRE
μμ0K2νK2ν0 iV ¼

−4
15

R̄μμ0R̄νν0 þ
1

15
ðR̄μνR̄μ0ν0 þ R̄μν0R̄μ0νÞ

ð19bÞ

¼ hK1μK1μ0RE
νν0 iV; ð19cÞ

hK1μK1μ0K2νK2ν0 iV ¼ 1

15
ðR̄μμ0R̄νν0 þ R̄μνR̄μ0ν0 þ R̄μν0R̄μ0νÞ;

ð19dÞ

hRE
μμ0K1νK2ν0 iV ¼ −shRE

μμ0K2νK2ν0 iV: ð19eÞ

B. Flavor structure of the four-point function

In numerical lattice QCD calculations of n-point func-
tions, the quark path integral is evaluated analytically to
yield a sum of contractions of quark propagators. For the

3One might be able to extend the reach to jνj ¼ νπ with
methods in the spirit of [31].
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four-point function of vector currents, these fall into five
distinct topologies, illustrated in Fig. 1.
The calculation of all Wick-contraction topologies is

demanding. In many instances, disconnected diagram
contributions have been found to make numerically small
contributions to hadronic matrix elements, though not
always [32]. Quark loops generated by a single vector
current have been empirically found to be particularly
suppressed (see for instance [24,33–35]). At short distan-
ces, perturbation theory provides an explanation for the
suppression of this type of contribution, since it requires the
exchange of at least three gluons [36]. On the other hand, it
is well known that the disconnected diagram is responsible
for the difference between the pion and the η0 mass in the
pseudoscalar two-point function, and is therefore crucial at
long distances.
The importance of the disconnected diagrams in the

HLbL amplitude has been pointed out in [25,26], showing
that the pion and η0 pole contributions would have the
wrong weight factors if only the connected diagrams were
included. Here
(1) we use (a) flavor symmetry, either SU(2) or SU(3),

and (b) the assumption that Wick-contraction dia-
grams where a vector current appears as the only
insertion in a quark loop, thus producing a factor
TrfγμSðX;XÞg, are negligible;

(2) we then derive the weight factors of nonsinglet and
singlet mesons in the fully connected and the (2þ 2)
disconnected contribution to the HLbL amplitude;

(3) we show that whenever the HLbL amplitude is
dominated by the pole-exchange of an isovector
resonance, isospin symmetry induces relations be-
tween different Wick-diagram topologies.

The main result is that under the assumptions stated
under (1.), in the fully connected diagrams the nonsinglet
meson poles overcontribute by a factor 34=9 (respectively a
factor 3) in QCD with two (respectively three) degenerate
flavors of quarks, while the singlet mesons do not con-
tribute. The (2þ 2) disconnected diagrams contain the
singlet-meson contribution and correct the fully connected
diagram by compensating with (−25=9) (respectively −2)
times the nonsinglet meson contribution. For QCD
with a realistic quark spectrum, we expect the relations
between the classes of diagrams to lie between the quoted
predictions.

The starting point is the observation, based on Fig. 1, that
the Wick contractions contributing to the HLbL amplitude
can be written as (we drop the space-time arguments and
indices of the four-point amplitudes)

ΠHLbL¼
X
f

Q4
fΠ4

fþ
X
f1;f2

Q2
f1
Q2

f2
Π2þ2

f1;f2
þ
X
f1;f2

Q3
f1
Qf2Π

3þ1
f1;f2

þ
X

f1;f2;f3

Q2
f1
Qf2Qf3Π

2þ1þ1
f1;f2;f3

þ
X

f1;f2;f3;f4

Qf1Qf2Qf3Qf4Π
1þ1þ1þ1
f1;f2;f3;f4

: ð20Þ

In the case that the quark masses are all equal, one can drop
the flavor indices, e.g., Π2þ2

f1;f2
→ Π2þ2. In particular, let Π

be the four-point function of the “up” current ūγμu. Since in
that case

P
fQ

n
f ¼ 1 ∀ n, and because all quark lines carry

the same quark mass, the ΠX
f are precisely the Wick

contractions appearing in Π (X ¼ 4, 2þ 2, 3þ 1,
2þ 1þ 1, 1þ 1þ 1þ 1), including the normalization.
On the other hand, the HLbL amplitude is expressed as
Wick contractions ΠX

f weighted by polynomials in the
quark charges.
An important observation is that with two flavors of

quarks, there are only three linearly independent symmetric
polynomials in Qu and Qd, for instance

ðQ4
u þQ4

dÞ; 2Q2
uQ2

d; QuQdðQ2
u þQ2

dÞ: ð21Þ

With three flavors, there are four such independent poly-
nomials in ðQu;Qd;QsÞ, for instance

P1 ≡ ðQ4
u þQ4

d þQ4
sÞ; P2 ≡ ðQ2

u þQ2
d þQ2

sÞ2;
P3 ≡ ðQ3

u þQ3
d þQ3

sÞðQu þQd þQsÞ;
P4 ≡ ðQ2

u þQ2
d þQ2

sÞðQu þQd þQsÞ2; ð22Þ

while P5 ≡ ðQu þQd þQsÞ4 ¼ 6P1 − 3P2 − 8P3 þ 6P4.

1. The case of Nf = 2 QCD

We assume exact isospin SU(2) symmetry. The photon
couples to the electromagnetic current, whose isospin
decomposition reads

FIG. 1. The five classes of quark contractions for four-point functions. In this work, we compute the leftmost, fully connected set of
contractions, as well as the (2þ 2) class of diagrams (second from the left).
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Je:m:
μ ¼ J1μ þ J0μ; J1μ ¼

Qu −Qd

2
ðūγμu − d̄γμdÞ;

J0μ ¼
Qu þQd

2
ðūγμuþ d̄γμdÞ: ð23Þ

The upper index on the current indicates the isospin
quantum number I ¼ 0, 1.
There are both isoscalar and isovector resonances that

couple to two photons. As is well known, the coupling of an
isovector resonance occurs only when one of the photons
couples via the isoscalar part, and one couples via the
isovector part of the electromagnetic current.4 Since the
amplitude for a neutral pion to couple to two photons
vanishes if either both are isoscalar (Qu ¼ Qd) or both are
isovector (Qu ¼ −Qd), and the coupling must be quadratic
in the charges, it must be proportional to ðQ2

u −Q2
dÞ. Then

the contributions to Π and ΠHLbL of an isovector resonance
M1 are related by

ΠHLbL;M1 ¼ ðQ2
u −Q2

dÞ2ΠM1 : ð24Þ

Correspondingly, the dependence of the transition form
factor of an isoscalar resonance on the quark charges is
such that it contains two independent terms,

FM0γ�γ� ¼ ðQ2
u þQ2

dÞFC þ ðQu þQdÞ2FD: ð25Þ

The notation indicates that FD contains all the diagrams
where at least one vector current appears isolated in a quark
loop. In view of the form (25) of the M0γγ vertex, the pole
contribution of an isoscalar meson has the dependence

ΠHLbL;M0 ¼ ðQ2
u þQ2

dÞ2ΠA þ ðQu þQdÞ2ðQ2
u þQ2

dÞΠB

þ ðQu þQdÞ4ΠC ð26Þ

on the quark charges, where the contributions ΠB and ΠC
are only nonvanishing if the disconnected diagrams involv-
ing at least one isolated vector current inserted in a quark
loop are nonvanishing. As discussed below, ΠB is Oð1=NÞ
and ΠC is Oð1=N2Þ in the large-N power counting.
By identifying the polynomials in Qu and Qd in

Eqs. (24) and (20), we obtain three conditions that relate
the contributions of an isovector resonance to the various
Wick contractions,

ΠM1 ¼ Π4;M1 þ Π2þ2;M1 þ Π3þ1;M1 þ Π2þ1þ1;M1

þ Π1þ1þ1þ1;M1

; ð27Þ

−ΠM1 ¼ Π2þ2;M1 þ Π2þ1þ1;M1 þ 3Π1þ1þ1þ1;M1

; ð28Þ

0 ¼ Π3þ1;M1 þ 2Π2þ1þ1;M1 þ 4Π1þ1þ1þ1;M1

: ð29Þ

Thus, if for a specific kinematic regime one isovector
resonance exchange dominates the HLbL amplitude, it is
sufficient to compute three of the five Wick-contraction
classes. For instance, Π1þ1þ1þ1;M1

and Π2þ1þ1;M1

can be
expressed in terms of the classes Π4;M1

, Π2þ2;M1

and
Π3þ1;M1

of diagrams. We also note the exact expression

Π4;M1 ¼ 2ðΠM1 þ Π2þ1þ1;M1 þ 3Π1þ1þ1þ1;M1Þ; ð30Þ

for the fully connected class of diagrams.
Similarly, equating the expressions (26) and (20) yields

the relations

ΠM0 ¼ ΠA þ ΠB þ ΠC

¼ Π4;M0 þ Π2þ2;M0 þ Π3þ1;M0

þ Π2þ1þ1;M0 þ Π1þ1þ1þ1;M0

; ð31Þ

ΠA þ ΠB þ 3ΠC ¼ Π2þ2;M0 þ Π2þ1þ1;M0 þ 3Π1þ1þ1þ1;M0

;

ð32Þ

2ΠB þ 4ΠC ¼ Π3þ1;M0 þ 2Π2þ1þ1;M0

þ 4Π1þ1þ1þ1;M0

: ð33Þ

Eliminating Π2þ2;M0

and Π3þ1;M0

, we get

Π4;M0 ¼2ð−ΠB−3ΠCþΠ2þ1þ1;M0 þ3Π1þ1þ1þ1;M0Þ: ð34Þ

2. Large-N expectations

In terms of large-N counting, where N is the number of
colors, every additional disconnected quark loop costs a
factor 1=N. However, it is worth looking more closely how
this property emerges. For instance, just keeping the
leading class of diagrams Π4;M would not reproduce the
correct dependence on Qu and Qd for the exchange of a
single meson, be it isoscalar or isovector. Put in a different
way, the relations (30) and (34) derived from isospin
symmetry relate contributions to diagrams that scale differ-
ently with N.
The resolution of this apparent contradiction is that, at

large N, neutral mesons are expected to come in degenerate
pairs, one isoscalar, one isovector, due to the vanishing of
the quark annihilation diagrams. Only when the sum of the
contributions of a pair is considered should the large-N
counting apply. Here we only apply the large-N counting

4That an isovector resonance cannot decay into two isovector
photons is shown by the Wigner-Eckart theorem,

hMI00¼1;m00 jJ1;mjV1;m0 i ¼ C11ð1; m00;m;m0ÞhM1jjJ1jjV1i;
where CI;I0 ðI00; m00;m;m0Þ is the Clebsch-Gordan coefficient for
composing isospin I with isospin I0 and obtaining isospin I00 and
hπjjJ1jjV1i is the reduced matrix element. It so happens that
C11ð1; 0; 0; 0Þ ¼ 0.
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rule to the insertion of a vector current. Considering the
sum of the contributions of such a pair, we obtain from
(30)–(34) the relation

Π4;M0þM1 ¼ 2ðΠM1 − ΠB − 3ΠC þ Π2þ1þ1;M0þM1

þ 3Π1þ1þ1þ1;M0þM1Þ: ð35Þ

Large-N counting should apply at this point, and we
expect to be able to neglect in first approximation ΠB,
ΠC (down by 1=N and 1=N2, respectively) and the terms
Π2þ1þ1;M0þM1

and Π1þ1þ1þ1;M0þM1

, since they are expected
to be down by 1=N2 and 1=N3, respectively, relative to
Π4;M0þM1

. All neglected terms contain at least one isolated
vector current in a quark loop. In that approximation, the
leading diagram classes are given by

Π4;M0þM1 ≈ 2ΠM1

; ð36Þ

Π2þ2;M0þM1 ≈ −ΠM1 þ ΠM0

: ð37Þ

Thus, using Eqs (36) and (24) we obtain for the fully
connected contribution in Eq. (20)

ðQ4
u þQ4

dÞΠ4;M0þM1 ≈ ðQ4
u þQ4

dÞ2ΠM1

¼ Q4
u þQ4

d

ðQ2
u −Q2

dÞ2
2ΠHLbL;M1

¼ 34

9
ΠHLbL;M1

; ð38Þ

where we have included the physical charges of the u and d
quarks in the last step. The (2þ 2) disconnected diagrams
complement the connected diagrams to yield the full
contribution,

ðQ2
uþQ2

dÞ2Π2þ2;M0þM1 ≈−
25

9
ΠHLbL;M1 þΠHLbL;M0

: ð39Þ

The charge factors in Eqs. (38) and (39) agree with
Refs. [25,26].
The stronger large-N prediction, which, however, turns

out not to be a good approximation in QCD, is that isoscalar
and isovector states in each symmetry channel (pseudo-
scalars, scalars, tensors, etc.) compensate each other in the
(2þ 2) disconnected diagrams, making the latter 1=N
suppressed as compared to the fully connected diagrams.
The channel where the degeneracy expected at large N is
most badly broken is the pseudoscalar channel, since
mη0 ≫ mπ0 . Therefore, we expect the Π2þ2 class of dia-
grams to be dominated by the π0 and η0 contributions, since
their contributions cancel each other to a far lesser extent
than for other meson pairs such as a2 and f2. For instance,
the empirical ratio of the two-photon widths of a2 and f2
are roughly as expected if one neglects disconnected

diagrams (see Table II for the source of the phenomeno-
logical values),

Γf2γγ

Γa2γγ
≈
ð2.93� 0.40Þ keV
ð1.00� 0.06Þ keV ¼ 2.93� 0.44

≈
ðQ2

u þQ2
dÞ2

ðQ2
u −Q2

dÞ2
¼ 25

9
≈ 2.7778: ð40Þ

On the other hand, using the phenomenological values
[37,38]

Γη0γγ ¼ 4.35 keV; Γπ0γγ ¼ 7.82 eV; ð41Þ

and the fact that Γ ∝ m3
PjFPγ�γ�ð0; 0Þj2, we obtain

jFη0γ�γ�ð0; 0Þj2
jFπ0γ�γ� ð0; 0Þj2

≈ 1.56 ≠
ðQ2

u þQ2
dÞ2

ðQ2
u −Q2

dÞ2
≈ 2.7778; ð42Þ

which does not agree well with the large-N expectation and
the approximation of mstrange ¼ ∞ implicitly made here by
using relations derived in Nf ¼ 2 QCD. A further channel
in which the large-N expectations are not well fullfilled is
the scalar sector; in particular, there does not seem to be an
isovector analogue of the f0ð600Þmeson. However, it turns
out that the scalars make an overall small contribution to
the light-by-light amplitudes.

3. The case of Nf = 3 QCD

Here we assume exact SU(3) flavor symmetry,
mu ¼ md ¼ ms. Since in the previous paragraphs we have
treated the case of Nf ¼ 2 QCD, corresponding to
ms ¼ ∞, one may hope that the real world lies somewhere
in between these two idealized cases.
In nature, Qu ¼ 2=3 and Qd ¼ Qs ¼ −1=3. Somewhat

more generally, for Qu þQd þQs ¼ 0, the SUð3Þf
decomposition reads

Je:m:
μ ¼ J3μ þ J8μ; J3μ ¼

Qu −Qd

2
ðūγμu − d̄γμdÞ;

J8μ ¼
Qu þQd

2
ðūγμuþ d̄γμd − 2s̄γμsÞ: ð43Þ

It follows directly from Qu þQd þQs ¼ 0 that no dia-
grams with a single vector current inside a quark loop
occurs in the HLbL amplitude: Π3;1, Π2þ1þ1 and Π1þ1þ1þ1

do not contribute. However, it is useful to keep the charges
generic to derive relations from flavor symmetry and large-
N arguments.
In the SU(3) symmetric theory, mesons come in

octets and singlets.5 Taking the pseudoscalar sector as an

5Higher representations are allowed by symmetry, but do not
seem to occur in QCD at low energies.
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example, the transition form factor of the neutral pion is
given by ðQ2

u −Q2
dÞF 8; neglecting again the single vector

current inside a quark loop, the η meson has the transition
form factor

ffiffiffiffiffiffiffiffi
1=3

p ðQ2
u þQ2

d − 2Q2
sÞF 8. Under the same

assumption, the form factor of the η0 has a charge
dependence given by

ffiffiffiffiffiffiffiffi
2=3

p ðQ2
u þQ2

d þQ2
sÞF 0. Only in

the strict large-N limit would we have F 0 ¼ F 8.
Thus, the pole contribution of a meson octet to the four-

point function of the electromagnetic current has the
following dependence on the quark charges,

ΠHLbL;oct ¼ 3

4
½ðQ2

u −Q2
dÞ2 þ

1

3
ðQ2

u þQ2
d − 2Q2

sÞ2�Πoct;

ð44Þ

where Πoct is the octet contribution to Π. The correspond-
ing expression for the singlet meson reads

ΠHLbL;sgl ¼ ðQ2
u þQ2

d þQ2
sÞ2Πsgl: ð45Þ

Matching the expressions (44) and (20), we obtain the
relations

3

2
Πoct ¼ Π4;oct; ð46Þ

−
1

2
Πoct ¼ Π2þ2;oct; ð47Þ

where we have consistently neglected the octet contribution
to Π3þ1, Π2þ1þ1 and Π1þ1þ1þ1. Under the corresponding
assumption for the singlet contribution, we have

0 ¼ Π4;sgl; ð48Þ

Πsgl ¼ Π2þ2;sgl: ð49Þ

Combining these equations, we finally have the following
expressions for the fully connected and the (2þ 2) dis-
connected class of diagrams:

ðQ4
u þQ4

d þQ4
sÞΠ4;octþsgl ≈ P1Π4;oct ¼ P1 ·

3

2
Πoct

¼ P1

P1 − 1
3
P2

ΠHLbL;oct

¼ 3ΠHLbL;oct; ð50Þ

ðQ2
u þQ2

d þQ2
sÞ2Π2þ2;octþsgl ≈ −

P2

3ðP1 − 1
3
P2Þ

ΠHLbL;oct

þ ΠHLbL;sgl

¼ −2ΠHLbL;oct þ ΠHLbL;sgl:

ð51Þ

In the last of these equations we have set Qu ¼ 2=3,
Qd ¼ Qs ¼ −1=3.

C. Lattice calculation of the fully connected
vector four-point function

We now describe our method to calculate the six
contractions that have fully connected quark lines (leftmost
topology in Fig. 1), whereas the dominant class of
disconnected diagrams (second diagram topology from
the left in Fig. 1) is discussed in the next section.
We discretize the Euclidean four-point function using the

local and conserved currents, as well as a contact operator,

JlμðXÞ ¼ ZV ψ̄ðXÞγμQψðXÞ; ð52aÞ

JcμðXÞ ¼
1

2
½ψ̄ðX þ aμ̂Þðγμ þ 1ÞU†

μðXÞQψðXÞ
þ ψ̄ðXÞðγμ − 1ÞUμðXÞQψðX þ aμ̂Þ�; ð52bÞ

TμðXÞ ¼
1

2
½ψ̄ðX þ aμ̂Þðγμ þ 1ÞU†

μðXÞQψðXÞ
− ψ̄ðXÞðγμ − 1ÞUμðXÞQψðX þ aμ̂Þ�; ð52cÞ

where ψ ¼ ðu; dÞT is the doublet of light quarks, Q ¼
diagð2

3
;− 1

3
Þ is the quark charge matrix,UμðXÞ are the gauge

links, and ZV is the renormalization factor for the local
current. We use one local and three conserved currents. In
position space, the lattice four-point function is given by

Πpos
μ1μ2μ3μ4ðX1; X2; X3; 0Þ ¼ hJlμ4ð0Þ½Jcμ1ðX1ÞJcμ2ðX2ÞJcμ3ðX3Þ

þ δμ1μ2δX1X2
Tμ1ðX1ÞJcμ3ðX3Þ

þ δμ1μ3δX1X3
Tμ3ðX3ÞJcμ2ðX2Þ

þ δμ2μ3δX2X3
Tμ3ðX3ÞJcμ1ðX1Þ

þ δμ1μ3δμ2μ3δX1X3
δX2X3

Jcμ3ðX3Þ�i:
ð53Þ

The contact terms are present when two or three conserved
currents coincide and serve to ensure that the conserved-
current Ward identities hold. Using the backward lattice
derivative Δ, these take the form

ΔX1
μ1 Π

pos
μ1μ2μ3μ4 ¼ ΔX2

μ2 Π
pos
μ1μ2μ3μ4 ¼ ΔX3

μ3 Π
pos
μ1μ2μ3μ4 ¼ 0: ð54Þ

In momentum space, we evaluate the Euclidean four-point
function as

ΠE
μνρσðQ1; Q2Þ ¼

X
X1;X2;X3

eiQ1ðX1þa
2
μ̂ÞeiQ2ðX2þa

2
ν̂Þe−iQ1ðX3þa

2
ρ̂Þ

× Πpos
μνρσðX1; X2; X3; 0Þ: ð55Þ

The fully connected contribution to Eq. (55), which is the
part proportional to TrðQ4Þ ¼ 17

81
, is evaluated using the
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method of sequential propagators. First, a point-source
propagator

S0ðXÞ≡ SðX; 0Þ; ð56Þ

where S is the single-flavor all-to-all quark propagator
(degenerate for u and d), is computed from the origin. To
concisely describe the sequential propagators, we introduce
the “insertions” J μðXÞ and T μðXÞ for the conserved vector
current and contact operator,

JcμðXÞ ¼ ψ̄J μðXÞQψ ; ð57aÞ

TμðXÞ ¼ ψ̄T μðXÞQψ : ð57bÞ

Formally, these objects have the same size as an all-to-all
quark propagator, but they are exactly zero for all sites
except those that are removed fromX by one lattice spacing.
The point-source propagator is then combined with a plane

wave and the conserved vector current insertion to form the
source for new (sequential) propagators,

SQ;μ ≡ S
X
X

e−iQðXþa
2
μ̂ÞJ μðXÞS0: ð58Þ

These, in turn, are used to form sources for double-
sequential propagators

SQ1μ1;Q2μ2 ≡ S
X
X

½e−iQ1ðXþa
2
μ̂1ÞJ μ1ðXÞSQ2μ2

þ e−iQ2ðXþa
2
μ̂2ÞJ μ2ðXÞSQ1μ1

þ δμ1μ2e
−iðQ1þQ2ÞðXþa

2
μ̂1ÞT μ1S0�: ð59Þ

Finally, noting that γ5J μðXÞ is anti-Hermitian and
γ5T μðXÞ is Hermitian, the fully connected four-point
function is obtained6 as

ΠE;conn
μνρσ ðQ1; Q2Þ ¼ −Tr½Q4�ZV

X
X2

eiQ2ðX2þa
2
ν̂ÞhTrðγσγ5½S†Q1μ;−Q1ρ

γ5J νðX2ÞS0 þ S†0γ5J νðX2ÞS−Q1μ;Q1ρ

− S†−Q1ρ
γ5J νðX2ÞS−Q1μ − S†Q1μ

γ5J νðX2ÞSQ1ρ þ δμνeiQ1ðX2þa
2
ν̂ÞðS†0γ5T νðX2ÞSQ1ρ − S†−Q1ρ

γ5T νðX2ÞS0Þ
þ δρνe−iQ1ðX2þa

2
ν̂ÞðS†0γ5T νðX2ÞS−Q1μ − S†Q1μ

γ5T νðX2ÞS0Þ þ δμνδρνS
†
0γ5J νðX2ÞS0�ÞiU; ð60Þ

where h…iU denotes the expectationvalue over gauge fields.
The sequential propagators depend on Q1, so a separate
calculation must be done for eachQ1. However, none of the
sources for the propagators depend onQ2; therefore, we are
able to efficiently evaluate ΠE;conn

μνρσ ðQ1; Q2Þ for all Q2

available on the lattice. In momentum space, the con-
served-current Ward identities take the form

Q̂1μΠE
μνρσðQ1; Q2Þ ¼ Q̂2νΠE

μνρσðQ1; Q2Þ
¼ Q̂1ρΠE

μνρσðQ1; Q2Þ ¼ 0; ð61Þ

where Q̂μ ≡ 2
a sin

aQμ

2
. We have verified that in our imple-

mentation these hold on each gauge configuration.

D. Lattice calculation of the (2 + 2) disconnected
four-point function

We also calculate one class of disconnected diagrams to
obtain an indication of their relevance. Based on the charge
factor and the arguments given in Sec. III B, the second
class in Fig. 1, which we call (2þ 2) and is proportional to
TrðQ2Þ2 ¼ 25

81
, is the most important. We evaluate this class

of diagrams using a different lattice expression that has two
local and two conserved currents as follows:

Πpos;ð2þ2Þ
μ1μ2μ3μ4 ðX1;X2;X3;0Þ¼ hJiμ1ðX1ÞJcμ2ðX2ÞJjμ3ðX3ÞJlμ4ð0Þi;

ð62Þ

where ði; jÞ ¼ ðl; cÞ or ðc; lÞ depending on the contraction,
chosen such that each quark loop contains one local and
one conserved current. Specifically, denoting the Y-to-all
propagator as SYðXÞ≡ SðX; YÞ, we use

ΠE;ð2þ2Þ
μνρσ ¼ Tr½Q2�2Z2

V

X
X1;X2;X3

eiQ1ðX1−X3ÞeiQ2ðX2þa
2
ν̂ÞheiQ1

a
2
μ̂Tr½γσγ5S†0γ5J μðX1ÞS0�Tr½γργ5S†X3

γ5J νðX2ÞSX3
�

þ e−iQ1
a
2
ρ̂Tr½γσγ5S†0γ5J ρðX3ÞS0�Tr½γμγ5S†X1

γ5J νðX2ÞSX1
�

þ e−iQ1
a
2
ρ̂Tr½γμγ5S†X1

γ5J ρðX3ÞSX1
�Tr½γσγ5S†0γ5J νðX2ÞS0�ic; ð63Þ

6A more generic case was given in Ref. [20].
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where

hTrATrBic ¼ hðTrA − hTrAiUÞðTrB − hTrBiUÞiU ð64Þ

is the QCD-connected expectation value over gauge fields.
Each trace corresponds to a quark loop in Fig. 1.
Since X1 and X3 are summed over, we evaluate the

traces involving SX1
and SX3

stochastically. To do this, we
introduce a color triplet, scalar noise field ϕaðXÞ with
randomly chosen Uð1Þ components, so that it has expect-
ation value E½ϕaðXÞϕ†

bðYÞ� ¼ δabδXY . We use this as the
source for two quark propagators,

SϕðXÞ ¼
X
Y

SðX; YÞϕðYÞ;

SϕQ1
ðXÞ ¼

X
Y

SðX; YÞe−iQYϕðYÞ; ð65Þ

where each spin component is solved independently using
the same noise source ϕ [39]. With these, we use the one-
end trick [40] and obtain

X
X1

eiQ1X1Tr½γμγ5S†X1
γ5J νðX2ÞSX1

�

¼ EðTr½γμγ5S†ϕQ1
γ5J νðX2ÞSϕ�Þ;X

X3

e−iQ1X3Tr½γμγ5S†X3
γ5J νðX2ÞSX3

�

¼ EðTr½γμγ5S†ϕγ5J νðX2ÞSϕQ1
�Þ: ð66Þ

We reduce this stochastic noise by averaging over four
noise fields per configuration, as well as using color
dilution [41,42] and hierarchical probing [43] with 32
Hadamard vectors. We find that for these two-point loops
hierarchical probing has no benefit over using additional
noise fields; however, the noise-source propagators can be
reused for one-point loops relevant for the hadronic vacuum
polarization and for the other disconnected four-point
diagrams, and for those loops it is beneficial. We also find
that it can (if possible) in some cases be beneficial to
average over the exchange of the local and conserved
currents in a quark loop. We further reduce gauge noise by
translating the origin of the point-source propagator S0 and
averaging over 128 point sources per gauge configuration.

IV. LATTICE RESULTS

A. Lattice setup

The four-point correlation functions are computed on a
subset of the Nf ¼ 2 CLS (Coordinated Lattice
Simulations) ensembles generated using the plaquette
gauge action for gluons [44] and the OðaÞ-improved
Wilson-Clover action for fermions [45] with the non-
perturbative parameter cSW [46]. The fermionic boundary
conditions are periodic in space and antiperiodic in time.
We consider two different values of the lattice spacing and
different pion masses in the range from 190 to 440 MeV.
The parameters of the ensembles used in this work are
summarized in Table I. The spatial extent L of the lattice
satisfies mπ · L ≥ 4 for all ensembles, and since the finite-
size effects on the four-point function at Euclidean
momenta are asymptotically of order expð−mπLÞ, we do
not expect large finite-size effects. Whether our ensembles
are already in the asymptotic regime should be checked in
the future by a dedicated volume-dependence study.
For each ensemble, the connected four-point corre-

lation function is computed at a few values of Q1 ¼
ðn · 2π=T; 0; 0; 0Þ, the first-listed component corresponding
to the time direction, with n ¼ 1, 2, 3 on ensemble E5;
n ¼ 1, 3 on F6 and F7; n ¼ 1, 4 on G8 and n ¼ 2 on N6.
For the (2þ 2) diagrams, we use n ¼ 2 (E5) and n ¼ 3
(F6). Then, for each value of Q1, the four-point correlation
function is evaluated for many different values of Q2,
corresponding to different values of Q2

2 and ν.
For the fully connected diagrams, we used two source

positions on ensembles E5, F6, F7; one source position on
N6; and eight sourcepositions onG8.Per sourceposition, the
number of inversions of the Dirac operator on a quark source
required for onemeasurement yielding all values ofQ2 is 25.
In the latter case, we used the truncated-solver method [48]
for the eight sources and a computationwith exact inversions
of the Dirac operator for bias correction on one source.
To estimate the even subtracted amplitudes, we compute

the subtraction term directly at ν ¼ 0, i.e., with Q2

orthogonal to Q1. For the odd subtracted amplitudes, we
use the approximation MðνÞ ≈MðνÞ − ν

ν1
Mðν1Þ, where

ν1 is the smallest available nonzero value of ν. In both cases
we linearly interpolate the subtraction term in Q2

2 to match
the value in the unsubtracted term.

TABLE I. Parameters of the simulations: the bare coupling β ¼ 6=g20, the lattice resolution, the hopping parameter κ, the lattice
spacing a in physical units extracted from [47], the pion mass mπ , the rho mass mρ and the number of gauge configurations.

CLS β L3 × T κ a [fm] mπ [MeV] mρ [MeV] mπL # confs

E5 5.3 323 × 64 0.13625 0.0652(6) 437(4) 971 4.7 500
F6 483 × 96 0.13635 314(3) 886 5.0 150
F7 483 × 96 0.13638 270(3) 841 4.3 124
G8 643 × 128 0.136417 194(2) 781 4.1 86
N6 5.5 483 × 96 0.13667 0.0483(4) 342(3) 917 4.0 236
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In all tables and figures, our results for the HLbL
amplitudes are multiplied by a factor of 106 for better
readability.

B. Connected contribution to the forward
light-by-light amplitudes

The results for the connected contribution to the eight
amplitudes are depicted in Figs. 3 and 4 for the ensemble
F6. Additional figures for ensemble G8 can be found in
Appendix B, Fig. 10. For F6 we show the amplitudes for
two different values of the virtuality Q2

1. We used all lattice
momenta Q2 up to Q2

2 ≲ 4 GeV2. The variable ν is then
bounded by ν ≤ ðQ2

1Q
2
2Þ1=2. The four amplitudes MTT ,

MTL, MLT and MLL are positive as they are related to
cross sections, while the amplitudes Ma

TT , M
τ
TT , M

τ
TL,

Ma
TL, corresponding to interference terms, are not sign-

definite. Since all amplitudes vanish in the limit of either
Q1 or Q2 → 0, the signal deteriorates at small Q2

1 (for fixed
Q2

2) as can be seen by comparing the left and right panels
of Fig. 3.

C. Disconnected contribution to the forward
light-by-light amplitudes

We now come to our results for the (2þ 2) disconnected
diagram contribution to the eight subtracted amplitudes.

We obtain this contribution with a reasonable statistical
precision; however, some of the amplitudes are signifi-
cantly different from zero when Q2

2 ¼ 0, as shown in the
left panel of Fig. 2. In infinite volume, the Euclidean four-
point function should vanish at this kinematic point, since a
conserved current can be written as the divergence of a
tensor field, JμðxÞ ¼ ∂νðxμJνðxÞÞ, so that

R
d4xJμðxÞ is

a pure boundary term, which vanishes in the presence of a
mass gap. Therefore, this is a sign of significant finite-
volume effects. The bulk of the effect may be removed
when subtracting the amplitude at ν ¼ 0, but some of it
may remain. Figure 2 also shows that due to correlations,
the subtraction significantly reduces the statistical uncer-
tainty. The full set of subtracted amplitudes on ensemble F6
is shown in Fig. 5.

V. EMPIRICAL PARAMETRIZATION OF THE
HADRONIC γ�γ�-FUSION CROSS SECTION

A. Model description and particle content

In this section, we describe how we model the hadronic
γ�γ�-fusion cross section. We represent it as a sum of
contributions from charge-conjugation even mesonic res-
onances produced in the s channel. Specifically, we include
the pseudoscalar (JPC ¼ 0−þ), scalar (JPC ¼ 0þþ), axial-
vector (JPC ¼ 1þþ) and tensor (JPC ¼ 2þþ) mesons.
Table II lists the most relevant light mesons with these

FIG. 2. Contribution ð×106Þ from (2þ 2) disconnected diagrams to the forward scattering amplitude MTT on ensemble E5, without
(left) and with (right) subtraction of the value at ν ¼ 0.

TABLE II. Particle multiplets and physical values for the mass and two-photon width as quoted by the Particle Data Group (PDG)
[37], as well as by [49] for the two-photon width of the f2ð1270Þmeson and [38] for the π0 width. In the case of the axial-vector mesons,
the indicated width is the effective width defined in Eq. (77) and obtained phenomenologically in [6]. A cross indicates an absent or
imprecise value in the PDG. An asterisk means that we use the isoscalar result divided by a factor 25=9 as explained in Sec. III B.

Isovector Isoscalar Isoscalar

Name m [MeV] Γγγ [keV] Name m [MeV] Γγγ [keV] Name m [MeV] Γγγ [keV]

0−þ π 134.98 0.0078(2) η0 957.78(6) 4.35(25) η 547.86(2) 0.515(18)
0þþ a0ð980Þ 980(20) 0.30(10) f0ð600Þ × × f0ð980Þ 990(20) 0.31(5)
1þþ a1ð1260Þ 1230(40) 1.26* f1ð1285Þ 1281.8(0.6) 3.5(0.8) f1ð1420Þ 1426.4(0.9) 3.2(0.9)
2þþ a2ð1320Þ 1318.3(0.6) 1.00(6) f2ð1270Þ 1275.5(0.8) 2.93(40) f02ð1525Þ 1525(5) 0.081(9)
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FIG. 3. Amplitudes MTT , Mτ
TT , Ma

TT and MLT ð×106Þ for the ensemble F6 and for two different values of Q2
1 (left:

Q2
1 ¼ 0.039 GeV2, right: Q2

1 ¼ 0.352 GeV2). The curves with error bands represent the fit results discussed in Sec. VI.
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FIG. 4. Amplitudes MTL, Ma
TL, Mτ

TL and MLL ð×106Þ for the ensemble F6 and for two different values of Q2
1 (left:

Q2
1 ¼ 0.039 GeV2, right: Q2

1 ¼ 0.352 GeV2). The curves with error bands represent the fit results discussed in Sec. VI.
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FIG. 5. Contribution ð×106Þ from (2þ 2) disconnected diagrams to the eight subtracted forward scattering amplitudes on ensemble
F6 with one fixed virtuality Q2

1 ¼ 0.352 GeV2.
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quantum numbers. In our implementation, we limit our-
selves to the lightest state in each symmetry channel. The
assumption that those states are sufficient to saturate the
sum rules is motivated by the fact that, at small energies,
higher mass singularities are suppressed in Eq. (9).
Moreover, we have revised the model used in [8] to better
account for the fact that we perform fits to the fully
connected diagrams. Rather than including isovector and
isoscalar mesons, we consider only isovector mesons,
enhanced by a factor 34=9: we refer the reader to
Sec. III B for a justification of this approximation, which
we expect to be superior. The procedure mostly modifies
the contribution of the pseudoscalar sector, due to the large
mass difference between the pion and the η0 meson. Also,
since lattice simulations are performed using Nf ¼ 2

dynamical quarks, we do not include the η meson.
Finally, we include the Born approximation to the γ�γ� →
πþπ− cross section using scalar QED, as described in
Ref. [5], using a monopole vector form factor, the monop-
ole mass being set to the ρ meson mass. Explicit formulas
for cross sections used in our model are given in
Appendix A. The individual contributions to the eight
amplitudes from each channel are summarized in Table III.

B. Assumptions on masses and resonances

Our lattice simulations are performed at larger-than-
physical quark masses. For each ensemble, the pion and ρ
meson masses are determined from the pseudoscalar and
vector two-point correlation functions, respectively; see
Table I for the obtained values. To obtain an estimate of the
lowest-lying meson mass mX in every other symmetry
channel, we assume that mX admits a constant additive
shift relative to its physical value mphys

X . The shift δm is
determined from the difference between the ρ mass
computed on the lattice and its experimental value,

mX ¼ mphys
X þ δm; δm ¼ mlat

ρ −mphys
ρ : ð67Þ

In Sec. VI, we will test the sensitivity of our results to
variations of δm by a factor of two. As for resonances, we
assume that their contributions are well approximated by
Breit-Wigner distributions and use the following formal
substitution in the cross sections given in Appendix A,

δðs −m2
XÞ ↔

mX

π

ΓX

ðs −m2
XÞ2 þm2

XΓ2
X
; ð68Þ

where mX and ΓX are the mass and the total width of the
particle, respectively. However, the remaining part of the
cross section is still evaluated at s ¼ m2

X. For the (very
narrow) pseudoscalar mesons, one can perform the inte-
gration explicitly and obtain the following contribution
to the sum rules [using δðν − νPÞ ¼ 2δðs − sPÞ, where
νP ¼ 1

2
ðm2

P þQ2
1 þQ2

2Þ]:

4ν2

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
σ0ðν0Þ

ν0ðν02 − ν2 − iϵÞ

¼ 64π
Γγγ

mP

ν2XP

m2
PνPðν2P − ν2Þ

�
FPγ�γ� ðQ2

1; Q
2
2Þ

FPγ�γ� ð0; 0Þ
�
2

ð69Þ

¼ 16π2α2
ν2XP

νPðν2P − ν2Þ ½FPγ�γ�ðQ2
1; Q

2
2Þ�2 ð70Þ

in the even case, and

4ν3

π

Z
∞

ν0

dν0
ffiffiffiffiffi
X0p
σ0ðν0Þ

ν02ðν02 − ν2 − iϵÞ

¼ 16π2α2
ν3XP

ν2Pðν2P − ν2Þ ½FPγ�γ�ðQ2
1; Q

2
2Þ�2 ð71Þ

in the odd case, where XP ≡ ν2P −Q2
1Q

2
2.

C. Parametrization of the form factors

In this subsection, we briefly review the available
information on the transition form factors of the exchanged
mesons in the hadronic model, and present the paramet-
rization we use in fitting the lattice HLbL amplitudes.
While detailed information is available in the case of the
pion from lattice QCD, no experimental data is presently
available at doubly virtual kinematics in any channel. In
these cases, a monopole or dipole ansatz, in which the Q2

1

and Q2
2 dependence factorizes, is made to describe the

photon-virtuality dependence, even though such an ansatz
might not have the asymptotic behavior predicted by the
operator-product expansion. Our motivation is that this type
of parametrization is used in model calculations of aHLbLμ .

TABLE III. List of individual contributions to each of the eight helicity amplitudes. A cross indicates the absence of a contribution in
the given channel. The relevant cross sections for each channel are given in Appendix A.

MTT Mτ
TT Ma

TT MTL MLT Mτ
TL Ma

TL MLL

Pseudoscalar σ0=2 −σ0 σ0=2 × × × × ×
Scalar σ0=2 σ0 σ0=2 × × τTL τTL σLL
Axial σ0=2 −σ0 σ0=2 σTL σLT τTL −τTL ×
Tensor σ0þσ2

2
σ0

σ0−σ2
2

σTL σLT τTL τaTL σLL
Scalar QED σTT τTT τaTT σTL σLT τTL τaTL σLL
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Also, given our goal of performing fits to the HLbL
amplitudes computed on the lattice, the number of free
parameters characterizing the transition form factors should
be commensurate with the precision of the lattice data.

1. Pseudoscalar mesons

For pseudoscalar mesons, experimental data are avail-
able when at least one photon is on shell, and in this case a
good parametrization of the data is obtained using a
monopole form factor [50–53]. However, as shown in
Ref. [24], a monopole form factor failed to reproduce the
lattice data in the doubly virtual case, in contrast to the
LMDþ V model. Furthermore, the LMDþ V model is
compatible with the Brodsky-Lepage behavior [54–56] in
the singly virtual case and with the operator-product
expansion (OPE) prediction [57,58] in theQ2

1 ¼ Q2
2 doubly

virtual case. We therefore use this model for the pion
transition form factor, of which the parameters were
determined in Ref. [24] for each ensemble listed in Table I.

2. Scalar mesons

Scalar mesons can be produced by two transverse (T) or
two longitudinal (L) photons. Correspondingly, the ampli-
tude is parametrized by two form factors, FT

Sγ�γ� and F
L
Sγ�γ� .

Only the first one has been measured experimentally: this
was done for the f0ð980Þ meson in the region Q2 <
30 GeV2 by the Belle Collaboration [59], and the results
are compatible with a monopole form factor with a
monopole mass MS ¼ 0.800ð50Þ GeV. Therefore, we
assume the form

FT
Sγ�γ� ðQ2

1; Q
2
2Þ

FT
Sγ�γ� ð0; 0Þ

¼ 1

ð1þQ2
1=M

2
SÞð1þQ2

2=M
2
SÞ
: ð72Þ

For simplicity, we also assume that the transverse and
longitudinal form factors are equal (the longitudinal one is
only relevant for the amplitudes Ma

TL, M
τ
TL and MLL),

FL
Sγ�γ� ðQ2

1; Q
2
2Þ ¼ −FT

Sγ�γ� ðQ2
1; Q

2
2Þ: ð73Þ

The normalization is obtained from the experimentally
measured two-photon decay width Γγγ given by (see
Table II)

Γγγ ¼
πα2

4
mS½FT

Sγ�γ� ð0; 0Þ�2; ð74Þ

while the monopole mass MS will be treated as a free
parameter.

3. Axial mesons

For axial mesons, we have two form factors, Fð0Þ
Aγ�γ� and

Fð1Þ
Aγ�γ� , corresponding to the two helicity states of the

meson. We use the same parametrization as in Ref. [5],
inspired by quark models,

Fð0Þ
Aγ�γ� ðQ2

1; Q
2
2Þ ¼ m2

AAðQ2
1; Q

2
2Þ; ð75aÞ

Fð1Þ
Aγ�γ� ðQ2

1; Q
2
2Þ ¼ −

ν

X
ðνþQ2

2Þm2
AAðQ2

1; Q
2
2Þ; ð75bÞ

Fð1Þ
Aγ�γ�ðQ2

2; Q
2
1Þ ¼ −

ν

X
ðνþQ2

1Þm2
AAðQ2

1; Q
2
2Þ; ð75cÞ

in which 2ν ¼ m2
A þQ2

1 þQ2
2 with mA the meson mass,

AðQ2
1; 0Þ

Að0; 0Þ ¼ 1

ð1þQ2
1=M

2
AÞ2

; ð76Þ

and assuming factorization such that AðQ2
1; Q

2
2Þ ¼

AðQ2
1; 0ÞAð0; Q2

2Þ=Að0; 0Þ ¼ AðQ2
2; Q

2
1Þ. In particular, the

form factor Fð1Þ
Aγ�γ� is not symmetric in the photon virtual-

itiesQ2
1,Q

2
2. These form factors have been measured by the

L3 Collaboration for one real and one virtual photon in the
region Q2 < 5 GeV2 [60,61] for the isoscalar resonance.
Using the previous parametrization, the authors obtain the
dipole mass MA ¼ 1040ð78Þ MeV for the f1ð1285Þ
meson. We obtain the normalization of the form factors
from the values given in [6] for the effective two-photon
width, defined as

Γ̃γγ ≡ lim
Q2

1
→0

m2
A

Q2
1

1

2
ΓðA → γ�LγTÞ

¼ πα2

4

mA

3
½Fð1Þ

Aγ�γ�ð0; 0Þ�
2; ð77Þ

and we will consider MA as a free parameter in our fits.

4. Tensor mesons

We now turn our attention to the tensor mesons. The
singly virtual form factors of the isoscalar resonance f2 for
helicities Λ ¼ 2, 1, ð0; TÞ have also been measured

TABLE IV. Tensor form factor normalizations for the isoscalar meson f2ð1270Þ. For helicities Λ ¼ 2 and Λ ¼ ð0; TÞ the
normalization is obtained using Eq. (79) and the measured two-photon decay width. For helicities Λ ¼ 1 and Λ ¼ ð0; LÞ the results
are extracted from Ref. [6].

Λ ¼ 2 Λ ¼ ð0; TÞ Λ ¼ 1 Λ ¼ ð0; LÞ
FðΛÞ
T γ�γ� ð0; 0Þ 0.500� 0.034 0.095� 0.011 0.24� 0.05 −0.90� 0.30
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experimentally in the region Q2 < 30 GeV2 by the Belle
Collaboration [59], where the data are compatible with a
dipole form factor [6]. Therefore, we use the following
parametrization for all helicities Λ ¼ ð0; TÞ, ð0; LÞ, 1, 2,

FðΛÞ
T γ�γ�ðQ2

1; Q
2
2Þ

FðΛÞ
T γ�γ� ð0; 0Þ

¼ 1

ð1þQ2
1=M

2
T;ðΛÞÞ2ð1þQ2

2=M
2
T;ðΛÞÞ2

;

ð78Þ

where we allow for a different dipole mass for each helicity.
The normalization of the transverse form factors is com-
puted from the experimentally measured two-photon

widths [37], Γγγ ¼ Γð0Þ
γγ þ Γð2Þ

γγ , assuming that the ratio of
helicity 2 to helicity 0 decays is r ¼ 91.3% (see Ref. [62]):

Γð0Þ
γγ ¼ πα2mT

2

15
½Fð0;TÞ

T γ�γ� ð0; 0Þ�2;

Γð2Þ
γγ ¼ πα2

4
mT

1

5
½Fð2Þ

T γ�γ�ð0; 0Þ�2: ð79Þ

In Ref. [6], the authors obtain the normalization of the two
other form factors by saturating two different sum rules
involving one real and one virtual photon; their results are
summarized in Table IV.
Finally, based on large-N arguments reviewed inSec. III B,

we assume the following relationship between the two-
photon decay widths of the isoscalar and isovector mesons:

ΓγγðfXÞ ¼
25

9
ΓγγðaXÞ: ð80Þ

In particular, we observe that this approximation works well
for the tensor meson, where the two-photon decay widths
have been measured both for the isovector and isoscalar
mesons (see Table II).

VI. FITTING THE γ�γ� → HADRONS MODEL
TO THE LATTICE HLBL AMPLITUDES

A. Preliminary checks

In this section, we fit simultaneously the eight forward
light-by-light amplitudes using the phenomenological
model described in Sec. V. We have checked that we
can reproduce the results given in Refs. [5,6] in the limit
where only one photon is virtual to the quoted accuracy7

(Tables I and II of [5] and Tables III and IV of [6]).
Moreover, fits have been checked using two different
routines: the Minuit package from CERN [63] and the
GSL library [64].

B. Fit of the eight helicity amplitudes

It appears that the five subtracted amplitudes MTT ,
Mτ

TT , M
a
TT , MTL and MLT are statistically more precise

than the three other amplitudes Mτ
TL, M

a
TL and MLL.

Moreover, these last three amplitudes also depend on the
longitudinal scalar form factor and on the tensor form factor
with helicity Λ ¼ ð0; LÞ which are unknown from experi-
ments and for which we use values from phenomenology
(see Table IV). As shown in the last row of Table VI, the
contribution from scalar QED is always small and therefore
we do not try to fit the associated monopole mass which is
explicitly set to the rho mass computed on the lattice. We
therefore have six fit parameters, which correspond to the
monopole and dipole masses of the scalar (MS), axial (MA)

and tensor (Mð2Þ
T , Mð0;TÞ

T , Mð1Þ
T , Mð0;LÞ

T ) mesons. The results
are given in Table V, and the corresponding plots for the
ensemble F6 are shown in Figs. 3 and 4 (additional plots for
G8 are shown in Appendix B, Fig. 10). The quoted error on
the fit parameters is only statistical and estimated using the
jackknife method. The quoted χ2 correspond to uncorre-
lated fits. The χ2 per degree of freedom are slightly above
unity, with the exception of the value for ensemble E5. Here
we attribute its large value to the fact that the statistical
errors are smallest on E5 and that finite-volume effects
could be significant for this ensemble because its spatial
extent is only L ¼ 2.1 fm. Given that lattice artifacts and
finite-size effects are not taken into account by the χ2, we
consider the obtained description of the data on the other
ensembles to be satisfactory.
In Table VI, we show the relative contribution of each

channel to the different amplitudes at Q2
1 ¼ 0.352 GeV2,

ν ¼ 0.467 GeV2 and for two values of Q2
2. The amplitudes

Ma
TT , M

τ
TT , M

τ
TL and Ma

TL involve interference cross
sections and are not sign-definite: we observe large
cancellations between the different contributions. The latter
help to stabilize the fit due to the enhanced sensitivity to the
relative size of these contributions. In particular, fitting only
the amplitudesMTT ,MTL andMLT leads to unstable fits.
Figures 6 and 7, in addition to displaying the ν dependence
of the amplitudes for two sets of values of ðQ2

1; Q
2
2Þ, show

the contributions of the individual mesons. The pseudo-
scalar and tensor mesons give the dominant contribution to
the amplitudes MTT , M

τ
TT and Ma

TT , which involve two
transverse photons. As stated above, the scalar QED
contribution is always small, except for MLL. The axial
form factor is mainly constrained from MTL, MLT where
the axial and tensor mesons make the dominant contribu-
tion; this is clearly visible from Figs. 6 and 7. It also
contributes significantly to the amplitudesMa

TL andMτ
TL,

which involve one transverse and one longitudinal photon.
On the other hand, the axial meson does not contribute
significantly to the amplitudes MTT , Mτ

TT and Ma
TT

involving two transverse photons, especially at low
7In the second paper, the authors worked in the narrow width

approximation.
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virtualities. This suppression is expected since axial mes-
ons have vanishing contribution when at least one photon is
real according to the Landau-Yang theorem [65,66].
Finally, the tensor meson contributes significantly to all
amplitudes.

C. Influence of the nonfitted model parameters

In the previous fit, only the monopole and dipole masses
entering the form factors were considered as fit parameters.
The other parameters (p ¼ Γ;Γγγ; δm;…) were fixed using
phenomenology as described in Sec. V. However, these
parameters are sometimes associated with relatively large
experimental errors (δp) or modeled (like the global mass
shift in the spectrum where we assume mX ¼ mexp

X þ δm
with δm ¼ mlat

ρ −mexp
ρ ). Therefore, we perform exactly the

same fit as in the previous section but using p� δp instead
of p (and varying only one parameter at a time). In this way,
we can see the influence of these parameters on the
monopole and dipole masses obtained in the previous
section. The results are summarized in Table VII for the
ensemble F6. In this table, δm corresponds to the global
mass shift applied to the spectrum [see Eq. (67)], and is
multiplied or divided by a factor of two.
We observe that the experimental error on the total decay

widths of the particles have a negligible effect. Increasing
the two-photon width (or equivalently, the normalization of
the form factor) tends to reduce the associated monopole or

dipole mass. Finally, increasing the global mass shift by a
factor of two leads to a noticeable change in the monopole
and dipole masses with little change in the χ2.
Varying the normalization of the form factor Fð0;LÞ

T γ�γ� leads

to negligible changes in all parameters but Mð0;LÞ
T ; this

particular correlation is studied in more detail in the next
subsection.

D. Bounds for the tensor form factor Fð0;LÞ
T γ�γ�

The transition form factor Fð0;LÞ
T γ�γ� of the tensor meson

enters only the amplitudesMτ
TL,M

a
TL andMLL, which are

less precisely determined on the lattice. In particular, the fit is
not able to determine both the dipole mass and the
normalization independently, and they are highly correlated.
To illustrate this point, we use the previously obtained best
fit parameters and compute the χ2=d:o:f: along a scan in the

plane [Mð0;LÞ
T , Fð0;LÞ

T γ�γ� ð0; 0Þ]. The results are shown in Fig. 8:
for a dipole mass of 1 GeV, a normalization Fð0;LÞ

T γ�γ� ð0; 0Þ ≈
−0.4 is favored but the results show a strong dependence

on Mð0;LÞ
T .

E. Chiral extrapolations

Finally, we perform a chiral extrapolation for the six
monopole and dipole masses that we have fitted to the
lattice four-point function. For each of these parameters, we

TABLE VI. Relative contributions in % of each particle to the different amplitudes for the ensemble F7 at Q2
1 ¼ 0.352 GeV2,

ν ¼ 0.467 GeV2 and for two values ofQ2
2. For each Q

2
2 value, the normalization is such that the absolute values of the entries in a given

column add up to 100.

Q2
2 [GeV2] MTT Mτ

TT Ma
TT MTL MLT Ma

TL Mτ
TL MLL

0−þ 1.0 35 −56 68 × × × × ×
3.0 30 −38 61 × × × × ×

0þþ 1.0 7 11 8 × × 23 14 42
3.0 5 6 8 × × 19 9 50

1þþ 1.0 2 −2 1 43 57 −43 32 ×
3.0 8 −11 11 21 49 −40 23 ×

2þþ 1.0 53 25 −20 56 42 19 −47 25
3.0 56 44 19 79 51 38 −67 40

Scalar QED 1.0 4 5 3 1 <1 −15 −7 33
3.0 1 1 1 <1 <1 −3 −1 10

TABLE V. Results of the simultaneous fit to the eight subtracted amplitudes MTT , M
τ
TT , M

a
TT , MTL, MLT ,

Ma
TL, M

τ
TL and MLL for the five lattice ensembles. The six mass parameters are given in units of GeV.

MS MA Mð2Þ
T Mð0;TÞ

T Mð1Þ
T Mð0;LÞ

T χ2=d:o:f:

E5 1.38(11) 1.26(10) 1.93(3) 2.24(5) 2.36(4) 0.60(10) 4.22
F6 1.12(14) 1.44(5) 1.66(9) 2.17(5) 1.85(14) 0.89(28) 1.15
F7 1.04(18) 1.29(8) 1.61(12) 2.08(7) 2.03(7) 0.57(16) 1.19
G8 1.07(10) 1.36(5) 1.37(24) 2.03(6) 1.63(13) 0.73(14) 1.13
N6 0.86(37) 1.59(3) 1.72(17) 2.19(4) 1.72(18) 0.51(8) 1.35
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FIG. 6. The dependence of the amplitudes MTT , M
τ
TT , M

a
TT and MLT ð×106Þ on ν for two different values of Q2

2, the virtuality
Q2

1 ¼ 0.352 GeV2 being fixed. The results correspond to the lattice ensemble G8. Note that at fixed photon virtualities, the form factors
are completely determined. The black line corresponds to the total contribution and each colored line represents a single-meson
contribution.
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FIG. 7. The dependence of the amplitudes MTL, M
a
TL, M

τ
TL, MLL ð×106Þ on ν for two different values of Q2

2, the virtuality Q2
1 ¼

0.352 GeV2 being fixed. The results correspond to the lattice ensemble G8. Note that at fixed photon virtualities, the form factors are
completely determined. The black line corresponds to the total contribution and each colored line represents a single-meson contribution.
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assume a linear dependence on m2
π , which essentially

corresponds to a linear fit in the quark mass. Rather than
varying the fit ansatz, we perform two sets of fits, either
including or excluding the ensemble E5, which has the
largest pion mass. The lattice results are given in Table VIII
and depicted in Fig. 9 together with the fits excluding E5.
The displayed errors are purely statistical. The blue points
in Fig. 9 represent the ensemble N6 and therefore corre-
spond to a finer lattice spacing than the other data points.
We remind the reader that we have included only isovector
mesons in the description of the fully connected amplitude;
therefore, all our fitted form factor parameters correspond
to isovector mesons. While the results are quite stable under

including or excluding ensemble E5, we consider the latter
to be our final results, mainly because the χ2 per degree of
freedom of the global fit was unacceptably large for E5. We
make the following observations:
(a) The monopole mass of the scalar meson transition form

factor does not depend strongly on the pion mass. After
a mild extrapolation, we obtainMS ¼ 1.04ð14Þ GeV at
the physical pion mass. The result lies above the
experimental result MS ¼ 0.796ð54Þ GeV from the
Belle Collaboration for the isoscalar scalar meson [59].

(b) The axial dipole mass is also very weakly dependent
on the pion mass. We obtainMA ¼ 1.32ð7Þ GeV at the
physical pion mass. The finer ensemble N6 suggests a

TABLE VII. Fit variations for F6. The first row corresponds to the results obtained in the previous section. Then, each row corresponds
to a new fit using p� δp and varying only one parameter at a time: the quoted number is the shift observed for the monopole/dipole
mass, in units of GeV. A cross indicates that the parameter remains unchanged to all indicated digits of the central values in the first row.
For instance, using Γγγða0Þ þ δΓγγða0Þ instead of Γγγða0Þ, the scalar monopole mass is shifted by −0.09 GeV, the other monopole/
dipole masses being unaffected. In the last row, the mass shift δm applied to the spectrum [see Eq. (67)] is varied by a factor of two.

MS MA Mð2Þ
T Mð0;TÞ

T Mð1Þ
T Mð0;LÞ

T χ2=d:o:f:

Principal 1.12(14) 1.44(5) 1.66(9) 2.17(5) 1.85(14) 0.91(7) 1.15
Γða0Þ × × × × × × 1.15

× × × × × × 1.15
Γγγða0Þ −0.09 × × × × × 1.14

þ0.12 × × × × × 1.15
Γða1Þ −0.01 þ0.03 × þ0.01 × × 1.14

−0.01 −0.02 þ0.01 × þ0.01 × 1.15
Γ̃γγða1Þ × −0.10 þ0.02 −0.01 þ0.02 × 1.17

þ0.03 þ0.19 −0.01 þ0.02 −0.01 × 1.12
Γða2Þ × × × × × × 1.15

× × × × × × 1.15

Fð2Þ
T γ�γ�

−0.01 × −0.06 þ0.01 × × 1.15
× × þ0.08 × þ0.01 × 1.14

Fð0;TÞ
T γ�γ�

−0.08 × −0.01 −0.09 −0.01 × 1.13
þ0.08 × þ0.02 þ0.11 þ0.02 × 1.17

Fð1Þ
T γ�γ�

× × × × −0.14 × 1.14
−0.01 × × × þ0.21 × 1.15

δm×2
×0.5 þ0.20 þ0.13 þ0.11 þ0.13 þ0.14 þ0.10 1.17

−0.10 −0.06 −0.05 −0.08 −0.06 −0.05 1.15

FIG. 8. Value of χ2=d:o:f: for different dipole masses and form factor normalizations [tensor form factor, helicity Λ ¼ ð0; LÞ]. Left:
ensemble F7. Right: ensemble G8.
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value 10% larger. More ensembles would be needed to
confirm whetherMA is afflicted by large discretization
effects. For comparison, the L3 Collaboration obtained
a dipole mass MA ¼ 1.040ð80Þ GeV for the isoscalar
partner f1ð1285Þ; the measurement relied on single-
virtual measurements only [60,61]. The difference in
the kinematics at which the form factor was probed
could be part of the reason we found a larger dipole
mass, in addition to a potential genuine difference
between the isospin partners. We also recall that the

transition form factors have been parametrized in a
fairly simplistic way [see Eq. (76) and above].

(c) Finally, for the tensor meson a2, linear extrapolations in
m2

π yield the results given in Table VIII. Fits to
experimental data on the single-virtual form factor
[6,59] yielded smaller values for the f2ð1270Þ meson.
For instance, our result for the helicity-2 transition form

factor, Mð2Þ
T ¼ 1.35ð24Þ GeV, is only slightly larger

than the value 1.222(66) GeV obtained phenomeno-

logically. On the other hand, our values of Mð1Þ
T ¼

1.69ð16Þ GeV andMð0;TÞ
T ¼ 1.96ð9Þ GeV are almost a

factor of two larger than the corresponding phenom-

enological f2 results, Mð1Þ
T ¼ 0.916ð20Þ GeV and

Mð0;TÞ
T ¼ 1.051ð36Þ GeV. Especially Mð0;TÞ

T is sta-
tistically well constrained by the lattice data and only
weakly dependent on the lattice spacing and the pion

mass. Finally, our value for Mð0;LÞ
T ¼ 0.67ð19Þ GeV is

in agreement with the estimate 0.877(66) GeVobtained
in [6] within the large uncertainties.

To summarize, in all cases except Mð0;LÞ
T , we obtain larger

monopole and dipole masses for the isovector mesons than
in phenomenology for the isoscalar mesons. The strongest

difference is inMð1Þ
T andMð0;TÞ

T , where we find that the form
factors fall off far more slowly; this discrepancy could be
due to the use of the factorization assumption for the

TABLE VIII. Results of the chiral extrapolation for the scalar
monopole massMS, the axial dipole massMA and the four tensor
dipole masses corresponding to different helicities. All results are
given in units of GeV and correspond to isovector mesons at the
physical value of the pion mass. Results including or excluding
the ensemble (E5) with the largest pion mass are given. We
consider the latter to be our final results (last column of the table).

Including E5 Excluding E5

MS 0.94(12) 1.04(14)
MA 1.40(07) 1.32(07)

Mð2Þ
T

1.39(12) 1.35(24)

Mð1Þ
T

1.67(10) 1.69(16)

Mð0;TÞ
T

2.01(07) 1.96(09)

Mð0;LÞ
T

0.74(14) 0.67(19)

FIG. 9. Chiral extrapolations for each monopole and dipole mass, excluding the ensemble E5 with the largest pion mass. The blue
point corresponds to the lattice ensemble N6 and gives an indication about discretization effects. Only the statistical error is displayed.
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dependence on the photon virtualities. On the other hand,
we find agreement within the uncertainties for the scalar
monopole mass and the helicity-2 form factor of the
tensor meson.

VII. STUDY OF DISCONNECTED DIAGRAMS

In this section, we test whether the hadronic model
of Sec. V together with the arguments summarized in
Sec. III B is consistent with the (2þ 2) disconnected
diagrams, which we have computed on two lattice ensem-
bles. The arguments, based on the large-N motivated idea
that an isolated vector current insertion in a fermion loop
gives a suppressed contribution, lead to the conclusion that
the (2þ 2) disconnected class of diagrams contains all of
the contributions from flavor-singlet meson poles, while the
mesons in the adjoint representation of the flavor symmetry
group contribute with a negative weight factor; the latter is
(−25=9) in the SUð2Þflavor case and (−2) in the SUð3Þflavor
case. The generic large-N expectations would further lead
to the stronger conclusion that, in each JPC sector,
the nonsinglet resonances cancel the contribution of the
flavor-singlet resonances. One channel, however, where the
degeneracy is badly broken is the pseudoscalar sector, since
the pion is much lighter than the η0 meson. Therefore, in the
two-flavor theory we expect the (2þ 2) disconnected class
of diagrams to be given to a good approximation by

Mð2þ2Þ
:: ≈ −

25

9
Mðπ0Þ

:: þMðη0Þ
:: : ð81Þ

We have calculated the π0 → γ�γ� transition form factor on
the same lattice ensembles as used here in a previous

publication [24]. For the η0, the two-photon decay width is
fairly well known experimentally; thus, assuming a vector-
meson-dominance model for the virtuality dependence of
the η0 transition form factor and using the known ρmass on
each lattice ensemble, Eq. (81) provides a prediction for the
Mð2þ2Þ

:: amplitudes. We use the vector mass given in
Table I. In Fig. 5, we display the prediction for the three
subtracted amplitudes that are nonzero in this model,

Mð2þ2Þ
TT , Mτ;ð2þ2Þ

TT and Ma;ð2þ2Þ
TT , together with the direct

lattice calculation. We find that Eq. (81) predicts the overall
size of the amplitudes well, within the fairly large uncer-

tainties. The agreement is most compelling in the Mτ;ð2þ2Þ
TT

amplitude; this is also one of the amplitudes where the
pseudoscalar poles make a large contribution. In fact, in this

channel, Mτ;ð2þ2Þ
TT amounts to about −90% of the fully

connected contribution Mτ;ð4Þ
TT .

A. Estimate of the contribution of the (2 + 2)
disconnected class of diagrams to aHLbL

μ

We have obtained some evidence from our Nf ¼ 2
lattice data that the (2þ 2) class of diagrams is dominated
by the pseudoscalar exchanges with the weight factors
derived in Sec. III B. Using the results from [67], we can
now estimate the importance of the (2þ 2) disconnected
class of diagrams in aHLbLμ in two limits:
(a) ms ¼ ∞, which corresponds to the two-flavor theory;
(b) ms ¼ mud, which corresponds to the SU(3)-flavor

symmetric theory.
We expect the real world to lie between these two
predictions. In these two limits, we obtain

aHLbL;ð2þ2Þ
μ ≈

�− 25
9
aHLbL;π

0

μ þ aHLbL;η
0

μ ¼ −ð162� 27Þ × 10−11 ms ¼ ∞;

−2ðaHLbL;π0μ þ aHLbL;ημ Þ þ aHLbL;η
0

μ ¼ −ð142� 19Þ × 10−11 ms ¼ mud:
ð82Þ

We have used the LMDþ V result for the pion
(62.9 × 10−11) and the VMD results for the η and η0

(respectively 14.5 × 10−11 and 12.5 × 10−11) quoted in
[67] (see also References therein) and assigned to each
contribution an uncertainty of 15%. For comparison, the
Nf ¼ 2 lattice calculation [24] of the pion transition form
factor and its parametrization by the LMDþ V model led

to the value aHLbL;π
0

μ ¼ ð65.0� 8.3Þ × 10−11.
Taking, in addition, the result aHLbLμ ≈ ð102� 39Þ ×

10−11 from a model calculation [68], the generic large-N
based expectations imply the following estimate for the
fully connected class of diagrams:

aHLbL;ð4Þμ;model ≈
� ð264� 51Þ × 10−11 ms ¼ ∞;

ð244� 46Þ × 10−11 ms ¼ mud:
ð83Þ

These estimates give an idea of what to expect in forth-
coming lattice calculations. We remark, as also pointed out
in [67], that the VMDmodel for the η and η0 transition form
factors is not tested in the doubly virtual case, and that the
VMD form factor falls off as ðQ2Þ−2 in the limit of two
large spacelike virtualities Q2

1 ¼ Q2
2 ¼ Q2, whereas the

operator-product expansion predicts a 1=Q2 fall-off.
Thus, the η and η0 contributions above could be somewhat
underestimated due to the use of the VMD model. In the
case of the pion, the “bias” from using the VMD is −10%,
relative to using the more sophisticated LMDþ V model.
The only lattice calculation [19] to have presented results

for aHLbL;ð4Þμ and aHLbL;ð2þ2Þ
μ found, respectively, 116.0(9.6)

and −62.5ð8.0Þ in units of 10−11. We conclude that either
these lattice results are severely underestimated, which
could be due to discretization and finite-volume effects; or
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the hadronic model based on resonance exchanges is not
viable; or the large-N inspired approximations made to
estimate (82) and (83) are inadequate; or a combination of
the above. A new high-statistics lattice calculation of

aHLbL;ð2þ2Þ
μ in a large volume would be particularly illumi-

nating for resolving the issue, since the prediction (82) is
relatively clear-cut.

VIII. CONCLUSION

With the hadronic light-by-light contribution to the
muon anomalous magnetic moment aHLbLμ in mind, we
have studied the eight forward light-by-light amplitudes for
spacelike photons in Nf ¼ 2 lattice QCD. Via dispersive
sum rules, we have tested whether the type of hadronic
models used to estimate aHLbLμ provides a good description
of lattice results. All in all, we found that by fitting the
virtuality dependence of six meson transition form factors,
we were able to describe the lattice data within statistical
uncertainties. The monopole and dipole masses parame-
trizing the transition form factors compare reasonably well
in magnitude with phenomenological determinations for
the I ¼ 0 isospin partner, with the notable exception of the
dipole masses of the tensor meson for helicities Λ ¼ 1 and
Λ ¼ ð0; TÞ, where we find that the form factors fall off far
more slowly. The simultaneous fit to all eight amplitudes
allowed us to test the individual relevance of the various
resonance contributions, given that they appear with differ-
ent weights and signs in different amplitudes. Our study
thus paves the way for future lattice calculations to directly
test, in a broad kinematic regime and by a completely
independent method, the resonance-exchange model
widely used in calculating aHLbLμ .
The (2þ 2) disconnected class of diagrams was com-

puted on two lattice ensembles. We found that a parameter-
free prediction based on a specific large-N argument
presented in detail in Sec. III B (see also the earlier
[26]), which expresses this set of diagrams in terms of
the pseudoscalar mesons alone, was compatible with the
lattice data, albeit within large relative errors. Motivated by
this observation, we estimated what values a lattice
calculation would have to obtain for the fully connected
and (2þ 2) set of disconnected diagrams if it were to
reproduce the current model estimates of aHLbLμ .
While we laid out many technical details of the method,

we regard the present calculation as exploratory, and leave a
more quantitative comparison of monopole and dipole
masses, including an estimate of systematic errors, for
the future. Indeed, we were only able to perform stable fits
by making model assumptions, for instance about the
masses of the lightest resonances in the scalar, axial-vector
and tensor sectors in Nf ¼ 2 QCD at nonphysical quark
masses. In addition to neglecting the three classes of
diagrams containing at least one isolated vector current
insertion in a quark loop, we had to assume various

relations between the two-photon decay widths of iso-
spin-partner resonances that are justified only for a large
number of colors N. Also, the employed parametrization of
the axial-vector resonance form factors is a further vulner-
able assumption.
In the future, it would be useful to repeat the calculation

of the forward light-by-light amplitudes with higher sta-
tistics, on ensembles including also the dynamical strange
quark effects, and with a lighter pion mass. Especially at
virtualities ≲0.1 GeV2, which can contribute significantly
to aHLbLμ [67], smaller statistical errors would be beneficial
to testing the hadronic model more stringently. Dedicated
calculations of the transition form factors of the pseudo-
scalar mesons π0, η, η0 along the lines of [24] would further
reduce the number of fit parameters in describing the light-
by-light amplitudes, in addition to providing highly valu-
able input for phenomenological approaches to aHLbLμ .
Finite-volume effects could not be addressed in any detail
here, and a dedicated study would be important to carry out,
given the long-range nature of the neutral pion contribu-
tion [21,22].

ACKNOWLEDGMENTS

We are thankful to I. Danilkin, A. Nyffeler and M.
Vanderhaeghen for helpful discussions. We acknowledge
the useofCLS lattice ensembles and ofQDP++ software [69]
with the deflated SAPþ GCR solver from openQCD [70].
The correlation functions were computed at the “Clover’’
cluster at the Helmholtz-Institut Mainz and the “Mogon”
cluster of the University of Mainz. This work was partially
supported by the Deutsche Forschungsgemeinschaft (DFG)
through the Collaborative Research Center “The Low-
Energy Frontier of the Standard Model” (SFB 1044).

APPENDIX A: CROSS SECTIONS γ�γ� → X

This Appendix is based on the Appendix of Ref. [5]. We
collect the relevant formulas needed to evaluate the sum
rules in the general case with two virtual photons.

1. Notations

The metric tensor of the subspace orthogonal to q1 and
q2 is given by

Rμνðq1; q2Þ ¼ −gμν þ 1

X
fðq1 · q2Þðqμ1qν2 þ qμ2q

ν
1Þ

− q21q
μ
2q

ν
2 − q22q

μ
1q

ν
1g; ðA1Þ

such that Rμνqνi ¼ 0 for i ¼ 1, 2. It satisfies Rμν ¼ Rνμ,
Rμ
μ ¼ 2 and Rμ

αRαν ¼ −Rμν. We use the “mostly minus”
metric convention. The virtual photon flux factor is
defined through X ¼ ðq1 · q2Þ2 − q21q

2
2 ¼ ν2 −Q2

1Q
2
2 with

the crossing-symmetric variable ν given by ν ¼ q1 · q2.
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The vectors ki are defined by

k1 ¼
ffiffiffiffiffiffiffiffi
−q21
X

r �
q2 −

q1 · q2
q21

q1

�
;

k2 ¼
ffiffiffiffiffiffiffiffi
−q22
X

r �
q1 −

q1 · q2
q21

q2

�
; ðA2Þ

and satisfy k2i ¼ 1, ki · qi ¼ 0.
Finally, the helicity amplitudes for the γ�ðλ1; q1Þ×

γ�ðλ2; q2Þ → XðpXÞ fusion process are related to the
Feynman amplitudes by

Mðλ1; λ2Þ ¼ Mμνϵ
μ
1ðλ1Þϵν2ðλ2Þ: ðA3Þ

2. Pseudoscalar mesons

The transition γ�ðq1; λ1Þ þ γ�ðq2; λ2Þ → P, where P is
a pseudoscalar state, is described by the following
amplitude:

Mðλ1; λ2Þ ¼ −ie2εμναβεμðq1; λ1Þενðq2; λ2Þ
× qα1q

β
2FPγ�γ� ðQ2

1; Q
2
2Þ; ðA4Þ

where εμðq1; λ1Þ and ενðq2; λ2Þ are the polarization vectors
of the virtual photons with helicities λ1, λ2 ¼ 0, �1. The
only nonzero helicity amplitudes, which we define in the
rest frame of the produced meson, are given by

Mðþ1;þ1Þ ¼ −Mð−1;−1Þ
¼ e2

ffiffiffiffi
X

p
FPγ�γ� ðQ2

1; Q
2
2Þ: ðA5Þ

The two-photon decay width is given by

Γγγ ¼
πα2

4
m3

P½FPγ�γ� ð0; 0Þ�2; ðA6Þ

and from Eqs. (2) and (8)

σ0 ¼ σ⊥ ¼ 2σTT ¼ 2τaTT ¼ −τTT

¼ 16π2δðs −m2
PÞ

Γγγ

mP

2
ffiffiffiffi
X

p

m2
P

�
FPγ�γ� ðQ2

1; Q
2
2Þ

FPγ�γ� ð0; 0Þ
�
2

;

σLL ¼ σTL ¼ σLT ¼ τTL ¼ τaTL ¼ 0: ðA7Þ

3. Scalar mesons

The transition γ�ðq1; λ1Þ þ γ�ðq2; λ2Þ → S where S is a
scalar state can be parametrized by one transverse (FT

Aγ�γ�)

and one longitudinal (FL
Aγ�γ�) form factor and is described

by the following matrix element:

Mðλ1; λ2Þ ¼ e2εμðq1; λ1Þενðq2; λ2Þ

×

�
ν

mS

��
−Rμνðq1; q2ÞFT

Sγ�γ�ðQ2
1; Q

2
2Þ

þ ν

X

�
qμ1 þ

Q2
1

ν
qμ2

��
qν2 þ

Q2
2

ν
qν1

�

× FL
Sγ�γ� ðQ2

1; Q
2
2Þ
�
:

The only nonzero helicity amplitudes are given by

Mðþ1;þ1Þ ¼ Mð−1;−1Þ ¼ e2
ν

mS
FT
Sγ�γ� ðQ2

1; Q
2
2Þ;

Mð0; 0Þ ¼ −e2
Q1Q2

mS
FL
Sγ�γ� ðQ2

1; Q
2
2Þ: ðA8Þ

The two-photon decay width is given by

Γγγ ¼
πα2

4
mS½FT

Sγ�γ� ð0; 0Þ�2; ðA9Þ

and from Eqs. (2) and (8)

σ0 ¼ σk ¼ 2σTT ¼ 2τaTT ¼ τTT

¼ 16π2δðs −m2
SÞ
Γγγ

mS

2ν2

m2
S

ffiffiffiffi
X

p
�
FT
Sγ�γ�ðQ2

1; Q
2
2Þ

FT
Sγ�γ� ð0; 0Þ

�2
;

σLL ¼ 16π2δðs −m2
SÞ
Γγγ

mS

2Q2
1Q

2
2

m2
S

ffiffiffiffi
X

p
�
FL
Sγ�γ� ðQ2

1; Q
2
2Þ

FT
Sγ�γ� ð0; 0Þ

�2
;

τTL ¼ τaTL ¼ −16π2δðs −m2
SÞ
Γγγ

mS

Q1Q2

mS

ν

mS

ffiffiffiffi
X

p

×
FT
Sγ�γ� ðQ2

1; Q
2
2ÞFL

Sγ�γ� ðQ2
1; Q

2
2Þ

½FT
Sγ�γ� ð0; 0Þ�2

: ðA10Þ

4. Axial mesons

The transition γ�ðq1; λ1Þ þ γ�ðq2; λ2Þ → AðpA;ΛÞ,
where A is an axial-vector state, can be parametrized by

two form factors Fð0Þ
Aγ�γ� and Fð1Þ

Aγ�γ� , where the superscript
indicates the helicity state (Λ) of the axial-vector
meson
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Mðλ1; λ2;ΛÞ ¼ e2εμðq1; λ1Þενðq2; λ2Þεα�ðpf;ΛÞiερστα
�
Rμρðq1; q2ÞRνσðq1; q2Þðq1 − q2Þτ

ν

m2
A
Fð0Þ
Aγ�γ� ðQ2

1; Q
2
2Þ

þ Rνρðq1; q2Þ
�
qμ1 þ

Q2
1

ν
qμ2

�
qσ1q

τ
2

1

m2
A
Fð1Þ
Aγ�γ� ðQ2

1; Q
2
2Þ

þRμρðq1; q2Þ
�
qν2 þ

Q2
2

ν
qν1

�
qσ2q

τ
1

1

m2
A
Fð1Þ
Aγ�γ� ðQ2

2; Q
2
1Þ
�
: ðA11Þ

The only nonzero helicity amplitudes are given by

Mðþ1;þ1;Λ ¼ 0Þ ¼ −Mð−1;−1;Λ ¼ 0Þ
¼ e2ðQ2

1 −Q2
2Þ

ν

m3
A

Fð0Þ
Aγ�γ�ðQ2

1; Q
2
2Þ;

Mð0;þ1;Λ ¼ −1Þ ¼ −e2Q1

�
X

νm2
A

�
Fð1Þ
Aγ�γ�ðQ2

1; Q
2
2Þ;

Mð−1; 0;Λ ¼ −1Þ ¼ −e2Q2

�
X

νm2
A

�
Fð1Þ
Aγ�γ�ðQ2

2; Q
2
1Þ:

ðA12Þ

In this case, the equivalent two-photon width is defined by

Γ̃γγ ≡ lim
Q2

1
→0

m2
A

Q2
1

1

2
ΓðA → γ�LγTÞ ¼

πα2

4

mA

3
½Fð1Þ

Aγ�γ� ð0; 0Þ�
2;

ðA13Þ

and from Eqs. (2) and (8)

σ0 ¼ σ⊥ ¼ 2σTT ¼ 2τaTT ¼−τTT

¼ 16π2δðs−m2
AÞ
3Γ̃γγ

mA

ðQ2
1−Q2

2Þ2
m4

A

2ν2

m2
A

ffiffiffiffi
X

p

×

�Fð0Þ
Aγ�γ� ðQ2

1;Q
2
2Þ

Fð1Þ
Aγ�γ�ð0;0Þ

�2
;

σLT ¼ 16π2δðs−m2
AÞ
3Γ̃γγ

mA

2X
ffiffiffiffi
X

p

ν2m2
A

Q2
1

m2
A

�
Fð1Þ
Aγ�γ� ðQ2

1;Q
2
2Þ

Fð1Þ
Aγ�γ� ð0;0Þ

�2
;

σTL ¼ 16π2δðs−m2
AÞ
3Γ̃γγ

mA

2X
ffiffiffiffi
X

p

ν2m2
A

Q2
2

m2
A

�
Fð1Þ
Aγ�γ� ðQ2

2;Q
2
1Þ

Fð1Þ
Aγ�γ� ð0;0Þ

�2
;

τTL ¼−τaTL ¼ 16π2δðs−m2
AÞ
3Γ̃γγ

mA

Q1Q2

m2
A

X
ffiffiffiffi
X

p

ν2m2
A

×

�
Fð1Þ
Aγ�γ� ðQ2

1;Q
2
2Þ

Fð1Þ
Aγ�γ�ð0;0Þ

Fð1Þ
Aγ�γ�ðQ2

2;Q
2
1Þ

Fð1Þ
Aγ�γ� ð0;0Þ

�
;

σLL ¼ 0: ðA14Þ

5. Tensor mesons

The transition γ�ðq1; λ1Þ þ γ�ðq2; λ2Þ → T ðΛÞ where T
is a tensor state with helicity Λ ¼ �2, �1, 0 can be
parametrized by four form factors TðΛÞ,

Mðλ1; λ2;ΛÞ ¼ e2εμðq1; λ1Þενðq2; λ2Þε�αβðpf;ΛÞ

×

��
Rμαðq1; q2ÞRνβðq1; q2Þ þ

s
8X

Rμνðq1; q2Þðq1 − q2Þαðq1 − q2Þβ
�

ν

mT
Fð2Þ
T γ�γ� ðQ2

1; Q
2
2Þ

þ Rναðq1; q2Þðq1 − q2Þβ
�
qμ1 þ

Q2
1

ν
qμ2

�
1

mT
Fð1Þ
T γ�γ� ðQ2

1; Q
2
2Þ

þ Rμαðq1; q2Þðq2 − q1Þβ
�
qν2 þ

Q2
2

ν
qν1

�
1

mT
Fð1Þ
T γ�γ� ðQ2

2; Q
2
1Þ

þ Rμνðq1; q2Þðq1 − q2Þαðq1 − q2Þβ
1

mT
Fð0;TÞ
T γ�γ� ðQ2

1; Q
2
2Þ

þ
�
qμ1 þ

Q2
1

ν
qμ2

��
qν2 þ

Q2
2

ν
qν1

�
ðq1 − q2Þαðq1 − q2Þβ

1

m3
T
Fð0;LÞ
T γ�γ� ðQ2

1; Q
2
2Þ
�
; ðA15Þ
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where εαβðpf;ΛÞ is the polarization tensor for the tensor meson with four-momentum pf and helicity Λ. The different
nonvanishing helicity amplitudes are

Mðþ1;−1;Λ ¼ þ2Þ ¼ Mð−1;þ1;Λ ¼ −2Þ ¼ e2
ν

mT
Fð2Þ
T γ�γ� ðQ2

1; Q
2
2Þ;

Mð0;þ1;Λ ¼ −1Þ ¼ −e2Q1

1ffiffiffi
2

p
�
2X
νm2

T

�
Fð1Þ
T γ�γ� ðQ2

1; Q
2
2Þ;

Mð−1; 0;Λ ¼ −1Þ ¼ −e2Q2

1ffiffiffi
2

p
�
2X
νm2

T

�
Fð1Þ
T γ�γ� ðQ2

2; Q
2
1Þ;

Mðþ1;þ1;Λ ¼ 0Þ ¼ Mð−1;−1;Λ ¼ 0Þ ¼ −e2
ffiffiffi
2

3

r �
4X
m3

T

�
Fð0;TÞ
T γ�γ� ðQ2

1; Q
2
2Þ;

Mð0; 0;Λ ¼ 0Þ ¼ −e2Q1Q2

ffiffiffi
2

3

r �
4X2

ν2m5
T

�
Fð0;LÞ
T γ�γ� ðQ2

1; Q
2
2Þ: ðA16Þ

The two-photon decay widths for helicities Λ ¼ 0, 2 are respectively given by

Γð0Þ
γγ ¼ πα2mT

2

15
½Fð0;TÞ

T γ�γ� ð0; 0Þ�2; Γð2Þ
γγ ¼ πα2

4
mT

1

5
½Fð2Þ

T γ�γ� ð0; 0Þ�2; ðA17Þ

and from Eqs. (2) and (8)

σ0 ¼ 16π2δðs −m2
TÞ

5Γ̃ð0Þ
γγ

mT

8X
ffiffiffiffi
X

p

m6
T

�
Fð0;TÞ
T γ�γ� ðQ2

1; Q
2
2Þ

Fð0;TÞ
T γ�γ� ð0; 0Þ

�2
;

σ2 ¼ 16π2δðs −m2
TÞ

5Γ̃ð2Þ
γγ

mT

2ν2

m2
T

ffiffiffiffi
X

p
�
Fð2Þ
T γ�γ� ðQ2

1; Q
2
2Þ

Fð2Þ
T γ�γ� ð0; 0Þ

�2
;

σk ¼ σ0 þ
σ2
2
;

σ⊥ ¼ σ2
2
;

σLT ¼ 16π3δðs −m2
TÞα2

Q2
1

m2
T

X
ffiffiffiffi
X

p

ν2m2
T
½Fð1Þ

T γ�γ� ðQ2
1; Q

2
2Þ�2;

σTL ¼ 16π3δðs −m2
TÞα2

Q2
2

m2
T

X
ffiffiffiffi
X

p

ν2m2
T
½Fð1Þ

T γ�γ� ðQ2
2; Q

2
1Þ�2;

τTL ¼ 16π3δðs −m2
TÞα2

X
ffiffiffiffi
X

p

ν2m2
T

Q1Q2

m2
T

�
2

3

4X
m4

T
Fð0;TÞ
T γ�γ� ðQ2

1; Q
2
2ÞFð0;LÞ

T γ�γ�ðQ2
1; Q

2
2Þ −

1

2
Fð1Þ
T γ�γ� ðQ2

1; Q
2
2ÞFð1Þ

T γ�γ� ðQ2
2; Q

2
1Þ
�
;

τaTL ¼ 16π3δðs −m2
TÞα2

X
ffiffiffiffi
X

p

ν2m2
T

Q1Q2

m2
T

�
2

3

4X
m4

T
Fð0;TÞ
T γ�γ� ðQ2

1; Q
2
2ÞFð0;LÞ

T γ�γ�ðQ2
1; Q

2
2Þ þ

1

2
Fð1Þ
T γ�γ� ðQ2

1; Q
2
2ÞFð1Þ

T γ�γ� ðQ2
2; Q

2
1Þ
�
;

σLL ¼ 16π3δðs −m2
TÞα2

Q2
1Q

2
2

m4
T

16

3

X3
ffiffiffiffi
X

p

ν4m6
T
½Fð0;LÞ

T γ�γ� ðQ2
2; Q

2
1Þ�2:

APPENDIX B: ADDITIONAL MATERIAL: TABLES AND FIGURES

Table IX contains results for the forward HLbL scattering amplitudes on three lattice ensembles at a few values of the
kinematic variables. Figure 10 displays the results on ensemble G8 as a function of Q2

2.
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TABLE IX. Forward HLbL scattering amplitudes (×106) on the ensembles G8, F7, F6. The variable ν is given in GeV2 units. Results
are given for two sets of virtualities, A corresponding to (Q2

1 ¼ 0.352 GeV2, Q2
2 ¼ 0.352 GeV2) and B to (Q2

1 ¼ 0.352 GeV2,
Q2

2 ¼ 1.000 GeV2).

G8 ν MTT Mτ
TT Ma

TT MTL MLT Ma
TL Mτ

TL MLL

A 0.087 8.5(6.0) 1.0(5.1) × 2.6(7.2) −7.9� 6.0 × −1.8ð2.5Þ −6.1ð7.1Þ
0.176 43.0(11.2) −20.3ð15.9Þ −0.9ð8.1Þ −5.7ð18.5Þ −26.8ð15.4Þ 3.7(6.4) −1.1ð3.5Þ 1.2(17.0)
0.263 35.0(10.5) −12.6ð10.6Þ 5.6(13.1) −6.9ð17.4Þ −0.2ð14.8Þ −0.1ð10.3Þ 1.3(4.2) 22.4(18.0)
0.351 141.5(22.0) −69.2ð22.7Þ 77.0(20.3) −25.4ð20.2Þ −17.9ð21.7Þ 9.9(9.3) 27.9(11.4) 65.8(29.6)

B 0.087 −1.7ð1.8Þ 0.0(2.1) × 0.4(2.3) 2.2(2.8) × −0.0ð0.7Þ 3.1(2.6)
0.176 1.7(5.7) 0.6(4.4) 1.5(2.7) 0.1(6.3) 3.9(5.5) −0.3ð1.5Þ −0.6ð2.9Þ 3.3(7.4)
0.263 10.6(3.9) 1.0(3.6) 5.2(5.0) 2.7(8.4) 5.6(4.9) −1.4ð3.6Þ −1.6ð2.2Þ 2.9(5.6)
0.351 15.5(5.4) 6.1(6.2) 8.5(6.9) −0.5ð8.8Þ 6.6(7.9) 0.8(3.2) 0.4(3.8) 4.7(8.8)
0.438 28.6(5.7) −0.1ð3.5Þ 11.6(7.6) 10.6(8.1) 16.7(5.2) −1.4ð5.6Þ −2.7ð3.6Þ 3.3(8.6)
0.525 46.4(7.5) −5.6ð4.9Þ 22.2(8.1) 18.8(9.0) 22.8(7.2) 2.9(4.9) −4.3ð4.5Þ 6.7(10.5)
0.612 76.6(9.7) −27.6ð10.3Þ 40.2(16.2) 13.6(13.1) 17.4(9.5) 5.7(6.5) 0.9(7.5) 23.2(15.2)

F7 ν MTT Mτ
TT Ma

TT MTL MLT Ma
TL Mτ

TL MLL

A 0.117 3.1(2.8) 5.0(2.0) × 0.3(6.3) 0.7(4.2) × −2.9ð1.5Þ 4.3(6.4)
0.234 23.4(10.0) −0.6ð7.9Þ −2.2ð3.7Þ 8.1(14.0) −0.5ð9.8Þ 1.0(3.0) −2.7ð3.3Þ −9.4ð16.5Þ
0.351 72.1(20.5) −79.4ð17.8Þ 46.9(7.5) 15.3(22.5) 16.2(16.0) −6.3ð10.4Þ 6.6(9.5) −21.8ð39.7Þ

B 0.117 −0.3ð1.7Þ −0.1ð1.3Þ × 3.4(2.7) 1.8(1.8) × −0.8ð0.7Þ −2.1ð2.7Þ
0.234 0.9(3.4) 0.3(3.1) −0.5ð1.6Þ 10.4(5.1) 6.9(3.8) −0.4ð1.0Þ −2.2ð1.2Þ −9.1ð5.3Þ
0.351 13.6(3.8) 0.3(4.1) 1.3(3.9) 24.4(7.4) 2.8(4.8) −1.7ð2.3Þ −3.0ð1.9Þ −10.4ð7.1Þ
0.467 31.0(4.7) −4.8ð4.6Þ 8.0(3.6) 28.5(9.7) 13.2(5.1) 1.8(3.3) −6.3ð2.0Þ −17.0ð11.2Þ
0.583 74.1(9.0) −25.7ð9.0Þ 28.9(5.0) 35.4(11.2) 15.1(7.7) 6.2(5.4) −8.3ð4.4Þ −4.2ð16.6Þ

F6 ν MTT Mτ
TT Ma

TT MTL MLT Ma
TL Mτ

TL MLL

A 0.117 7.0(1.8) 6.2(1.5) × −0.9ð3.4Þ −0.5ð2.1Þ × 1.1(1.0) 3.4(3.7)
0.234 28.8(5.9) 3.1(5.3) −0.2ð2.1Þ 15.0(9.6) 5.1(6.3) −2.2ð1.7Þ 4.9(2.4) −8.2ð9.5Þ
0.351 77.2(8.9) −63.9ð7.7Þ 40.0(6.4) 32.3(11.0) 20.8(8.4) −1.0ð4.3Þ −3.4ð7.2Þ −19.2ð17.3Þ

B 0.117 2.1(1.1) 0.6(0.7) × 0.0(1.5) 1.4(1.0) × −0.1ð0.2Þ 0.9(1.7)
0.234 8.8(2.3) 0.3(1.7) −0.7ð0.9Þ 4.7(3.7) 3.3(2.5) −0.5ð0.7Þ 0.1(0.8) 3.1(4.4)
0.351 18.2(3.5) −3.5ð2.3Þ 1.0(2.8) 13.0(5.8) 5.8(4.3) −1.0ð1.8Þ −0.1ð1.3Þ 9.4(6.5)
0.467 36.8(4.9) 8.4(2.3) 7.6(2.4) 20.7(6.4) 8.2(4.3) 1.4(1.9) −1.3ð1.5Þ 0.3(7.3)
0.583 79.3(6.1) −33.7ð5.7Þ 25.3(3.8) 30.5(9.1) 12.0(5.7) 3.0(3.7) −5.4ð3.8Þ 2.3(11.4)

HADRONIC LIGHT-BY-LIGHT SCATTERING AMPLITUDES … PHYS. REV. D 98, 074501 (2018)

074501-29



FIG. 10. The eight amplitudes ð×106Þ for the ensemble G8 and for Q2
1 ¼ 0.352 GeV2. The curves with error bands represent the fit

results discussed in Sec. VI.
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