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In this paper we test the semilocal duality based on the method of [L. Y. Dai and U.-G. Meißner, Phys.
Lett. B 783, 294 (2018)] for calculating final-state interactions at varying numbers of colors (NC). We
compute the amplitudes by dispersion relations that respect analyticity and coupled channel unitarity, as
well as accurately describing experiment. The NC dependence of the ππ → ππ scattering amplitudes is
obtained by comparing these amplitudes to the ones of chiral perturbation theory. The semilocal duality is
investigated by varying NC. Our results show that the semilocal duality is not violated when NC is large. At
large NC, the contributions of the f2ð1270Þ, the f0ð980Þ and the f0ð1370Þ cancel that of the ρð770Þ in the
finite energy sum rules, while the f0ð500Þ has almost no effect. This gives further credit to the method
developed in [L. Y. Dai and U.-G. Meißner, Phys. Lett. B 783, 294 (2018)] for investigating the NC

dependence of hadron-hadron scattering with final-state interactions. This study is also helpful to
understand the structure of the scalar mesons.

DOI: 10.1103/PhysRevD.98.074033

I. INTRODUCTION

The 1=NC expansion [1,2] provides an effective diag-
nostic to differentiate the ordinary from the nonordinary
quark-antiquark structure of the mysterious scalars; see e.g.,
[3–7]. In the physical world, i.e., at NC ¼ 3, there should be
local duality [8–13]. This means that Regge exchange in the
crossed channel is dual to the contribution of resonances in
the direct channel. One thus only needs to add either the
Regge term or the direct channel resonances in a given
calculation. An explicit model shows that there is no
interference between these two contributions [8]. Indeed,
in the high-energy region the overlap of the resonances is
much stronger, leading to a smooth amplitude. Such a
smooth amplitude is similar to the one generated by
Regge poles in the t-channel. The cross section is therefore
more readily described by the Regge exchange in the crossed
channel rather than by lots of resonances in the direct (s-)

channel. However, in the real world, things are more
complicated as the widths of the resonances are finite and
only semilocal duality is fulfilled [6]. Through finite-energy
sum rules (FESR) the equivalence between the resonances
in the direct s-channel and the Regge poles in the crossed
t-channel holds on the average [11,12].
In the pioneering work of [6], the semilocal duality is

tested in the large NC case and it is shown to be useful for
investigating the structure of the light scalar mesons. The
scattering amplitudes are obtained by unitarized chiral
perturbation theory (UχPT) and the NC dependence of
the pertinent low-energy constants is taken over to the
amplitudes. The FESR are tested by tuning NC up to 30 or
100. They found that the f0ð500Þ (often also called the σ)
should contain a subdominant q̄q component and this
ensures that the semilocal duality is fulfilled up to NC ¼
15–30. This was later used to constrain the meson-meson
scattering amplitudes calculated within Uð3Þ unitary χPT
[14]. The semilocal duality could be fulfilled very well up
to NC ¼ 30. The relation between local duality and exotic
states is also discussed in Ref. [15].
On the other hand, final-state interactions (FSI) play an

important role in hadron phenomenology, especially when
the energy is not very far away from the threshold of a pair
or triplet of hadrons. For different models to describe the
FSI, see e.g., [16–28]. In our earlier paper, a new method to
study the large NC behavior of the FSI was proposed [29].
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The NC dependence is generated based on the fact that the
tangent of the phase is proportional to 1=NC, that is,
tanφ ∼Oð1=NCÞ, where ReT ∼Oð1=NCÞ and ImT ∼
Oð1=N2

CÞ are naturally given by chiral perturbation theory
(χPT). The trajectories of the widths of the ρ and the f2
quantitatively behave as 1=NC, which confirms the reli-
ability of the method. Following that work, a natural
extension is to check whether the semilocal duality is
satisfied using this method.
This paper is organized as follows: In Sec. II we use a

dispersive method to obtain the I ¼ 2 ππ scattering partial
waves up to s ∼ 4 GeV2, which were not considered in [29].
The amplitudes are constructed analytically and respect the
coupled channel unitarity and give a good description of the
experimental data. In Sec. III we introduce the NC depend-
ence into the dispersive amplitudes following Ref. [29]. The
semilocal duality is tested by tuning NC up to 180. We find
that it works well when NC is large. The contributions
of each resonance that appear in the amplitudes are also
studied. Finally we give a brief summary in Sec. IV.

II. SCATTERING AMPLITUDES AND NC
DEPENDENCE

In Ref. [29], the ππ scattering amplitudes with IJ ¼ 00,
11, 02 (with I=J the total isospin/angular momentum) have
already been given. Here, we focus on the isospin-2 waves
with IJ ¼ 20, 22 to complete the analysis. All these waves
are certainly needed for testing the semilocal duality. We
use (for more details on the method, see [29])

TI
JðsÞ ¼ PI

JðsÞΩI
JðsÞ; ð1Þ

with ΩI
JðsÞ the Omnès function [30]:

ΩI
JðsÞ ¼ exp

�
s
π

Z
∞

4M2
π

ds0
φI
Jðs0Þ

s0ðs0 − sÞ
�
: ð2Þ

Here, φI
JðsÞ is the phase of the partial wave amplitude

TI
JðsÞ, as given in previous amplitude analysis [31,32]. By a

fit to the experimental data [33] as well as the amplitudes of
the dispersive analysis [34], the phase is obtained up to
s ¼ 4 GeV2. Above this energy region we use unitarity to
constrain it, but for practical reasons the extension is
limited and we truncate the integration of the Omnès
function at s ¼ 22 GeV2. The other function PI

JðsÞ is
represented by a series of polynomials. It absorbs the
contribution from the left-hand cut (l.h.c.) and the distant
right-hand cut (r.h.c.) above 4 GeV2. To include the Adler
zero in the S-wave and threshold behavior in the D-wave, in
terms of the scattering length and effective range, we
parametrize the PI

JðsÞ as

PI
JðsÞ ¼ ðs − zIJÞnJ

Xn
k¼1

αIJkðs − 4M2
πÞk−1; ð3Þ

with zIJ to be either the Adler zero for the S-wave or 4M2
π

for the D-wave. Similarly, nJ is 1 for the S-wave and 2 for
the D-wave. The fitted parameters αi are given in Table I.
The units of the αk are chosen to guarantee the amplitude
TI
JðsÞ to be dimensionless.
The fit amplitudes are shown in Fig. 1 for the energy

region of s ∈ ½0; 4 GeV2�. What we fit to are the following
contributions: χPT amplitudes for ½0; 4M2

π� [36–39], ampli-
tudes of the Roy-type equation analysis at ½4M2

π; 2 GeV2�
[34], and experiment up to 4 GeV2 [33]. We also plot the
amplitudes in the region of s ∈ ½−4M2

π; 0�. Here the real
part of our amplitudes is in good agreement with that of
χPT [Oðp4Þ], and the imaginary part vanishes, which is
consistent with the imaginary part of the χPT amplitudes as
the latter is rather small. These indicate the high quality of
the fit.
As is well known, the Roy-type equation analysis

embodies crossing symmetry,1 which is lacking in
Eq. (1). Therefore, following [41], we fit our amplitudes
to the “data” on the real axis as well as the amplitudes given
by the Roy-like equation [34] in the complex s-plane. As
shown in Fig. 2, the two T2

0 amplitudes are compatible with
each other except for the region where s is too large (either
Re½s� > 1.0 GeV2 or Im½s� < −0.3 GeV2). We note that
the amplitudes on the upper half of the s-plane are readily
obtainable from the ones on the lower side according to the
Schwarz reflection principle. The distribution of contours is
in good agreement and moreover, their gradient variations
are compatible with each other, as shown by the shading of
the color from blue to red. Nevertheless, above 1.0 GeVour
amplitudes are a bit different from that of the dispersive
analysis, while both of them are compatible with the data;
see Fig. 1. Also our amplitudes in the bottom-right
direction, where either Re½s� or Im½s� is large, are becoming
less consistent with differences ≤0.1.
Now that these amplitudes are obtained for the physical

world, that is for NC ¼ 3, we can introduce the NC

TABLE I. The fit parameters corresponding to Eq. (3). The
uncertainties are given by MINUIT and α1;2 are fixed by the
scattering lengths and slope parameters [34,35].

T2
0ðsÞ T2

2ðsÞ
α1 −1.2489 0.0472
α2 2.1544 −0.4514
α3 −3.2683ð7Þ 1.1773(1)
α4 3.2207(3) −1.5165ð1Þ
α5 −1.8749ð1Þ 1.0138(1)
α6 0.6212(1) −0.3587ð1Þ
α7 −0.1077ð1Þ 0.0638(1)
α8 0.0076(1) −0.0045ð1Þ

1Notice that the D-wave is absent in the Roy-like equation
analysis [34] and the I ¼ 2 D-wave is very small; we thus do not
discuss it here. For higher partial waves we refer to Ref. [40].
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dependence. Apparently, the real part of the χPT amplitude
is OðN−1

C Þ and the imaginary part is OðN−2
C Þ up to any

order. Therefore, we generate the NC dependence as [29]

φðs; NCÞ ¼ arctan

�
3

NC
tanφðsÞ

�
; ð4Þ

and

PI
Jðs; NCÞ ¼

3

NC
PI
JðsÞ: ð5Þ

It is not difficult to check that at large NC the phase, which
would return back to the phase shift in a single channel, will
jump by π around s ¼ M2

R where φðM2
RÞ ¼ 90°. This is

consistent with the large NC property of a simple Breit-
Wigner formalism or the “narrow resonance pole” on the
second Riemann sheet [42]. All the complicated higher-
order NC dependence is ignored for simplicity. By increas-
ing NC, the magnitude of the I ¼ 2 S-wave and D-wave
become smaller and smaller, as shown in Fig. 1. This is
consistent with the fact that there is no resonance in the
I ¼ 2 channel.

III. SEMILOCAL DUALITY

We follow Ref. [6] to calculate the variation of the
FESR by tuning NC. It is well known that the t-channel
ππ scattering amplitudes could be written in terms of the
s-channel ones according to the crossing relations

TItðs; tÞ ¼
X2
I0s¼0

CItI0s
st TI0sðs; tÞ;

where I denotes the total isospin (I ¼ 0, 1, 2) of the
ππ-system and Cst is the orthogonal crossing matrix

Cst ¼ Cts ¼

0
B@

1=3 1 5=3

1=3 1=2 −5=6
1=3 −1=2 1=6

1
CA: ð6Þ

The s-channel amplitude is composed of a complete set of
partial waves

TIsðs; tÞ ¼
X
J

ð2J þ 1ÞTIs
J ðsÞPJðcos θsÞ;

with θs the s-channel scattering angle in the center of mass
frame. Of course, Is þ J should be even as required by
Bose symmetry and isospin conservation. Higher partial
waves are less known and we restrict our amplitudes up to
the D-waves.
We introduce the function

FIt
n ðν; tÞ ¼ ImTItðν; tÞν−n; ð7Þ

with ν ¼ ðs − uÞ=2. We note that when t ¼ 4M2
π ,

ν ¼ s ¼ −u. Semilocal duality implies that the contribution
of Regge exchange and of resonances are dual with each
other on the average,

FIG. 2. Comparison of our amplitudes (IJ ¼ 20) with the ones
from the Roy-like equation analysis in the domain where the Roy
equations work. On the left side there are real and imaginary parts
of our amplitudes, and on the right side those are from Roy-like
equations [34].

FIG. 1. Left column: Fit of the isospin-2 ππ scattering ampli-
tudes (solid lines). The olive and light grey bands in the low-
energy region are from χPT [36–39]. The cyan and green bands
are from CFDIV [34]. The OPE and OPE-DP data are from [33].
Right column: The absolute values of the amplitudes by varying
NC are shown. The black solid, orange dashed, blue dotted and
magenta dashed-dotted lines are for NC ¼ 3, 6, 12, 120,
respectively.
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Z
ν2

ν1

dνFIt
n ðν; tÞresonances ≃

Z
ν2

ν1

dνFIt
n ðν; tÞRegge: ð8Þ

To test duality in the large NC limit, we first estimate it at
NC ¼ 3. It is helpful to introduce the ratio [6]

RI
nðtÞ ¼

R
ν2
ν1
dνFIt

n ðν; tÞR
ν3
ν1
dνFIt

n ðν; tÞ
: ð9Þ

The upper and lower limits of the integration are chosen as
ν1 ¼ ð4M2

π þ tÞ=2, ν2 ¼ 1 GeV2, and ν3 ¼ 2 GeV2. The
RI
nðtÞ of our amplitudes and that of the Regge amplitudes

are given in Table II. As can be seen, our calculation with
the D-waves is compatible with that of Regge exchange [6]
within the uncertainties. For more discussions about the
Regge analysis, we refer to [6].2

The difference between the Regge and our amplitudes as
well as the difference between our two results (with or
without D-waves) are much more obvious at n ¼ 0 than
those at n ¼ 3. This tells us that the D- and even higher
partial waves cannot be ignored at small n. In contrast, for
large n the low-energy amplitudes will dominate the
integration and the contribution of resonances could be
less important. We thus pay attention to n ¼ 1–3 only and
include the D-waves in the next sections. As a support, the
RI
nðtÞ of the Regge analysis and ours (with D-waves) are

closest to each other for n ¼ 2, 3. Also we find that the
F-waves have tiny contributions only.
It is instructive to plot each FI

nðν; tÞ amplitude for
different values of NC; see Fig. 3. Notice that the peaks
around

ffiffiffi
ν

p ¼ 0.85, 1.25 GeV at NC ¼ 120 are caused by
the IJ ¼ 00wave; cf. Fig. 1 of Ref. [29]. They are related to
the f0ð980Þ and the f0ð1370Þ in the large NC limit,
respectively. From Fig. 3 one notices that when n is large
and NC is not too large, the low energy amplitudes
(including the σ), and the ρ have much larger contributions,
while the f2ð1270Þ contributes most at n ¼ 0. Only in the
It ¼ 2 amplitude is the contribution of the ρ negative,
which will cancel other contributions such as those from
the σ in the low-energy region and from the f2ð1270Þ in the
high-energy region. This makes sure that FIt¼2

n ðν; tÞ is
superconvergent, being much smaller than the correspond-
ing function for It ¼ 0 or It ¼ 1. Note that resonances/
Regge exchanges are built from qq̄ and multiquark con-
tributions. When NC is large, the pole of the q̄q state will
fall down to the real axis on the s-plane (zero width), while
the multiquark component will disappear.3 Consequently,

TABLE II. Comparison of the RIt
n ðtÞ ratios between our

amplitudes and that of Regge exchange. The latter is given by
[6]. S,P,D represent our work up to the D-waves, and S,P
represent our work with only S- and P-waves.

n

It ¼ 0 It ¼ 1

t ¼ 4M2
π t ¼ 0 t ¼ 4M2

π t ¼ 0

S,P,D

0 0.431(116) 0.430(122) 0.381(162) 0.396(183)
1 0.656(85) 0.668(85) 0.619(131) 0.649(139)
2 0.842(40) 0.865(34) 0.829(73) 0.866(69)
3 0.948(12) 0.968(8) 0.948(32) 0.973(26)

S,P

0 0.626(201) 0.599(179) 0.779(404) 0.770(384)
1 0.801(148) 0.793(130) 0.893(278) 0.896(252)
2 0.914(74) 0.921(59) 0.957(132) 0.964(104)
3 0.972(26) 0.982(17) 0.987(46) 0.993(29)

Regge

0 0.225 0.233 0.325 0.353
1 0.425 0.445 0.578 0.642
2 0.705 0.765 0.839 0.908
3 0.916 0.958 0.966 0.990

FIG. 3. The FIt
n ðν; tÞ amplitudes for different values of NC; see

Eq. (10). Since
R
dνFIt

n ðν; tÞ ¼
R
d

ffiffiffi
ν

p
2

ffiffiffi
ν

p
FIt
n ðν; tÞ, we plot

2
ffiffiffi
ν

p
FIt
n ðν; t ¼ 4M2

πÞ here.

2It is worth noting that in [6] the scattering lengths of IJ ¼ 11,
02 waves are calculated in the Regge parametrization with
n ¼ 2, 3. They are in perfect agreement with that obtained by
the dispersive analysis. This certainly confirms the semilocal
duality at NC ¼ 3, especially when n ¼ 2, 3. In Ref. [43] the
nonlinear Regge trajectory of the f0ð500Þ is obtained and this
supports its nonordinary nature.

3Nowadays it is believed that tetraquarks could be as narrow as
the conventional q̄q resonances [44] or even narrower [45];
however, these will not change our conclusion as we do not have
any tetraquarks in the I ¼ 2 amplitude.
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the Is=t ¼ 2 amplitude is superconvergent at large NC as it
does not contain any resonances or Regge poles. Also the
ratio of the It ¼ 1 FESR compared to that of It ¼ 0 should
be 2=3 in the large NC limit. These are analyzed in [6]
within UχPT and we will check them with our method to
generate the NC dependence in what follows.
Further, it is helpful to use the definition

FII0
n ðtÞ ¼

R
νmax
νmin

dνFIt
n ðν; tÞR

νmax
νmin

dνFI0t
n ðν; tÞ

: ð10Þ

As discussed before, semilocal duality means that F10
n ðtÞ

should be 2=3, and F21;20
n ðtÞ should be rather small. The

values of these FESR for different values of NC are given in
Table III. For convenience, we plot F10

n ðtÞ and F21
n ðtÞ by

tuning NC up to NC ¼ 180; see Fig. 4.
Following [29], we simply assume that the whole

contribution of the N−2
C corrections is roughly one third

of that of N−1
C , while the correlation between each poly-

nomial is not discussed, despite the fact that the first two
terms of the polynomials are fixed by the scattering lengths
and slope parameters. In principal, the complete separated
N−2

C dependence of each polynomial in Eq. (5) could be
obtained by matching with χPT, if χPT is calculated up to
higher orders. However, this is not yet available. One
certainly needs a more careful analysis of the N−2

C correc-
tions.4 These higher-order NC corrections contribute most
to the uncertainties at large NC, estimated by randomly
choosing 2=NC þ 3=N2

C and/or 4=NC − 3=N2
C to replace

3=NC in Eqs. (4) and (5) for each partial wave. The other
contributions to the uncertainties are the higher partial

TABLE III. Duality by tuningNC, given here forNC ¼ 3, 6, 12,
120.

n NC

νmax ¼ 1 GeV2 νmax ¼ 2 GeV2

t ¼ 4M2
π t ¼ 0 t ¼ 4M2

π t ¼ 0

F10
n

0

3 0.50(2) 0.49(2) 0.56(5) 0.53(5)
6 0.54(2) 0.55(2) 0.68(6) 0.67(5)

12 0.57(2) 0.58(2) 0.75(6) 0.74(6)
120 0.59(3) 0.61(3) 0.81(6) 0.82(6)

1

3 0.51(2) 0.51(2) 0.55(3) 0.53(3)
6 0.55(2) 0.56(2) 0.63(3) 0.62(3)

12 0.56(2) 0.58(2) 0.67(3) 0.67(3)
120 0.58(3) 0.60(3) 0.71(4) 0.72(3)

2

3 0.54(2) 0.56(2) 0.55(2) 0.55(2)
6 0.56(2) 0.58(2) 0.60(2) 0.60(2)

12 0.57(2) 0.59(2) 0.62(2) 0.63(2)
120 0.57(4) 0.58(4) 0.63(4) 0.65(3)

3

3 0.58(2) 0.63(2) 0.58(2) 0.63(2)
6 0.59(2) 0.62(2) 0.60(2) 0.63(2)

12 0.58(2) 0.61(2) 0.60(2) 0.62(2)
120 0.56(4) 0.57(4) 0.59(4) 0.60(3)

F21
n

0

3 −0.41ð2Þ −0.30ð2Þ 0.46(5) 0.50(5)
6 −0.40ð7Þ −0.29ð8Þ 0.50(11) 0.53(13)

12 −0.39ð11Þ −0.27ð12Þ 0.53(14) 0.56(17)
120 −0.37ð14Þ −0.26ð14Þ 0.56(14) 0.59(14)

1

3 −0.33ð2Þ −0.18ð2Þ 0.17(2) 0.24(2)
6 −0.36ð8Þ −0.22ð9Þ 0.19(11) 0.25(12)

12 −0.39ð12Þ −0.26ð13Þ 0.20(15) 0.25(18)
120 −0.45ð15Þ −0.34ð15Þ 0.22(15) 0.26(16)

2

3 −0.13ð2Þ 0.13(2) 0.05(2) 0.24(2)
6 −0.24ð7Þ −0.04ð9Þ −0.00ð10Þ 0.13(11)

12 −0.34ð10Þ −0.18ð12Þ −0.05ð14Þ 0.05(16)
120 −0.51ð12Þ −0.41ð16Þ −0.13ð16Þ −0.07ð15Þ

3

3 0.20(2) 0.61(2) 0.24(2) 0.62(2)
6 0.01(7) 0.37(9) 0.07(10) 0.40(11)

12 −0.19ð9Þ 0.11(12) −0.09ð13Þ 0.17(17)
120 −0.55ð11Þ −0.43ð15Þ −0.37ð17Þ −0.28ð17Þ

FIG. 4. Duality by varying NC from 3 to a large number, in the
order of NC ¼ 3, 6, 9, 12, 15, 18, 30, 60, 90, 120, 150 and 180.

4We note that Ref. [46] points out that the subleading
corrections of the low-energy constants (LECs) may be sizable
as Li=NC, which is consistent with our assumptions. In
Refs. [3,47], the uncertainty caused by the regularization scale
μ is discussed, which is not required here.
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waves, for instance the IJ ¼ 13 wave, whose amplitude
has been given in [34], and the systematic uncertainties
from different solutions of the scattering amplitudes. The
combination of all three parts is collected as the total
uncertainty; see Table III for NC ¼ 3, 6, 12, 120. The
uncertainties are also shown as error bars in Fig. 4. We note
that the uncertainty of the FESR increases as NC increases.
See e.g., F10;21

2 ð4M2
πÞ in Table III, with the upper limit

νmax ¼ 2 GeV2. This is because the uncertainty given by
higher-order NC corrections is important. Besides, the
uncertainty of the F21

n ðtÞ is larger than that of F10
n ðtÞ.

The reason is that the cancellation happens at It ¼ 2 and
they are more sensitive to the relative difference between
partial waves. The uncertainty coming from the upper
limit νmax ¼ 1 GeV2 is smaller than that of νmax ¼ 2 GeV2;
this is caused by the important D-waves. We will discuss
this later.
The results are quite different when the upper limit is

chosen to be 1 or 2 GeV2, especially in terms of n ¼ 0, 1.
As an example, for F21

0;1ðtÞ the signs of the results with these
two upper limits are even opposite. For n ¼ 2, 3, the
differences are still distinct but smaller. This is consistent
with our analysis that the IJ ¼ 02 wave contributes a lot in
the resonance region at small n (0 or 1). In Fig. 3, the peaks
of the f2ð1270Þ in FI

0ðν; tÞ are much larger than those in
FI
2ðν; tÞ. While at large n (n ¼ 2, 3), the contribution of the

IJ ¼ 02 wave in the resonance region is still important but
smaller. Therefore, we consider the upper limit of 2 GeV2

as the optimal choice.
The change of the results with different n of F10

n ðtÞ is
smaller than that of F21

n ðtÞ in the large NC case. For
example, with upper limit νmax ¼ 2 GeV2 and NC ¼ 120,
the difference between F10

0 ð4M2
πÞ and F10

3 ð4M2
πÞ is 0.22,

while the difference between F21
0 ð4M2

πÞ and F21
3 ð4M2

πÞ is
0.93. The reason is that the contribution from the ρ
dominates both amplitudes in It ¼ 0 and It ¼ 1 below
1 GeV, and the relative signs between different resonances
[ρ, f2ð1270Þ etc.] are positive, while in It ¼ 2 the relative
sign is negative; see also Eq. (6). This can be checked in
Fig. 3, by comparing the lines of 2

ffiffiffi
ν

p
F0
2ðν; t ¼ 4M2

πÞ
and 2

ffiffiffi
ν

p
F1
2ðν; t ¼ 4M2

πÞ.
At large NC, none of the absolute values of F21

n ðtÞ is
larger than 0.6, and all F10

n ðtÞ are distributed in the region
[0.6,0.8]. For n ¼ 2, with the upper limit 2 GeV2 and
NC ¼ 180, both F10

2 ð4M2
πÞ¼0.64�0.04 and F21

2 ð4M2
πÞ ¼

−0.14� 0.16 are very close to the expected value, 2=3 and
0, respectively. Similarly, we have F10

2 ð0Þ ¼ 0.65� 0.03
and F21

2 ð0Þ ¼ −0.08� 0.15, even a bit closer. We note
that the two kinds of results, with t ¼ 0 or t ¼ 4M2

π, are
rather similar to each other. We thus only discuss the case
with t ¼ 4M2

π in the next sections. For n ¼ 1, 3 the
situation is not so good, but the values are still fairly
close to the expected values. For n ¼ 1 we have
F10
1 ð4M2

πÞ ¼ 0.72� 0.04 and F21
1 ð4M2

πÞ ¼ 0.22� 0.15,

and for n ¼ 3 we find F10
3 ð4M2

πÞ ¼ 0.59� 0.04 and
F21
3 ð4M2

πÞ ¼ −0.38� 0.17. The F21
n ð0; 4M2

πÞ at large NC
indicates that the f2ð1270Þ [also the f0ð980Þ and the
f0ð1370Þ] will cancel the contribution of the ρð770Þ most
at n ¼ 2. By increasing/decreasing n the cancellation is
less precise, as the masses of these resonances are
different. Divided by νn, the contributions of the ρ and
that of the f2ð1270Þ=f0ð980Þ are mismatched, especially
around ν ¼ M2

R. As discussed in the earlier sections,
n ¼ 1–3, especially n ¼ 2, 3, are the most valuable cases
to check the semilocal duality; one thus concludes that the
results support that the semilocal duality is fulfilled well
up to NC ¼ 180. There are some other points that could be
interesting. Almost all the lines in Fig. 4 are increased/
decreased a bit strongly from NC ¼ 3 to NC ¼ 30. One of
the reasons is that the physical amplitudes are not as
simple as that just represented by one or two Breit-Wigner
resonances. Other components, such as multiquark com-
ponents and other background, will also contribute a lot
when NC is not far away from 3. Such variation of the
lines of F21

n¼2;3ðtÞ is more obvious than that of F10
n¼2;3ðtÞ,

where the latter is within 1=3 level. This is because the
former has a strong cancellation between isospin 0 and 1
waves in the s-channel, as shown in Eqs. (6) and (7). The
complex NC relations of scalars enlarge the variation. We
also notice that the lines are very flat in the region of
NC ∈ ½100; 180�. It is thus natural to infer that they will
stay flat for larger NC. This suggests that the semilocal
duality will hold in the large NC limit.
To estimate the contribution of each resonance at large

NC, we perform the following calculations:
(i) Case A: The amplitudes of the IJ ¼ 00 wave in the

region of
ffiffiffi
s

p
≤ 0.75 GeV have been set to zero. In

this case the main contribution of f0ð500Þ is
removed.

(ii) Case B: Similar to Case A, the amplitudes of the
IJ ¼ 00 wave in the region of

ffiffiffi
s

p
∈ ½0.81;0.91�GeV

have been set to zero. The f0ð980Þ is removed in the
large NC limit.

(iii) Case C: Similar to Case A, the amplitudes of the
IJ ¼ 00 wave in the region of

ffiffiffi
s

p
∈ ½1.13;1.33�GeV

have been set to zero. The f0ð1370Þ is removed in
the large NC limit.

(iv) Case D: Similar to Case A, the amplitudes of the
IJ ¼ 02 wave in the region of

ffiffiffi
s

p
∈ ½1.15; 1.4� GeV

have been set to zero. The contribution of the
f2ð1270Þ is removed.

(v) Case E: Only the upper limit is changed to
νmax ¼ 4 GeV2, where the possible contribution of
heavier resonances, like ρð1450Þ, ρð1710Þ etc. is
included.

The results are shown in Table IV. For Cases A, D and E,
the results by tuning NC are plotted as magenta, black, and
cyan lines, respectively, in Fig. 5. For Cases B and C, we
cannot extract the contributions of the relevant resonances
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except at large NC, as there is no obvious peak for f0ð980Þ
and f0ð1370Þ aroundNC ¼ 3. Therefore, we only show the
results at NC ¼ 180; see Table IV.
For case A, we have F10

2 ð4M2
πÞ ¼ 0.63� 0.07 and

F21
2 ð4M2

πÞ ¼ −0.15� 0.20 at NC ¼ 180. These satisfy
the semilocal duality well. At NC ¼ 3, we have
F21
2 ð4M2

πÞ ¼ −0.36� 0.12. It changes a lot compared to
the original result; cf. Table III. It confirms that the σ

contribution is not ignorable at NC ¼ 3, while it is smaller
and irrelevant in the large NC limit. The cancellation does
not happen between the σ and ρð770Þ in the large NC limit.
This also suggests that σ is dominated by the non-q̄q
structure components.
It is worth pointing out that in Ref. [14], where UχPT

based on the N/D method has been applied to the meson-
meson scattering of the Uð3Þ nonet, the f0ð980Þ contri-
bution cannot be ignored to cancel the contribution of ρ. In
contrast, in Ref. [6], where UχPT is realized by an inverse
amplitude method, the f0ð980Þ is irrelevant and a sub-
dominant q̄q component is needed for the cancellation.
For the f0ð1370Þ, both of these two works agree as the
resonance does not contribute a lot at large NC. In our case,
the two resonances behave as “peaks” around 0.85 and
1.23 GeV at large NC, respectively. This supports their
possible inner q̄q component, resulting in a possible
contribution to cancel the ρ in F21

n ðtÞ. We find numerically
for case B, where the contribution of the f0ð980Þ has been
removed at large NC, that F10

2 ð4M2
πÞ ¼ 0.59� 0.08 and

F21
2 ð4M2

πÞ ¼ −0.36� 0.20 at NC ¼ 180. Compared to the
original results (case O), the value of F10

2 ð0; 4M2
πÞ changes

a bit, and that of F21
2 ð0; 4M2

πÞ changes a lot. Thus, the
contribution of the f0ð980Þ at large NC cannot be ignored.
For case C, by removing the f0ð1370Þ at large NC, the
change is smaller than that of case B but still distinct; see
Table IV. This implies that the f0ð980Þ and the f0ð1370Þ
have a significant q̄q component and they will partly cancel
the contribution of the ρ.
In case D the f2ð1270Þ has been removed. One finds

F10
2 ð4M2

πÞ ¼ 0.59� 0.03 and F21
2 ð4M2

πÞ ¼ −0.37� 0.15
atNC ¼ 180. The f2ð1270Þ contribution is rather important
to cancel that of the ρ, just as expected. The result of case D
is rather close to that of the f0ð980Þ at large NC, implying
the same important contribution of the f0ð980Þ as the
f2ð1270Þ. In case E we consider the FESR with the upper
limit νmax ¼ 4 GeV2. The result at NC ¼ 180 is almost the
same as that of case O. This supports the view that the
ρð1450Þ as well as other heavier resonances do not have a
large effect. In Fig. 5 one clearly sees that in case D the
F10
2 ðtÞ and F10

2 ðtÞ deviate much more from the expected
values than those in cases A and E. This confirms that the
f2ð1270Þ has a much larger effect than the f0ð500Þ and
heavier resonances such as the ρð1450Þ.

IV. SUMMARY

In this paper we have studied the semilocal duality for
largeNC. The isospin-2 ππ scattering amplitudes with final-
state interactions are constructed in a model-independent
way and fit to the data. Comparing with the amplitudes
of χPT, we generate the NC dependence of the ampli-
tudes. With this NC dependence the semilocal duality in
terms of finite energy sum rules is tested. Our results
show that the semilocal duality is satisfied well in the

TABLE IV. Duality for the different cases at NC ¼ 180 dis-
cussed in the text. Note that Case O is the original result shown in
Fig. 4.

Case

F10
2 ðtÞ F21

2 ðtÞ
t ¼ 4M2

π t ¼ 0 t ¼ 4M2
π t ¼ 0

O 0.64(5) 0.65(4) −0.14ð16Þ −0.06ð15Þ
A 0.63(7) 0.64(7) −0.15ð20Þ −0.10ð19Þ
B 0.59(8) 0.59(7) −0.36ð20Þ −0.34ð19Þ
C 0.62(8) 0.63(7) −0.23ð20Þ −0.19ð19Þ
D 0.59(3) 0.61(3) −0.37ð15Þ −0.27ð16Þ
E 0.63(8) 0.65(7) −0.13ð20Þ −0.08ð19Þ

FIG. 5. Duality for the different cases defined in the text. We
vary NC from 3 to a large number, in the order of NC ¼ 3, 6, 9,
12, 15, 18, 30, 60, 90, 120, 150 and 180.
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large NC limit, at least up to NC ¼ 180. This study
confirms that the method of generating the NC depend-
ence proposed in Ref. [29] is reliable. At large NC, the
contributions of the f2ð1270Þ and the f0ð980Þ are
important to cancel that of the ρð770Þ, the latter is
consistent with what has been found in Ref. [14]. Also
the f0ð1370Þ contributes significantly to the cancella-
tion. In contrast, the f0ð500Þ (or σ) has a large effect for
NC ¼ 3 and a small effect at large NC. These support
the q̄q component in the f0ð980Þ and the f0ð1370Þ, but
not for the σ as required in Ref. [6].
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