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Speed of sound in the QGP and an SU(3) Yang-Mills theory
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The speed of sound C; in the SU(3) and (2 + 1) QCD is calculated within the field correlator method
using the nonperturbative color magnetic confinement and Polyakov loop interaction in the deconfined
region.The resulting C, displays a discontinuity at 7 = T in the SU(3) case. It is shown numerically and
analytically that C2 never exceeds % both for SU(3) and (2 + 1) QCD for vanishing chemical potential. A
good agreement is found of our numerical results with the corresponding lattice data.
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I. INTRODUCTION

One of the most significant discoveries of recent times
was experimental detection of quark-gluon plasma (QGP)
[1-4]. Tt is the state of matter existing at extremely high
temperatures in QCD. These conditions can be created in
relativistic heavy-ion collisions [5-9].

In the framework of the research, it has been found that
QGP, contrary to early theoretical predictions [10-15], is a
liquid with an extremely low viscosity, but not a gas consisting
of quarks and gluons. Therefore to describe processes in the
heavy ions collision, (see e.g., [16] and references therein.) it
is possible to use a hydrodynamic approach related to the
physics of QGP [17,18]. One of the most important character-
istics in hydrodynamics is the value of the speed of sound in
the medium and its dependence on parameters (temperature,
density, etc.). For example, it governs the evolution of the
fireball produced in the heavy-ion collision, and one
of the most important observables for describing of QGP
formation—the elliptic flow [19-22].

The speed of sound is connected with the conformal
symmetry breaking in hot QCD. In a scale-invariant system
in the case of 3 spatial dimensions it should be C? = %,
because the trace of momentum-energy tensor must vanish
€ —3P = 0. It also can carry some information about the
type of phase transition in the system.

The main source of information on the speed of sound in
QCD is related with calculations on the lattice [23-27]. In
the confined phase one can also use the hadron resonance
gas model (HRG) [26,28,29]. The independent way to
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obtain predictions for the speed of sound in QCD is
connected with holographic description [30-37].

As it has become clear from numerous lattice and
experimental studies of QCD at T > 0, the main dynamics
of both hadron and QGP phases is of the nonperturbative
(np) origin and should be treated within the np
methods. The fundamental approach to the np QCD is
developed in the framework of the field correlator method
(FCM) [38-43] generalized to nonzero temperatures
[44-48]. In this paper we use the FCM to calculate the
speed velocity in case of finite temperatures and taking into
account the color magnetic confinement (CMC) as it was
done in [49-53]. The strength of this method is the ability
in a self-consistent manner to calculate the speed of sound
both in the confinement phase and at temperatures above
T ¢ both at zero and nonzero chemical potential. The second
case is very important because of the “sign problem” in
lattice calculations in this domain. To circumvent this
difficulty in the case of N, =3 in QCD one finds
Taylor coefficients in expansion around zero chemical
potential to obtain the information about small densities
[54,55], or uses imaginary chemical potential [56], or else
considers the number of colors N, = 2, where this problem
is absent [57-60]. In this work we will calculate the speed
of sound in the case of pure SU(3) gluodynamics and also
in the presence of quarks in (2 4+ 1) QCD, for u = 0.

The paper is organized as follows. In Sec. II we introduce
the FCM in case of finite temperatures. In Secs. III and IV
we use it to define the speed of sound as a function of the
temperature in the case of pure Yang-Mills and of (2 + 1)
flavors QCD. Finally we summarize and discuss the
obtained results in Sec. V.

II. THE FIELD CORRELATOR METHOD

The FCM is a useful instrument to treat the physics
outside the area of perturbative theory. Analysis of physics
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of QGP in terms of FCM made in [44-48], has shown the
important role of Polyakov loops for description of
thermodynamic of QGP.Below we also take into account
CMC effects, which are especially important at high T. The
main idea is as follows: The gluonic field A, splits into the
background field B, and the (valence gluon) quantum field
a,. A, = B, + a,, both satisfying the periodic boundary
conditions. The partition function is:

Z(B,T) —N/D¢exp<— Aﬂdt/agxﬁtm), (1)

where ¢ denotes all set of fields a,, y,w ™ and ghost fields.
In the lowest order in ga, one may obtain a result in the so-
called single line approximation (SLA) [47,48], where qg
and gg correlations are neglected

Z(B,T) = N,[det(G™")] 7 det(~D3(B))
x [det(mg — D*(B))]'2, (2)
where N -normalization factor, D,;(B) = 9, — igB,, G™! =

Dﬁé,w + 2igF,,. The thermodynamic potential F(T) is
connected to Z(B,T) in standard way

F(T) = =TIn(Z(B))s (3)

where index B means averaging over all background fields.
In SLA the contributions of gluons and quarks in F(T) are
separated:

F(T)gpn = Fo(T) + Fy(T).

In FCM the breaking of Lorentz invariance at finite
temperatures becomes apparent through existence of two
types of string tension:

1
ot == / DEH 27 4)

where DEH is obtained from

g2
ﬁ<<TrEi(x)(I)Ej(y)¢)+>>
=5, (DE(M) + DE(u) + 12 8gi(2”)>
2 NE u
+ Mi”jagibltz() (5)
2
- (TeH (x)OH, ()" )
— 5, <DH(u) DI () +u? %)
2 NH
i (0} ©

where u = x —y and ®(x,y) = Pexp(fyxA”dz”). At zero
temperature both string tensions (¢f = ¢/’ = o) coincide
and o forms the basic np scale, which defines all hadron
masses and the QCD scale in general. The values of ¢
can be also obtained from calculations on the lattice (see
e.g., [50]).

The correlators DF and DY produce both the scalar
confining interaction V(r) and the vector-like interaction

Vi(r):

Vp(r) = 2¢, A (r— A)d/%w dvDE (2, v)
= V() + VE(r) ™

r ] 9
Vl(r) = C(l/ ldli/ dl/D]lz(l» I/)v Cfund = 1, Cadj = Z
0 0

(8)

From V() we extract the purely linear form Vi (r), and
for V,(r) we separate out the one gluon exchange, V°&°,
Vi(r) = Vi 4+ V°&, while the rest parts, V5" and V{* are
saturating at large r, thus for the total potential below T,
one obtain:

V(R T <T) = V() + V() + Vo= () + VEG) ()

It is worth emphasizing that at low temperatures V3'(r)
and V§{ compensate each other (for details, see
Appendix of [50]). But at temperatures above T, V()
vanishes. As for Vi*(r, T), this quantity defines Polyakov
loops (L)), i.e:

Vi(o0,T)

9 . .
T >’Cfund =1, Cagj ZZJ = adj, f

(10)

L; =exp <—c,~

The contribution of Polyakov loops alone gives a reason-
able agreement with the lattice results [47]. However for an
accurate description of data one needs the CMC ingredient
which we introduce below following [48]. The relationship
between pressure, volume, and free energy is given by:

P, V3 =—Fy(B)

For the gluon contribution we obtain:

Py =22 =1) [T Y 65,6000
n#0

— / (Dz)2 e Xir, (WE(C,)) (11)
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1 /s dz*\ 2
K=-[ ar[ &),
4A T(dr)

o 4
(D2)g, = lim d*{(m) 3 d’p

8 ey
xmp%m(ﬁzam>—u—y»—nﬁm)}
: (12

where we use the Fock-Feynman-Schwinger (FES) formal-
ism with Schwinger proper time s [48]. W§(C,) is the
adjoint Wilson loop defined for the gluon path C,,, which
has both temporal (i4) and spacial projections (ij), and 77,
is the normalized adjoint trace.

CE and CM fields strengths in 7' > T, region correlate
very weakly due go the gauge-invariant field correlator
in adjoint representation (E;(x)B;(y)®(x,y)) =0 (see
[47,48]) and therefore both CE and CM projections of
the 1r,W%(C,) can be factorized as shown in [50]

<WaE(Cn)> adj( )<W3> (13)

for LE") ~ L! for T <1 GeV, One can integrate out the z4
part of the path integral (Dz)?%, = (Dz4)% D%z, and write
the result as

G (s) = GY" (5)Gs(s),

n 1
61(5) = [ (D) Ll =S

For the Polyakov loops, one can obtain [44]:

L4 =exp <—§JE> ,
E:@ np <_V> © E 2 2
JE 2A dv( 1 3 A LdiDY (VP 4v?)  (15)

and finally

Ly (14)

]V2 -1 o (s _ a2
P, =—— — G5 (s E e il 16
v Var Jo s 2 )n:il,iZ,... . (16)

w=ﬂmmf@mm9 (17)

In a similar way one can consider the quark contribution:

P — 2N / —ITL s

:M/ﬁmm*mem (18)

( DS, (5) + S_a(s)]. Su(s)

and the pressure acquires the form:

4N dS _n2
P = —m 5Sa(s _ n+le ey ) 19
= S 3 ) P (19)
S3(s) = / (D32) e~ (i W) (20)

Equations (18), (16) provide a general expression for the
free energy —F = P, + P, and we can find all thermody-
namic quantities and their dependence on parameters of
the media.

It is necessary to make two important remarks. (1) From
the factor exp(— %) and also from the contribution of
CMC follows the suppression of high order terms in (16),
(19). (2) The contribution of CMC in single line approxi-
mation dictates the form of the propagator Gs(s) and
defines the screening masses Mp, in it. The latter, as shown
in [49,50] is growing with T and defines all dynamics at
large T.

III. THE SPEED OF SOUND IN SU@3)
YANG-MILLS THEORY

We start with the speed of sound in the case of SU(3)
gluodynamics. The Lagrangian is

1
L= _ZGﬂvGuv (21)
Gy, = 0,A] — 0,A; + gf“b"AzA,ﬁ (22)

where ijy is non-Abelian field strength, a =1,..,
N? —1,u,v = 1.4 In this model there is a confinement-
deconfinement phase transition, of the weak first order,
from the phase of the glueball gas to the gluon plasma as
known from lattice studies (see e.g., [27]), and from the
FCM analysis [48]). In addition to the gauge symmetry of
the Lagrangian (21), there is also a scale symmetry of the
Lagrangian on the classical level,

x = A7k, A%(x) = AA%(x) (23)

As a consequence, the trace of the energy-momentum
tensor must vanish (7,,) = 0. One might expect that in the
thermodynamic description the equality £ = 3P (where E
is the system energy and P is the system pressure) holds.
However, it is well known that inclusion of quantum effects
for non-Abelian fields leads to the appearance of a mass
scale. From the lattice calculations we know that the scaling
symmetry in SU(3) Yang-Mills is significantly violated,
especially in the confinement-deconfinement transition
area [61]. As mentioned in the introduction, the speed of
sound is an excellent indicator for this violation, therefore
we expect to obtain in our calculations that the speed of
sound is different from 1/3 in the vicinity of 7.
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The second important fact is related to the type of
transition. In [62], it was suggested that in case of pure
Yang-Mills the type of confinement-deconfinement tran-
sition depends on the number of colors. In case of N, = 2
there must be a second-order phase transition [62],while in
the case of N. = 3 it is of the first order [27,63]. From the
expression

s 2P

2 _ __or

C=%=% (24)
or  JT

one can see that at the point 7' = T a possible discontinuity
in the speed of sound that is confirmed by calculations on
the lattice [61].

The introduction of FCM for QCD was described in the
previous section and will be used below for numerical
calculations. In addition one can provide a qualitative
analysis of resulting equations. One can use Eq. (16) and
obtain the energy density:

oP
ctP=To. (25)

Writing P = T*f(T) one has:
0.
o or |

N 62 P
I'5e aT*

f+3Tf(T)
3f+3Tf(T) +5T2f"(T)

~1<1 152T]{(/(T))+0(T2f")>. (26)

K
To understand the behavior of f(7) we use [45] for G5 (s)

2(N2-1)
Pgl - 1671' HZ adj/

(5 ?Mi >) y = 1 for oscillator form of color

g (Mgs)  (27)

where ¢ =
magnetic confinement, and y = 1/2 for the linear confine-
ment. The screening mass M, is expressed via spacial
string tension, M% = aoy, a = 8y, and o, was obtained
from the lattice data [61]:

o,(T) = 24 (T)T?, ¢, =0.566+0.013. (28)

Changing variables in the integral (27) one obtains:

du _p M?
L) = [T Rt k=32 9
f(T) can be written as:
f(T) = 16” ZLadJ L (K2). (30)

The derivative f'(T) consists of two terms 37“5” and
or, (¥ 2
O(TK L= I;z("z)?)ir?)'} 8yc2 97 o * where:
wdu _p O Ok
new) = [T o
0o U ox* OT

and one obtains that both 8¢ and ¢ 0" are negatlve so that

aT > (. The same conclus10n follows for 2 aT’

(‘B‘LgdJ Bl
ar  oT ‘¢

—911‘/] (c0.T)

s ) >0 (32)

where V(00 T) decreases with T for T > T, while Ly

grows with T. Hence one can deduce that: f'(7) > 0, for
T > T, and consequently:

1 57T

T3 736 (1)

(33)

adj

Note, that the largest contribution to f'(7') comes from a;

In the confinement area, T < T, we can also make some
predictions. For the pressure of glueball resonans gas one
can write:

)
gi m=(T) n
gb = Zznlzz nlsz K,
i n=1

mp\ _ 9 ~= 1 i)
T)ZZZILJZF]("

i n=1

i n2m2 nm;
k(1) 5#19( . ) (35)

In (34), (35) one can take into account, that confinement
and string tension o(7T') are T dependent [50], so that

op(T)

ml(T) = a(T)mt(O)v a(T) = O'E(O).

(36)

Note, that kff)(T — o0) — 1, while for small 7, T < m;(T)
one has

KN(T = 0) = \/’27 <an(o)> v exp <— an(O)> (37)

As a consequence for T'< m;(0) the main contribution
comes from the term with the lowest mass, and thus
from (35):

T
C2=—.T-0. (38)
my

As one can see in Fig. 1 there is a good agreement
between the predictions of the theory Egs. (16), (24)
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1 2 3 4
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FIG. 1. The speed of sound in FCM from (24) for SU(3) in
comparison with the fit from [64].

and the fit from [64]. We preferred to show this fit instead
of lattice data because there is a good agreement between
this fit and the lattice data from [61,65]. We also obtain
discontinuity at T = T, as it should be in case of the first
order phase transition.

IV. THE SPEED OF SOUND IN QCD
WITH (2+1) FLAVORS

Here we shall consider the speed of sound in case of
QCD with ny =2+ 1. We take m,, m; equal to zero
and m; = 0.1 GeV.

As in the case of the Yang-Mills theory, some qualitative
predictions about the value of the speed of sound can be
made. First of all, because the confinement-deconfinement
phase transition in this case is a crossover [56], the speed of
sound can have a finite value and a local minimum in the
crossover region. The second prediction is connected with
the domain of extremely large T, where C; should be close
to 1/+/3, because in this region the scale anomaly is small
relative to the typical energy scale [26].

Similarly to the way it was done for P in the last chapter,
we can consider P, Eq. (19) for the ensemble of quarks.
We use the pressure from [52].

Pq:ZPSIf)’
f

(f) 4NC /ds —mls
P = — f
4 (4n)?* ) s ¢

2
« Z (_)nJrl e 412 cosh <'u7’_:l> Lspn)(ﬂf(s) (39)

n=12

M2s r 4 4
f 2 2
=(—L ), MZ=-M2=—uas, (40
vs(s) (sinh(M;s)> 7 =gMo=gae,  (40)

Similarly to (27), one obtains for f(T) at u =0

2

m

AN, & n ’ ——5u
F(T) = (4ﬂ)‘22L} 1D (2)e™ (41)

n=1
with
odu _p M3
1y :A 7(@(/)]«(141(}), K7 :T_if' (42)

Writing now C2 —1 = —A_ with A, (T) = %T(@ 4

a
f,;T)) and neglecting the relatively small T derivatives of

2
Kj, = A;’;"’, one obtains for small 2/
2 (n)
5 4N, "1, f) aLf
q9 36{;;(4”)26 r oT

T @

One can see that always A, >0 and at large T,
T > 250 MeV, A, is small and tends to zero. In a similar
way as for the glueball gas, one can treat the hadron
resonance gas of mesons and baryons. Neglecting inter-
action between hadrons, one arrives at the small T limit (38)
for the sound velocity of the HRG with the pion mass
for my

We compare our results with [26] and [66] in Fig. 3.

+Z%IH(K2)<T

n

V. NUMERICAL RESULTS AND DISCUSSIONS

To understand the behavior of C? as a function of T and
compare it with our qualitative predictions (33) and (43), as
well as with lattice calculations, we have computed P ;(T)

0.0150 1
0.0125 1
0.0100 -
0.0075 |

0.0050 1

— FCM
Tc/mg

0.0025 1

002 004 006 008  0.10
T/Tc

FIG. 2. The speed of sound C2 in FCM from (24) for SU(3) in
the limit 7 — O in comparison with (38).
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The speed of sound in (2+1) QCD

The square of the speed of sound

Szabolcs Borsanyi et al.
Bazavov et al.

FIG. 3.
and Bazavov et al. [26].

Eq. (27) with y = 1/2 and obtain C2, using the definition
(24) The results for C? are plotted in Fig. 1 in comparison
with the lattice data from [64]. One can see a good
agreement with lattice curve for C? and a discontinuity
at T = T, as should be for the first order SU(3) transition.
Both lattice and our results for C? are in the region
C? < 1/3, which supports our qualitative conclusion in
(33). It is interesting to study the behavior of CZ at T — 0,
which was done in Fig. 2, where the limiting relation (38) is
compared with our numerical data, showing a perfect
agreement. For the 2+ 1 QCD our numerical data are
presented in Fig. 3 in comparison with the lattice data of
[26,55]. One can see again a good agreement of all results.
Comparing with our analytic predictions in (43),
C? —=—A,, one finds that indeed A, is positive in
the whole region 7' > T, and it is small for 7 > 250 MeV.

2

2.5 3
T/Tc

The speed of sound in QGP from FCM, Egs. (24), (16), and (19), in comparison with lattice data of Borsanyi et al. [66]

Thus for the QGP one reveals the behavior, of the
squared sound velocity, which never exceeds 1/3 and can
be called normal. However, already at nonzero y one might
meet with a new phenomenon, since y enters Pq, as in (39)
via cosh7, and this provides a negative sign of A, for
large enough 4/T. One can expect also a strong deviation
of C? in the presence of external magnetic fields. Both this
effects require additional studies and will be subject of

further publications.
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