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In order to obtain the equation of state and construct hybrid stars, we calculate the thermodynamic
potential in the two-flavor Nambu–Jona-Lasinio model with tensor-type four-point interaction between
quarks. In addition, we impose the β equilibrium and charge neutrality conditions on the system. We show
that the tensor condensate appears at large chemical potential, however, it is difficult to hold hybrid stars
with two-solar mass by using the equation of state with the tensor interaction. Although we cannot obtain
the stars with two-solar mass because of the absence of the repulsive interaction, the estimated magnetic
moment density is very large. Therefore, we expect that the tensor interaction describes the magnetic fields
of compact stars.
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I. INTRODUCTION

One of recent interests is to clarify the phase structure of
the world governed by quantum chromodynamics (QCD).
It is well known that at low temperature and small chemical
potential the hadronic phase is realized. In this phase,
because of the color confinement, we cannot remove a
single quark from hadrons. At high temperature and small
chemical potential, the quark-gluon plasma phase may be
realized. On the other hand, it is very difficult to investigate
the phase structure at low temperature and large chemical
potential. Many researchers, however, consider that the
color superconducting phase may be realized under certain
conditions [1]. In order to exhibit the phase structure of
QCD, the Nambu–Jona-Lasinio (NJL) model [2–5] has
been used by many authors. For example, in Refs. [6–8],
the color superconductivity has been discussed in the NJL
model. Especially, in Ref. [9] the authors have included the

vector interaction as well as the quark-pairing interaction
into the NJL model. As a result, it has been shown that the
chiral condensate and the color superconducting gap may
coexist because of the vector interaction.
The possibility that the spins of quarks may become

polarized at large chemical potential has been discussed in
Ref. [10]. In addition, since a spin polarization term can be
derived from the axial-vector interaction, the authors in
Refs. [11–13] have investigated the possibility of spin
polarization by using an axial-vector interaction. A term
similar to the spin polarization term can also be obtained
from a tensor interaction in the NJL model, which can be
interpreted as an anomalous magnetic moment induced
dynamically [14]. In this paper that term is called the “tensor
condensate.” The tensor condensate from the tensor inter-
action was investigated in Ref. [15]. It has been shown in
Ref. [16] that the tensor condensed phase may be realized at
large chemical potential. Also, in Refs. [17,18], the relation-
ship between the tensor condensate and color superconduc-
tivity has been investigated at zero temperature. Moreover,
in our preceding papers [19,20], the relationship between
the chiral condensed phase, “tensor condensed phase” and
the color superconducting phase has been discussed at finite
temperature and finite quark chemical potential. According
to these investigations, the chiral condensate, and tensor
condensate do not coexist, however, the tensor condensate
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and two-flavor color superconducting gapmay coexist at low
temperature and large quark chemical potential. Further,
ferromagnetism due to the tensor condensate has been
investigated in Ref. [21]. It has been shown that if quarks
have an anomalous magnetic moment, the tensor condensate
may lead to spontaneousmagnetization in high density quark
matter.
These conditions, large chemical potential, and low

temperature, may be realized in the inner core of compact
stars, for e.g., neutron stars and magnetars. It is known that
neutron stars have very strongmagnetic fields at their surface
[22]. However, nobody understands definitely the mecha-
nism that generates such strong magnetic fields. We propose
that the tensor condensate is the origin of magnetic fields.
Another interesting topic of research related to neutron

stars is the difficulty of describing stars with two-solar mass
using equation of state (EOS) that includes hyperons or
non-nucleonic degrees of freedom [23]. Though the cal-
culation in the present investigation does not include
strange quarks, we will construct compact stars with a
quark core using the EOS obtained from the NJL model
with the tensor interaction.
In Sec. II we introduce the NJL model with the tensor

interaction and then calculate the thermodynamic potential.
In Sec. III we discuss numerical results and construct hybrid
stars. The last section is devoted to conclusions and remarks.

II. LAGRANGIAN DENSITY AND
THERMODYNAMIC POTENTIAL

In this section we introduce the NJL model with the
tensor interaction at finite chemical potential. In addition to
this, we impose the β equilibrium and charge neutrality
conditions on the system. The Lagrangian density with
flavor SUð2Þ and color SUð3Þ symmetry is

Ltotal ¼ LNJL þ LT þ Le þ LD;

LNJL ¼ ψ̄iγμ∂μψ þGSfðψ̄ψÞ2 þ ðψ̄ iγ5τ⃗ψÞ2g

LT ¼ −
GT

4
fðψ̄γμγντ⃗ψÞ · ðψ̄γμγντ⃗ψÞ

þ ðψ̄iγ5γμγνψÞðψ̄iγ5γμγνψÞg;
Le ¼ ψ̄eiγμ∂μψe;

LD ¼ μψ†ψ þ λ

�
ψ†
eψe þ

1

3
ψ†
dψd −

2

3
ψ†
uψu

�
; ð1Þ

where τiði ¼ 1; 2; 3Þ is the Pauli matrix that operates in the
flavor space and ψ ¼ ðψu

ψd
Þ is the quark fields for up quark

ψu and down quark ψd, respectively. The term LT repre-
sents the tensor interaction.1 We have added the term, Le,
for electrons that neutralize stellar matter. For simplicity, in

this discussion we ignore the current quark mass and the
electron mass. The termLD controls densities. The variables
μ and λ handle the quark number density and charge density,
respectively. Namely, μ is the quark chemical potential, and λ
will be identified as the electron chemical potential after
optimization of the thermodynamic potential.
In this paper, we pay attention to the term ðψ̄γ1γ2τ3ψÞ2 in

LT since using the Dirac representation, we can derive the
spin matrix Σz ¼ −iγ1γ2. Let us write down the Lagrangian
density that we consider in this discussion:

L ¼ ψ̄iγμ∂μψ þ GSðψ̄ψÞ2 þ
GT

2
ðψ̄Σzτ3ψÞ2

þ ψ̄eiγμ∂μψe þ μψ†ψ

þ λ

�
ψ†
eψe þ

1

3
ψ†
dψd −

2

3
ψ†
uψu

�
: ð2Þ

In the mean field approximation, the above Lagrangian
density becomes

LMFA ¼
X
f¼u;d

ψ̄f½iγμ∂μ −M − f̂FΣz þ μfγ
0�ψf

−
M2

4GS
−

F2

2GT
þ ψ̄e½iγμ∂μ þ λγ0�ψe; ð3Þ

where

M ¼ −2GSðhψ̄uψui þ hψ̄dψdiÞ; ð4Þ

F ¼ −GTðhψ̄uΣzψui − hψ̄dΣzψdiÞ; ð5Þ

and h·i means expectation value. Note that the variables,M
and F, are the order parameters, the chiral condensate, and
tensor condensate, respectively. In order to simplify the
notation, we have defined f̂ in the following way:

f̂ ¼
�
1 for f ¼ u

−1 for f ¼ d
;

where u and d represent the up quark and down quark,
respectively. In addition, we also introduce

μu ¼ μ −
2

3
λ; μd ¼ μþ 1

3
λ:

We will realize the above variables as chemical potential
of the up quark and down quark, respectively. By using
the standard technique, we can obtain the single-particle
energy as follows:

ϵα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þM2

q
þ αF

�
2

s
;

ϵe ¼ p; ð6Þ

1In other papers, the term LT is sometimes written by using
σμν ¼ i

2
½γμ; γν�. It means that the interaction does not contain the

terms μ ¼ ν. Therefore, in our notation, we do not consider terms
μ ¼ ν.
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where α ¼ �1. The first one is for quarks and the second one is for electrons. As we have commented, λ is identified as the
electron chemical potential. Therefore, we write μe ≔ λ in the following discussion. The thermodynamic potential Φ is
obtained as

ΦðM;F; μ; μeÞ ¼ Φq þΦe;

Φq ¼ NC

Z
jp⃗j≤Λ

d3p
ð2πÞ3

X
f¼u;d
α¼�1

fðϵα − μfÞθðμf − ϵαÞ − ϵαg þ M2

4GS
þ F2

2GT
;

Φe ¼ 2

Z
∞

−∞

d3p
ð2πÞ3 ðϵe − μeÞθðμe − ϵeÞ ¼ −

μ4e
12π2

; ð7Þ

where Φq and Φe are the thermodynamic potentials for the
quark and electron, respectively, and NC ¼ 3 is the number
of color. We have introduced a three-momentum cutoff
parameter Λ in the quark thermodynamic potential.
Here we discuss renormalization of the thermodynamic

potential briefly. We can derive the pressure P as P ¼ −Φ.
However, in this case,

Pðμ ¼ μe ¼ 0Þ ¼ −ΦðM0; F0; 0; 0Þ ≠ 0;

where M0 and F0 minimize Φ when μ ¼ μe ¼ 0. Namely,
the pressure is not zero at zero chemical potentials.
Therefore, we redefine a new thermodynamic potential as

ΦRðM;F;μ;μeÞ≔ΦðM;F;μ;μeÞ−ΦðM0;F0;0;0Þ: ð8Þ

Then, the renormalized pressure is computed as P ¼ −ΦR.
We can calculate the quark number density by differ-

entiating the thermodynamic potential with respect to the
quark chemical potential:

ρ ¼ −
∂ΦR

∂μ ¼ ρu þ ρd; ð9Þ

where ρu and ρd are the number density of the up quark and
down quark, respectively. On the other hand, we can obtain
the electron number density in the following way:

ρe ¼ −
∂Φe

∂μe ¼ μ3e
3π2

: ð10Þ

We minimize the thermodynamic potential under the
condition ∂ΦR=∂μe ¼ ∂ΦR=∂λ ¼ 0, namely,

ρe þ
1

3
ρd −

2

3
ρu ¼ 0: ð11Þ

It means the charge neutrality condition. Using the above
condition and the definition of the quark number density,
the number density of the up quark and down quark can be
written as

ρu ¼
1

3
ρþ ρe; ρd ¼

2

3
ρ − ρe: ð12Þ

In addition, the chemical potential of the up quark and
down quark can be written as

μu ¼ μ −
2

3
μe; μd ¼ μþ 1

3
μe: ð13Þ

Then we can derive μd ¼ μu þ μe, and it is the β equilib-
rium condition.
We can write down energy density through the thermo-

dynamic relation as

E ¼ ΦR þ μρ ¼ ΦR þ μðρu þ ρdÞ: ð14Þ

III. NUMERICAL RESULTS

We comment on the parameters. The NJL model is not a
renormalizable theory, therefore, we have introduced a
three-momentum cutoff parameter, Λ. The parameters, Λ
and GS, are determined to reproduce the dynamical quark
mass and the pion decay constant in the vacuum. The value
of the coupling constant with tensor interaction GT may be
determined by experimental values [24,25] or the Fierz
transformation of the scalar and pseudoscalar interaction in
the NJL model. In these cases, the sign of GT becomes
opposite to our model. On the other hand, in Ref. [26], the
authors use the opposite and same sign. The value of GT is
not well known, therefore, we treat GT as a free parameter.
The values of parameters are enumerated in Table I.

TABLE I. Parameter set.

Model Λ½GeV� GS½GeV−2� GT ½GeV−2�
GT0 0.631 5.5 0
GT11 0.631 5.5 11.0
GT12 0.631 5.5 12.0
GT13 0.631 5.5 13.0
GT14 0.631 5.5 14.0
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In the following discussion, we do not use the quark
chemical potential but baryon chemical potential. It is
defined in the following way:

μB ¼ 3μ: ð15Þ
In addition, we also introduce the baryon number density as

ρB ¼ 1

3
ρ: ð16Þ

A. Behavior of F

Figure 1 shows the behavior of the tensor condensate F.
We vary the value of the baryon chemical potential from 0.6
to 1.8 GeV. Since model GT0 does not have the tensor

interaction, the tensor condensate does not occur. Thus,
model GT0 does not appear in this figure. The figure shows
that as the GT becomes larger, F can get nonzero values
at smaller chemical potential. Moreover, the value of F
becomes larger.
Next we show the competition between the chiral

condensate and the tensor condensate; see Fig. 2. The
four graphs represent the competition in models GT11,
GT12, GT13, and GT14, respectively. The horizontal axis
is the baryon chemical potential, and the vertical axis is the
chiral condensate M and the tensor condensate F. In all
models, while μB is small enough, the chiral condensate is
realized. Then, when μB becomes large enough, the tensor
condensate is realized. In our calculation, we cannot obtain
the situationM ≠ 0 and F ≠ 0. Let us summarize the phase
transition in our model here. When we use models GT11,
GT12, and GT13, the phase transition is of the type

Chiral condensed phase ðM ≠ 0; F ¼ 0Þ
→ Chiral symmetric phase ðM ¼ 0; F ¼ 0Þ
→ Tensor condensed phase ðM ¼ 0; F ≠ 0Þ;

as the baryon chemical potential becomes larger. The phase
transition occurs via the chiral symmetric phase. On the
other hand, when we use model GT14, the phase transition
is of the type

Chiral condensed phase ðM ≠ 0; F ¼ 0Þ
→ Tensor condensed phase ðM ¼ 0; F ≠ 0Þ;

as the baryon chemical potential becomes larger.

FIG. 1. The relationship between the baryon chemical potential
μB and the tensor condensate F is shown. The horizontal and
vertical axes represent the baryon chemical potential and tensor
condensate, respectively.

FIG. 2. These four figures show the competition between the chiral condensateM and the tensor condensate F in model GT11, GT12,
GT13, and GT14, respectively. The horizontal axis is the baryon chemical potential μB and the vertical axis is the values of M and F.
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B. Behaviors of ρ, μe, etc.

Figure 3 shows the behavior of the baryon number
density of the system. The horizontal and vertical axes are
the baryon chemical potential and the baryon number
density, respectively. Model GT0 has one discontinuity
at μB ∼ 1.0 GeV. It means that the phase transition occurs
from the chiral condensed phase to the chiral symmetric
phase. The models GT11, GT12, and GT13 have one
discontinuity at μB ∼ 1.0 GeV and one sharp rise, but
continuous, in the value. The former discontinuity corre-
sponds to the phase transition from the chiral condensed
phase to the chiral symmetric phase. The latter sharp rise
corresponds to the phase transition from the chiral sym-
metric phase to the tensor condensed phase. On the other
hand, model GT14 has only one discontinuity. The dis-
continuity corresponds to the phase transition from the
chiral condensed phase to the tensor condensed phase.
Next let us see the behavior of the electron chemical

potential; see Fig. 4. The horizontal and vertical axes
represent the baryon chemical potential and the electron
chemical potential, respectively. In all models, the values
of μe are nonzero at μB ¼ 0 and small baryon chemical

potentials. We consider that this is a numerical error, the
true values are zero while μB ≲ 1.0 GeV. Although μe ≠ 0,
this occurs at very low baryonic densities, out of the range
of the baryonic densities at the transition: hadronic matter
↔ quark matter, and below the densities needed to build
the hybrid star’s EOS. As we have seen in Fig. 3, each of
models GT0 and GT14 has one discontinuity, and each of
models GT11, GT12, and GT13 has one discontinuity and
one continuous sharp rise in the values of μe. Here we
comment on the discontinuities. It looks like the disconti-
nuities in models GT11, GT12, and GT13 are at smaller
baryon chemical potential than that in model GT0.
However, the discontinuities in model GT0, …, and
GT13 should be coincident since the tensor condensate
has not appeared yet. The differences are due to a numerical
problem, which, however, will not affect the main con-
clusions on the hybrid star structure.
Figure 5 shows the relationship between the baryon

number density and the tensor condensate. The horizontal
and vertical axes are ρB and F, respectively. For the models
GT11, GT12, and GT13, F does not have a finite value at
small baryon number densities. However, if the baryon
number density becomes large enough, F can get nonzero
values. Model GT14 does not have points at small baryon
number density because ρB with such values does not occur
(see Fig. 3). Of course, F is zero at ρB ¼ 0. If the baryon
number density exceeds ρB ∼ 0.6 fm−3, F can obtain finite
values.
In Fig. 6, the relation between the baryon number density

and the electron number density is shown. The horizontal
axis is ρB, and the vertical axis is ρe. In model GT0, the
value of ρe increases linearly as ρB becomes larger. On the
other hand, in models GT11, …, and GT14, the curves of
ρe rise sharply after the tensor condensate is realized. In
addition, the value of ρe becomes larger at fixed ρB as the
value of GT becomes larger. This is due to the fact that the
tensor condensate favors larger (smaller) up-quark (down-
quark) fractions, see discussion below, and in order to

FIG. 3. The relationship between the baryon chemical potential
μB and the baryon number density ρB is shown. The horizontal
and vertical axes represent the baryon chemical potential and
baryon number density, respectively.

FIG. 4. This figure shows the relation between the baryon
chemical potential μB and the electron chemical potential μe. The
horizontal axis is μB, and the vertical axis is μe.

FIG. 5. The relationship between the baryon number density ρB
and the tensor condensate F is shown. The horizontal and vertical
axes represent the baryon number density and the tensor con-
densate, respectively.
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ensure electric charge neutrality the electron number
density must increase.
In Figs. 7 and 8, we plot the up-quark and down-quark

fractions, ρu=ρ and ρd=ρ, as a function of the quark number
density ρ. In model GT0, the two fractions do not change
very much. In other models, because of the tensor con-
densate, ρu=ρ increases and ρd=ρ decreases. The variations
of the two fractions become larger as GT becomes larger.

The tensor interaction reduces the energy of system and the
interaction energetically favors a reduction of the down-
quark Fermi momenta. The energy gain compensates the
increase of the electric density.
In Fig. 9, the baryon number density versus pressure

plot is depicted. We have eliminated some isolated points
at P ¼ ρB ¼ 0 for numerical reasons when we compute
the interpolated functions. Therefore, the baryon number
density ρB starts from a finite value instead of zero. The
pressure of model GT0 increases monotonically from the
origin.2 On the other hand, the models GT11, GT12, and
GT13 have plateaus. These plateaus indicate the onset of
the tensor condensate.

C. Hybrid star

First, we explain what we refer to as a “hybrid star.” The
hybrid star has an inner core that consists of the quark
matter, and the outer core and crust consist of hadrons.
In order to obtain the EOS of hadrons, we use the NL3ωρ
model [27].
Let us discuss the relationship between the radius and

mass of hybrid stars by solving the Tolman-Oppenheimer-
Volkoff (TOV) equation numerically. In Fig. 10, the radius
(r)–mass (m) relation is depicted. We have normalized r
andm by r0 ¼ 10 km and the solar massmsun, respectively.
See the models GT0, GT11, and GT12. The curves bend
at ðr=r0; m=msunÞ ∼ ð1.3; 1.3Þ. The point corresponds to
the appearance of the quark matter at the inner core of
the hybrid star; the curves under this point have “hadron
cores,” on the other hand, the curves above this point have
“quark cores.” The curves of models GT11 and GT12
bend at ðr=r0; m=msunÞ ∼ ð1.2; 1.7Þ and ðr=r0; m=msunÞ ∼
ð1.25; 1.5Þ again, respectively. This point means that the
tensor condensate appears at the core of the hybrid stars; the
curves under this point have cores which are M ¼ F ¼ 0.
The curves above this point have cores which are M ¼ 0

FIG. 7. This figure shows the proportion of up quarks in the
system. The horizontal axis is the quark number density ρ not the
baryon number density. The vertical axis is ρu=ρ.

FIG. 8. This figure shows the proportion of down quarks in the
system. The horizontal axis is the quark number density ρ, not the
baryon number density. The vertical axis is ρd=ρ.

FIG. 9. The relationship between the baryon number density ρB
and pressure P is shown. The horizontal and vertical axes
represent the baryon number density and pressure, respectively.

FIG. 6. This figure shows the relation between the baryon
number density ρB and the electron number density ρe. The
horizontal and vertical axes represent ρB and ρe, respectively.

2It should be noted that the origin in this graph is not
ðρB; PÞ ¼ ð0; 0Þ.
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and F ≠ 0. The curve of model GT13 snaps off at
ðr=r0; m=msunÞ ∼ ð1.28; 1.2Þ. This point means the onset
of the tensor condensate at the core. Since the tensor
condensate is realized at smaller chemical potential as GT
becomes larger, the curve of the model GT14 bends earlier
than model GT13. The “bending point” for model GT14 is
at ðr=r0; m=msunÞ ∼ ð1.18; 0.7Þ. We note that models GT13
and GT14 predict “twin stars” [28,29], i.e., stable stars with
the same mass but very different radii: a hadronic star and a
hybrid star, the first one with a radius is 2 km larger than the
hybrid star radius. For more discussion concerning twin
stars, please see Refs. [28,29].

D. Estimation of magnetic moment

We estimate the magnetic moment density by using
Eq. (22) in Ref. [30]. In our case, the expression of the
magnetic moment density becomes

Mmag ¼
�
2

3
ρ̄u þ

1

3
ρ̄d

�
e

2mq

hψ̄ iγ1γ2τ3ψi
hψ†ψi 3ρB; ð17Þ

where ρ̄u and ρ̄d are the fraction of the up and down
quark, respectively. We use the current quark mass:
mq ¼ 0.005 GeV. In the above equation, ρ̄u and ρ̄d satisfy
ρ̄u þ ρ̄d ¼ 1; thus, we can write

ρ̄u ¼
ρu

ρu þ ρd
; ρ̄d ¼

ρd
ρu þ ρd

:

In Ref. [30], a relation ρ̄u ¼ ρ̄d is used. However, in our
case, this condition is not satisfied because we are imposing
the β equilibrium and the charge neutrality conditions on
the system. Thus, we must use numerical data for ρ̄u and ρ̄d,
namely, ρu and ρd. By using the following relations:
3ρB ¼ ρ, ρu ¼ ρ=3þ ρe, and ρd ¼ 2ρ=3 − ρe, we can
transform Mmag into

Mmag ¼ ð4ρB þ ρeÞ ×
eF

18mqGTρB
:

Here we discuss the dimension. We are using the following
unit: c ¼ ℏ ¼ μ0 ¼ 1, where μ0 is the vacuum permeabil-
ity. Therefore, the dimension of Mmag is ½GeV2�. We also
have the relation: 1 Gauss ¼ 1.955 × 10−20 GeV2. Thus,
the dimension of Mmag is [Gauss].
See Fig. 11. The vertical and horizontal axes are the

magnetic moment density and the baryon chemical poten-
tial, respectively. As GT becomes larger, Mmag gets larger
and becomes finite at smaller baryon chemical potentials.
We can get Mmag ∼ 1019 G.

IV. CONCLUSIONS AND REMARKS

In this paper we have investigated the behavior of tensor
condensate and its implication on the properties of the
hybrid star by using the NJL model with the tensor
interaction under the β equilibrium and charge neutrality
conditions. As the value of GT becomes larger, the value of
F increases. Moreover, F has nonzero values at a smaller
baryon chemical potential.
In addition, we have constructed hybrid stars by using

the EOS of this model. WhenGT ≤ 14.0 GeV−2, we obtain
no hybrid stars with two-solar mass. However, if we
include the vector interaction as repulsion, we may obtain
compact stars with two-solar mass. It is outside the scope of
this paper. We have built stars with a polarized core, and a
finite tensor condensate. This could be a mechanism that
explains the strong magnetic fields inside magnetars. We
expect that our scenario is valid also for hybrid stars
with mhybrid > 2msun, where mhybrid is the mass of the
hybrid star.
We must, however, point out some problems that have

arisen while calculating the hybrid star families. See the
radius-mass curves in Fig. 10. The curves do not reach the
maximummass. In order to depict the curves, we have used
numerical EOS data with baryon chemical potential,

FIG. 11. The figure shows the relationship between the chemi-
cal potential and the magnetic moment. The vertical and
horizontal axes represent the magnetic moment density and
the baryon chemical potential, respectively.

FIG. 10. The relationship between the radius and mass of
hybrid stars is shown. We have normalized the mass m by the
solar mass msun and the radius r by r0 ¼ 10 km. The horizontal
and vertical axes represent the radius r=r0 and mass m=msun,
respectively.
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μB ≲ 1.8 GeV, namely, μ ≲ 0.6 GeV. Since the quark
Fermi momentum should not exceed the value of the cutoff
parameter Λ it is difficult to extend the curves any more. If
we use a larger cutoff parameter, we may extend the radius-
mass curve, but this requires the determination of a new set
of parameters with a large cutoff and this will not be
considered in the present work.
In this research, we use the flavor SUð2ÞNJL model with

the tensor interaction. Many researchers consider that the
color superconducting phase may be realized in the high
density region. In addition, at large chemical potential we
should not ignore the contribution from strange quarks.
Thus, it is interesting to extend our model to the flavor
SUð3Þ case. In our discussion, the renormalization was
defined in a such a way that the pressure vanishes when the
quark and electron chemical potential are zero. However, a
different renormalization procedure of the pressure could
have been carried out as done in Ref. [27]. These will be
considered in a future work.
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APPENDIX: HOW TO CONSTRUCT
HYBRID STARS

In this Appendix, we discuss how to construct hybrid
stars. As we have referred, the hybrid star contains quarks
in the inner core while the outer core consists of hadrons. In
order to obtain the EOS of hadrons, we use the NL3ωρ
model. The Lagrangian density is obtained as

LNL3ωρ ¼
X
N¼p;n

ψ̄N

�
γμ
�
i∂μ − gωNωμ −

1

2
gρNτ · ρμ

�
− ðmN − gσNσÞ

�
ψN

þ 1

2
∂μσ∂μσ −

1

2
m2

σσ
2 −

1

4
ΩμνΩμν þ 1

2
m2

ωω
μωμ −

1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ

−
1

3
bmNðgσNσÞ3 −

1

4
cðgσNσÞ4 þ Λωðg2ωωμω

μÞðg2ρρμ · ρμÞ;

where Ωμν ¼ ∂μων − ∂νωμ and ρμν ¼ ∂μρν − ∂νρμ. The
Lagrangian density contains the fields of nucleons (ψp

and ψn), σ meson (σ), ρ meson (ρμ), and ωmeson (ωμ). We
note that the EOS obtained by this model can hold compact
stars with two-solar mass.
Our strategy for numerical calculation is as follows:
(1) Give an arbitrary value to the central energy density

of the hybrid star.
(2) If the value is large enough that the quark matter is

realized, go to step 3. If the value is not enough,
jump to step 5.

(3) Solve the TOV equation from the center to the
outside of the star by using the EOS of quarks until
a certain reference pressure obtained by performing
a Maxwell construction.

(4) At the reference pressure, switch the EOS to the one
of hadrons.

(5) Solve the TOV equation to the outside of the star
with the EOS of hadrons until the pressure of the star
vanishes.

(6) Change the value of central energy density and go
back to step 2.

In addition to the above strategy, we should discuss the
way to switch the EOS from quarks to hadrons. In Fig. 12,
we plot the EOS for the models GT0, GT11,…, and GT14.
The figures in the left column represent baryon chemical
potential-pressure plots, and those in the right column
represent energy density-pressure plots. The blue curves
(NL3ωρ) are the EOS obtained by the NL3ωρ model. The
yellow curves (NJLþ Tensor) represent the EOS obtained
by the NJL model with the tensor interaction. In addition,
the green curves (Modified) are the EOS that is used in the
construction of hybrid stars. We introduce some functions:
PiðμÞ, piðEÞ and (i ¼ Q, H). The functions PQ (PH) and
pQ (pH) refer to the pressure of NJLþ Tensor (NL3ωρ).
The argument of Piði ¼ Q;HÞ is the baryon chemical
potential. On the other hand, the argument of piði ¼ Q;HÞ
is the energy density.
In the left column, there are the cross points, where

PQðμ0Þ ¼ PHðμ0Þ ¼ P0. We switch from EOS to the other
at the pressure P0. This is the Maxwell construction. In the
right column, the horizontal part of the green curve,
EH ≤ E ≤ EQ, is defined so that pHðEHÞ ¼ pQðEQÞ ¼ P0.
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FIG. 12. In the left column, the horizontal and vertical axes represent the baryon chemical potential and pressure, respectively. In the
right column, the horizontal and vertical axes are the energy density and pressure, respectively.
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