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The most recent experimental data for all measured production and decay channels of the bottomonium-
like states Zbð10610Þ and Zbð10650Þ are analyzed simultaneously using solutions of the Lippmann-
Schwinger equations which respect constraints from unitarity and analyticity. The interaction potential in
the open-bottom channels Bð�ÞB̄� þ c:c: contains short-range interactions as well as a one-pion exchange.
It is found that the long-range interaction does not affect the line shapes as long as only S waves are
considered. Meanwhile, the line shapes can be visibly modified once D waves, mediated by the strong
tensor forces from the pion exchange potentials, are included. However, in the fit they get balanced largely
by a momentum dependent contact term that appears to be needed also to render the results for the line
shapes independent of the cutoff. The resulting line shapes are found to be insensitive to various higher-
order interactions included to verify stability of the results. Both Zb states are found to be described by
the poles located on the unphysical Riemann sheets in the vicinity of the corresponding thresholds.
In particular, the Zbð10610Þ state is associated with a virtual state residing just below the BB̄�=B̄B�

threshold while the Zbð10650Þ state most likely is a shallow state located just above the B�B̄� threshold.
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I. INTRODUCTION

In the last decade, numerous new hadrons have been
observed in the charmonium and bottomonium energy
region. Of special interest are those that cannot be accom-
modated by the simple quark-model picture and which are,
therefore, referred to as exotic hadrons. For example, the
charged states Z�

b ð10610Þ, Z�
b ð10650Þ [1], Z�

c ð3900Þ [2,3],
Z�
c ð4020Þ [4], Z�ð4430Þ [5–8] which, amongst other

channels, decay into quarkonium states and a pion, cannot
be conventional Q̄Q (with Q denoting the heavy quark)
mesons as their minimal quark contents is four quark.
The Z�

b ð10610Þ and Z�
b ð10650Þ bottomoniumlike states

were observed by the Belle Collaboration as peaks in the

invariant mass distributions of the ϒðnSÞπ� (n ¼ 1, 2, 3)
and hbðmPÞπ� (m ¼ 1, 2) subsystems in the dipion
transitions from the vector bottomonium ϒð10860Þ [1].
Later, they were confirmed in the elastic BB̄�1 and B�B̄�
channels [10,11]. At present, both a tetraquark structure
[12–14] and a hadronic molecule interpretation [15–24] are
claimed to be consistent with the data for these two exotic
states. Their proximity to the BB̄� and B�B̄� thresholds
together with the fact that those are by far themost dominant
decay channels of the Z�

b ð10610Þ and Z�
b ð10650Þ, respec-

tively, provides a strong support for their molecular inter-
pretation. While some works try to explain the Zb’s as a
simple kinematical cusps [25], it was demonstrated in
Ref. [26] that the narrow structures in the elastic channels
necessitate near-threshold poles. The general argument
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1The quantum numbers of the Zb’s are JPC ¼ 1þ− [9].
Throughout this paper, a properly normalized C-odd combination
of the BB̄� and B̄B� components is understood.
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presented there was supported by the explicit analyses
presented in Refs. [27,28]. Also the analysis presented in
this work finds poles near the thresholds in conflict with the
claims of Ref. [25].
The literature on the hadronic molecule scenario for the

Zb states is already very rich: hadronic and radiative decays
are studied in Refs. [29–35], the contribution of the two Zb
states to other processes are considered in Refs. [36–38],
the heavy-quark spin partners of the Zb’s are discussed in
Refs. [21,39–45], the line shapes and poles position are
addressed in Refs. [16,27,28,46,47], predictions of the
QCD sum rules are presented in Refs. [48–50] and the
problem of three-body universality in the B-meson sector is
investigated in Ref. [51]. For a recent review of the theory
of hadronic molecules we refer to Ref. [52]. Since both the
Z�
b ð10610Þ and Z�

b ð10650Þ contain a heavy bb̄ pair, it is
commonly accepted that the constraints from the heavy-
quark spin symmetry (HQSS) should be very accurate for
these systems. For instance, HQSS allows one to explain
naturally the interference pattern in the inelastic channels
ϒðnSÞπ and hbðmPÞπ [15]. On the contrary, there is a long-
lasting debate in the literature about the role of the one-pion
exchange (OPE) interaction played in the formation of
hadronic molecules. In a pioneering work [53] a vector
meson exchange was proposed as a key ingredient of the
potential between a heavy meson and a heavy antimeson.
In contrast to this the OPE was used in analogy to the
deuteron in Refs. [54,55] to predict the existence of the
Xð3872Þ. The model was further elaborated and extended
to other channels in Refs. [56,57], but it was criticized in
Refs. [58–60], where amongst other issues the potential
importance of the three-body dynamics was stressed.
A more advanced approach for the Xð3872Þ and other

molecular candidates is based on an effective field theory
(EFT) treatment which incorporates both short-range inter-
actions parametrized by a contact term and long-range
interactions due to the OPE.2 There exist two competing
EFT approaches: one that treats the pions as a perturbation
on top of the nonperturbative contact interaction—the
so-called X Effective Field Theory (X-EFT), see, e.g.,
Refs. [62,63], and the other in which both the contact and
the OPE interactions appear at leading order in the potential
which is iterated to all orders fully nonperturbatively [64].
Both approaches can be generalized naturally to the b-
quark sector. In particular, based on the relatively weak
coupling of the pion to heavy fields in Refs. [40,63] a
power counting scheme is proposed within the X-EFT
framework to conclude that the central OPE can be
included perturbatively in the heavy-quark sector. On the
other hand, it was noticed in Refs. [45,65] that the most
prominent contribution from the OPE stems not from the

S-S but from the S-D coupled-channel transitions generated
by tensor forces and that reliable predictions for the spin
partners of the X and Zb’s can only be made if the OPE
interaction is included nonperturbatively.3 For example,
due to the OPE both the mass and the width of the 2þþ
partner of the Xð3872Þ experience a considerable shift as
compared to the X-EFT based predictions made in
Ref. [67] and the properties of the spin partners of the
Zb’s are also quite sensitive to the pion exchange [45]
although to a lesser extent than in the c-quark sector.
Within recent phenomenological studies, it was claimed

in Ref. [68] that, near the S-wave open-bottom thresholds
BB̄� and B̄�B�, the effect of the OPE on the line shapes of
the Zb’s can be as large as 30%. On the other hand, it was
advocated in Ref. [69] that the OPE gets cancelled by the
one-eta exchange (OEE), so that in practice it is irrelevant
for the formation of the molecular states. Thus, we take all
those controversies as a motivation to investigate in detail
the role of the OPE for the properties of the Zb states. In
particular, in this work we concentrate on the line shapes in
the energy region from the B�B̄ threshold to a little above
the B�B̄� threshold and extract the poles position of the
Zb’s. The fact that the full OPE has to be incorporated into a
coupled-channel approach to the Bð�ÞB̄ð�Þ system is natural
already from the momentum scales involved: For energies
near the B�B̄� threshold, the on shell relative momentum in
the B�B̄ channel is as large as

ptyp ¼
ffiffiffiffiffiffiffiffiffi
mBδ

p
≃ 500 MeV; ð1Þ

where δ ¼ mB� −mB ¼ 45 MeV denotes the B�-B mass
difference, with mB and mB� being the B and B� meson
mass, respectively. While the D waves in the OPE are
indeed suppressed for momenta much smaller than the pion
mass (p ≪ mπ), in the opposite regime of relevance here
(ptyp ≳mπ), S-D transitions mediated by the OPE turn out
to be as important as S-S transitions.
In this work we analyze the line shapes at leading order

within an EFT approach, which is formulated based on an
effective Lagrangian consistent with both chiral and heavy-
quark spin symmetries of QCD. The longest range con-
tribution in the chiral EFT emerges from the exchanges of
the lightest member of the Goldstone-boson octet, the pion.
Since all the other interactions are of a shorter range they
are integrated out to the order we are working and included
in the EFT Lagrangian via a series of contact interactions
with the low-energy constants (LECs) adjusted to the data.
This procedure is in full analogy to the treatment for few-
nucleon systems, see e.g., Ref. [70] for a review. Thus, in
this EFT we treat all the scales such as binding momenta,
the pion mass as well as the momentum scale ptyp as soft
while the hard scale Λh represents a typical chiral EFT

2It is important to notice that in general the OPE potential is
field theoretically well defined only in connection with a contact
operator [61].

3Note that it is the analogous tensor force that calls for a non-
perturbative treatment of pions in the two-nucleon system [66].
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breaking scale of the order of 1 GeV. The scattering (and
production) amplitudes are obtained from the nonpertur-
bative solutions of the Lippmann-Schwinger equations
(LSEs) with the potential which at leading order consists
of two momentum independent contact terms and OPE
contributions. Note that the appearance of a scale as large as
ptyp in the heavy meson EFT implies that the convergence
of the proposed approach, which is controlled by the
expansion parameter

χ ¼ ptyp

Λh
≃ 0.5; ð2Þ

might be relatively slow. Therefore, in what follows we also
investigate the impact of higher-order interactions such as
exchanges of the other members of the SU(3) Goldstone
boson octet (that is OEE), momentum-dependent Oðp2Þ
contact terms and HQSS violating contact interactions to
understand if their impact on the line shapes is indeed
subleading. In the course of this we find that the S-wave-to-
D-wave Oðp2Þ contact term is to be promoted to leading
order to largely balance the strong modifications of the
line shapes generated by the tensor S-wave-to-D-wave
contributions from the OPE. It is demonstrated that this
promotion is not only necessary to arrive at an acceptable
description of the data but also to render the results
independent of the cutoff.
In Refs. [27,28], the relevant data were analyzed using a

parametrization for the line shapes in both elastic and
inelastic channels consistent with unitarity and analyticity
based on the leading [Oð1Þ] S-wave short-range inter-
actions only. In this paper, we reanalyze the same set of data
using a direct numerical solution of the LSEs. This allows
us not only to check the validity of the approximations
made in Refs. [27,28] in order to derive self-consistent
closed-form analytic expressions but also to include non-
perturbatively the pion exchange and other contributions
from the scattering potential.
The paper is organized as follows. In Sec. II we discuss

the effective potentials in the system at hand. In particular,
in Subsection II A, we start from the theory with purely
contact transition potentials between the elastic and inelas-
tic channels. Then, in Subsection II B, we discuss the one-
pion and one-eta exchange interactions between the Bð�Þ
mesons and include them on top of the contact interactions.
The resulting Lippmann-Schwinger equations are derived
and solved numerically in Sec. III. Different fitting strat-
egies and the results of the data analysis are presented in
Sec. IV. Section V is devoted to searches of the poles in the
complex plane which describe the Zb states. We summarize
in Sec. VI.

II. EFFECTIVE POTENTIALS

The effective potentials between two heavy mesons,
which enter LSEs, contain local contact terms and the

contributions from the lightest pseudoscalar Goldstone
boson octet. We start from a discussion of the short-range
contributions parametrized by the contact potentials with-
out derivatives and with two derivatives. Then we discuss in
detail the one-pion and one-eta exchange potentials rel-
evant for the study. In what follows, we stick to the labels
introduced previously in Refs. [27,28]: The Ne open-flavor
channels ðq̄bÞðb̄qÞ (here q is a light quark) are denoted by
greek letters α, β and the Nin hidden-flavor channels
ðb̄bÞðq̄qÞ—by latin letters i, j. Elementary poles which
would represent compact quark compounds are not con-
sidered because the minimal quark contents of the isovector
Zb states is four quark. In the system at hand, the elastic
channels are BB̄� and B�B̄� and the inelastic channels are
ϒðnSÞπ and hbðmPÞπ with n ¼ 1, 2, 3 and m ¼ 1, 2.
Therefore, Ne ¼ 2 and Nin ¼ 5.

A. Short-range contributions

Following the notation introduced above, the full pion-
less potential takes the form of a ð2NeþNinÞ× ð2NeþNinÞ
matrix,

Vpionless ¼
 

vαβðp; p0Þ vαiðp; kiÞ
vjβðk0j; p0Þ vjiðk0j; kiÞ

!
; ð3Þ

where the basis vectors are denoted as

i ¼ ϒð1SÞπ; ϒð2SÞπ; ϒð3SÞπ;
hbð1PÞπ; hbð2PÞπ ð4Þ

and

α¼BB̄�½S�; BB̄�½D�; B�B̄�½S�; B�B̄�½D�; ð5Þ

with the letters S or D in square brackets standing for the
orbital angular momentum L in the corresponding elastic
channel. Indeed, the BB̄� and B�B̄� systems with the
quantum numbers JPC ¼ 1þ− can be either in the 3S1 or
in the 3D1 state.
In what follows we assume that all inelastic channels

only couple to the S-wave elastic ones as their couplings
to the D-wave elastic channels are suppressed by a
factor p2

typ=m2
B ≪ 1, since the transitions are driven by the

exchange of aBmeson—for details we refer to Appendix B.
Thus, we set viα ¼ 0 for α ¼ BB̄�½D� and B�B̄�½D�.
Furthermore, the transition potentials between the αth elastic
channel in an S wave and the ith inelastic channel can be
parametrized through the coupling constants giα,

viαðki; pÞ ¼ vαiðp; kiÞ ¼ giαk
li
i ; ð6Þ

whereki and li are themomentumand the angularmomentum
in the ith inelastic channel, respectively.
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The nonvanishing (S-wave) couplings giα are subject to
the HQSS constraints [27,28,71],

ξϒðnSÞ ≡ g½πϒðnSÞ�½B�B̄��
g½πϒðnSÞ�½BB̄��

¼ −1;

ξhbðmPÞ ≡ g½πhbðmPÞ�½B�B̄��
g½πhbðmPÞ�½BB̄��

¼ 1; ð7Þ

where, as before, n ¼ 1, 2, 3 and m ¼ 1, 2. Therefore, in
what follows, as long as we discuss the results in the HQSS
limit, only the coupling constants for the BB̄� channel are
quoted in the form

gϒðnSÞ ≡ g½πϒðnSÞ�½BB̄��;

ghbðmPÞ ≡ g½πhbðmPÞ�½BB̄��: ð8Þ

Furthermore, following the arguments from Refs. [27,28],
we neglect the direct interactions in the inelastic channels,
since their thresholds are located far away from the relevant
energy region and the interaction of light states with Q̄Q
states is suppressed, thus setting vjiðk0; kÞ ¼ 0 for all i’s
and j’s—see Eqs. (3)and (4)—that allows us to disentangle
the inelastic channels from the elastic ones and to reduce
the effect of the former to just an additional term in the
effective elastic-to-elastic contact transition potential,

VCT
αβ ðM;p; p0Þ ¼ vαβ − Gin

αβ; ð9Þ

where

Gin
αβ ¼

i
2πM

X
i

mHi
mhigiαgiβk

2liþ1
i ; ð10Þ

withmHi
ðmhiÞ denoting the mass of the heavy(light) meson

in the ith inelastic channel and M being the total energy
of the system. Furthermore, the inelastic momentum is
defined as

ki ¼
1

2M
λ1=2ðM2; m2

Hi
; m2

hi
Þ;

where λðm2
1; m

2
2; m

2
3Þ is the standard triangle function.

At leading order Oðp0Þ (LO), the short-range
elastic potential vαβ in the strict HQSS limit consists
of two momentum-independent contact interactions
[15,29,39,42,72] (see also Appendix A for further details),
so that for the basis vectors α [see Eq. (5)] it can be
written as

vðp; p0Þ ¼

0
BBBB@

Cd 0 Cf 0

0 0 0 0

Cf 0 Cd 0

0 0 0 0

1
CCCCA: ð11Þ

In what follows, we will also investigate the influence on
the line shapes of HQSS violating corrections and next-to-
leading order (NLO) contact interactions with two deriva-
tives. To this end, we extend the elastic potential by including
three additional contact terms proportional to Dd, Df and
DSD at the orderOðp2Þ (see Appendix A for the correspond-
ing Lagrangian densities), where the first two low-energy
constants (LECs) give rise to the S-S transitions while DSD
contributes to the S-D (and D-S) ones. In addition, we
introduce the leading HQSS violating contact interaction ϵ
which contributes to the S − S diagonal transitions, so that
for the resulting elastic potential we arrive at

vðp; p0Þ ¼

0
BBBBB@

Cdð1þ ϵÞ þDdðp2 þ p02Þ DSDp02 Cf þDfðp2 þ p02Þ DSDp02

DSDp2 0 DSDp2 0

Cf þDfðp2 þ p02Þ DSDp02 Cdð1 − ϵÞ þDdðp2 þ p02Þ DSDp02

DSDp2 0 DSDp2 0

1
CCCCCA: ð12Þ

B. One-pion and one-eta exchange potentials

The potentials for the OPE and the OEE at LO can be
derived from the effective Lagrangian,

LΦ ¼ gQ
4
Trðσ · uabH̄bH̄

†
aÞ þ H:c:; ð13Þ

where the superfield Ha,

Ha ¼ Pa þ Vi
aσ

i; ð14Þ
describes the heavy-light q̄Q mesons (its transformation
properties are discussed in Appendix A), the axial current is

u ¼ −∇Φ=fπ þOðΦ3Þ, the matrix for the pseudoscalars
reads (here only the matrix responsible for the SU(2)
subspace relevant here is retained for simplicity)

Φ ¼

0
B@ π0 þ

ffiffi
1
3

q
η

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0 þ
ffiffi
1
3

q
η

1
CA ¼ πiσi þ

ffiffiffi
1

3

r
η; ð15Þ

and the pion decay constant is fπ ¼ 92.4 MeV [73].
Then, the Lagrangian of the Φ-field coupling to a pair of

heavy-light mesons reads, to leading order,
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Lð1Þ
Φ ¼ gQ

2fπ
ðiϵijkVj†

a Vk
b þ Vi†

a Pb þ P†
aVi

bÞ∂iΦba

þ gQ
2fπ

ðiϵijkV̄j†
a V̄k

b þ P̄†
aVi

b þ V̄†i
a P̄bÞ∂iΦab: ð16Þ

In the strict heavy-quark limit, the dimensionless cou-
pling gQ does not depend on the heavy quark flavor Q, so
that gb ¼ gc. The latter can be extracted from theD� partial
decay width,

ΓðD�þ → D0πþÞ ¼ g2cmDk3

12πf2πmD�
; ð17Þ

where k is the three momentum in the final state measured
in the rest frame of the decaying particle and mD and mD�

are the D- and D�-meson mass, respectively. Then, from
the width ΓðD�þ → D0πþÞ ¼ 56.46 keV [73] one extracts

gb ¼ gc ≈ 0.57; ð18Þ

which agrees within 10% with the recent lattice QCD
determination of the B�Bπ coupling constant [74] and
which will be used in all calculations below.
In this section only the OPE potential will be discussed

in detail since the OEE potential can be obtained straight-
forwardly from the expressions for the OPE by replacing:

(i) the flavor factor þ1 (combining the isospin coef-
ficient −1 for the OPE in the isovector channel and
the negative C-parity factor −1) by −1 for the OEE;

(ii) the pion mass, mπ , by the η mass, mη;
(iii) the pion coupling constant gb by the η coupling

constant gb=
ffiffiffi
3

p
—see, e.g., Ref. [75] and Eq. (15)

above. Further details can be found in Appendix C.
In the framework of the time-ordered perturbation theory

(TOPT), the OPE potential acquires two contributions
depicted in Figs. 1(a) and 1(b) where the thin vertical line
pinpoints the three-body intermediate state. In Fig. 2, all
relevant momenta are shown explicitly for the first ordering
TOPT diagram—see Fig. 1(a). Notations for the second
diagram depicted in Fig. 1(b) are analogous. Then, the OPE
potentials at leading order can be written as [64]

Vnn0
a ðM; p; p0Þ ¼ −

�
gb
2fπ

�
2 pn

πpn0
π

2EπðpπÞ½EπðpπÞ þ E10 ðp0Þ þ E2ðpÞ −M� ; ð19Þ

Vnn0
b ðM; p; p0Þ ¼ −

�
gb
2fπ

�
2 pn

πpn0
π

2EπðpπÞ½EπðpπÞ þ E1ðpÞ þ E20 ðp0Þ −M� ; ð20Þ

where

EiðpÞ ¼ mi þ
p2

2mi
; i ¼ 1ð0Þ; 2ð0Þ;

Eπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2π þm2

π

q
; pπ ¼ p − p0; ð21Þ

with M being the total energy of the system and Ex being
the energy of the particle x. The incoming and outgoing

momenta are denoted as p and p0, and the Cartesian indices n
and n0 contract with either theB� (B̄�) polarization vectors or
with the vector product of polarization vectors, B� × B̄�.
In the presence of pions, no additional coupled-channel

transitions but those discussed in Sec. II A are possible for
the Bð�ÞB̄� systems with the quantum numbers 1þ−.
Therefore, using the elastic basis vectors introduced in
Sec. II A—see Eq. (5)—the OPE potential in this channel
can be written as

(a) (b)

FIG. 1. Diagrams in the time-ordered perturbation theory
responsible for the two contributions to the OPE potential.
The solid and dashed line represent a heavy-light meson and
the pion, respectively.

FIG. 2. The pion exchange diagram in the Bð�ÞB̄� channels. The
solid and dashed line represent a heavy-light meson and the pion,
respectively.
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VπðM;p; p0Þ ¼

0
BBBBB@

Vπ11
SS Vπ11

SD Vπ12
SS Vπ12

SD

Vπ11
DS Vπ11

DD Vπ12
DS Vπ12

DD

Vπ21
SS Vπ21

SD Vπ22
SS Vπ22

SD

Vπ21
DS Vπ21

DD Vπ22
DS Vπ22

DD

1
CCCCCA; ð22Þ

where, in each matrix element Vπλλ0
LL0 ðM;p; p0Þ, the index

λðλ0Þ ¼ 1, 2 labels the particle channel (BB̄� ¼ 1,
B�B̄� ¼ 2) and LðL0Þ stands for the angular momentum
of the state λðλ0Þ. The details of the partial wave decom-
position of the OPE can be found in Ref. [76]; see also
Appendix B of Ref. [42]. Then,

Vπλλ0
SS ðM;p; p0Þ ¼ g2b

24f2π

�
1 −2
−2 1

�
λλ0

½2pp0Δπλλ0
1 ðM;p; p0Þ − ðp2 þ p02ÞΔπλλ0

0 ðM;p; p0Þ�;

Vπλλ0
SD ðM;p; p0Þ ¼ g2b

24
ffiffiffi
2

p
f2π

�
1 1

1 1

�
λλ0

½3p2Δπλλ0
2 ðM;p; p0Þ − 4pp0Δπλλ0

1 ðM;p; p0Þ þ ð2p02 − p2ÞΔπλλ0
0 ðM;p; p0Þ�;

Vπλλ0
DS ðM;p; p0Þ ¼ Vπλλ0

SD ðM;p0; pÞ;

Vπλλ0
DD ðM;p; p0Þ ¼ g2b

24f2π

��
1 0

0 1

�
λλ0

Vπλλ0
1 ðM;p; p0Þ −

�
0 1

1 0

�
λλ0

Vπλλ0
2 ðM;p; p0Þ

�
; ð23Þ

with

Vπλλ0
1 ðM;p; p0Þ ¼ 9

2
pp0Δπλλ0

3 ðM;p; p0Þ − 3ðp2 þ p02ÞΔπλλ0
2 ðM;p; p0Þ − 1

2
pp0Δπλλ0

1 ðM;p; p0Þ þ ðp2 þ p02ÞΔπλλ0
0 ðM;p; p0Þ;

ð24Þ

Vπλλ0
2 ðM;p;p0Þ ¼ 9

2
pp0Δπλλ0

3 ðM;p;p0Þ−3

2
ðp2þp02ÞΔπλλ0

2 ðM;p;p0Þ−5

2
pp0Δπλλ0

1 ðM;p;p0Þþ1

2
ðp2þp02ÞΔπλλ0

0 ðM;p;p0Þ:
ð25Þ

The functions Δπλλ0
k (k ¼ 0, 1, 2, 3) are defined as

Δπλλ0
k ðM;p; p0Þ ¼

Z
1

−1
dx

xk

2EπðpπÞ
½Dπλλ0

a ðp; p0; xÞ þDπλλ0
b ðp; p0; xÞ�; ð26Þ

with the contributions of the two TOPT orderings—see Fig. 1—given by

Dπλλ0
a ðp; p0; xÞ ¼ 1

EπðpπÞ þ ðE10 ðp0Þ þ E2ðpÞÞλλ0 −M
¼ 1

EπðpπÞ þ ðm10 þm2 þ p02=ð2m10 Þ þ p2=ð2m2ÞÞλλ0 −M
; ð27Þ

Dπλλ0
b ðp; p0; xÞ ¼ 1

EπðpπÞ þ ðE1ðpÞ þ E20 ðp0ÞÞλλ0 −M
¼ 1

EπðpπÞ þ ðm1 þm20 þ p2=ð2m1Þ þ p02=ð2m20 ÞÞλλ0 −M
; ð28Þ

where pπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p02 − 2pp0x

p
, and the mass matrices for the intermediate particles read

m1 ¼ m20 ¼
�
mB� mB�

mB� mB�

�
; m2 ¼

�
mB mB

mB� mB�

�
; m10 ¼

�
mB mB�

mB mB�

�
:

Note that, in the static limit, that is, when the recoil corrections are neglected, the functions Vπλλ0
1 , Vπλλ0

2 , and
Dπλλ0

a ðp; p0; xÞ, Dπλλ0
b ðp; p0; xÞ do not depend on the particle-channel indices (λ and λ0), so that in this approximation the

dependence on the latter comes entirely from the coefficients in Eq. (23).
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III. NUMERICAL SOLUTIONS OF THE
COUPLED-CHANNEL LIPPMANN-SCHWINGER

EQUATIONS

With the OPE and OEE interaction included and decom-
posed in partial waves, the full interaction potential in the
elastic channels reads

Veff
αβ ðM;p; p0Þ ¼ VCT

αβ ðM;p; p0Þ þ Vπ
αβðM;p; p0Þ

þ Vη
αβðM;p; p0Þ; ð29Þ

where the effects of the inelastic channels are contained in
VCT
αβ ðM;p; p0Þ as given by Eq. (9) and the channel indices

are defined by Eqs. (4) and (5).
We work in terms of the production amplitudes rather

than the scattering amplitudes which are more convenient
given that we aim at fits for the invariant mass distributions
measured in the ϒð10860Þ decays. Thus, the system of the
LSEs reads

UαðM;pÞ¼FαðM;pÞ

−
X
β

Z
UβðM;qÞGβðM;qÞVeff

βαðM;q;pÞ d3q
ð2πÞ3 :

ð30Þ

Here FαðM;pÞ and UαðM;pÞ denote the Born and the
physical production amplitude of the αth elastic channel
from a pointlike source, respectively. We include those
source terms in S waves only. Note that a D-wave
contribution to the source could be re-expressed as an
additional energy dependence of the source, which,
however, is not required by the data. This is also in
line with the results of Ref. [77] from which one
concludes that the two-step process ϒð10860Þ →
B�Bð�Þ → B�Bð�Þπ with the pion emitted from the B-
meson line, that provides the energy dependence, is
suppressed as compared to a pointlike source. The
Green’s function for a two-heavy-meson intermediate
state reads

GαðM; qÞ ¼ 2μα
q2 − p2

α − iϵ
; p2

α ≡ 2μαðM −mα
thÞ;

ð31Þ

where mα
th stands for the αth elastic threshold and μα is

the reduced mass in the channel α. Other components of
the multichannel amplitude responsible for the produc-
tion of the inelastic channels in the final state can be
obtained from UαðM;pÞ algebraically which is a con-
sequence of the omitted direct interactions in the
inelastic channels [27,28]. In particular, for the ith
inelastic channel in the final state we have

UiðM;piÞ ¼ −
Z

d3q
ð2πÞ3 UαðM; qÞGαðM; qÞvαiðM; q; piÞ;

pi ¼
1

2M
λ1=2ðM2; m2

1i; m
2
2iÞ; ð32Þ

where λðm2
1; m

2
2; m

2
3Þ is the standard triangle function.

Expression (32) is based on the assumption that the data
are dominated by the Zbð10610Þ and Zbð10650Þ poles
which emerge from Bð�ÞB̄� dynamics, so that the Born
amplitudesFiðM;pÞ coming from the inelastic sources can
be safely neglected. While this is well justified for the
hbðmPÞπ channels, since the Zb poles are necessary for the
change in the heavy quark spin, it appears to be unjustified
for the heavy-spin-conservingϒðnSÞπ channels. However,
to fully control the interplay of the source term and the
resonance terms onewould need to properly include the ππ
interactionwhich goes beyond the scope of thiswork.4 This
is why, in what follows, we do not include the line shapes in
the ϒðnSÞπ channels into the fit.
In terms of the production amplitudes the expressions for

the differential widths in the elastic and inelastic channels
read (see Refs. [27,28] for the derivation)

dΓα

dM
≡ ythα ðMÞ ¼ 1

3

2mBð�Þ2mB�2mϒð10860Þ
32π3m2

ϒð10860Þ
p�
πpαjUαj2;

dΓi

dM
≡ ythi ðMÞ ¼ 1

3

2mhi2mHi
2mϒð10860Þ

32π3m2
ϒð10860Þ

p�
πpijUij2; ð33Þ

respectively, where p�
π is the three-momentum of the

spectator pion in the rest frame of the ϒð10860Þ and
pαðpiÞ is the three-momentum in theαth elastic (ith inelastic)
channel in the rest frame of the B�B̄ð�Þ (ϒðnSÞπ=hbðmPÞπ)
system. Then, the total branching in an elastic or inelastic
channel x is defined as

Brx ¼
ΓxPNe

α¼1 Γα þ
PNin

i¼1 Γi

; ð34Þ

where

Γx ¼
Z

Mmax

Mmin

ythx ðMÞdM: ð35Þ

For simplicity, we define the branching fractions (BFs)
relative to the BB̄�π channel,

BFx ¼
Brx

BrBB̄�π
¼ Γx

ΓBB̄�π
: ð36Þ

The χ2 function to be minimized in the fitting process is
built as

4Relevant calculations for the decays of the ϒð3SÞ and ϒð4SÞ
are presented in Refs. [37,38]. However, extending those calcu-
lations to the decay of ϒð5SÞ is technically very demanding due
to a more complicated analytic structure of the transition matrix
elements.
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χ2 ¼
X

α¼Bð�ÞB̄�

X
nα

�
N αythα ðMnαÞ − yexpα ðMnαÞ

δnα

�
2

þ
�
BFthB�B̄� − BFexpB�B̄�

δBFB�B̄�

�2

þ
X

i¼hbðmPÞπ

�X
ni

�
N iythi ðMniÞ − yexpi ðMniÞ

δni

�
2

þ
�
BFthi − BFexpi

δBFi

�
2
�
þ

X
j¼ϒðnSÞπ

�
BFthj − BFexpj

δBFj

�2

; ð37Þ

where yexp’s are the experimental distributions given in the
formof histograms (the sums inn’s run over bins), δ’s denote
the errors, and the normalization factors N x are additional
(auxiliary) fitting parameters since the data are presented in
arbitrary units. Both line shapes and total branchings are
used in the fit for the elastic Bð�ÞB̄� and the inelastic hbπ
channels while for the inelastic channels ϒπ only the total
branchings can be used in the one-dimensional analysis.
Since the production proceeds via pion emission from

the ϒð10860Þ bottomonium, the corresponding Born
amplitudes are subject to a HQSS constraint similar to
the one given in Eq. (7) for the coupling constants, that is,

ξϒð10860Þ ≡ FB�B̄� ðM;pÞ=FBB̄� ðM;pÞ ¼ −1 [27,28]. Then,
as long as we aim at the arbitrary normalized line shapes,
one can set

FBB̄� ðM;pÞ ¼ −FB�B̄� ðM;pÞ ¼ 1; ð38Þ
to fix the overall normalization of the amplitudes which in
any case drops out from the branchings and can be absorbed
by the unimportant factors N in the χ2 function—see
Eqs. (34) and (37).
We may now perform the angular integrations in Eq. (30)

to reduce the three-dimensional integral equation to a one-
dimensional equation,

UαðM;pÞ ¼ FαðM;pÞ − 1

π2
X
β

μβ

Z
∞

0

q2UβðM;qÞVeff
βαðM; q; pÞ

q2 − p2
β − iϵ

dq: ð39Þ

To render the integrals well defined we introduce a sharp ultraviolet cutoff Λ which needs to be larger than all typical three-
momenta related to the coupled-channel dynamics. Unless stated otherwise, for the results presented below we choose
Λ ¼ 1 GeV. The cutoff dependence of our results will be discussed in Sec. IV B. When the energy goes above the threshold
of the intermediate channel β, the on shell three-momentum pβ is real allowing for a singular integrand at q2 ¼ p2

β. In this
case one subtraction at the point q ¼ pβ is implemented to stabilize the numerical result,

UαðM;pÞ ¼ FαðM;pÞ − 1

π2
X
β

μβ

Z
Λ

0

q2UβðM; qÞVeff
βαðM; q; pÞ − p2

βUβðM;pβÞVeff
βαðM;pβ; pÞ

q2 − p2
β − iϵ

dq

−
1

2π2
X
β

μβpβUβðM;pβÞVeff
βαðM;pβ; pÞ

�
iπ − log

�
Λþ pβ

Λ − pβ

��
: ð40Þ

Since this equation is valid in the whole complex energy
plane, it is also used to find the resonance poles in Sec. V.
The masses of particles used in the calculations are [73]

mB ¼ 5279 MeV;

mB� ¼ 5324 MeV;

mπ ¼ 137.28 MeV;

mϒð10860Þ ¼ 10860 MeV;

mϒð1SÞ ¼ 9460 MeV;

mϒð2SÞ ¼ 10023 MeV;

mϒð3SÞ ¼ 10355.2 MeV;

mhbð1PÞ ¼ 9898.6 MeV;

mhbð2PÞ ¼ 10259.8 MeV: ð41Þ

IV. FIT SCHEMES AND RESULTS

In this section we fit the line shapes of the two Zb states
in both elastic (Bð�ÞB̄�) and inelastic (hbðmPÞπ, m ¼ 1, 2)
channels. As was already mentioned above, the line shapes
in the inelastic ϒðnSÞπ (n ¼ 1, 2, 3) channels cannot be
included into the fit yet, since the data contain a significant
contribution driven by the two-pion final state interaction
that we cannot include straightforwardly in the present
approach. In addition, the analysis has to be multidimen-
sional. Meanwhile, the partial branchings for all measured
elastic and inelastic channels are included in our analysis—
see Eq. (37) for the formula for χ2 and Table I where the
branchings are quoted relative to the BB̄�π channel. In the
branching fractions the interference terms with crossed
channels are effectively included via scaling factors gauged
in test calculations. It turns out that those scaling factors are
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very close to 1 in the hbπ channels, but are 5%, 10%,
and 20% for the partial BF’s in the ϒð1SÞπ, ϒð2SÞπ, and
ϒð3SÞπ channels, respectively.

A. The role of pion dynamics, HQSS violation
and higher-order interactions

In this section, we investigate the impact of various
effects, included in this work for the first time, on the line
shapes. To gain a proper insight on the role of these effects,
we include them one by one. We, therefore, consider the
following different schemes:

(i) Scheme A: Only the Oðp0Þ S-wave contact poten-
tials are considered.

(ii) Scheme B: As Scheme Awith OPE added, however,
only in S waves.

(iii) Scheme C: As Scheme B, but with D-wave OPE
included.

(iv) Scheme D: As Scheme C but allowing for a sizeable
HQSS violation.

(v) Scheme E: As Scheme C, but with the Oðp2ÞDSD
contact potential.

(vi) Scheme F: As Scheme C, but with theOðp2ÞDd,Df,
DSD contact potentials.

(vii) Scheme G: As Scheme F, but with OEE included in
addition.

The parameters of the fits for all schemes described
above are listed in Tables II and III. In what follows, we
discuss the quality of the fits and draw conclusions on the
role played by various effects.
The fit results for Schemes A, B and C are shown in

Fig. 3 by the solid black, red dotted and blue dashed curves,

respectively. The line shapes of Scheme A are basically
identical to those based on the parametrization proposed in
Refs. [27,28,71]. In particular, also here the diagonal and
off-diagonal matrix elements of the direct interaction
potential satisfy the strong inequality jCfj ≪ jCdj which
ensures that the transitions between the two elastic channels
are suppressed. It has to be noticed, however, that the
parameters in Scheme A of the present paper cannot be
directly compared with those from Ref. [28] because of a
different regularization.
Scheme B, with the S-wave dynamic OPE included,

provides a fit of the same quality as the one in Scheme A.
The resulting line shapes are quite similar for both fits
which is consistent with the claim made in Ref. [28] on a
moderate role played by the OPE. On the contrary, the claim
of Ref. [68] that already the S-wave OPE changes the line
shape up to 30% near threshold is not supported by our fit B.
It is instructive to identify the most relevant differences
between the approaches employed in Ref. [68] and in this
work: First, the off-diagonal terms connecting the BB̄� with
the B�B̄� channel and neglected in Ref. [68] turn out to be
large in the OPE potential and even exceed the diagonal
terms by roughly a factor of 2—see Eq. (23). Secondly, the
argument of Ref. [68] is based on a perturbative treatment of
the OPE while in this work the pions are treated non-
perturbatively and all parameters are refitted to the data.
Indeed, before drawing conclusions on the role of long-
range interactions the short-range part of the OPE, inti-
mately connected to the contact interactions [61], needs to be
appropriately renormalized which is achieved in this work
by refitting the contact terms to the line shapes.After the refit
we find that the central S-wave OPE can be absorbed to a

TABLE II. The fitted values of the coupling constants for Schemes A–G. The cutoff Λ is set to 1 GeV as discussed in the text. The
couplings gϒðnSÞ (n ¼ 1, 2, 3) are given in the units of GeV−2 while the couplings ghbðmPÞ (m ¼ 1, 2) have the dimension of GeV−3. Only
the absolute values are presented since physical quantities are not sensitive to the couplings’ signs. To demonstrate the quality of each fit
we quote the corresponding reduced χ2=d:o:f: in the last column.

Scheme jgϒð1SÞj jgϒð2SÞj jgϒð3SÞj jghbð1PÞj jghbð2PÞj χ2=d:o:f:

A 0.30� 0.07 1.01� 0.20 1.28� 0.34 3.29� 0.38 11.38� 1.46 1.29
B 0.31� 0.07 1.05� 0.20 1.33� 0.35 3.19� 0.35 11.15� 1.40 1.23
C 0.30� 0.07 1.00� 0.20 1.22� 0.33 4.85� 0.64 16.24� 2.54 2.00
D 0.38� 0.55 1.35� 1.08 1.89� 0.52 3.94� 0.52 13.87� 1.98 1.54
E 0.30� 0.07 1.04� 0.20 1.43� 0.36 2.76� 0.29 9.99� 1.08 0.95
F 0.26� 0.06 0.88� 0.17 1.16� 0.29 1.89� 0.22 6.98� 0.81 0.83
G 0.25� 0.06 0.88� 0.17 1.15� 0.29 1.92� 0.22 7.07� 0.84 0.83

TABLE I. The branching fractions (BFs), in per cent, for the elastic and inelastic channels in theϒð10860Þ decays via the two Zb states
relative to the BB̄�π channel for which the BF is set to unity [1,11,78].

BF, % B�B̄�π ϒð1SÞππ ϒð2SÞππ ϒð3SÞππ hbð1PÞππ hbð2PÞππ
Exp. 50� 10 0.6� 0.3 4� 1 2� 1 9� 2 15� 3

A 58.04þ6.00
−5.83 0.55þ0.34

−0.24 3.34þ1.76
−1.29 1.72þ1.17

−0.82 8.25þ3.22
−2.37 11.52þ4.73

−3.73

G 54.13þ18.83
−18.07 0.55þ0.41

−0.26 3.51þ2.28
−1.48 1.83þ1.59

−0.95 9.18þ3.59
−2.40 14.92þ6.00

−4.09
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very large extent into a redefinition of the contact inter-
actions which is in line with the observation made
in Ref. [45].
The fit for Scheme C demonstrates that D waves

in the OPE can play a non-negligible role for the line

shapes—this is most clearly visible in the BB̄� spectra in
Fig. 3 where now a bump appears around the B�B̄�

threshold. This result should not come as a surprise given
the large momentum scale ptyp, defined in Eq. (1), intro-
duced by the splitting between the elastic thresholds, which
enhances the D waves and, in particular, the contribution
from the S-D transitions. These findings are in line with the
claims made in Refs. [45,65]. Although the fit for Scheme
C is essentially consistent with the B�B̄� distribution as
well as with the distributions in the inelastic channels, the
shape of the BB̄� spectrum distorted by the D-wave OPE is
not supported by the data. The observation that the
experimental line shapes do not exhibit a hump structure
around the B�B̄� threshold was related in Ref. [79] with a
possible existence of the light-quark symmetry in QCD. In
what follows, we investigate two different variations of the
potential aiming at an improved description of the data.
In Fig. 4 we demonstrate the impact of various higher-

order interactions on the line shapes. In particular, in the fit

(a) (b)

(c) (d)

FIG. 3. The fitted line shapes for Schemes A (solid black curves), B (red dotted curves) and C (blue dashed curves) in the elastic
Bð�ÞB̄� and in the inelastic hbðmPÞπ (m ¼ 1, 2) channels. The vertical dashed orange lines indicate the position of the BB̄� and B�B̄�
thresholds. The experimental data are from Refs. [1,11].

TABLE III. The Oðp0Þ (Cd and Cf) and Oðp2Þ (Dd and DSD)
contact terms (in the units of GeV−2 and GeV−4, respectively) for
each fit scheme. The contact term Df is set to 0 because it is
strongly correlated with Cf , does not affect the value of χ2=d:o:f:
and is, therefore, redundant.

Scheme Cd Cf Dd DSD

A −3.30�0.11 −0.06�0.13 0 0
B −0.51�0.11 −5.64�0.13 0 0
C 0.80� 0.14 −4.50�0.15 0 0
D 1.22� 0.20 −4.71�0.21 0 0
E −0.08�0.30 −4.15�0.59 0 −5.83�0.57
F 1.63� 0.43 −5.28�0.26 −2.99�0.58 −3.93�0.53
G 1.34� 0.40 −3.95�0.27 −3.38�0.54 −3.13�0.61
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for Scheme D (green dot-dashed curves) we release the
HQSS breaking parameters in the elastic and inelastic
potentials as well as in the production vertex (that is, ξϒðnSÞ,
ξhbðmPÞ and ϵ) and allow them to deviate up to 50% from the
HQSS predicted values. This gives

ξϒð10860Þ ¼ −1.23� 0.07;

ξϒð1SÞ ¼ −0.66� 0.82;

ξϒð2SÞ ¼ −0.61� 0.52;

ξϒð3SÞ ¼ −0.50� 0.54;

ξhbð1PÞ ¼ 1.50� 0.07;

ξhbð2PÞ ¼ 1.50� 0.63;

ϵ ¼ −0.50� 0.04: ð42Þ

However, in spite of a significant HQSS breaking
allowed in the fit, the resulting distribution does not show
a qualitative improvement leaving, in particular, the bump
structure around the B�B̄� threshold nearly unchanged.
On the other hand, the inclusion of a single Oðp2Þ

contact interaction DSD between the S-wave and D-wave
elastic channels (Scheme E) improves the fit considerably
(see the red solid curves in Fig. 4) yielding χ2=d:o:f ¼
0.95, as given in Table II. As required by the data, this term
is fine-tuned to cancel a large portion of the S-D con-
tribution generated by the tensor part of the OPE. Further,
the inclusion of the Oðp2Þ counter terms Dd and Df

between the S-wave elastic channels in addition to the DSD
term results only in a very minor change in the fit with the
χ2=d:o:f ¼ 0.83. In addition, we observe that the low-
energy constant Df is by almost 100% correlated with Cf,

(a)

(c) (d)

(b)

FIG. 4. The fitted line shapes for Schemes C (blue dashed curves), D (green dot-dashed curves), E (red solid curves) and G (black
dotted curves) in the elastic Bð�ÞB̄� and in the inelastic hbðmPÞπ (m ¼ 1, 2) channels. The experimental data are from Refs. [1,11].
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so that by setting Df ¼ 0 one gets the fit with almost
exactly the same χ2=d:o:f: By adding also the OEE
interaction (Scheme G) one obtains results which lie on
top of those for Scheme F (see the black dotted curves for
Scheme G) in Fig. 4.
We are now in a position to reanalyze the net effect from

the OPE. In Fig. 5, we compare the results of the fits for
Scheme E (red solid curves) with those where pions are
switched off (Scheme A—the blue dotted curves). The
quantitative improvement that one observes when proceed-
ing from fit A to fit E is related to the residual dynamics
from the OPE. Indeed, we checked that the DSD contact
term added to fit A does not improve the quality of the fit.
Meanwhile, an attempt to improve the pionless fit A by
adding all Oðp2Þ contact terms with no additional con-
straints fails: although the quality of the fit improves, the
hierarchy of the resulting parameters is very unnatural,

because the poles position in this fit is controlled by the
NLO Oðp2Þ terms rather than by the LO Oð1Þ ones in
conflict with the underlying assumption that higher deriva-
tive operators are suppressed. For this reason this fit is
not used in what follows. It is important to notice, however,
that the EFT expansion is restored once pions are included
(fits E, F and G). In particular, the transition from fit E to
fits F or G, which corresponds to the addition of the Oðp2Þ
S-S contact terms, has a moderate (perturbative) impact on
the line shapes as well as the poles.
Finally, in Fig. 6 we present the results for Scheme G

including the uncertainties which correspond to a 1σ
deviation in the parameters including correlations.
In summary, the results presented in this section dem-

onstrate that
(i) the data can be equally well described with or

without the central S-wave OPE potential since

(a)

(c) (d)

(b)

FIG. 5. The fitted line shapes for Schemes A (blue dotted curves) and E (red solid curves) in the elastic Bð�ÞB̄� and in the inelastic
hbðmPÞπ (m ¼ 1, 2) channels. The experimental data are from Refs. [1,11].
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the latter can be absorbed into a redefinition of the S-
wave short-range contact terms;

(ii) the inclusion of D waves affects the line shapes
noticeably which confirms the claims found in the
literature that D waves are important in the near-
threshold charmoniumlike and bottomoniumlike
systems [45,65]. However, the current data call
for the promotion of the Oðp2Þ S-wave-to-D-wave
counter term DSD to lower order and for tuning this
term to balance the S-D dynamics from the OPE.
The residual effect from the OPE on the line shapes
is, however, still sizeable:

(iii) the effect of the OEE interaction is negligibly small;
(iv) the data are essentially consistent with HQSS con-

straints imposed on the potential;
(v) no indication for the importance of Oðp2Þ contact

interactions in the inelastic channels is seen in
the data.

B. Dependence of the results on the regulator

In this chapter, we investigate if the promotion of the S-D
counter term is called for by the renormalization of the
leading order amplitudes. In Fig. 7 we show the regulator
dependence of the results corresponding to the fits G and C,
that is, those fits with and without the Oðp2Þ contact terms
and OEE interactions in addition to the OPE. The results for
fit C show a clearly visible cut-off dependence in the BB̄�
and hbð2PÞπ channels when the (sharp) cutoff in the LSEs,
treated as a hard scale, is varied in a reasonable range from
800 to 1200 MeV (cf. black long-dashed, blue dashed and
green dotted-dashed curves). Note that in an effective field
theorywhere a potential,which is then iterated in a scattering
equation, is expanded in terms of a given expansion
parameter one cannot expect a complete regulator inde-
pendence of observable quantities at a given order. This
implies that the regulator should not be chosen too large and
that regulator effects of subleading order are common. It is,

(a) (b)

(c) (d)

FIG. 6. The fitted line shapes for Scheme G with the uncertainties corresponding to a 1σ deviation in the parameters of the fits. The
experimental data are from Refs. [1,11].
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therefore, difficult to judge, if the mentioned variations call
for an additional counter term at LO or not. However, it is
certainly interesting to observe that for the same cutoff
variation the curves in fit G (as well as in fit F) remain
unchanged indicating that the theory is fully renormalized.
The same pattern is observed in the other channels which are
therefore not shown.

V. THE POLES POSITION AND THE NATURE
OF THE Zb STATES

In this section we discuss the extraction of the poles of
the amplitude in the complex plane. In general, in order to
search for the poles in a multichannel problem a multisheet
Riemann surface in the complex energy plane needs to be
invoked. However, we consider the four-sheet Riemann
surface corresponding to the two elastic channels only,
because all inelastic thresholds are remote and their impact
on the poles of interest, which are located near the elastic
thresholds, is expected to be minor. Then, for two coupled
channels with the thresholds split by the mass difference δ,
the four-sheeted Riemann surface can be mapped onto a
single-sheeted plane of a variable which is traditionally

denoted as ω [80] and which, for a given energy
E ¼ M −mB −mB� , is defined via

k1 ¼
ffiffiffiffiffiffiffi
μ1δ

2

r �
ωþ 1

ω

�
; k2 ¼

ffiffiffiffiffiffiffi
μ2δ

2

r �
ω −

1

ω

�
;

E ¼ k21
2μ1

¼ k22
2μ2

þ δ ¼ δ

4

�
ω2 þ 1

ω2
þ 2

�
; ð43Þ

where μ1 and μ2 are the reduced masses in the first (BB̄�)
and in the second (B�B̄�) elastic channel, respectively. Then
the one-to-one correspondence between the four Riemann
sheets in the E plane (denoted as RS-N, where N ¼ I, II, III,
IV) and various regions in the ω plane reads

RS-I∶ Imk1 > 0; Imk2 > 0;

RS-II∶ Imk1 < 0; Imk2 > 0;

RS-III∶ Imk1 < 0; Imk2 < 0;

RS-IV∶ Imk1 > 0; Imk2 < 0:

The corresponding regions in the ω plane are depicted in
the first plot in Fig. 8. The thick solid line corresponds to

FIG. 7. The fitted line shapes for Scheme C (upper panel) and Scheme G (lower panel) in the elastic BB̄� and inelastic πhbð2PÞ
channels with sharp cutoffs 800 MeV (black long-dashed), 1000 MeV (blue dashed) and 1200 MeV (green dot-dashed), respectively.
The experimental data are from Refs. [1,11].
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the real values of the energy lying on RS-I. It is easy to see
that the physical region between the two thresholds
corresponds to jωj ¼ 1, with both ReðωÞ and ImðωÞ
positive, and the thresholds at E ¼ 0 and E ¼ δ are mapped
to the points ω ¼ �i and ω ¼ �1, respectively. The
inelastic channels in the energy plane are interpreted as
one additional effective remote channel with the momen-
tum kin and, in order to find all relevant poles, both
possibilities with Imkin > 0 and Imkin < 0 are considered.5

As it is now effectively a three-channel problem, the
number of Riemann sheets doubles and so does the number
of poles representing the physics for each state. Hence,
each pole has now its mirror partner located on a different
sheet of the eight-sheeted Riemann surface but correspond-
ing to the same physical state.
The poles position in the ω plane for the fit Schemes A

and G from the previous section is shown in the right panel
of Fig. 8. As long as the inelastic channels are switched
off, one is back to the two-channel problem with one
relevant pole corresponding to each state. For example,
the poles for the fit Scheme A but without inelastic
channels are shown by the crosses (x) in Fig. 8: the cross
on the imaginary axis on RS-II (close to ω ¼ i) corre-
sponds to a virtual BB̄� state pole associated with the Zb

state while the other pole, residing on RS-IV (close to
ω ¼ 1), represents the physics related to the Z0

b—it is a
virtual state in the B�B̄� channel slightly shifted to the
complex plane due to coupled-channel effects.6 When the
effective inelastic channel is on, one arrives at a pair of
poles for each state: one for Imkin > 0 and one for
Imkin < 0—the corresponding solutions are labeled by
“þ” and “−”, respectively. For the Zb, the two resulting
poles on RS-IIþ and RS-II− are symmetric with respect to
the imaginary axis in the omega plane which results in
complex-conjugate solutions for the energies (see
Table IV). Unlike the Zb, the poles for the Z0

b on
RS-III− and RS-IVþ are slightly asymmetric due to
coupled-channel effects. In any case, it is apparent that
the poles obtained in the full calculation, including
inelastic channels, reside in the vicinity of those found
without inelastic channels, that implies that the role
played by the inelastic channels is subleading in line
with a molecular interpretation of the Zb states.
The corresponding energies evaluated relative to the

relevant elastic threshold,

EZb
¼Mpole

Zb
−mB−mB� ; EZ0

b
¼Mpole

Z0
b
−2mB� ; ð44Þ

FIG. 8. Left panel: The unitary-cut-free complexω plane for the two elastic channels, BB̄� and B�B̄�, obtained from the four-Riemann-
sheet complex energy plane by the conformal transformation (43). The eight regions separated by the unit circle and by the two axes
correspond to the upper and lower half planes [see the subscripts u and l] in the four Riemann sheets of the energy plane denoted as
RS-N with N ¼ I, II, III, IV [80,81]. The bold line indicates the physical region of a real energy E [80]. Right panel: The poles position
in the complexω plane for the fit Schemes A and G described in the text. Only the poles closest to the physical region are given while the
distant poles are not shown. The red triangle (A−) and blue circle (G−) stand for the poles for the fit Schemes A and G, respectively, with
all the inelastic channels on their unphysical (Imkin < 0) Riemann sheets. The green inverted triangle (Aþ) and pink box (Gþ) are for the
poles for the fit Schemes A and G, respectively, with all the inelastic channels on their physical (Imkin > 0) Riemann sheets. The crosses
stand for the poles for fit A when all inelastic channels are switched off.

5In the actual calculation, the various inelastic channels have
different momenta. However, when searching for the poles, all
inelastic channels are assumed to be on the same sheet, that is the
imaginary parts of all inelastic momenta are synchronized to be
either positive or negative.

6Both these poles have counterparts on RS-IV around ω ¼ −i
and ω ¼ −1, respectively, that is far away from the physical
region. Analogous additional poles also appear for the other cases
discussed below, but will not be mentioned anymore because they
do not affect the line shapes.
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are listed in Table IVand are visualized in Figs. 8 and 9 (the
errors in the poles position corresponds to a 1σ deviation
for the whole parameter list). Note that the sign convention
is such that positive energies refer to above-thresholds
poles—see definition (44).
The two poles for Fit A representing the results based

on S-wave contact interactions [shown as an up- (red) and
down-pointing (green) triangles in Figs. 8 and 9] are
essentially consistent with those obtained in Ref. [28]—
see Fig. 8 of the quoted paper. As one can see from
Table IVand from Figs. 8 and 9, the inclusion of the OEE
and especially the OPE and Oðp2Þ contact interactions in
Fit G changes the poles position to some extent but all the
poles reside in the vicinity of the corresponding thresh-
olds. This result is consistent with the expectation that the
line shapes are controlled predominantly by the poles
position. Indeed, although the parameters of fits A and
one of our best fits (fit G) are very different (see Tables II
and III), fit G provides a better but still comparable
description of the data as fit A, as one can see from the
line shapes shown in Fig. 5 and from the values of
χ2=d:o:f: quoted in Table II. Thus, both fits describe the
Zb state as a shallow virtual state located below the BB̄�
threshold. Meanwhile, the Z0

b state is consistent with
both a virtual state and an above-threshold resonance

interpretation, with the latter option preferred by the
pionful fits (like fit G).

VI. SUMMARY

This work continues a series of papers aimed at a
systematic description of the line shapes of near-threshold
resonances in general and, in particular, at understanding the
nature and properties of the Z�

b ð10610Þ and Z�
b ð10650Þ

states in the spectrum of bottomonium. Unlike the previous
papers in the series [27,28], in this work, we do not resort to
an analytic parametrization for the line shapes but rely on an
EFT approach to calculate the line shapes explicitly. In
particular, in order to obtain the production and scattering
amplitudes, we construct the effective potential to leading
order in the chiral and heavy quark expansion and iterate
it to all orders employing coupled-channel Lippmann-
Schwinger equations. This allows us to verify the accuracy
of the practical parametrization suggested in Ref. [27] and to
estimate the role played by the π- and η-exchanges, which
cannot be straightforwardly incorporated into the scheme of
Refs. [27,28] because of their nonseparable form.
The results of this work can be summarized as follows:
(i) We find that the distributions obtained from the

direct numerical solution of the LSEs with just

FIG. 9. The real and the imaginary part of the Zb (left panel) and Z0
b (right panel) poles [see the definition in Eq. (44)] for fit Schemes A

and G. For the notation of poles see Fig. 8.

TABLE IV. The energies EZb
and EZ0

b
[see the definition in Eq. (44)] for the fit Schemes A and G. The energies

denoted as A− andG− stand for the poles for the fit Schemes A and G, respectively, with all the inelastic channels on
their unphysical (Imkin < 0) Riemann sheets. The energies denoted as Aþ and Gþ are for the poles for the fit
Schemes A and G, respectively, with all the inelastic channels on their physical (Imkin > 0) Riemann sheets. The
errors correspond to a 1σ deviation in the fitted parameters.

Scheme EZb
ðMeVÞ EZ0

b
ðMeVÞ

A− ð−0.9� 0.4Þ − ið1.0� 0.3Þ ð−0.6� 0.3Þ − ið1.2� 0.4Þ
G− ð−1.7� 1.2Þ − ið2.6� 0.5Þ ð2.9� 2.3Þ − ið6.2� 1.8Þ
Aþ ð−0.9� 0.4Þ þ ið1.0� 0.3Þ ð−0.7� 0.4Þ þ ið1.2� 0.3Þ
Gþ ð−1.7� 1.2Þ þ ið2.6� 0.5Þ ð0.8� 0.4Þ þ ið3.3� 1.3Þ
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S-wave contact potentials provide a nearly identical
description of the data to that achieved using the
parametrization derived in Refs. [27,28,71].

(ii) We include the OPE interaction on top of the
contact potentials in the elastic channels and
demonstrate that the inclusion of the S-wave
OPE affects the line shapes only marginally. After
a refit to the data required to appropriately renorm-
alize the short-range interactions, basically the
whole S-wave OPE contribution can be absorbed
to a redefinition of the S-wave contact interactions.
Therefore, we do not support the claim of Ref. [68]
that OPE changes the line shape of near threshold
states by about 30%.

(iii) For the actual value of the splitting of the two
elastic thresholds, δ ≈ 45 MeV, the momentum
scale ptyp ≃ 500 MeV which controls the coupled-
channel (BB̄�-B�B̄�) dynamics is relatively large—
see Eq. (1). For such momenta, the role played by
the OPE inDwaves turns out to be significant even
after a refit, so that one cannot neglect this effect in
order to extract the resonance parameters with a
sufficiently high accuracy. However, the resulting
significant distortion of the line shapes from the
OPE is not supported by the currently available
experimental data in the BB̄� channel: Indeed, a
clear bump structure around the B�B̄� threshold
unavoidably generated by the S-D OPE transitions
is not seen in the most recent data. In order to cure
this, we include the additional contact term al-
lowed by heavy quark symmetry and chiral sym-
metry at order Oðp2Þ to find that the resulting
line shapes are in a very good agreement with the
data, with a reduced χ2=d:o:f: around unity. The
role played by various Oðp2Þ contact interactions
is different: on the one hand, the single contact
term which contributes to the S-to-D-wave tran-
sitions absorbs a large part of the S-D OPE piece
and, in addition, brings an additional residual
contribution—both effects together improve the
quality of the fit considerably; on the other hand,
two allowed S-S contact interactions play a sub-
leading role resulting only in a marginal change
in the fits. Finally, we conclude that after the
inclusion of the Oðp2Þ contact interactions the
residual effect from the OPE moderate.

(iv) There are indications that the inclusion of the S-D
contact term at leading order is required by renorm-
alization. However, to make this statement more
sound a complete calculation to next-to-leading
order would be necessary. Since this would come
with additional parameters that need to be fixed by
data, we postpone this effort until improved data
become available.

(v) We find that the data are consistent with HQSS
symmetry constraints imposed on the potential.

(vi) The data do not call for the inclusion of
Oðp2Þ contact interactions in the elastic-to-inelastic
transitions.

(vii) The effect from the η-exchange potential is negligible.
(viii) We extract the position of the poles responsible for

the Z�
b ð10610Þ and Z�

b ð10650Þ and find them to
reside on the unphysical Riemann sheets just below
(Zb) or just above (Z0

b) the corresponding elastic
threshold.

Before closing, we would like to stress that the observed
strong cancellation between the OPE and the additional
Oðp2Þ S-D contact terms is very puzzling. The pion plays a
very special role in QCD due to its intimate connection to
the spontaneous breaking of chiral symmetry. In addition,
since the D�Dπ coupling is known [see Eq. (18)], the OPE
comes without adjustable parameters. Still, data demand a
very large cancellation of this part of the potential. Whether
or not this cancellation is accidental in the system at hand or
if it has deeper reasons in QCD calls for further studies
which, however, go beyond the scope of this work. Clearly,
more accurate experimental data for the Zb’s, especially in
the elastic channels, and, hopefully, new data for their spin
partner states would be of great relevance and importance
for such studies.
In conclusion, the results presented provide a good

understanding of the line shapes with the χ2=d:o:f: ≃ 1
for the best fit. Given stability of the results to various
higher-order interactions included and the quality of the
fits, it is unlikely that higher-order contributions not
included explicitly in the current study, such as two-pion
exchange contributions at next-to-leading order, affect the
conclusions of the analysis. As a consequence, the LECs
extracted from the presented fits can be used to make
predictions for the molecular spin-partner states within the
same theoretical framework and without introducing any
additional parameters [82]. It remains to be seen if the
strong cancellation of the one-pion exchange and the short-
range contributions, which takes place for the Zb’s, persists
also for their spin partners.
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APPENDIX A: EFFECTIVE LAGRANGIANS

The effective Lagrangian describing isovector Bð�ÞB̄ð�Þ scattering at low energies reads

L ¼ Tr

�
H†

a

�
i∂0 þ

∇2

2M

�
ba
Hb

�
þ Δ

4
Tr½H†

aσiHaσ
i� þ Tr

�
H̄†

a

�
i∂0 þ

∇2

2M

�
ab
H̄b

�
þ Δ

4
Tr½H̄†

aσiH̄aσ
i�

−
C10

8
Tr½H̄†

aτAaa0H
†
a0Hbτ

A
bb0H̄b0 � −

C11

8
Tr½H̄†

aτAaa0σ
iH†

a0Hbτ
A
bb0σ

iH̄b0 �

−
D10

8
fTr½∇iH̄†

aτAaa0∇iH†
a0Hbτ

A
bb0H̄b0 � þ Tr½H̄†

aτAaa0H
†
a0∇iHbτ

A
bb0∇iH̄b0 �g

−
D11

8
fTr½∇iH̄†

aτAaa0σ
j∇iH†

a0Hbτ
A
bb0σ

jH̄b0 � þ Tr½H̄†
aτAaa0σ

jH†
a0∇iHbτ

A
bb0σ

j∇iH̄b0 �g

−
D12

8

�
Tr

��
∇iH̄†

aτAaa0σ
i∇jH†

a0 þ∇jH̄†
aτAaa0σ

i∇iH†
a0 −

2

3
δij∇kH̄†

aτAaa0σ
i∇kH†

a0

�
Hbτ

A
bb0σ

jH̄b0

�

þ Tr

�
H̄†

aτAaa0σ
iH†

a0

�
∇iHbτ

A
bb0σ

j∇jH̄b0 þ∇jHbτ
A
bb0σ

j∇iH̄b0 −
2

3
δij∇kHbτ

A
bb0σ

j∇kH̄b0

���
; ðA1Þ

where the terms in the first row in Eq. (A1) stand for the
leading heavy hadron (heavy antihadron) chiral perturba-
tion theory Lagrangian of Refs. [83–85], written in the two-
component notation of Ref. [86]. The heavy mesons and
antiheavy mesons interact via the remaining terms in the
Lagrangian: the third row in Eq. (A1) corresponds toOðp0Þ
S-wave contact interactions [39,72], while the last three
rows represent the Oðp2Þ contact terms with two deriva-
tives. The contact terms ∝ D10 and D11 contribute to S-
wave interactions while the last term ∝ D12 is projected out
to give rise to the S-D transitions. Since we are only
interested in the S-S and S-D transitions for the Bð�ÞB̄ð�Þ

scattering, all the terms of the kind ∝ ∇iH†∇jH contrib-
uting to P waves were dropped. We also note here that the
expansion in spatial derivatives employed in the Lagran-
gian (A1) yields contributions to four-point vertices rather
than to two-point vertices and propagators. This expansion
is controlled by the scale provided by the range of forces
(e.g., by the mass of the lightest t-channel exchange particle
and not by the heavy-quark mass), so that arbitrary
coefficients D in front of the terms with derivatives do
not violate the reparametrization invariance discussed in
detail in Ref. [87].
In Eq. (A1)Ha ¼ Pa þ Vi

aσ
i stands for the heavy meson

superfield combining a pseudoscalar (Pa) and a vector (Va)
meson, a and b are SU(2) isospin indices, and the isospin
matrices are normalized via the trace as τAabτ

B
ba ¼ 2δAB.

The charge and Hermitian conjugate operators for the
superfield Ha read

H̄a ¼ σ2CHT
aC−1σ2¼ P̄a− V̄i

aσ
i;

H†
a ¼P†

aþVi†
a σi; H̄†

a ¼ P̄†
a− V̄i†

a σi; ðA2Þ

and they transform as

Ha⟶
P −Ha; Ha⟶

C
σ2H̄T

aσ2;

Ha⟶
S

SHa; Ha⟶
U

HbU
†
ba;

H̄a⟶
P

− H̄a; H̄a⟶
C
σ2HT

aσ2;

H̄a⟶
S

H̄aS̄†; H̄a⟶
U

UabH̄b ðA3Þ

under the parity (P), charge (C), heavy-quark spin (S),
and chiral (U) transformation. The isoscalar contribu-
tions in Lagrangian (A1) can be easily restored if one
makes a replacement of the isospin Pauli matrices by
the corresponding Kronecker delta symbols, that is,
e.g., τab → δab.
Deriving the Feynman rules from the interaction part of

Lagrangian (A1) one readily obtains the effective potential
given in Eq. (12), where

Cd ¼ −C11 − C10; Cf ¼ C10 − C11;

Dd ¼ −D11 −D10; Df ¼ D10 −D11;

DSD ¼ 2
ffiffiffi
2

p

3
D12: ðA4Þ

APPENDIX B: SCALING OF HIGHER PARTIAL
WAVES IN ELASTIC-TO-INELASTIC

TRANSITIONS

To understand a possible role of the D waves in the
transitions from an elastic to an inelastic channel one needs
to study the diagram shown in Fig. 10. Taken as a time-
ordered diagram it gives for the intermediate state pin-
pointed by the thin vertical line
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G−1
transðM; p; qÞ ¼ EπðqÞ þ

�
m3 þ

ðp − qÞ2
2m3

�

þ
�
m2 þ

p2

2m2

�
−M: ðB1Þ

Since the energy region of interest is located near the
Zb’s states, it is sufficient for the argument to estimate the
on shell transition potential which calls for the substitution
M ¼ m1 þm2 þ p2=ð2μÞ, where μ ¼ m1m2=ðm1 þm2Þ
denotes the reduced mass. As an example (but without
loss of generality for the argument), we now set m1 ¼ mB�

and m2 ¼ mB that implies m3 ¼ mB and p ranges from 0,
at the BB̄� threshold, to p ∼ ptyp [defined in Eq. (1)], when
the B�B̄� threshold is approached. Then we get

G−1
transðM; p; qÞ ¼ EπðqÞ þ

pq
mB

xþ q2

2mB
− δ; ðB2Þ

where x ¼ cosðp̂qÞ and tiny corrections ∝ δp2
typ=2mB were

neglected. It is the term ∝ x that eventually supports higher
partial waves in the elastic channel. Then the D waves are
suppressed relative to the S waves by the factor�

ptyp

mB

�
2
�

q
EπðqÞ þ q2=ð2mBÞ − δ

�
2

: ðB3Þ

The values of q range from about 200 MeV, for the
transition to the ϒð3SÞπ channel, to 1.1 GeV, for the
transition to theϒð1SÞπ channel. It is easy to verify that, for
such values of q, the second factor in Eq. (B3) is close to
unity, that provides a justification for the estimate used in
the main text—see the discussion above Eq. (6).

APPENDIX C: FLAVOR SYMMETRY AND THE
PSEUDOSCALAR EXCHANGE POTENTIALS

In this Appendix we discuss the pseudoscalar exchange
potential between the heavy mesons. For definiteness,
we stick to the BB̄� channel as to an example. The flavor

projector for a pseudoscalar (P or P̄) and a vector (V̄ or V)
for the 1þ− quantum numbers reads

PBB̄� ð1þ−Þ ¼ 1

2
ðPτAV̄ − VτAP̄Þ; ðC1Þ

where the overall factor 1=2 ensures the proper normali-
zation of the projectors,

PBB̄� ð1þ−Þ†PBB̄�ð1þ−Þ

¼ 1

4
Tr½ðV̄†τAP† − P̄†τAV†ÞðPτBV̄ − VτBP̄Þ�

¼ 1

4
Trð2τAτBÞ ¼ δAB:

Here, like in Appendix A, the standard normalization for
the isospin matrices was used, Tr½τAτB� ¼ 2δAB.
Then, the flavor factor involving isospin and C-parity for

the OPE diagram can be evaluated as

1

4
Tr½ðV̄†τAP† − P̄†τAV†ÞðP†τaVÞðVτBP̄− PτBV̄ÞðV̄†τaP̄Þ�

þ 1

4
Tr½ðV̄†τAP† − P̄†τAV†ÞðV†τaPÞ

× ðVτBP̄− PτBV̄ÞðP̄†τaV̄Þ�

¼ 1

4
Trð−τAτaτBτa − τAτaτBτaÞ ¼ δAB; ðC2Þ

where at the last step above an easily verified relation

Tr½τAτaτBτa� ¼ −2δAB ðC3Þ

was used. It is this part of the calculation which makes
difference between the OPE and OEE potentials. Indeed, in
the latter case the trace takes the form

Tr½τA1̂τB1̂� ¼ 2δAB; ðC4Þ

where the unit matrices correspond to the η emission or
absorption vertices which substitute the Pauli matrices from
the pion vertices—see Eq. (C3).
Finally, considering an additional factor 1=

ffiffiffi
3

p
which

comes from the 8thGell-Mannmatrix for the SU(3) group—
see Eq. (15)—and which, therefore, enters each η-vertex,
one arrives at the following list of changes needed to proceed
from the OPE potential to the OEE one: (i) the flavor factor
þ1, for the OPE in the isovector channel, should be replaced
by−1, for the OEE; (ii) the pionmassmπ should be replaced
by the η mass mη, and (iii) the pion coupling constant gb
should be replaced by the η coupling constant gb=

ffiffiffi
3

p
.

Interestingly, if the flavor symmetry group SU(3) is
extended to U(3) then the potentials from the π-, η-, and
η0-exchange cancel each other identically in the strict flavor
symmetry limit [69]. However, because of the U(1)
anomaly, there are no reasons to expect the η0 to possess
properties of the Goldstone boson [88–91].

FIG. 10. Diagram underlying the transitions from an elastic to
an inelastic channel. Solid, dashed and double line denote Bð�Þ
mesons, the pion and a heavy quarkonium, respectively. The
thin vertical line indicates the time slice of relevance for the
discussion.

LINE SHAPES OF THE Zbð10610Þ AND … PHYS. REV. D 98, 074023 (2018)

074023-19



[1] A. Bondar et al. (Belle Collaboration), Phys. Rev. Lett. 108,
122001 (2012).

[2] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
110, 252001 (2013).

[3] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110,
252002 (2013).

[4] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
111, 242001 (2013).

[5] S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 100,
142001 (2008).

[6] R. Mizuk et al. (Belle Collaboration), Phys. Rev. D 80,
031104 (2009).

[7] K. Chilikin et al. (Belle Collaboration), Phys. Rev. D 88,
074026 (2013).

[8] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112,
222002 (2014).

[9] I. Adachi (Belle Collaboration), arXiv:1105.4583.
[10] I. Adachi et al. (Belle Collaboration), arXiv:1209.6450.
[11] A. Garmash et al. (Belle Collaboration), Phys. Rev. Lett.

116, 212001 (2016).
[12] A. Ali, C. Hambrock, and W. Wang, Phys. Rev. D 85,

054011 (2012).
[13] A. Esposito, A. L. Guerrieri, F. Piccinini, A. Pilloni, and

A. D. Polosa, Int. J. Mod. Phys. A 30, 1530002 (2015).
[14] L. Maiani, A. D. Polosa, and V. Riquer, Phys. Lett. B 778,

247 (2018).
[15] A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and

M. B. Voloshin, Phys. Rev. D 84, 054010 (2011).
[16] M. Cleven, F. K. Guo, C. Hanhart, and U.-G. Meißner,

Eur. Phys. J. A 47, 120 (2011).
[17] J. Nieves and M. P. Valderrama, Phys. Rev. D 84, 056015

(2011).
[18] J. R. Zhang, M. Zhong, and M. Q. Huang, Phys. Lett. B 704,

312 (2011).
[19] Y. Yang, J. Ping, C. Deng, and H. S. Zong, J. Phys. G 39,

105001 (2012).
[20] Z. F. Sun, J. He, X. Liu, Z. G. Luo, and S. L. Zhu, Phys. Rev.

D 84, 054002 (2011).
[21] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A.

Hosaka, Phys. Rev. D 86, 014004 (2012).
[22] M. T. Li, W. L. Wang, Y. B. Dong, and Z. Y. Zhang, J. Phys.

G 40, 015003 (2013).
[23] H.W. Ke, X. Q. Li, Y. L. Shi, G. L. Wang, and X. H. Yuan,

J. High Energy Phys. 04 (2012) 056.
[24] J. M. Dias, F. Aceti, and E. Oset, Phys. Rev. D 91, 076001

(2015).
[25] E. S. Swanson, Phys. Rev. D 91, 034009 (2015).
[26] F. K. Guo, C. Hanhart, Q. Wang, and Q. Zhao, Phys. Rev. D

91, 051504 (2015).
[27] C. Hanhart, Y. S. Kalashnikova, P. Matuschek, R. V. Mizuk,

A. V. Nefediev, and Q. Wang, Phys. Rev. Lett. 115, 202001
(2015).

[28] F.-K. Guo, C. Hanhart, Y. S. Kalashnikova, P. Matuschek,
R. V. Mizuk, A. V. Nefediev, Q. Wang, and J.-L. Wynen,
Phys. Rev. D 93, 074031 (2016).

[29] M. B. Voloshin, Phys. Rev. D 84, 031502 (2011).
[30] S. Ohkoda, Y. Yamaguchi, S. Yasui, and A. Hosaka, Phys.

Rev. D 86, 117502 (2012).
[31] X. Li and M. B. Voloshin, Phys. Rev. D 86, 077502

(2012).

[32] M. Cleven, Q. Wang, F. K. Guo, C. Hanhart, U.-G. Meißner,
and Q. Zhao, Phys. Rev. D 87, 074006 (2013).

[33] Y. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij,
J. Phys. G 40, 015002 (2013).

[34] G. Li, F. l. Shao, C. W. Zhao, and Q. Zhao, Phys. Rev. D 87,
034020 (2013).

[35] S. Ohkoda, S. Yasui, and A. Hosaka, Phys. Rev. D 89,
074029 (2014).

[36] D. Y. Chen, X. Liu, and S. L. Zhu, Phys. Rev. D 84, 074016
(2011).

[37] Y. H. Chen, J. T. Daub, F. K. Guo, B. Kubis, U.-G. Meißner,
and B. S. Zou, Phys. Rev. D 93, 034030 (2016).

[38] Y. H. Chen, M. Cleven, J. T. Daub, F. K. Guo, C. Hanhart,
B. Kubis, U.-G. Meißner, and B. S. Zou, Phys. Rev. D 95,
034022 (2017).

[39] T. Mehen and J. W. Powell, Phys. Rev. D 84, 114013
(2011).

[40] M. P. Valderrama, Phys. Rev. D 85, 114037 (2012).
[41] C. Hidalgo-Duque, J. Nieves, and M. P. Valderrama, Phys.

Rev. D 87, 076006 (2013).
[42] J. Nieves and M. P. Valderrama, Phys. Rev. D 86, 056004

(2012).
[43] F. K.Guo,C.Hidalgo-Duque, J.Nieves, andM. P.Valderrama,

Phys. Rev. D 88, 054007 (2013).
[44] M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115, 122001

(2015).
[45] V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, and A. V.

Nefediev, J. High Energy Phys. 06 (2017) 158.
[46] X.W. Kang, Z. H. Guo, and J. A. Oller, Phys. Rev. D 94,

014012 (2016).
[47] A. V. Nefediev, Phys. At. Nucl. 80, 1006 (2017).
[48] Z. G. Wang and T. Huang, Eur. Phys. J. C 74, 2891

(2014).
[49] Z. G. Wang, Eur. Phys. J. C 74, 2963 (2014).
[50] S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. J. C 77, 836

(2017).
[51] E. Wilbring, H.-W. Hammer, and U.-G. Meißner, arXiv:

1705.06176.
[52] F. K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao,

and B. S. Zou, Rev. Mod. Phys. 90, 015004 (2018).
[53] M. B. Voloshin and L. B. Okun, Pis’ma Zh. Eksp. Teor. Fiz.

23, 369 (1976) [JETP Lett. 23, 333 (1976)].
[54] N. A. Tornqvist, Phys. Rev. Lett. 67, 556 (1991).
[55] N. A. Tornqvist, Z. Phys. C 61, 525 (1994).
[56] Y. R. Liu, X. Liu, W. Z. Deng, and S. L. Zhu, Eur. Phys. J. C

56, 63 (2008).
[57] C. E. Thomas and F. E. Close, Phys. Rev. D 78, 034007

(2008).
[58] M. Suzuki, Phys. Rev. D 72, 114013 (2005).
[59] Y. S. Kalashnikova and A. V. Nefediev, Pis’ma Zh. Eksp.

Teor. Fiz. 97, 76 (2013) [JETP Lett. 97, 70 (2013)].
[60] A. A. Filin, A. Romanov, V. Baru, C. Hanhart, Y. S.

Kalashnikova, A. E. Kudryavtsev, U.-G. Meißner, and
A. V. Nefediev, Phys. Rev. Lett. 105, 019101 (2010).

[61] V. Baru, E. Epelbaum, A. A. Filin, F.-K. Guo, H.-W.
Hammer, C. Hanhart, U.-G. Meißner, and A. V. Nefediev,
Phys. Rev. D 91, 034002 (2015).

[62] M. B. Voloshin, Phys. Lett. B 579, 316 (2004).
[63] S. Fleming, M. Kusunoki, T. Mehen, and U. van Kolck,

Phys. Rev. D 76, 034006 (2007).

Q. WANG et al. PHYS. REV. D 98, 074023 (2018)

074023-20

https://doi.org/10.1103/PhysRevLett.108.122001
https://doi.org/10.1103/PhysRevLett.108.122001
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.111.242001
https://doi.org/10.1103/PhysRevLett.111.242001
https://doi.org/10.1103/PhysRevLett.100.142001
https://doi.org/10.1103/PhysRevLett.100.142001
https://doi.org/10.1103/PhysRevD.80.031104
https://doi.org/10.1103/PhysRevD.80.031104
https://doi.org/10.1103/PhysRevD.88.074026
https://doi.org/10.1103/PhysRevD.88.074026
https://doi.org/10.1103/PhysRevLett.112.222002
https://doi.org/10.1103/PhysRevLett.112.222002
http://arXiv.org/abs/1105.4583
http://arXiv.org/abs/1209.6450
https://doi.org/10.1103/PhysRevLett.116.212001
https://doi.org/10.1103/PhysRevLett.116.212001
https://doi.org/10.1103/PhysRevD.85.054011
https://doi.org/10.1103/PhysRevD.85.054011
https://doi.org/10.1142/S0217751X15300021
https://doi.org/10.1016/j.physletb.2018.01.039
https://doi.org/10.1016/j.physletb.2018.01.039
https://doi.org/10.1103/PhysRevD.84.054010
https://doi.org/10.1140/epja/i2011-11120-6
https://doi.org/10.1103/PhysRevD.84.056015
https://doi.org/10.1103/PhysRevD.84.056015
https://doi.org/10.1016/j.physletb.2011.09.039
https://doi.org/10.1016/j.physletb.2011.09.039
https://doi.org/10.1088/0954-3899/39/10/105001
https://doi.org/10.1088/0954-3899/39/10/105001
https://doi.org/10.1103/PhysRevD.84.054002
https://doi.org/10.1103/PhysRevD.84.054002
https://doi.org/10.1103/PhysRevD.86.014004
https://doi.org/10.1088/0954-3899/40/1/015003
https://doi.org/10.1088/0954-3899/40/1/015003
https://doi.org/10.1007/JHEP04(2012)056
https://doi.org/10.1103/PhysRevD.91.076001
https://doi.org/10.1103/PhysRevD.91.076001
https://doi.org/10.1103/PhysRevD.91.034009
https://doi.org/10.1103/PhysRevD.91.051504
https://doi.org/10.1103/PhysRevD.91.051504
https://doi.org/10.1103/PhysRevLett.115.202001
https://doi.org/10.1103/PhysRevLett.115.202001
https://doi.org/10.1103/PhysRevD.93.074031
https://doi.org/10.1103/PhysRevD.84.031502
https://doi.org/10.1103/PhysRevD.86.117502
https://doi.org/10.1103/PhysRevD.86.117502
https://doi.org/10.1103/PhysRevD.86.077502
https://doi.org/10.1103/PhysRevD.86.077502
https://doi.org/10.1103/PhysRevD.87.074006
https://doi.org/10.1088/0954-3899/40/1/015002
https://doi.org/10.1103/PhysRevD.87.034020
https://doi.org/10.1103/PhysRevD.87.034020
https://doi.org/10.1103/PhysRevD.89.074029
https://doi.org/10.1103/PhysRevD.89.074029
https://doi.org/10.1103/PhysRevD.84.074016
https://doi.org/10.1103/PhysRevD.84.074016
https://doi.org/10.1103/PhysRevD.93.034030
https://doi.org/10.1103/PhysRevD.95.034022
https://doi.org/10.1103/PhysRevD.95.034022
https://doi.org/10.1103/PhysRevD.84.114013
https://doi.org/10.1103/PhysRevD.84.114013
https://doi.org/10.1103/PhysRevD.85.114037
https://doi.org/10.1103/PhysRevD.87.076006
https://doi.org/10.1103/PhysRevD.87.076006
https://doi.org/10.1103/PhysRevD.86.056004
https://doi.org/10.1103/PhysRevD.86.056004
https://doi.org/10.1103/PhysRevD.88.054007
https://doi.org/10.1103/PhysRevLett.115.122001
https://doi.org/10.1103/PhysRevLett.115.122001
https://doi.org/10.1007/JHEP06(2017)158
https://doi.org/10.1103/PhysRevD.94.014012
https://doi.org/10.1103/PhysRevD.94.014012
https://doi.org/10.1134/S1063778817050180
https://doi.org/10.1140/epjc/s10052-014-2891-6
https://doi.org/10.1140/epjc/s10052-014-2891-6
https://doi.org/10.1140/epjc/s10052-014-2963-7
https://doi.org/10.1140/epjc/s10052-017-5421-5
https://doi.org/10.1140/epjc/s10052-017-5421-5
http://arXiv.org/abs/1705.06176
http://arXiv.org/abs/1705.06176
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/PhysRevLett.67.556
https://doi.org/10.1007/BF01413192
https://doi.org/10.1140/epjc/s10052-008-0640-4
https://doi.org/10.1140/epjc/s10052-008-0640-4
https://doi.org/10.1103/PhysRevD.78.034007
https://doi.org/10.1103/PhysRevD.78.034007
https://doi.org/10.1103/PhysRevD.72.114013
https://doi.org/10.1134/S0021364013020070
https://doi.org/10.1103/PhysRevLett.105.019101
https://doi.org/10.1103/PhysRevD.91.034002
https://doi.org/10.1016/j.physletb.2003.11.014
https://doi.org/10.1103/PhysRevD.76.034006


[64] V. Baru, A. A. Filin, C. Hanhart, Y. S. Kalashnikova, A. E.
Kudryavtsev, and A. V. Nefediev, Phys. Rev. D 84, 074029
(2011).

[65] V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, U.-G.
Meißner, and A. V. Nefediev, Phys. Lett. B 763, 20 (2016).

[66] S. Fleming, T. Mehen, and I. W. Stewart, Nucl. Phys. A677,
313 (2000).

[67] M. Albaladejo, F.-K. Guo, C. Hidalgo-Duque, J. Nieves,
and M. P. Valderrama, Eur. Phys. J. C 75, 547 (2015).

[68] M. B. Voloshin, Phys. Rev. D 92, 114003 (2015).
[69] F. Aceti, M. Bayar, J. M. Dias, and E. Oset, Eur. Phys. J. A

50, 103 (2014).
[70] E. Epelbaum, H.W. Hammer, and U.-G. Meißner, Rev.

Mod. Phys. 81, 1773 (2009).
[71] C. Hanhart, Y. S. Kalashnikova, P. Matuschek, R. V. Mizuk,

A. V. Nefediev, and Q. Wang, J. Phys. Conf. Ser. 675,
022016 (2016).

[72] M. T. AlFiky, F. Gabbiani, and A. A. Petrov, Phys. Lett. B
640, 238 (2006).

[73] M. Tanabashi et al. (Particle Data Group Collaboration),
Phys. Rev. D 98, 030001 (2018).

[74] F. Bernardoni, J. Bulava, M. Donnellan, and R. Sommer
(ALPHA Collaboration), Phys. Lett. B 740, 278 (2015).

[75] B. Grinstein, E. E. Jenkins, A. V. Manohar, M. J. Savage,
and M. B. Wise, Nucl. Phys. B380, 369 (1992).

[76] V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, and A. V.
Nefediev, EPJ Web Conf. 137, 06002 (2017).

[77] T. Mehen and J. Powell, Phys. Rev. D 88, 034017
(2013).

[78] A. Garmash et al. (Belle Collaboration), Phys. Rev. D 91,
072003 (2015).

[79] M. B. Voloshin, Phys. Rev. D 93, 074011 (2016).
[80] M. Kato, Ann. Phys. (N.Y.) 31, 130 (1965).
[81] J. J. Dudek, R. G. Edwards, and D. J. Wilson (Hadron

Spectrum Collaboration), Phys. Rev. D 93, 094506
(2016).

[82] V. Baru, A. A. Filin, C. Hanhart, A. V. Nefediev, and Q.
Wang (unpublished).

[83] M. B. Wise, Phys. Rev. D 45, R2188 (1992).
[84] G. Burdman and J. F. Donoghue, Phys. Lett. B 280, 287

(1992).
[85] T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin,

and H. L. Yu, Phys. Rev. D 46, 1148 (1992); 55, 5851(E)
(1997).

[86] J. Hu and T. Mehen, Phys. Rev. D 73, 054003 (2006).
[87] M. E. Luke and A. V. Manohar, Phys. Lett. B 286, 348

(1992).
[88] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253

(1980).
[89] C. Rosenzweig, J. Schechter, and C. G. Trahern, Phys. Rev.

D 21, 3388 (1980).
[90] K. Kawarabayashi and N. Ohta, Nucl. Phys. B175, 477

(1980).
[91] E. Witten, Ann. Phys. (N.Y.) 128, 363 (1980).

LINE SHAPES OF THE Zbð10610Þ AND … PHYS. REV. D 98, 074023 (2018)

074023-21

https://doi.org/10.1103/PhysRevD.84.074029
https://doi.org/10.1103/PhysRevD.84.074029
https://doi.org/10.1016/j.physletb.2016.10.008
https://doi.org/10.1016/S0375-9474(00)00221-9
https://doi.org/10.1016/S0375-9474(00)00221-9
https://doi.org/10.1140/epjc/s10052-015-3753-6
https://doi.org/10.1103/PhysRevD.92.114003
https://doi.org/10.1140/epja/i2014-14103-1
https://doi.org/10.1140/epja/i2014-14103-1
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1088/1742-6596/675/2/022016
https://doi.org/10.1088/1742-6596/675/2/022016
https://doi.org/10.1016/j.physletb.2006.07.069
https://doi.org/10.1016/j.physletb.2006.07.069
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/j.physletb.2014.11.051
https://doi.org/10.1016/0550-3213(92)90248-A
https://doi.org/10.1051/epjconf/201713706002
https://doi.org/10.1103/PhysRevD.88.034017
https://doi.org/10.1103/PhysRevD.88.034017
https://doi.org/10.1103/PhysRevD.91.072003
https://doi.org/10.1103/PhysRevD.91.072003
https://doi.org/10.1103/PhysRevD.93.074011
https://doi.org/10.1016/0003-4916(65)90235-6
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.45.R2188
https://doi.org/10.1016/0370-2693(92)90068-F
https://doi.org/10.1016/0370-2693(92)90068-F
https://doi.org/10.1103/PhysRevD.46.1148
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1103/PhysRevD.73.054003
https://doi.org/10.1016/0370-2693(92)91786-9
https://doi.org/10.1016/0370-2693(92)91786-9
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1103/PhysRevD.21.3388
https://doi.org/10.1103/PhysRevD.21.3388
https://doi.org/10.1016/0550-3213(80)90024-3
https://doi.org/10.1016/0550-3213(80)90024-3
https://doi.org/10.1016/0003-4916(80)90325-5

