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We derive new Lorentz invariance and equation of motion relations between twist-three generalized
parton distributions (GPDs) and moments in the parton transverse momentum, kT , of twist-two generalized
transverse momentum-dependent distributions (GTMDs), as a function of the parton longitudinal
momentum fraction x. Although GTMDs in principle define the observables for partonic orbital motion,
experiments that can unambiguously detect them appear remote at present. The relations presented here
provide a solution to this impasse in that, e.g., the orbital angular momentum density is connected to
directly measurable twist-three GPDs. Out of 16 possible equation of motion relations that can be written in
the T-even sector, we focus on three helicity configurations that can be detected analyzing specific spin
asymmetries: two correspond to longitudinal proton polarization and are associated with quark orbital
angular momentum and spin-orbit correlations; the third, obtained for transverse proton polarization, is a
generalization of the relation obeyed by the g2 structure function. We also exhibit an additional relation
connecting the off-forward extension of the Sivers function to an off-forward Qiu-Sterman term.
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I. INTRODUCTION

A fundamental way of characterizing the internal struc-
ture of the proton is through sum rules that express how
global properties of the proton are composed from corre-
sponding quark and gluon quantities. For example, one
may ask what portion of a proton’s momentum is carried by
either quarks or gluons, or one may ask how the spin of the
proton is composed from the spins and orbital angular
momenta of its quark and gluon constituents. Elucidating
this latter question, the so-called proton spin puzzle [1]
indeed counts among the prime endeavors of hadronic
physics in the last decades.
The proton’s total momentum and angular momentum

are encoded in matrix elements of the QCD energy momen-
tum tensor (EMT), expressed in terms of gravitomagnetic

form factors which are functions of the four-momentum
transfer squared, t ¼ ðp0 − pÞ2, between the initial, p, and
final, p0, proton momenta (see [2] for a review). In
Refs. [3,4], Ji made the key observation that the gravito-
magnetic form factors can be accessed experimentally since
they coincide, through the operator product expansion
(OPE), with the expressions for the Mellin moments of
specific parton distributions parametrizing both the forward
(p ¼ p0) and off-forward (p ≠ p0) quark and gluon corre-
lation functions.
With ϵq;g denoting the fractions of the proton momentum

carried by quarks and gluons, Jq;g their angular momenta,
and Aq;g, Bq;g the EMT form factors, one obtains the sum
rules

1 ¼ ϵq þ ϵg ¼ Aqð0Þ þ Agð0Þ

¼
Z

1

0

dxxðHqðx; 0; 0Þ þHgðx; 0; 0ÞÞ; ð1Þ

1

2
¼ Jq þ Jg ¼

1

2
ðAqð0Þ þ Bqð0Þ þ Agð0Þ þ Bgð0ÞÞ

¼ 1

2

Z
1

0

dxxðHqðx; 0; 0Þ þ Eqðx; 0; 0Þ

þHgðx; 0; 0Þ þ Egðx; 0; 0ÞÞ: ð2Þ
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Equation (2), the angular momentum sum rule, is also
known as the Ji sum rule [4]. Hq;gðx; ξ; tÞ and Eq;gðx; ξ; tÞ
are the generalized parton distribution (GPD) functions
which depend on the longitudinal momentum transfer
between the initial and final proton, represented through
the skewness parameter ξ, and the four-momentum transfer
squared, t, x being the light conemomentum fraction carried
by the parton [5,6]. In particular, Hqðx;0;0Þ≡qðxÞ;
Hgðx;0;0Þ≡gðxÞ, where qðxÞ and gðxÞ are the unpolarized
quark (antiquark) and gluon distributions, or the parton
distributions functions (PDFs). PDFs have beenmeasured in
decades of deep inelastic scattering experiments, with
impressive accuracy and kinematical coverage, confirming
to high precision the momentum sum rule, Eq. (1). To verify
the angular momentum sum rule it is necessary to extract the
GPDs from experiment, in particular, Eq;g. Sufficiently
accurate values for the GPDs have just fairly recently started
to become available from exclusive deeply virtual scattering
experiments, namely deeply virtual Compton scattering
(DVCS), deeply virtual Meson production (DVMP) and
related processes, conducted most recently at Jefferson Lab
and COMPASS (see [7] for a recent review).
DVCS experimental measurements are necessarily more

involved than the ones for inclusive scattering, since they
require the simultaneous detection of all products of
reaction. The extraction of observables, the GPDs, from
experiment is also more complex owing to the increased
number of kinematic variables they depend on. An addi-
tional hurdle is present for the analysis of angular momen-
tum in both identifying and giving a physical interpretation
to the components of the sum rule (2): while the momentum
sum rule has an immediate dynamical interpretation in
terms of the average longitudinal momentum carried by the
different parton components, to obtain a dynamically
transparent expression for the angular momentum sum
rule one has to break it down into its spin and orbital
angular momentum (OAM) components, while simulta-
neously preserving the gauge invariance of the theory. The
decomposition can be performed within two different
approaches, by Jaffe and Manohar (JM) [1],

1

2
ΔΣq þ LJM

q þ ΔGþ LJM
g ¼ 1

2
ð3Þ

and by Ji [4],

1

2
ΔΣq þ LJi

q þ JJig ¼ 1

2
: ð4Þ

The JM longitudinal OAM distribution has been identified
with a parton Wigner distribution weighted by the cross
product of position and momentum in the transverse plane,
bT × kT [8,9]. Parton Wigner distributions can be related,
through Fourier transformation, to specific generalized
transverse momentum-dependent parton distributions
(GTMDs), which are off-forward TMDs. The correlation

defining OAM corresponds to the GTMD F14 (we follow
the naming scheme of Ref. [10]). In particular, the OAM
distribution is described by the x-dependent k2T moment of
F14. In this context, it is worth contrasting JM and Ji OAM
in more detail. The difference between the two arises from
the way in which the gauge invariance of the theory
intervenes through the gauge link in the relevant parton
correlator from which F14 is extracted [11]. Ji OAM results
from a straight gauge link, whereas JM OAM results from a
staple-shaped gauge link such as the one used in the
standard definition of TMDs. The difference has been
elucidated further in the quark sector in Refs. [12,13],
where it was shown that JMOAM,LJM

q , can bewritten as the
sum of Ji’s OAM, LJi

q , plus a matrix element including the
gluon field. The latter was interpreted in the semiclassical
picture of Ref. [13] as having the physical meaning of an
integrated torque stemming from the chromodynamic
force between the struck quark and the proton remnant
interacting in the final state. In the following, wewill refer to
the x-dependent k2T-moment of F14 as giving the OAM
distribution regardless of the gauge link structure. It should
however be emphasized that, strictly speaking, only the
JM case admits a clear physical interpretation in terms
of a partonic OAM distribution. As discussed in detail in
[12,14], there is no unambiguous definition of the Ji OAM
distribution, and it would be no less or more justified to
identify other objects that integrate to Ji OAM as that
distribution.
To summarize, in both Ji’s and JM’s expressions, OAM

is defined through an imbalance in the distribution of
quarks in longitudinally polarized proton states, when the
quark’s displacement in the transverse plane is simulta-
neously orthogonal to its intrinsic transverse motion. JM’s
definition includes a quark reinteraction which could be, in
principle, process dependent. How can these two pictures
of the proton’s angular momentum coexist, and what are
experimental measurements really probing?
The work presented here was motivated by the question

of defining a way to test these ideas through observables
that would enable direct access to OAM in experimental
measurements. While Jq;g measurements through GPDs are
in progress, GTMDs, providing in principle the density
distributions for OAM, remain experimentally elusive
objects, since they require exclusive measurements of
particles in the two distinct hadronic planes disentangling
the kT and bT (or ΔT) directions [15–17]. GTMDs can,
however, be evaluated in ab initio calculations [18].
In a previous publication [19], we showed that the

x-dependent k2T moment of F14 entering Eq. (4) can be
written in terms of a twist-three GPD, Ẽ2T [10]. In the
forward limit, the relation takes the form

Z
d2kT

k2T
M2

F14 ¼ −
Z

1

x
dyðẼ2T þH þ EÞ: ð5Þ
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Here, we present several extensions of this relation, and
describe the details of the derivation comprehensively. In
particular, we show that a more general relation holds,

Z
d2kT

k2T
M2

F14 ¼ −
Z

1

x
dyðẼ2T þH þ EþAF14

Þ ð6Þ

where AF14
ðxÞ is a term containing the gauge link depen-

dent, or quark-gluon-quark, components of the correlation
function. For a straight gauge link, AF14

ðxÞ ¼ 0, thus
recovering the result displayed in Eq. (5). These relations
are specific generalized Lorentz invariance relations (LIR)
connecting the x-dependent k2T moments of GTMDs and
GPDs. Just as in the forward case [20–22], generalized LIR
are based upon the covariant decomposition of the fully
unintegrated quark-quark correlation function in off-
forward kinematics: the number of independent functions
parametrizing the correlator is less than the total number of
GTMDs and GPDs, thus inducing relations among the
latter. Several LIRs have been found between forward
twist-three PDFs and kT moments of TMDs. The most
remarkable example of an LIR is perhaps the relation
between the TMD g1T and the twist-three PDF gT, leading
to the Wandzura-Wilczek relation between the helicity
distribution g1 and gT ¼ g1 þ g2 [23]. In the presence of
a gauge link other than the straight one (e.g., a staple link),
LIRs acquire an additional term that cannot be encoded in
the available GTMD and GPD structures. As we show in
the present paper, this term produces a correction to Eq. (5),
leading eventually to the Qiu-Sterman type term of
Ref. [13]. Furthermore, by combining Eqs. (5) and (6)
with the quark field equations of motion (EoM), we can
ascribe the difference between the integrated quark total
angular momentum, Jq, and the spin, Sq ≡ ð1=2ÞΔΣq, in
Ji’s description to the integral of the Wandzura-Wilczek
component of the GPD combination Ẽ2T þH þ E. We find
that, at the unintegrated level, a quark-gluon-quark term is
also present which integrates to zero consistently with Ji’s
sum rule. Our relation, therefore, allows one to connect the
partonic sum rule originating from the dynamical definition
of OAM—through the unintegrated correlation function—
and the gravitomagnetic form factors which define the
energy-momentum tensor. On the other hand, having
access to relations at the unintegrated level allows us to
extend the treatment to the JM case, where we obtain that
the quark-gluon-quark contribution does not vanish upon
integration. We show it to reproduce the Qiu-Sterman type
term in [13].
In principle, 32 individual EoM relations can be con-

structed, associated with the 8 twist-two GTMDs in the
vector and axial-vector sectors, which each feature
independent real and imaginary components; an additional
doubling of the number of relations is given by contract-
ing the EoMs in the transverse plane either with the
transverse momentum kT or with the transverse momentum

transfer ΔT. However, we place a special focus in the
present paper on just three further k2T moments of twist-two
GTMDs in addition to the one in Eq. (5) [19], that describe
spin correlations stemming from a similar operator struc-
ture as for OAM. The three GTMDs in question, described
in more detail below, are G11, G12 and F12. In the cases of
G11 and G12, also a LIR analogous to Eq. (5) accompanies
the EoM relation. Equations (7)–(9) illustrate the types of
relations we obtain in this paper; this is not an exhaustive
listing, and for illustration purposes, only the forward limits
are quoted:

Z
d2kT

k2T
M2

G11¼
Z

1

x
dyð2H̃0

2T þE0
2T þ H̃−AG11

Þ; ð7Þ

1

2

Z
d2kT

k2T
M2

G12 ¼ −
Z

1

x
dyðH0

2T − H̃ þAG12
Þ; ð8Þ

Z
d2kT

k2T
M2

Fo
12 ≡ −f⊥ð1Þ

1T ¼ −MF12
jΔT¼0

: ð9Þ

Our full results are more generally valid and also off
forward [this applies analogously to the OAM relations (5)
and (6)]. The three GTMDs referenced in these relations are
G11, which was observed to provide information on the
longitudinal part of the quark spin-orbit interaction, or the
projection of quark OAM along the quark spin [8]; G12,
which corresponds to a transverse proton spin configura-
tion and generalizes the TMD g1T leading to the original
Wandzura-Wilczek relation [23,24]; and, finally, the naive
T-odd part of F12 which corresponds to the off-forward
generalization of the Sivers function, f⊥1T [25], which we
relate to a generalized Qiu-Sterman term represented by
MF12

in Eq. (9). For G11, in particular, by using the EoM
we find a relation whose integral in x is consistent with
the sum rule found in [26] and revisited in [27]. However,
our derivation, valid for arbitrary gauge link structure,
allows for a new term representing final state interactions.
Furthermore, we stress the importance of the term propor-
tional to the quark mass which appears in this relation as
being generated from quark transverse spin contributions.
This paper is organized as follows. In Sec. II we define

the general framework: the correlation functions, the gauge
link structure, the parametrization of the correlation func-
tions which ensues, and the helicity amplitudes. In Sec. III
we give a detailed derivation of the EoM relations,
including explicit quark-gluon-quark terms. In Sec. IV
we derive the LIRs for both OAM and spin-orbit correla-
tions. We discuss their Mellin moments to order n ¼ 3. In
Sec. V we discuss the relations for transverse proton spin
configurations and their connection to the forward limit,
and, finally, in Sec. VI we give our conclusions and
outlook.
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II. FORMAL FRAMEWORK AND DEFINITIONS

We base our treatment on the complete parametrization
of the quark-quark correlation functions in the proton up to
twist four given in Ref. [10]. By applying time reversal
invariance, charge conjugation, parity, and Hermiticity one
finds that, at twist two, there are three independent PDFs:
f1, g1, in the chiral even sector, and the chiral odd h1; 8
GPDs (4 chiral even and 4 chiral odd); 8 TMDs, and 16
GTMDs. At twist three, one has many more functions due
to both the presence of additional couplings (scalar and
pseudoscalar), and to the larger number of kinematical
terms in the correlation function parametrizations for the
vector, axial vector, and pseudoscalar couplings. Each one
of the PDFs, TMDs, and GPDs corresponds to specific
quark-proton helicity amplitude combinations that can be
extracted from various hard inclusive, semi-inclusive, and
deeply virtual exclusive processes, respectively, and that
represent specific polarization configurations, or spin
correlations, of partons inside the proton.
It is important to distinguish the different types of

twist-three objects that will be dealt with in this paper.
On one side, within OPE, twist is defined as τ ¼ ðcanonicalÞ
dimension−ðLorentzÞ spin, for the local operators in terms
of which the kT integrated correlation functions are
expanded. Operators corresponding to composites of quark
and gluon fields appear, therefore, as higher twist terms and
they are suppressed by inverse powers of the deeply virtual
process’s large scale, Q. On the other hand, considering
directly the Oð1=QÞ (or equivalently, 1=Pþ) suppressed
terms in the correlation functions, these can be decomposed
using the equations of motion into a twist-two term [23] and
a twist-three term which is a composite of the quark and
gluon fields [28]. Thus, technically, theOð1=QÞ suppressed
quark-quark correlation functions, denominated as twist
three, include both τ ¼ 2 and τ ¼ 3 contributions. The
Wandzura-Wilczek [23] relations between matrix elements
of operators of different twist exemplify this situation,
as first expressed for the polarized distribution functions
g1 and g2.
These distinctions are useful to keep inmind as we extend

both the Lorentz invariance relations and the equation of
motion relations to off-forward kinematics involving
GTMDs and their kinematic twist-three constructs, given
by twist-three GPDs. LIRs connecting twist-two TMDs and
twist-three PDFs were presented and discussed for various
correlation functions in Refs. [20,22]. These relations are
based upon the Lorentz invariant decomposition of the fully
unintegrated correlation function with the two quark fields
located at different space-time positions, and they neces-
sarily involve parton transverse momentum and off-
shellness both through the kT-moments of twist-two TMDs
(where kT denotes the quark transverse momentum) and the
twist-three PDFs.
Already the construction of the aforementioned relations

between TMDs and PDFs, once taken beyond a purely

formal level, encounters obstacles rooted in divergences
of the kT-integrations connecting TMDs to collinear
objects such as the PDFs. These divergences must be
separated off to ultimately contribute to the scale evolution
of the collinear quantities. Our treatment similarly relates
GTMDs to GPDs through kT-integrations, and thus inherits
these issues in complete analogy. In the present paper, we
do not present any further developments on this topic
beyond what is given in the literature on the connection
between ordinary TMDs and PDFs. In general, the precise
connection of GTMDs to GPDs still requires further
specification. The relations we derive can also be read
purely at the GTMD level, before identifying kT-integrals
of GTMDs with GPDs. In that form, all components of our
relations can be regularized on an identical footing, before
identifying their collinear limits. To the extent that our
relations derive from symmetries (such as Lorentz invari-
ance), any regularization that respects these symmetries can
be expected to leave the relations we derive intact. At
appropriate places in our treatment, we will indicate points
at which modifications of our results must be countenanced
owing to issues of regularization; an example is the
standard deformation of TMD gauge links off the light
cone, associated with the introduction of a Collins-Soper
evolution parameter. This procedure applies likewise to a
proper definition of GTMDs. We will also refrain from
writing explicitly the soft factors that are required [29] to
regulate divergences associated with the gauge connections
contained in the bilocal operators defining TMDs and
GTMDs.

A. Kinematics and correlators

The completely unintegrated off-forward quark-quark
correlation function is defined as the matrix element
between proton states with momenta and helicities p, Λ
and p0, Λ0,

WΓ
Λ0ΛðP;k;Δ;UÞ

¼ 1

2

Z
d4z
ð2πÞ4 e

ik·zhp0;Λ0jψ̄
�
−
z
2

�
ΓUψ

�
z
2

�
jp;Λi; ð10Þ

where the gauge link structure U connecting the
quark operators at positions −z=2 and z=2 is discussed
in detail in the next section, Γ is a Dirac structure,
Γ ¼ 1; γ5; γμ; γμγ5; iσμν, and the choice of four-momenta
is defined with P ¼ ðpþ p0Þ=2 along the z axis, Δ ¼
p0 − p as in Ref. [10],

P≡
�
Pþ;

Δ2
T þ4M2

8ð1−ξ2ÞPþ ;0
�
¼ξ¼0
�
Pþ;

Δ2
T þ4M2

8Pþ ;0

�
; ð11Þ

Δ≡
�
−2ξPþ;

ξðΔ2
T þ4M2Þ

4ð1−ξ2ÞPþ ;ΔT

�
¼ξ¼0ð0;0;ΔTÞ; ð12Þ
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k≡ ðxPþ; k−; kTÞ; ð13Þ

where the initial and final quark momenta are k − Δ=2 and
kþ Δ=2, respectively, i.e., k is the average of the initial and
final quark momenta. Four-vectors wμ are represented in
terms of light-cone components, wμ ≡ ðwþ; w−; wTÞ, ξ ¼
−Δþ=2Pþ is the skewness parameter, ΔT ≡ ðΔ1;Δ2Þ,
kT ≡ ðk1; k2Þ, and the four-momentum transfer squared is
Δ2 ≡ t; we displayed the kinematics also specifically for the
ξ ¼ 0 case, which is the case on which we will focus in
this study.

B. Gauge link structures

To ensure gauge invariance, the quark bilocal operator
(10) requires a gauge link U along a path connecting the
quark operator positions −z=2 and z=2. Two important
choices of path are a direct straight line and a staple-shaped
connection characterized by an additional vector v; cf.
Fig. 1. These different choices will give rise to different
genuine twist-three contributions to the correlators.
The appropriate choice of gauge link path depends on the

physical context. In the TMD limit, the staple-shaped gauge
link is most relevant, since it encodes final/initial state
interactions in semi-inclusive deep inelastic scattering/
Drell-Yan (SIDIS/DY) processes. On the other hand,
GPDs are defined with a straight gauge link; as discussed
in more detail below and displayed in Fig. 1, only under

certain circumstances do GTMDs with a staple-shaped
gauge link have a proper GPD limit, with the staple link
collapsing into a straight gauge link. In general, GTMDs
defined from the outset with a straight gauge link play a
separate role, and both the straight and staple-shaped gauge
link choices will be treated in this work. Two specific
motivations for doing so are the following:

(i) In the context of quark orbital angular momentum,
as accessed via the GTMD F14 discussed in detail
further below, both the straight and the staple-shaped
gauge connections have a definite, distinct physical
meaning [13]. A straight gauge link enters the
definition of Ji quark orbital angular momentum [30],
whereas a staple-shaped gauge link generates Jaffe-
Manohar quark orbital angular momentum [11].
Note that F14 is a genuine GTMD quantity, i.e., a
quantity which does not have a TMD or GPD limit.

(ii) Acentral aspect of the following treatment areLorentz
invariance relations. In the staple link case, these
contain twist-three contributions (frequently referred
to as “LIR violating terms,” though their role is to
maintain Lorentz invariance) which do not reduce to
GTMDs. To ascertain their concrete physical content
in terms of quark-gluon-quark correlations, it is useful
to combine the staple-link LIR with the straight-link
LIR (in which these contributions are absent) as well
as the straight and staple-link equations of motion.
The resulting information is not directly available
considering the staple link case alone.

In the most basic definition of GTMDs, a staple-shaped
gauge link with a staple direction vector v on the light cone
is chosen [10], such that v has only a minus component,
v ¼ ð0; v−; 0; 0Þ. On the other hand, the quark operator
separation z is of the form z ¼ ð0; z−; zTÞ, with a two-
dimensional transverse vector zT. Note that z is Fourier
conjugate to the quark momentum k, and GTMDs are
defined in terms of k−-integrated correlators, setting
zþ ¼ 0. Thus, when one forms the GPD limit of GTMDs
by integration over the transverse momentum kT , one sets
zT ¼ 0, and v and z then lie along one common axis. In that
case, the staple legs collapse onto that one common axis, the
parts of the staple legs extending beyond the region in
between the quark operators cancel, and one is left with a
straight gauge link connecting those operators, as is appro-
priate for GPDs.
However, such a light-cone choice of the staple direction

vmeets with rapidity divergences, which, in the application
to TMDs, are commonly regulated by taking v off the light
cone into the spacelike region [31]. Then, v is of the form
v ¼ ðvþ; v−; 0; 0Þ, and the GPD limit ceases to be straight-
forward; even after integration over kT, i.e., setting zT ¼ 0,
v and z do not lie on a common axis and the staple-shaped
gauge link does not collapse onto a simple straight link
connecting the quark operators. The kT-integrated quan-
tities formed in this way are not directly GPDs, but differ

FIG. 1. Staple-shaped gauge link path connecting quark oper-
ators located at −z=2 and z=2. The legs of the staple are described
by the four-vector v. GTMDs are defined at separation zþ ¼ 0;
the vector z thus deviates from the x− axis by a transverse
component zT , i.e., z ¼ ð0; z−; zTÞ. On the other hand, v in
general is taken to deviate from the x− axis by a plus component
vþ in order to regulate rapidity divergences occurring if v is taken
to point purely in the minus direction; i.e., v ¼ ðvþ; v−; 0Þ. Note
that, in the two-dimensional projection displayed, the xþ and the
xT axes fall on top of one another; they are nevertheless of course
distinct axes. The separation z is Fourier conjugate to the quark
momentum k. Integrating over transverse momentum kT sets
zT ¼ 0, i.e., the quark operator positions then fall on the x− axis.
Nevertheless, for vþ ≠ 0, the path then still retains its staple
shape. Only in the vþ ¼ 0 limit (staple legs become horizontal in
figure) does the staple path collapse onto the x− axis upon kT
integration, leading to a bona fide GPD limit in which all parts of
the staple link cancel, except for a residual straight link directly
connecting −z=2 to z=2. One can alternatively define GTMDs
with a straight gauge link from the outset; in terms of the vectors
defined in the figure, this simply corresponds to the limit v ¼ 0.
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from GPDs by contributions which formally vanish in the
vþ → 0 light-cone limit. An alternative possibility of
treating this issue arising with staple links is to modify
the GTMD definition such that correlators are not rigidly
defined with zþ ¼ 0, but instead such that the longitudinal
part of z is parallel to v for any chosen v, i.e., zL ¼ ðzþ; z−Þ
is parallel to v ¼ ðvþ; v−Þ. In that case, integration over kT
does indeed lead to collapse of the staple link into a straight
gauge link, but this straight gauge link now does not lie on
the light cone anymore. In effect, in this way one generates
quasi-GPDs in the sense discussed by Ji [32].
In the present treatment, both GTMDs defined from the

beginning with straight gauge links, as well as GTMDs
defined with staple-shaped gauge links will be discussed.
For the latter case, the discussion will be confined to the
vþ ¼ 0 limit; vþ ≠ 0 corrections will not be worked out
explicitly. However, it should be kept in mind that these
corrections may be important in future applications, and
places where they arise will be pointed out as appropri-
ate below.

C. Parametrization of unintegrated correlation function

We consider the parametrization of the completely
unintegrated off-forward correlator, WΓ

ΛΛ0 above, in terms
of generalized parton correlation functions (GPCFs) for the
vector, γμ, and axial vector, γμγ5, operators. As motivated
above, we are also interested in the case of a straight gauge
link; the parametrization given in [10], by contrast, is
constructed for a staple-shaped gauge link, and its form was
chosen such that it is not straightforwardly related to the
straight-link case.
In this respect, it should be noted that there is consid-

erable freedom in constructing GPCF parametrizations.
This is due to the fact that not all Lorentz structures one can
write down are independent of one another; they are related
by Gordon identities and other relations, as laid out in detail
in [10]. After exhausting these relations, 16 GPCFs AF

i
remain to parametrize the staple-link vector correlator, and
also 16 GPCFs AG

i remain to parametrize the staple-link
axial vector correlator. In the straight-link case, to be
discussed in more detail below, 8 GPCFs remain in each
case. The staple-link parametrizations given in [10] in
neither case contain 8 GPCFs relevant for the straight-link
case; some of these were instead chosen to be eliminated in
favor of terms intrinsically related to a staple-link structure.
The vector correlator parametrization of [10] contains only
7 GPCFs relevant for the straight-link case; one additional
one therefore has to be reinstated. The axial vector
correlator parametrization of [10] contains only 3 GPCFs
relevant for the straight-link case, and therefore 5 have to be
reinstated. Thus, one cannot simply delete the Lorentz
structures containing the staple direction vector v (denoted
N in [10], up to a rescaling) from the parametrizations
given in [10] and already arrive at a valid straight-link
parametrization. Additional terms are needed, as given

below. It would be possible to construct staple-link para-
metrizations differing from the ones in [10], each contain-
ing a full set of 8 structures relevant for the straight-link
case, and each an additional 8 structures containing the
staple direction v, such that deletion of the latter 8
immediately leads to a valid straight-link parametrization.
We do not pursue this here to the full extent, but only give
the straight-link parametrizations.
In the case of the vector correlator, this is rather simple.

The construction of the staple-link parametrization in [10]
can be followed verbatim even in the straight-link case,
merely omitting all structures containing the staple direc-
tion vector v, except for the very last step. In that very last
step, the single missing straight-link structure, namely,
iσkΔΔμ, is eliminated in favor of a staple-link related
structure. In the straight-link case, the staple-link related
structure is not available, and therefore the aforementioned
straight-link structure must be kept instead. Thus, one has
the straight-link vector correlator parametrization1

Wγμ

Λ0Λ¼Ūðp0;Λ0Þ
�
Pμ

M
AF
1 þ

kμ

M
AF
2 þ

Δμ

M
AF
3 þ

iσμk

M
AF
5

þiσμΔ

M
AF
6 þ

iσkΔ

M2

�
Pμ

M
AF
8 þ

kμ

M
AF
9 þ

Δμ

M
AF
17

��
Uðp;ΛÞ

ð14Þ

where the first 7 terms are identical to the ones given in
[10], and the last one, containing the additional invariant
amplitude AF

17, is associated with the aforementioned
missing Lorentz structure.
The case of the axial vector correlator is more involved,

and the complete construction of the straight-link para-
metrization is given in Appendix D. We arrive at the form

Wγμγ5

Λ0Λ ¼ Ūðp0;Λ0Þ
�
iϵμPkΔ

M3
AG
1 þ iσPμγ5

M
AG
17 þ

iσPkγ5

M2

×

�
Pμ

M
AG
18 þ

kμ

M
AG
19 þ

Δμ

M
AG
20

�

þ iσPΔγ5

M2

�
Pμ

M
AG
21 þ

kμ

M
AG
22 þ

Δμ

M
AG
23

��
Uðp;ΛÞ

ð15Þ

which in fact has only one term in common with
the staple-link parametrization given in [10], namely,
the one associated with the invariant amplitude AG

1 ;
we make choices differing from the ones in [10]
even within the straight-link sector.2 All GPCFs in
these straight-link parametrizations are functions of k2,

1We use the notation σμa ¼ σμνaν and σab ¼ σμνaμbν.2A consideration in these choices is the ease of matching to the
GTMD parametrizations introduced in the following.
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k · P; k · Δ;Δ2; P · Δ. In staple-link parametrizations,
such as the ones given in [10], the GPCFs additionally
depend on all scalar products involving the additional
vector v characterizing the staple link.
It is interesting to note that, for both the vector and axial

vector operators, 8 GPCFs enter the parametrization for the
straight gauge link case. This is the same as the total
number of GPDs (including twist two, twist three, and twist
four). This is expected because the GPDs are defined with
quarks separated only along the light cone. The number of
GTMDs on the other hand is 16. Because the underlying

structure functions, the GPCFs, are fewer in number, we
expect the GTMDs to be connected to one another. These
relations between the GTMDs are known as the Lorentz
invariance relations and we discuss them in Sec. IV.

D. Generalized transverse momentum-dependent
parton distributions

The unintegrated correlator definining the generalized
transverse momentum-dependent parton distributions is
given by

WΓ
Λ0ΛðP; x; kT; ξ;ΔT ;UÞ ¼

Z
dk−WΓ

Λ0ΛðP; k;Δ;UÞ

¼ 1

2

Z
dz−d2zT
ð2πÞ3 eixP

þz−−ikT ·zT hp0;Λ0jψ̄
�
−
z
2

�
ΓUψ

�
z
2

�
jp;Λi

����
zþ¼0

: ð16Þ

Its parametrization in terms of GTMDs, as defined in Ref. [10], reads as follows3: For Γ ¼ γþ, γþγ5, iσiþγ5, one has, where
Latin indices denote transverse components, restricted to the values 1,2,

Wγþ
Λ0Λ ¼ 1

2M
Ūðp0;Λ0Þ

�
F11 þ

iσiþki

Pþ F12 þ
iσiþΔi

Pþ F13 þ
iσijkiΔj

M2
F14

�
Uðp;ΛÞ ð17Þ

¼
�
F11 þ

iΛϵijkiΔj

M2
F14

�
δΛ0Λ þ

�
ΛΔ1 þ iΔ2

2M
ð2F13 − F11Þ þ

Λk1 þ ik2

M
F12

�
δ−Λ0Λ; ð18Þ

Wγþγ5
Λ0Λ ¼ 1

2M
Ūðp0;Λ0Þ

�
−
iϵijkiΔj

M2
G11þ

iσiþγ5ki

Pþ G12þ
iσiþγ5Δi

Pþ G13þ iσþ−γ5G14

�
Uðp;ΛÞ ð19Þ

¼
�
−
iðk1Δ2−k2Δ1Þ

M2
G11þΛG14

�
δΛ0Λþ

�
Δ1þ iΛΔ2

M

�
G13þ

iΛðk1Δ2−k2Δ1Þ
2M2

G11

�
þk1þ iΛk2

M
G12

�
δ−Λ0Λ; ð20Þ

Wiσiþγ5
Λ0Λ ¼ 1

2M
Ūðp0;Λ0Þ

�
iϵij

�
kj

M
H11þ

Δj

M
H12

�
þMiσiþγ5

Pþ H13þ
kiiσkþγ5kk

MPþ H14

þΔiiσkþγ5kk

MPþ H15þ
Δiiσkþγ5Δk

MPþ H16þ
kiiσþ−γ5

M
H17þ

Δiiσþ−γ5

M
H18

�
Uðp;ΛÞ ð21Þ

¼
�
iϵij

�
kj

M
H11 þ

Δj

M
H12

�
þ Λ

�
ki

M
H17 þ

Δi

M
H18

��
δΛ0Λ þ

�
−iϵij

ΛΔ1 þ iΔ2

2M

�
kj

M
H11 þ

Δj

M
H12

�

þ ðδi1 þ iΛδi2ÞH13 þ
k1 þ iΛk2

M

�
ki

M
H14 þ

Δi

M
H15

�
þ ðΔ1 þ iΛΔ2ÞΔi

M2
H16

�
δ−Λ0Λ: ð22Þ

For each correlator listed, the second equality follows once Pþ is taken to be much larger than all other mass scales. On the
other hand, for γi, γiγ5, one has

Wγi

Λ0Λ ¼ 1

2Pþ Ūðp0;Λ0Þ
�
ki

M
F21 þ

Δi

M
F22 þ

Miσiþ

Pþ F23 þ
kiiσkþkk

MPþ F24 þ
Δiiσkþkk

MPþ F25

þ ΔiiσkþΔk

MPþ F26 þ
iσjikj

M
F27 þ

iσjiΔj

M
F28

�
Uðp;ΛÞ ð23Þ

3Note that the form of this GTMD parametrization, as well as the GPD parametrization exhibited further below, is independent of the
choice of gauge link, contrary to the GPCF parametrization discussed above. Thus, the relations between GTMDs and GPDs given for
staple-shaped gauge links in [10] remain true for straight gauge links.
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¼
�
ki

Pþ F21 þ
Δi

Pþ F22 − iΛϵij
�
kj

Pþ F27 þ
Δj

Pþ F28

��
δΛ0Λ

þ 1

2Pþ

�
−
iΔ2 þ ΛΔ1

M
ðkiF21 þ ΔiF22Þ þ 2MðΛδi1 þ iδi2ÞF23

þ 2

M
ðΛk1 þ ik2ÞðkiF24 þ ΔiF25Þ þ

2

M
ðΛΔ1 þ iΔ2ÞΔiF26

�
δ−Λ0Λ; ð24Þ

Wγiγ5

Λ0Λ ¼ 1

2Pþ Ūðp0;Λ0Þ
�
−
iϵjikj

M
G21 −

iϵjiΔj

M
G22 þ

Miσiþγ5

Pþ G23 þ
kiiσkþγ5kk

MPþ G24

þ Δiiσkþγ5kk

MPþ G25 þ
Δiiσkþγ5Δk

MPþ G26 þ
kiiσþ−γ5

M
G27 þ

Δiiσþ−γ5

M
G28

�
Uðp;ΛÞ ð25Þ

¼
�
iϵij

�
kj

PþG21 þ
Δj

PþG22

�
þ Λ

�
ki

PþG27 þ
Δi

PþG28

��
δΛ0Λ þ 1

2Pþ

�
−iϵij

iΔ2 þ ΛΔ1

M
ðkjG21 þ ΔjG22Þ

þ 2Mðδi1 þ iΛδi2ÞG23 þ
2

M
ðk1 þ iΛk2ÞðkiG24 þ ΔiG25Þ þ

2

M
ðΔ1 þ iΛΔ2ÞΔiG26

�
δ−Λ0Λ: ð26Þ

The GTMDs considered here are complex functions of the set of kinematical variables x; ξ; k2T; kT · ΔT; t; in the case of a
staple-shaped gauge link, they furthermore depend on the vector v characterizing the staple,

Xðx; ξ; k2T; kT · ΔT; t; vÞ ¼ Xeðx; ξ; k2T; kT · ΔT; t; vÞ þ iXoðx; ξ; k2T; kT · ΔT; t; vÞ ð27Þ

with X ¼ F1j; G1j; H1j, at twist two, and X ¼ F2j; G2j, at twist three. Xe is symmetric under v → −v (T even), while Xo

reverses its sign for v → −v (T odd). Due to Hermiticity and time reversal invariance, we have that the following GTMD
components are odd for ξ → −ξ, kT · ΔT → −kT · ΔT :

Fe
12; Fe

22; Fe
23; Fe

24; Fe
26; Fe

27; Ge
13; Ge

21; Ge
25; Ge

28; He
11; He

15; He
18 ð28aÞ

Fo
11; Fo

13; Fo
14; Fo

21; Fo
25; Fo

28; Go
11; Go

12; Go
14; Go

22; Go
23;

Go
24; Go

26; Go
27; Ho

12; Ho
13; Ho

14; Ho
16; Ho

17: ð28bÞ

This influences which kT-moments of these GTMDs can appear in the ξ ¼ 0 case.

E. Generalized parton distributions

The generalized parton distributions are obtained by formally integrating Eq. (16) over the transverse parton momentum,
kT , provided that the gauge link has the appropriate form, cf. the discussion in Sec. II B,

FΓ
Λ0Λðx; ξ; tÞ ¼

1

2

Z
dz−

2π
eixP

þz−hp0;Λ0jψ̄
�
−
z
2

�
ΓUψ

�
z
2

�
jp;Λi

����
zþ¼0;zT¼0

: ð29Þ

For γþ; γþγ5; iσiþγ5 one has

Fγþ
Λ0Λ ¼ 1

2Pþ Ūðp0;Λ0Þ
�
γþH þ iσþΔ

2M
E

�
Uðp;ΛÞ ¼ HδΛ;Λ0 þ ðΛΔ1 þ iΔ2Þ

2M
Eδ−Λ;Λ0 ; ð30Þ

Fγþγ5
Λ0Λ ¼ 1

2Pþ Ūðp0;Λ0Þ
�
γþγ5H̃ þ Δþγ5

2M
Ẽ

�
Uðp;ΛÞ ¼ ΛH̃δΛ;Λ0 þ ðΔ1 þ iΛΔ2Þ

2M
ξẼδ−Λ;Λ0 ; ð31Þ

Fiσiþγ5
Λ0Λ ¼ iϵij

2Pþ Ūðp0;Λ0Þ
�
iσþjHT þ γþΔj − Δþγj

2M
ET þ PþΔj

M2
H̃T −

Pþγj

M
ẼT

�
Uðp;ΛÞ ð32Þ
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¼
�
iϵijΔj

2M
ðET þ 2H̃TÞ þ

ΛΔi

2M
ðẼT − ξETÞ

�
δΛΛ0 þ

�
ðδi1 þ iΛδi2ÞHT −

iϵijΔjðΛΔ1 þ iΔ2Þ
2M2

H̃T

�
δ−ΛΛ0 ð33Þ

whereas for γi, γiγ5,

Fγi

Λ0Λ ¼ M
2ðPþÞ2 Ūðp0;Λ0Þ

�
iσþiH2T þ γþΔi − Δþγi

2M
E2T þ PþΔi

M2
H̃2T −

Pþγi

M
Ẽ2T

�
Uðp;ΛÞ ð34Þ

¼
�
Δi

2Pþ E2T þ Δi

Pþ H̃2T þ iΛϵijΔj

2Pþ ðẼ2T − ξE2TÞ
�
δΛΛ0 ð35Þ

þ
�
−MðΛδi1 þ iδi2Þ

Pþ H2T −
ðΛΔ1 þ iΔ2ÞΔi

2MPþ H̃2T

�
δΛ−Λ0 ;

Fγiγ5

Λ0Λ ¼ iϵijM
2ðPþÞ2 Ūðp0;Λ0Þ

�
iσþjH0

2T þ γþΔj − Δþγj

2M
E0
2T þ PþΔj

M2
H̃0

2T −
Pþγj

M
Ẽ0
2T

�
Uðp;ΛÞ ð36Þ

¼
�
iϵijΔj

2Pþ E0
2T þ

iϵijΔj

Pþ H̃0
2T −

ΛΔi

2Pþ ðẼ0
2T −ξE0

2TÞ
�
δΛΛ0 þ

�
Mðδi1þ iΛδi2Þ

Pþ H0
2T −

iϵijðΛΔ1þ iΔ2ÞΔj

2MPþ H̃0
2T

�
δΛ−Λ0 : ð37Þ

The gauge connection for GPDs is a straight link, implying
that all GPDs are naive T-even. We use the GPD para-
metrization from Ref. [10]. As in the first parametrization
introduced by Ji [4], the letter H signifies that in the
forward limit these GPDs correspond to a PDF, while the
ones denoted by E are completely new functions; H, E, H̃,
Ẽ parametrize the chiral-even quark operators. In the chiral-
odd sector, HT , ET , H̃T , ẼT describe the tensor quark
operators, the subscript T signifying that the quarks flip
helicity or are transversely polarized [33]. The matrix
structures that enter the twist-three vector ðγiÞ and axial
vector ðγiγ5Þ cases are identical to the ones occurring at the
twist-two level in the chiral-odd tensor sector. Hence, the
GPDs have similar names: the corresponding twist-three
GPD, occurring with the same matrix coefficient, is named
F2T if parametrizing the vector case γi and F0

2T if para-
metrizing the axial vector case γiγ5, with F ¼ H;E; H̃; Ẽ.

F. Helicity structure

To elucidate the helicity structure, which is needed to
connect to phenomenological applications and which also
serves as a heuristic tool in the construction of LIR and
EoM relations below, we introduce the quark-proton
helicity amplitudes [6]

AΛ0λ0;Λλ ¼
Z

dz−d2zT
ð2πÞ3 eixP

þz−−ikT ·zT

× hp0;Λ0jOλ0λðzÞjp;Λijzþ¼0: ð38Þ

At twist two one has the bilocal quark field operators

O��ðzÞ¼
1

4
ψ̄

�
−
z
2

�
γþð1� γ5Þψ

�
z
2

�
¼ 1ffiffiffi

2
p ϕ†

�ϕ�; ð39Þ

where ϕ� denotes the � helicity components of
ϕ ¼ 1

2
γ−γþψ , the independent degrees of freedom obtained

from the QCD equations of motion [34,35].4 These oper-
ators generate nonflip transitions between quark �;�
helicity states. Note that, in this section only, for the purpose
of discussing helicity structure, we drop the gauge link in the
bilocal operators to simplify notation.
The various LIRs and EoM relations that we derive in

subsequent sections correspond to different helicity combi-
nations obtained varying the initial and final proton helicity
states. We obtain 8 distinct relations from the following
combinations, ðþ;þÞ � ð−;−Þ, and ðþ;−Þ � ð−;þÞ, in
the vector and axial vector sector, respectively. In what
follows we derive all four spin correlations.
The correlation functions in Eqs. (18) and (20) can be

written in terms of the quark-proton helicity amplitudes as

Wγþ
Λ0Λ ¼ AΛ0þ;Λþ þ AΛ0−;Λ−; ð40Þ

Wγþγ5
Λ0Λ ¼ AΛ0þ;Λþ − AΛ0−;Λ−: ð41Þ

One finds the following expressions for the proton nonflip
terms:

4We use the conventions of [35] in writing the right-hand side
of Eq. (39), as well as Eqs. (47) below.
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F11 ¼
1

2
ðWγþ

þþ þWγþ
−−Þ ¼

1

2
ðAþþ;þþ þ Aþ−;þ−

þ A−þ;−þ þ A−−;−−Þ; ð42aÞ

i
ðkT×ΔTÞ3

M2
F14¼

1

2
ðWγþ

þþ−Wγþ
−−Þ

¼1

2
ðAþþ;þþþAþ−;þ−−A−þ;−þ−A−−;−−Þ;

ð42bÞ

G14 ¼
1

2
ðWγþγ5

þþ −Wγþγ5
−− Þ

¼ 1

2
ðAþþ;þþ − Aþ−;þ− − A−þ;−þ þ A−−;−−Þ; ð42cÞ

− i
ðkT × ΔTÞ3

M2
G11

¼ 1

2
ðWγþγ5

þþ þWγþγ5
−− Þ

¼ 1

2
ðAþþ;þþ − Aþ−;þ− þ A−þ;−þ − A−−;−−Þ; ð42dÞ

where, because of the constraints in Eqs. (28), the
combinations on the right-hand side of Eqs. (42a) and
(42c) and Eqs. (42b) and (42d) are purely real and
imaginary, respectively.
The distributions in both transverse coordinate and

momentum space corresponding to these GTMDs were

analyzed in detail in Refs. [8,9]. F11 describes an unpolar-
ized quark and proton state, and it reduces to the PDF f1 in
the forward, kT integrated, limit; G14 describes the quark
helicity distribution, or g1 in the forward, kT integrated,
limit. F14 and G11 do not have GPD or TMD limits.
However, in the forward limit, their average over kT
weighted by k2T gives [9]

ðLqÞ3 ¼
Z

dx
Z

d2kT
1

2

�
kT × i

∂
∂ΔT

�
3

ðWγþ
þþ −Wγþ

−−Þ

¼ −
Z

dx
Z

d2kT
k2T
M2

F14; ð43Þ

2ðLqÞ3ðSqÞ3 ¼
Z

dx
Z

d2kT
1

2

�
kT × i

∂
∂ΔT

�
3

× ðWγþγ5
þþ þWγþγ5

−− Þ

¼
Z

dx
Z

d2kT
k2T
M2

G11; ð44Þ

where Eq. (43) represents the quark OAMalong the z axis in
a longitudinally polarized proton, while Eq. (44) gives the
quark OAM along the z axis for a longitudinally polarized
quark, or a spin-orbit term.
The proton spin flip terms read

−
iðkT × ΔTÞ3

M
F12 ¼

1

2
ððΔ1 − iΔ2ÞWγþ

−þ þ ðΔ1 þ iΔ2ÞWγþ
þ−Þ

¼ 1

2
ððΔ1 − iΔ2ÞðA−þ;þþ þ A−−;þ−Þ þ ðΔ1 þ iΔ2ÞðAþþ;−þ þ Aþ−;−−ÞÞ; ð45aÞ

kT · ΔT

M
F12 þ

Δ2
T

2M
ð2F13 − F11Þ ¼

1

2
ððΔ1 − iΔ2ÞWγþ

−þ − ðΔ1 þ iΔ2ÞWγþ
þ−Þ

¼ 1

2
ððΔ1 − iΔ2ÞðA−þ;þþ þ A−−;þ−Þ − ðΔ1 þ iΔ2ÞðAþþ;−þ þ Aþ−;−−ÞÞ ð45bÞ

and

Δ2
T

M
G13 þ

kT · ΔT

M
G12 ¼

1

2
ððΔ1 − iΔ2ÞWγþγ5

−þ þ ðΔ1 þ iΔ2ÞWγþγ5
þ− Þ

¼ 1

2
ððΔ1 − iΔ2ÞðA−þ;þþ − A−−;þ−Þ þ ðΔ1 þ iΔ2ÞðAþþ;−þ − Aþ−;−−ÞÞ; ð46aÞ

iðkT × ΔTÞ3
M

�
Δ2

T

2M2
G11 −G12

�
¼ 1

2
ððΔ1 − iΔ2ÞWγþγ5

−þ − ðΔ1 þ iΔ2ÞWγþγ5
þ− Þ

¼ 1

2
ððΔ1 þ iΔ2ÞðA−þ;þþ − A−−;þ−Þ − ðΔ1 þ iΔ2ÞðAþþ;−þ − Aþ−;−−ÞÞ: ð46bÞ

At twist three, the bilocal operators can be written as the overlap of a dynamically independent quark field, ϕ (good
component), and a dynamically dependent quark-gluon composite field, χ (bad component) [34,35]
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O−�þðzÞ ¼
1

8
ψ̄

�
−
z
2

�
ðγ1 − iγ2Þð1þ γ5Þψ

�
z
2

�
¼ 1

2
χ†þϕþ; ð47aÞ

Oþ−�ðzÞ ¼ 1

8
ψ̄

�
−
z
2

�
ðγ1 þ iγ2Þð1þ γ5Þψ

�
z
2

�
¼ 1

2
ϕ†
þχþ; ð47bÞ

Oþ�−ðzÞ ¼ −
1

8
ψ̄

�
−
z
2

�
ðγ1 þ iγ2Þð1 − γ5Þψ

�
z
2

�
¼ 1

2
χ†−ϕ−; ð47cÞ

O−þ�ðzÞ ¼ −
1

8
ψ̄

�
−
z
2

�
ðγ1 − iγ2Þð1 − γ5Þψ

�
z
2

�
¼ 1

2
ϕ†
−χ−: ð47dÞ

Notice that the � on the left-hand side symbolizes that the helicity of the quark within the quark-gluon composite field, χ (on
the right-hand side), is always opposite so that the operators in Eqs. (47) represent chiral-even (quark nonflip) transitions
[34,36]. As a result, one can form twice as many helicity amplitudes as compared to the twist-two case [34]

Atw3
Λ0λ0�;Λλ ¼

Z
dz−d2zT
ð2πÞ3 eixP

þz−−ikT ·zT hp0;Λ0jOλ0�λðzÞjp;Λijzþ¼0; ð48aÞ

Atw3
Λ0λ0 ;Λλ� ¼

Z
dz−d2zT
ð2πÞ3 eixP

þz−−ikT ·zT hp0;Λ0jOλ0λ� ðzÞjp;Λijzþ¼0: ð48bÞ

Therefore,

Atw3
Λ0−�;Λþ ¼ Wγ1

Λ0Λ þWγ1γ5

Λ0Λ − iWγ2

Λ0Λ − iWγ2γ5

Λ0Λ ; ð49aÞ

Atw3
Λ0þ;Λ−� ¼ Wγ1

Λ0Λ þWγ1γ5

Λ0Λ þ iWγ2

Λ0Λ þ iWγ2γ5

Λ0Λ ; ð49bÞ

Atw3
Λ0þ�;Λ− ¼ −Wγ1

Λ0Λ þWγ1γ5

Λ0Λ − iWγ2

Λ0Λ þ iWγ2γ5

Λ0Λ ; ð49cÞ

Atw3
Λ0−;Λþ� ¼ −Wγ1

Λ0Λ þWγ1γ5

Λ0Λ þ iWγ2

Λ0Λ − iWγ2γ5

Λ0Λ : ð49dÞ

At the twist-three level, we have the following expressions for the proton helicity nonflip terms:

−
iϵijkj

Pþ F27 −
iϵijΔj

Pþ F28 ¼
1

2
ðWγi

þþ −Wγi
−−Þ; ð50aÞ

ki

Pþ F21 þ
Δi

Pþ F22 ¼
1

2
ðWγi

þþ þWγi
−−Þ; ð50bÞ

ki

Pþ G27 þ
Δi

PþG28 ¼
1

2
ðWγiγ5

þþ −Wγiγ5
−− Þ; ð50cÞ

iϵijkj

Pþ G21 þ
iϵijΔj

Pþ G22 ¼
1

2
ðWγiγ5

þþ þWγiγ5
−− Þ: ð50dÞ

As we show in subsequent sections, Eqs. (50a) and (50d) allow us to identify the twist-three GTMDs that enter the EoM
relations for F14 and G11, respectively.
Writing the GTMDs that enter the proton helicity flip case one has

−
iϵijMΔj

Pþ F23 − i
ðkT × ΔTÞ3

MPþ ðkiF24 þ ΔiF25Þ ¼
1

2
ððΔ1 − iΔ2ÞWγi

−þ þ ðΔ1 þ iΔ2ÞWγi

þ−Þ ð51aÞ

−
Δ2

T

2MPþðkiF21þΔiF22Þþ
MΔi

Pþ F23þ
kT ·ΔT

MPþ ðkiF24þΔiF25Þþ
Δ2

TΔi

MPþF26¼
1

2
ððΔ1− iΔ2ÞWγi

−þ−ðΔ1þ iΔ2ÞWγi

þ−Þ ð51bÞ
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and,

MΔi

Pþ G23 þ
kT · ΔT

MPþ ðkiG24 þ ΔiG25Þ þ
ΔiΔ2

T

M
G26 ¼

1

2
ððΔ1 − iΔ2ÞWγiγ5

−þ þ ðΔ1 þ iΔ2ÞWγiγ5

þ− Þ ð52aÞ

−
iϵijΔ2

T

2MPþ ðkjG21−ΔjG22Þ−
iϵijΔj

Pþ G23−
iðkT ×ΔTÞ3

MPþ ðkiG24þΔiG25Þ¼
1

2
ððΔ1− iΔ2ÞWγiγ5

−þ − ðΔ1þ iΔ2ÞWγiγ5

þ− Þ: ð52bÞ

The helicity amplitude structure is preserved when going
to either the GPD or the TMD limit. It plays an important
role in defining the observables for the various quantities.
The GTMDs defined so far are related to GPDs by
integrating them over kT and to TMDs by taking the
forward limit (Δ → 0).

III. EQUATION OF MOTION RELATIONS

A. Construction of equation of motion relations

Equation of motion relations connect different GTMD
correlators of the type defined in Eq. (16), inwhich the quark
creation and annihilation operators are located at positions
−z=2 and z=2. To construct them, it is useful to consider

initially a somewhat more general correlator in which the
quark creation and annihilation operators are located atmore
freely variable positions zout and zin, respectively Fig. 2.
Central to the construction is the observation that, taken
between physical particle states, matrix elements of oper-
ators that vanish according to the classical field equations of
motion vanish in the quantum theory5 [37]. Thus, in view of
the classical quark field equations of motion

ði=D −mÞψ ¼ ði=∂ þ g=A −mÞψ ¼ 0; ð53aÞ

ψ̄ði=⃖DþmÞ ¼ ψ̄ði=⃖∂ − g=AþmÞ ¼ 0 ð53bÞ

one has the vanishing correlation function

0 ¼
Z

dz−ind
2zin;T

ð2πÞ3
Z

dz−outd2zout;T
ð2πÞ3 eikðzin−zoutÞ−iΔðzinþzoutÞ=2

· hp0;Λ0jψ̄ðzoutÞ½ði=⃖DþmÞΓU � ΓUði=D −mÞ�ψðzinÞjp;Λijzþin¼zþout¼0 ð54Þ

where, specifically, Γ ¼ iσiþγ5 ¼ 1
2
ðγþγiγ5 − γiγþγ5Þ with a transverse vector index i ¼ 1, 2; cf. Sec. II D. Note that the =D

and =⃖D operators act on the zin and zout arguments, respectively. Furthermore, no derivatives with respect to zþin or z
þ
out appear

in the square bracket; these derivatives are accompanied in the Dirac operator by a factor γþ, implying that the terms in
question vanish once multiplied by the structure Γ, which contains an additional factor γþ. Thus, introducing the equations
of motion as in (54) is consistent with an a priori specification zþin ¼ zþout ¼ 0.
Performing an integration by parts with respect to both zin and zout yields

0 ¼
Z

dz−ind
2zin;T

ð2πÞ3
Z

dz−outd2zout;T
ð2πÞ3 eikðzin−zoutÞ−iΔðzinþzoutÞ=2

�
hp0;Λ0jψ̄ðzoutÞ½−i=∂outUΓ ∓ iΓ=∂ inU − g=AðzoutÞUΓ� ΓUg=AðzinÞ�ψðzinÞjp;Λi

þ hp0;Λ0jψ̄ðzoutÞ
��

−=k −
=Δ
2

�
UΓ ∓ ΓU

�
−=kþ =Δ

2

�
þ ðm ∓ mÞΓU

�
ψðzinÞjp;Λi

	����
zþin¼zþout¼0

: ð55Þ

Two types of contributions are generated. The second
line of (55) contains the terms in which the derivatives
act on the gauge links; these terms will ultimately result in
quark-gluon-quark correlators. The gauge links U depend
parametrically on the positions of the endpoints zin and zout,
and the derivatives act on those parameters, as laid out in

detail in Appendix A. Note that, in Eqs. (57), (59a), and
(59b), zin and zout are set to z=2 and −z=2, respectively,
after the corresponding derivatives are taken. In those
equations, the argument of U that the derivative is acting
upon is indicated both by the side from which it acts, as
well as by the position that is explicitly set afterwards. The
third line of (55) contains the standard terms in which the
derivatives act on the exponential in the Fourier trans-
formation; these terms result in quark-quark correlators.
Proceeding by changing integration variables,

5Note that the argument given in [37] is formulated for local
operators; its extension to nonlocal operators such as that
considered here calls for further justification, as noted in [31].
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b ¼ zin þ zout
2

; z ¼ zin − zout; ð56Þ

and translating the matrix elements by −b, one obtains,

0 ¼
�Z

db−d2bT
ð2πÞ3 e−ibΔe−ibpeibp

0
�Z

dz−d2zT
ð2πÞ3 eikz

�

hp0;Λ0jψ̄ð−z=2Þ½ð−i=⃗∂ − g=AÞUΓj−z=2 � ΓUð−i=⃖∂ þ g=AÞjz=2�ψðz=2Þjp;Λi

þ hp0;Λ0jψ̄ð−z=2Þ
��

−=k −
=Δ
2

�
UΓ ∓ ΓU

�
−=kþ =Δ

2

�
þ ðm ∓ mÞΓU

�
ψðz=2Þjp;Λi

	����
zþ¼bþ¼0

ð57Þ

having taken into account the phases generated in the proton states by the translation. Thus, a δ-function which
enforces momentum conservation as expected, δ3ðp0 − p − ΔÞ, is factored out; it follows that the rest of the expression
by itself must already vanish. Proceeding to simplify the Dirac structures (employing, e.g., the identity
γμγργν ¼ gμργν þ gνργμ − gμνγρ − iϵσμρνγσγ5), one can finally identify from the third line of (57) the GTMD correlators
defined in Eq. (16), and one thus arrives at the equation of motion relations

−
Δþ

2
Wγiγ5

Λ0Λ þ ikþϵijWγj

Λ0Λ þ Δi

2
Wγþγ5

Λ0Λ − iϵijkjWγþ
Λ0Λ þMi;S

Λ0Λ ¼ 0; ð58aÞ

−kþWγiγ5

Λ0Λ þ iΔþ

2
ϵijWγj

Λ0Λ þ kiWγþγ5
Λ0Λ − iϵij

Δj

2
Wγþ

Λ0Λ þmWiσiþγ5
Λ0Λ þMi;A

Λ0Λ ¼ 0; ð58bÞ

which relate the correlation functions for different Dirac structures, γiγ5; γi; γþγ5; γþ, iσiþγ5, and in which the genuine/
dynamic [22] twist-three terms, copied from the second line of (57), are given by6

Mi;S
Λ0Λ ¼ −

i
4

Z
dz−d2zT
ð2πÞ3 eixP

þz−−ikT ·zT hp0;Λ0jψ̄
�
−
z
2

�
½ð=⃗∂ − ig=AÞUΓj−z=2 þ ΓUð=⃖∂ þ ig=AÞjz=2�ψ

�
z
2

�
jp;Λizþ¼0 ð59aÞ

Mi;A
Λ0Λ ¼ −

i
4

Z
dz−d2zT
ð2πÞ3 eixP

þz−−ikT ·zT hp0;Λ0jψ̄
�
−
z
2

�
½ð=⃗∂ − ig=AÞUΓj−z=2 − ΓUð=⃖∂ þ ig=AÞjz=2�ψ

�
z
2

�
jp;Λizþ¼0 ð59bÞ

with Γ ¼ iσiþγ5. In the following, only the case of
vanishing skewness, Δþ ¼ 0, will be considered further.
Relations (58a) and (58b) are generalizations to the off-

forward case of the EoM relations involving the kT-
unintegrated correlator first introduced in [20,38,39]. In
particular, Eq. (58b) leads to the relation between the
polarized structure functions g1 and g2 first obtained in the
forward limit using the same method in Refs. [38,39].
However, notice that, at variance with [38,39], because of
the symmetrization introduced in Eqs. (54)–(57), the
imaginary parts in Eq. (58b) appear only for the non-
forward terms (terms multiplied byΔ). As will be discussed
further below, these relations represent a first step towards
deriving a connection between twist-two GTMDs and
twist-three GPDs using a procedure alternative to OPE
that highlights the sensitivity to the quark intrinsic trans-
verse momentum. In our case, they attain additional
significance in that they provide a framework for describing

partonic OAM in the proton in terms of specific distribu-
tions, thus helping to clarify possible mechanisms that
generate it. A prerequisite for understanding what produces
OAM in the proton is that one examines the dynamics
encoded in the correlator components at the uninte-
grated level.

B. Gauge link structure and intrinsic twist-three term

The form of the intrinsic twist-three terms given in
Sec. III A is valid for an arbitrary choice of gauge link U.
The gauge link depends parametrically on the locations of
its endpoints; the derivative operators quantify those
dependences. More concrete forms are obtained by con-
sidering particular gauge link paths. An important choice is
the staple-shaped gauge link path, the geometry of which
was already discussed in detail in Sec. II B, with the legs of
the staple described by a four-vector v; this contains also
the straight gauge link path in the limit v ¼ 0. Given this
concrete choice, a more explicit form of the intrinsic twist-
three contributions can be derived.

6Note that the expression for Mi;S
Λ0Λ quoted in [19] is missing

an overall factor −i.
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To establish notation, consider a staple-shaped gauge link U connecting the space-time points y and y0 via three straight
segments,

U ¼ P exp

�
−ig

Z
yþv

y
dxμAμðxÞ

�
P exp

�
−ig

Z
y0þv

yþv
dxμAμðxÞ

�
P exp

�
−ig

Z
y0

y0þv
dxμAμðxÞ

�
ð60Þ

≡U1ð0; 1ÞU2ð0; 1ÞU3ð0; 1Þ; ð61Þ

which each can be parametrized in terms of a real parameter t as

U1ða; bÞ ¼ P exp

�
−ig

Z
b

a
dtvμAμðyþ tvÞ

�
; ð62Þ

U2ða; bÞ ¼ P exp

�
−ig

Z
b

a
dtðy0 − yÞμAμðyþ vþ tðy0 − yÞÞ

�
; ð63Þ

U3ða; bÞ ¼ P exp

�
−ig

Z
b

a
dtð−vμÞAμðy0 þ v − tvÞ

�
: ð64Þ

As noted above, the four-vector v describes the legs of the staple-shaped path. The parametrization includes the special case
v ¼ 0, in which the staple degenerates to a straight link between y and y0 given by U2ð0; 1Þ, whereas U1 ¼ U3 ¼ 1. In the
following, Ui given without an argument means Ui ≡Uið0; 1Þ.
As shown in Appendix A, with this parametrization, one arrives at the explicit expression� ∂

∂yν − igAνðyÞ
�
U ¼ igU1

Z
1

0

dsU2ð0; sÞðy0 − yÞμFμνðyþ vþ sðy0 − yÞÞð1 − sÞU2ðs; 1ÞU3

þ ig
Z

1

0

dsU1ð0; sÞvμFμνðyþ svÞU1ðs; 1ÞU2U3 ð65Þ

in which only field strength terms remain. In complete analogy, one also obtains for the adjoint term

U
� ∂⃖
∂y0ν þ iAνðy0Þ

�
¼ igU1

Z
1

0

dsU2ð0; sÞðy0 − yÞμFμνðyþ vþ sðy0 − yÞÞsU2ðs; 1ÞU3

−U1U2ig
Z

1

0

dsU3ð0; sÞvμFμνðy0 þ v − svÞU3ðs; 1Þ; ð66Þ

where in each integral, s parametrizes the position of the color field strength insertion along the gauge link connecting the
quark positions. These forms are still completely general. In the following, in particular the kT-integral of the genuine twist-
three terms will be of interest, in which case, cf. (59a) and (59b), the transverse separation zT is set to zero and z has only a
minus component, z ¼ ð0; z−; 0; 0Þ. Specializing furthermore to the case where also v has only a minus component,
v ¼ ð0; v−; 0; 0Þ, cf. the discussion in Sec. II B, the staple legs collapse onto a common axis. In this case we define Uðx; x0Þ
to denote a straight Wilson line connecting the locations x and x0, and obtain, upon identifying the endpoints y ¼ −z=2 and
y0 ¼ z=2,

ð=⃗∂ − ig=AÞUj−z=2 ¼ igz−
Z

1

0

dsð1 − sÞUð−z=2;−z=2þ vþ szÞγμFþμð−z=2þ vþ szÞUð−z=2þ vþ sz; z=2Þ

þ igv−
Z

1

0

dsUð−z=2;−z=2þ svÞγμFþμð−z=2þ svÞUð−z=2þ sv; z=2Þ; ð67Þ

Uð=⃖∂ þ ig=AÞjz=2 ¼ igz−
Z

1

0

dssUð−z=2;−z=2þ vþ szÞγμFþμð−z=2þ vþ szÞUð−z=2þ vþ sz; z=2Þ

− igv−
Z

1

0

dsUð−z=2; z=2þ svÞγμFþμðz=2þ svÞUðz=2þ sv; z=2Þ: ð68Þ

RAJAN, ENGELHARDT, and LIUTI PHYS. REV. D 98, 074022 (2018)

074022-14



In both expressions, the first line stems from the variation of
the Wilson line which connects the ends of the staple legs,

whereas the second line stems from the variation of the
staple leg attached to the endpoint with respect to which the
derivative is taken. The straight gauge link case is obtained
by setting v ¼ 0, i.e., only the first lines in (67) and (68)
remain. This limit was already given in [19].
Particularly compact expressions are obtained if one

further integrates over the longitudinal momentum frac-
tion x, in which case z ¼ 0 altogether, cf. (59a) and
(59b). For z ¼ 0, the first lines in (67) and (68) vanish,
i.e., the genuine twist-three terms integrate to zero for a
straight gauge link. On the other hand, in the general
staple link case, the second lines remain, and give
identical contributions up to a relative minus sign.
Combining with the Dirac structure Γ and assembling
the complete genuine twist-three expressions, one has in
the completely integrated limit,

Z
dx

Z
d2kTM

i;S
Λ0Λ ¼ −iϵijgv−

1

2Pþ

Z
1

0

dshp0;Λ0jψ̄ð0ÞγþUð0; svÞFþjðsvÞUðsv; 0Þψð0Þjp;Λi; ð69Þ
Z

dx
Z

d2kTM
i;A
Λ0Λ ¼ −gv−

1

2Pþ

Z
1

0

dshp0;Λ0jψ̄ð0Þγþγ5Uð0; svÞFþiðsvÞUðsv; 0Þψð0Þjp;Λi: ð70Þ

Note that the ϵij in (69) can be absorbed into the dual field strength F̃þi ¼ −ϵijFþj, useful for the analysis within instanton
models [26], in which F̃ ¼ �F. On the other hand, compact expressions also for the second Mellin moments result if one
specializes to the straight-link case. Aweighting by a factor x can be generated by taking a derivative with respect to z−, cf.
(59a) and (59b); in the limit z ¼ 0, only the contributions from the derivative acting on either of the z− prefactors in the first
lines of (67) and (68) remain. Thus, one arrives atZ

dxx
Z

d2kTM
i;S
Λ0Λ ¼ −

ig
4ðPþÞ2 hp

0;Λ0jψ̄ð0Þγþγ5Fþið0Þψð0Þjp;Λi; ð71Þ

Z
dxx

Z
d2kTM

i;A
Λ0Λ ¼ g

4ðPþÞ2 ϵ
ijhp0;Λ0jψ̄ð0ÞγþFþjð0Þψð0Þjp;Λi ð72Þ

for straight gauge links. Note that one can obtain, e.g., the
right-hand side of (72) by evaluating the v−-derivative
of (69) at v− ¼ 0, and multiplying by a factor i=ð2PþÞ.
In other words, we uncover a connection between
straight-link quark-gluon-quark correlators such as (72)
and v−-derivatives of Qiu-Sterman type terms such as (69),
where the latter can be accessed using Lattice QCD TMD
data [40], such as given in [41–43].

C. EoM relations involving orbital angular momentum

Altogether, Eqs. (58a) and (58b) generate 32 individual
relations between GTMDs, obtained by inserting the para-
metrizations (18), (20), (24), and (26): each of the two
relations is a two-component equation in the transverse
plane; furthermore, the resulting 4 individual component
relations are complex, i.e., each comprises a relation for the
real (T-even) and the imaginary (T-odd) parts of GTMDs.
The resulting 8 relations finally each contain 4 possible

helicity combinations, as discussed in Sec. II F, for the
proton helicity conserving, Eqs. (42), and the helicity flip,
Eqs. (45) combinations, respectively. We refrain from
quoting all 32 of these relations. They can be specialized
to theΔ ¼ 0 TMD limit and to the kT-integrated GPD limit.
In the TMD limit, a number of known TMD relations [44]
is reproduced, including explicit expressions for the genu-
ine twist-3 parts in terms of quark-gluon-quark correlators,
encoded in the Mi;S

Λ0Λ and Mi;A
Λ0Λ terms. For the kT-

integrated case, we focus on purely transverse momentum
transfer, i.e., vanishing skewness, ξ ¼ 0. In this case, there
are potentially 8 relations: Of the original 32, 16 are ξ-odd,
and of course only the T-even relations are relevant for the
GPD limit. Among these 8 relations, we discuss in detail
three which involve exclusively k2T moments of GTMDs
and GPDs. These three are moreover singled out by the fact
that they are also accompanied by three correspond-
ing LIRs.

FIG. 2. Kinematical variables for the correlation function
describing a GTMD. The matrix element in the correlator is a
function of z ¼ zin − zout where zin ¼ z=2 (zout ¼ −z=2) is the
argument of ψ (ψ̄ ); b ¼ ðzin þ zoutÞ=2 is the Fourier conjugate of
Δ ¼ p0 − p.
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In this section, we present, in particular, the EoM
relations describing the quark OAM and spin-orbit con-
tributions. These involve F14, which is obtained for the
helicity configuration (42) describing an unpolarized quark
in a longitudinally polarized proton, and a relation for G11,
obtained for the helicity configuration (42d), describing a
longitudinally polarized quark in an unpolarized proton.
These configurations are obtained by taking the helicity
combinations ðΛ0ΛÞ ¼ ðþþÞ � ð−−Þ, in Eqs. (58a) and
(58b), respectively. The relations we obtain constitute
x-dependent identities tying the definitions, respectively,
of partonic OAM, Lz, and the longitudinal contribution to
the spin-orbit coupling L · S, to directly observable twist-
three distributions. We present the third EoM relation,
which instead involves transverse polarization, in Sec. V.
As we show below, after taking Δþ ¼ 0 (without loss of
generality in the angular momentum sum rule), we obtain
the following EoM relations from Eqs. (58a) and (58b),
respectively,

xẼ2TðxÞ ¼ −H̃ðxÞ þ Fð1Þ
14 ðxÞ −MF14

ð73Þ

x½2H̃0
2TðxÞþE0

2TðxÞ�
¼−HðxÞþm

M
ð2H̃TðxÞþETðxÞÞ−Gð1Þ

11 ðxÞ−MG11
ð74Þ

where we defined

Xð1Þ ¼ 2

Z
d2kT

k2T
M2

k2TΔ2
T − ðkT · ΔTÞ2
k2TΔ2

T

× Xðx; 0; k2T; kT · ΔT;Δ2
TÞ: ð75Þ

Note that, in the forward limit, this reduces to the standard
k2T-moment,

Xð1ÞjΔT¼0 ¼
Z

d2kT
k2T
M2

Xðx; 0; k2T; 0; 0Þ: ð76Þ

The genuine twist three contributions are defined as7

MF14
ðxÞ ¼

Z
d2kT

Δi

Δ2
T
ðMi;S

þþ −Mi;S
−−Þ; ð77Þ

MG11
ðxÞ ¼

Z
d2kTiϵij

Δj

Δ2
T
ðMi;A

þþ þMi;A
−−Þ; ð78Þ

where the expressions forMi;SðAÞ
ΛΛ0 given in Eqs. (59a)–(70),

can be interpreted as quantifying the quark-gluon-quark
interaction experienced by a quark of specific x, in the
given helicity configuration.

Equations (73) and (74) are the equation of motion
relations involving the OAM and the longitudinal part of
the spin-orbit L · S distributions, defined through F14 and
G11, in Eqs. (43) and (44), respectively. They are particularly
important among the various GTMD EoM relations that we
can write because they allow us to define observables other
than the GTMDs to measure the OAM distribution in the
proton.
All of the distributions in the EoM relations are defined

according to the scheme of Ref. [10] (see Sec. III):H and H̃
are twist two GPDs, in the vector and axial vector sector
respectively; Ẽ2T is a twist three GPD in the vector sector,
H̃0

2T and E0
2T are axial vector twist three GPDs.

Equation (73) relates an intrinsic [22] twist three GPD,
Ẽ2T , on the left-hand side [19], to a twist two GPD, H̃, the
kT-moment of the GTMD, F14, Eq. (75), and a genuine
twist-three term, MF14

. It is obtained by contracting
Eq. (58a) with Δi=Δ2

T , forming the ðΛ0ΛÞ ¼ ðþþÞ −
ð−−Þ combination of helicity components, and inserting
the GTMD parametrizations of the correlators, yielding

0 ¼ −2x
�
kT · ΔT

Δ2
T

F27 þ F28

�
þ G14

− 2
k2TΔ2

T − ðkT · ΔTÞ2
M2Δ2

T
F14 þ

Δi

Δ2
T
ðMi;S

þþ −Mi;S
−−Þ:

ð79Þ
Integrating over kT and identifying the resulting GPDs [10]
gives

0¼ xẼ2T þ H̃−Fð1Þ
14 þ

Z
d2kT

Δi

Δ2
T
ðMi;S

þþ−Mi;S
−−Þ; ð80Þ

i.e., one obtains Eq. (73). Recalling the discussion in
Sec. II B, in the case of a staple-shaped gauge link, this
requires that the legs of the staple properly collapse upon kT-
integration such as to produceGPDswith straight gauge link.
Euation (74) was derived in a similar way. It relates the

twist-three GPD combination, 2H̃0
2TðxÞ þ E0

2TðxÞ, to the
GPDH, the kT-moment of theGTMD,G11, which describes
the longitudinal part of the parton spin-orbit distribution, and
a genuine twist-three term. Notice the appearance of a quark
mass term proportional to the GPD 2H̃T þ ET in the chiral
odd sector [45]. Contracting Eq. (58) with iϵijΔj=Δ2

T ,
forming the ðΛ0ΛÞ ¼ ðþþÞ þ ð−−Þ combination of helicity
components, cf. Eq. (42d), and inserting the GTMD para-
metrizations of the correlators yields

0¼ 2x

�
kT ·ΔT

Δ2
T

G21þG22

�
þF11

þ2
k2TΔ2

T − ðkT ·ΔTÞ2
M2Δ2

T
G11−2

m
M

�
kT ·ΔT

Δ2
T

H11þH12

�

þ iϵij
Δj

Δ2
T
ðMi;A

þþþMi;A
−−Þ: ð81Þ7Note that in [19], the first of these relations was quoted with

an erroneous additional normalization factor 2M.
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Integrating over kT and identifying the resulting GPDs gives

0 ¼ xð2H̃0
2T þ E0

2TÞ þH þGð1Þ
11 −

m
M

ð2H̃T þ ETÞ

þ
Z

d2kTiϵij
Δj

Δ2
T
ðMi;A

þþ þMi;A
−−Þ ð82Þ

i.e., Eq. (74).

IV. GENERALIZED LORENTZ INVARIANCE
RELATIONS

The underlying Lorentz structure of the unintegrated
correlator, Eqs. (14) and (15) allows one to find relations
between the x-dependent kT-moments of GTMDs and
GPDs. As stated before, this is due to the fact that, for
the straight gauge link case, the total number of GPCFs is
less than the number of GTMDs. Similar relations connect-
ing the various TMDs, in the forward limit, were derived in
Refs. [21,38]. These equations are a consequence of the
covariant definition of the correlation function, and they are
therefore referred to as Lorentz invariance relations.
The following LIRs, which we derive further below,

involve the kT-moments of the GTMDs respectively
describing theOAMand longitudinal spin-orbit termswhich
also enter the EoMs derived in Sec. III, Eqs. (73) and (74),

dFð1Þ
14

dx
¼ Ẽ2T þH þ E ⇒ Fð1Þ

14 ¼ −
Z

1

x
dy½Ẽ2T þH þ E�;

ð83Þ
dGð1Þ

11

dx
¼ −ðE0

2T þ 2H̃0
2T þ H̃Þ

⇒ Gð1Þ
11 ¼

Z
1

x
dy½2H̃0

2T þ E0
2T þ H̃�: ð84Þ

On the left-hand side, we have k2T-moments of twist-two
GTMDs. TheseGTMDs are unique in that, in the limit t ¼ 0,
they represent the parton longitudinal OAM distribution,

Fð1Þ
14 , and longitudinal parton spin-orbit distribution,G

ð1Þ
11 . On

the right-hand side, the integral expressions for the intrinsic
twist-three GPDs Ẽ2T þH þ E, and 2H̃0

2T þ E0
2T þ H̃,

allow us to access both OAM and the longitudinal spin-
orbit term directly from deeply virtual exclusive measure-
ments as these GPDs enter as coefficients of specific
azimuthal angular modulations of the cross section. Note
that these x-dependent relations are valid also for ΔT ≠ 0.
Note also that, at variance with previous work

[12,26,32,46], Eq. (83) allows us to obtain directly
information on the OAM distribution because its form is
not integrated in x (it occurs at the kT-integrated level).
Equation (84) is new: it allows us to connect the longitudinal

spin-orbit x-distribution, Gð1Þ
11 , to a specific twist-three GPD

combination, 2H̃0
2T þ E0

2T that uniquely appears in off-
forward processes.

If wewere towork with a staple gauge link, the number of
GPCFswould increase to 16 for both the vector and the axial
vector case. In this scenario, since the number of GTMDs is
the same as the number of GPCFs, we do not expect there to
be any LIRs connecting exclusively GTMDs (or their GPD
limits). Indeed, if we do try to write these relations, we find
that extra terms appear that consist of GPCFs that cannot be
combined to form either GPDs or GTMDs. These extra
terms, which are required in order to properly encode
Lorentz invariance in the relations, have been termed LIR
breaking terms [24]. For example, (83) is modified to read

dFð1Þ
14

dx
¼ Ẽ2T þH þ EþAF14

; ð85Þ

with

AF14
¼v−

ð2PþÞ2
M2

Z
d2kT

Z
dk−

�
kT ·ΔT

Δ2
T

ðAF
11þxAF

12ÞþAF
14

þk2TΔ2
T −ðkT ·ΔTÞ2

Δ2
T

� ∂AF
8

∂ðk ·vÞþx
∂AF

9

∂ðk ·vÞ
��

ð86Þ

where the 4-vector v ¼ ð0; v−; 0; 0Þ describes the direction
of the staple, which here is taken to extend along the light
cone. The amplitudes AF

i are the ones appearing in the
parametrization given in [10], appropriate for a staple link
structure, up to a rescaling stemming from the fact that the
staple vector v used here and the analogous vectorN used in
[10] are related by a rescaling. Note that, if onewere to take v
off the light cone, v ¼ ðvþ; v−; 0; 0Þ, cf. the discussion in
Sec. II B, additional termswould appear in (86) that formally
vanish as vþ → 0; examples of such terms in the case of
TMD LIRs have been given in [24]. Of course, the GPCFs
themselves then also depend on vþ.
In what follows, we work with straight gauge links,

where terms such as (86) are absent; in Sec. IV C, we return
to the staple link case and obtain a concrete expression for
(86) in terms of quark-gluon-quark correlators, by combin-
ing the LIR with the corresponding EoM.

A. Construction of Lorentz invariance relations

The general structure of the unintegrated correlation
function was written in terms of all the independent
Lorentz structures multiplied by scalar functions, AF

i ; A
G
i

in Sec. II C. The correlation function integrated in k− (and
kT dependent) was parametrized in terms of GTMDs in
Ref. [10] (Sec. II D). GTMDs can, therefore, be expressed
through k− integrals of the scalar functions AF

i ; A
G
i . These

expressions are given in Appendix C. As was shown in
Sec. II C, the total number of independent functions in the
unintegrated correlator is 8 for the vector and 8 for the axial
vector sectors. The total number of twist-two plus twist-
three GTMDs is 12 vector and 12 axial vector [10]. Since
this number exceeds the number of AF

i ; A
G
i functions, the

GTMDs will be related to one another. This type of relation
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that is just originating from the parametrization in terms of
Lorentz covariant structures is called a LIR.
In the following, we describe the procedure used to

derive LIRs between the kT-moments of the twist-two
GTMDs listed in Sec. II D, cf. also Eqs. (42b) and (42d),
and the twist-three GPDs listed in Sec. II E. It is based on
the following integral relation for amplitudes A depending
on the integration variable k via Lorentz invariants as
A≡ Aðk · P; k2; k · ΔÞ, where we take the momentum
transfer Δ to be purely transverse,

d
dx

Z
d2kT

Z
dk−

k2TΔ2
T − ðkT · ΔTÞ2

Δ2
T

X ½A; x�

¼
Z

d2kT

Z
dk−ðk · P − xP2ÞX ½A; x�

þ
Z

d2kT

Z
dk−

k2TΔ2
T − ðkT · ΔTÞ2

Δ2
T

∂X
∂x ½A; x�: ð87Þ

Here, X ½A; x� is a linear combination of amplitudes A in
which the coefficients, aside from containing the invariants
k · P, k2 and k · Δ, may have an explicit x-dependence. This
is an off-forward extension of relations used previously in
the analysis of TMD LIRs [24,38,39,47]; here, the presence
of the additional invariant k · Δmust be properly accounted
for. In view of this complication, it is worth laying out the
elements of the derivation of (87); this is presented in
Appendix B.

B. Relating k2T moments of GTMDs to GPDs

Since a generic GTMD X can be expressed in the form
X ¼ R

dk−X ½A; x�, as given in Appendix C, one can use
(87) to cast the x-derivative of its kT-moment, Xð1Þ, cf. (75),
in terms of A amplitudes. In particular,

d
dx

Fð1Þ
14 ¼ 4Pþ

M2

Z
d2kT

Z
dk−

�
ðk · P − xP2ÞðAF

8 þ xAF
9 Þ þ

k2TΔ2
T − ðkT · ΔTÞ2

Δ2
T

AF
9

�
; ð88Þ

d
dx

Gð1Þ
11 ¼ 4Pþ

M2

Z
d2kT

Z
dk−

�
ðk · P − xP2Þ

�
AG
1 þ AG

18 þ xAG
19

2

�
þ k2TΔ2

T − ðkT · ΔTÞ2
Δ2

T

AG
19

2

�
: ð89Þ

To complete the LIRs, one constructs the appropriate combinations of GPDs which yield the right-hand sides. The relevant
combinations, cf. Appendix C, are8

H þ E ¼ 2Pþ
Z

d2kT

Z
dk−2

�
kT · ΔT

Δ2
T

AF
5 þ AF

6 þ P · k − xP2

M2
ðAF

8 þ xAF
9 Þ
�
; ð90Þ

Ẽ2T ¼ 2Pþ
Z

d2kT

Z
dk−ð−2Þ

�
kT · ΔT

Δ2
T

AF
5 þ AF

6 þ ðkT · ΔTÞ2 − k2TΔ2
T

M2Δ2
T

AF
9

�
; ð91Þ

H̃ ¼ 2Pþ
Z

d2kT

Z
dk−

�
−AG

17 þ
xP2 − k · P

M2
ðAG

18 þ xAG
19Þ

�
; ð92Þ

E0
2T þ 2H̃0

2T ¼ 2Pþ
Z

d2kT

Z
dk−

�
2
xP2 − k · P

M2
AG
1 þ AG

17 þ
ðkT · ΔTÞ2 − k2TΔ2

T

M2Δ2
T

AG
19

�
: ð93Þ

To construct the appropriate combinations completing the
LIRs, we examine the expression for the proton helicity
combination associated with the GTMD appearing on the
left-hand side of (88), (89), and find the twist-three GPDs
corresponding to that same helicity structure. The GPCF
substructure of the twist-three GPDs need not, in general,

completelymatch theGPCF combination of the x-derivative
of the k2T moment of the GTMD. One may need to add a
twist-two GPD with the appropriate GPCF substructure.
In particular, F14 describes an unpolarized quark in a

longitudinally polarized proton, Eq. (42) for Γ ¼ γþ; the
twist-three GPD with a similar proton helicity combination
is Ẽ2T . Comparing their GPCF decompositions, we see that
if we add H þ E, we arrive at the LIR,

dFð1Þ
14

dx
¼ Ẽ2T þH þ E: ð94Þ

8Note that one could equally quote the left-hand sides of
(90)–(93) in terms of kT-integrals of GTMDs instead of quoting
directly their GPD limits; cf. Appendix C. This would facilitate
a consistent regularization of the obtained LIRs at the level of
kT-integrals of GTMDs.
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Similarly, G11 describes a longitudinally polarized quark
in an unpolarized proton, Eq. (42d) with Γ ¼ γþγ5. The
corresponding twist-three combinationwith the same proton
helicity combination is 2H̃0

2T þE0
2T , with their GPCF sub-

structure given above. By adding the GPD H̃, this gives us

dGð1Þ
11

dx
¼ −ð2H̃0

2T þ E0
2TÞ − H̃: ð95Þ

As already noted further above, in the case of a staple
link, these Lorentz invariance relations acquire LIR violat-
ing terms that we introduce as, cf. (85),

dFð1Þ
14

dx
¼ Ẽ2T þH þ EþAF14; ð96Þ

dGð1Þ
11

dx
¼ −ð2H̃0

2T þ E0
2TÞ − H̃ þAG11

: ð97Þ

These relations are a central result of our paper: they give a
connection valid point by point in the kinematical variables
x and t ¼ −Δ2

T among the kT moments of GTMDs that

define dynamically OAM and longitudinal spin-orbit cou-
pling, specific twist-three GPDs, and LIR violating terms
that can be expressed in terms of genuine twist-three
contributions; the latter connection will be elucidated using
the example of AF14

, cf. (96), in the next section.

C. Intrinsic twist-three contributions

Lorentz invariance relations derived in the presence of a
staple-shaped gauge link generally include additional terms
beyond those found for straight gauge links, as exemplified
by (85) and (86) in comparison to (83). Whereas the staple
LIR by itself does not yield the concrete physical content of
these terms, considering it in the context of the straight-link
LIR as well as staple and straight-link EoMs provides more
detailed insight into their meaning. To illustrate this, it is
useful to pursue the case of the LIRs (83) and (85), relevant
for the description of quark orbital angular momentum in
the nucleon, further. Subtracting the former LIR from the
latter yields

AF14
ðxÞ≡ v−

ð2PþÞ2
M2

Z
d2kT

Z
dk−

�
kT · ΔT

Δ2
T

ðA11 þ xA12Þ þ A14 þ
k2TΔ2

T − ðkT · ΔTÞ2
Δ2

T

� ∂A8

∂ðk · vÞ þ x
∂A9

∂ðk · vÞ
��

¼ dFð1Þ
14

dx
−
dFð1Þ

14

dx

����
v¼0

ð98Þ

giving a concrete expression forAF14
in terms of the GTMD

F14. Note that, here, the discussion given in Sec. II B should
be kept in mind: Formulating the LIRs (as well as the EoMs
below) in terms of GPDs assumes that, in the staple-
link case, the legs of the staples have properly collapsed
upon kT-integration such as to produce GPDs with their
straight gauge link structures. This requires the staple link
vector v to lie on the light cone, v ¼ ð0; v−; 0; 0Þ. Correc-
tions to the above relationwould arise from several sources if
one were to take the staple vector v off the light cone,
v ¼ ðvþ; v−; 0; 0Þ. On the one hand, the cancellation be-
tween the straight and staple link GTMD precursors of the
GPDs in (83) and (85) would be incomplete; there would be
residual terms corresponding to the difference between the
two cases (unless one opts for the alternative quasi-GPD
scheme also mentioned in Sec. II B). On the other hand, as
already noted in connection with Eq. (86), additional
amplitudes would enter the GPCF expression.
Now, the difference of GTMD kT-moments in (98) can

also be extracted from the EoMs: subject again to the above
caveats, the GPD terms in the EoM (73) are identical for a
straight link and a staple link, and subtracting an instance of

(73) with a straight link from an instance with a staple link
yields

Fð1Þ
14 − Fð1Þ

14 jv¼0 ¼ MF14
−MF14

jv¼0
: ð99Þ

Thus, the additional terms in the staple LIR (85) are
associated with quark-gluon-quark correlations,

AF14
ðxÞ ¼ d

dx
ðMF14

−MF14
jv¼0

Þ: ð100Þ
Therefore, we see that, comparing the genuine twist-three
terms entering the staple link LIR and the staple link EoM,
these encode independent information: the EoM contains
MF14

alone, whereas the LIR contains the difference of
MF14

and MF14
jv¼0.

As was shown in Refs. [11,13], in the forward limit, and
integrated over momentum fraction x, the quantity −Fð1Þ

14

corresponds to Jaffe-Manohar quark orbital angular
momentum in the staple-link case, whereas it corresponds
to Ji quark orbital angular momentum in the v ¼ 0 straight-
link case. Using (69), we obtain a concrete expression for
the difference between the two,

−
Z

dx


Fð1Þ
14 −Fð1Þ

14

���
v¼0

����
ΔT¼0

¼ ∂
∂Δi iϵ

ijgv−
1

2Pþ

Z
1

0

dshp0;þjψ̄ð0ÞγþUð0;svÞFþjðsvÞUðsv;0Þψð0Þjp;þi
���
ΔT¼0

;

ð101Þ
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where it has been shown that 2ðΔi=Δ2
TÞfi ¼ ð∂=∂ΔiÞfi in

the limit ΔT → 0 for a vector function f which vanishes at
least linearly in that limit (this is clear if one decomposes f
using ΔT , fi ¼ Δifjj þ ϵijΔjf⊥); note that the function on
which the ΔT-derivative acts in (101) satisfies this require-
ment since the left-hand side is regular at ΔT ¼ 0. In
deriving (101), it has furthermore been shown that, once
one is considering ΔT-derivatives, the ðþþÞ and ð−−Þ
helicity combinations contribute equally to quark orbital
angular momentum. Equation (101) can be interpreted in
terms of the accumulated torque experienced by the struck
quark in a deep inelastic scattering process as a result of
final state interactions [13]. The genuine twist-three term

AF14
ðxÞ entering the staple link LIR thus rather directly

encodes information about this torque, via repeated inte-
gration in x. Equation (101) reproduces9 the expression for
the torque given in [13].
Analogous considerations apply to the staple link version

of the other LIR derived in Sec. IV B. For the spin-orbit
sum rule, one has

AG11
¼ d

dx
ðGð1Þ

11 −Gð1Þ
11 jv¼0Þ ¼ −

d
dx

ðMG11
−MG11

jv¼0
Þ

ð102Þ
and in the completely integrated, forward limit,

Z
dxðGð1Þ

11 −Gð1Þ
11 jv¼0Þ

���
ΔT¼0

¼ −
∂
∂Δi iϵ

ijgv−
1

2Pþ

Z
1

0

dshp0;þjψ̄ð0Þγþγ5Uð0; svÞFþjðsvÞUðsv; 0Þψð0Þjp;þi
���
ΔT¼0

: ð103Þ

This term is analogous to Eq. (101), the only difference being in γþ → −γþγ5.

D. Eliminating GTMD moments from
LIR and EoM relations

We now merge the information from the LIR, Eqs. (96) and (97), and EoM relations Eqs. (73) and (74) such as to
eliminate the GTMD moments. By eliminating Fð1Þ

14 between Eqs. (96) and (73), and Gð1Þ
11 between Eqs. (97) and (74),

respectively, we obtain relations involving only twist-two and twist-three GPDs including their corresponding genuine twist
terms. Considering again separately the vector and axial vector cases one has

Ẽ2T ¼ −
Z

1

x

dy
y
ðH þ EÞ −

�
H̃
x
−
Z

1

x

dy
y2

H̃

�
−
�
1

x
MF14

−
Z

1

x

dy
y2

MF14

�
−
Z

1

x

dy
y
AF14

; ð104Þ

2H̃0
2T þ E0

2T ¼ −
Z

1

x

dy
y
H̃ −

�
H
x
−
Z

1

x

dy
y2

H

�
þ m
M

�
1

x
ð2H̃T þ ETÞ −

Z
1

x

dy
y2

ð2H̃T þ ETÞ
�

−
�
1

x
MG11

−
Z

1

x

dy
y2

MG11

�
þ
Z

1

x

dy
y
AG11

: ð105Þ

These relations are valid for either a staple or a straight
gauge link structure (with staple vector v on the light cone
in the former case), keeping in mind that AF14

≡ 0 and
AG11

≡ 0 in the straight-link case. Since the GPDs in these
relations by definition are identical in the staple and

straight-link cases, subtracting a straight-link instance of
(104) from a staple-link instance again yields the relation
(100) between quark-gluon-quark terms (upon differentia-
tion with respect to x), and one likewise obtains the
analogous relation for AG11

. A converse way of stating
this is that the terms containing MF14

and AF14
always

conspire such that only a straight-link quark-gluon-quark
contribution remains, even if (104) is formally written for
the staple-link case; the same is true for (105).
If one disregards the quark-gluon-quark contributions,

and the quark mass term in Eq. (105), one obtains
generalizations of the relation derived by Wandzura and
Wilczek (WW) in Ref. [23],

9To see the correspondence, it is useful to reinstate into the
expression given in [13] a small momentum transfer, and to
translate the matrix element such that the quark operators are
located at the origin, as they are in (101). Taking into account
the resulting phases stemming from the proton states, one
can then identify

R
d3rri expð−iΔ⃗ r⃗Þ¼−ið2πÞ3δ3ðΔÞ∂=∂Δi. In

view of the standard normalization of states hp0 þ jpþi ¼
2Pþð2πÞ3δ3ðp0 − pÞ, the correspondence becomes evident.
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ẼWW
2T ¼ −

Z
1

x

dy
y
ðH þ EÞ −

�
H̃
x
−
Z

1

x

dy
y2

H̃

�
; ð106Þ

ð2H̃0
2T þE0

2TÞWW ¼−
Z

1

x

dy
y
H̃−

�
H
x
−
Z

1

x

dy
y2

H

�
; ð107Þ

isolating the twist-two components of Ẽ2T and
(2H̃0

2T þ E0
2T). We can then reexpress Eqs. (104) and

(105) as

Ẽ2T ¼ ẼWW
2T þ Ẽð3Þ

2T þ ẼLIR
2T ; ð108Þ

Ē0
2T ¼ Ē0WW

2T þ Ē0ð3Þ
2T þ Ē0LIR

2T þ Ē0m
2T; ð109Þ

where we defined

Ē0
2T ¼ 2H̃0

2T þ E0
2T:

Here, ẼLIR
2T and Ē0LIR

2T are the LIR violating terms containing

AF14
and AG11

, respectively, Ẽð3Þ
2T and Ē0ð3Þ

2T are the genuine
twist-three terms containing MF14

and MG11
, and Ē0m

2T is
the quark mass dependent term.

E. x0, x, and x2 moments

We now consider the x moments for the twist-three
GPDs entering Eqs. (104) and (105). Integral relations for
twist-three GPDs were first obtained in Refs. [26,46]
directly from the OPE while in this paper we derive them
by integrating the x-dependent expressions found from the
LIR and EoM.10 It is therefore important to check how the
two approaches correspond to one another. For the vector
case we have,Z

dxẼ2T ¼−
Z

dxðHþEÞ⇒
Z

dxðẼ2T þHþEÞ¼ 0;

ð110aÞ

Z
dxxẼ2T ¼ −

1

2

Z
dxxðH þ EÞ − 1

2

Z
dxH̃; ð110bÞ

Z
dxx2Ẽ2T ¼ −

1

3

Z
dxx2ðH þ EÞ − 2

3

Z
dxxH̃

−
2

3

Z
dxxMF14

���
v¼0

; ð110cÞ

where one can see that the contributions from AF14
and

MF14
cancel in the first two expressions integrating by

parts; it is assumed that the integrands are sufficiently
well behaved at the boundaries for all such integrations.
Notice that Eq. (110a) is an extension of the
Burkhardt-Cottingham sum rule to the off-forward case.
Equation (110b), taken in the forward limit, is a sum rule
for Ji quark angular momentum,

JJiq ¼ 1

2
ΔΣq þ LJi

q ð111Þ

as can be seen by identifying the terms

JJiq ¼ 1

2

Z
dxxðH þ EÞ; ΔΣq ¼

Z
dxH̃;

LJi
q ¼

Z
dxxðẼ2T þH þ EÞ: ð112Þ

Finally, Eq. (110c) is the only one containing a genuine
twist-three contribution. It should be noticed that this
contribution was surmised to be the same for all helicity
configurations in Ref. [26], while here we see that they are
distinct terms.
In order to gauge the size of the OAM component, one

can use data on the twist-two GPDs contributing to theWW
definition, and simultaneously extract the twist-three
GPDs. Detailed comparisons between the two sets of
measurements will allow us to constrain this quantity.
The axial vector moments are given by

Z
dxðE0

2T þ 2H̃0
2TÞ ¼ −

Z
dxH̃ ⇒

Z
dxðE0

2T þ 2H̃0
2T þ H̃Þ ¼ 0; ð113aÞ

Z
dxxðE0

2T þ 2H̃0
2TÞ ¼ −

1

2

Z
dxxH̃ −

1

2

Z
dxH þ m

2M

Z
dxðET þ 2H̃TÞ; ð113bÞ

Z
dxx2ðE0

2T þ 2H̃0
2TÞ ¼ −

1

3

Z
dxx2H̃ −

2

3

Z
dxxH þ 2m

3M

Z
dxxðET þ 2H̃TÞ −

2

3

Z
dxxMG11

����
v¼0

: ð113cÞ

Equations (113a)–(113c) are also consistent with those
found in Ref. [26] and revisited in Ref. [48]. In particular,
Eq. (113a) is an extension of the Burkhardt-Cottingham
sum rule to the off-forward case. Similarly to the vector
case, the various terms in Eq. (113b) can be rearranged so

10Notice the notation difference between Refs. [12,26,46]
and the classification scheme followed in this paper [10]:R
dxxG2 ¼ −

R
dxxðẼ2T þH þ EÞ.
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as to single out the second moment of a twist-three GPD,
namely the combination 2H̃0

2T þ E0
2T þ H̃, which in the

forward limit can be interpreted through the LIR in Eq. (84)
as the longitudinal contribution to the parton spin-orbit
interaction ðLzSzÞq, cf. (44),

2ðLzSzÞq ¼
Z

dxxðE0
2T þ 2H̃0

2T þ H̃Þ: ð114Þ

One then has, in the forward limit,

1

2

Z
dxxH̃ þ mq

2M
κqT ¼

Z
dxxð2H̃0

2T þ E0
2T þ H̃Þ þ 1

2
eq

ð115Þ

corresponding to the sum rule

2ðJzSzÞq ¼ 2ðLzSzÞq þ 2ðSzSzÞq ð116Þ

where the transverse anomalous magnetic moment, κqT , and
the quark number, eq,

κqT ¼
Z

dxðET þ 2H̃TÞ; eq ¼
Z

dxH ð117Þ

have been defined.
The quark mass-dependent term which appears in

Eq. (113b), technically through the equations of motion,
is due to transverse angular momentum components that
are present for nonzero quark mass. Note that this term is
chiral even, being given by the product of two chiral-odd
quantities. We thus find the following partitioning of the
terms representing total angular momentum,

2ðJzSzÞq ≡ 2½ðJ · SÞq − ðJT · STÞq� ¼
1

2

Z
dxxH̃ þ mq

2M
κqT:

ð118Þ

In the chiral limit, only the longitudinal polarization
component is available to the quarks, and the correlation
ðJzSzÞ is then quantified correctly by helicity-weighting the
correlator yielding Jz, cf. (112), which convertsH þ E into
H̃. No contribution from Ẽ appears due to time reversal
invariance. In the presence of a nonzero quark mass, this is

modified by the transverse anomalous magnetic moment
term, which accounts for the fact that also transverse
polarization components are available to massive quarks.
Note that one does not have to polarize the proton to
observe these correlations between quark spin and angular
momentum.

V. LIR AND EoM RELATIONS INVOLVING
TRANSVERSE SPIN CONFIGURATIONS

The main results of this paper are given by the EoM
relations in Eqs. (73) and (74), the LIR relations in
Eqs. (83) and (84), and the WW relations in Sec. IV, which
were obtained for longitudinal proton polarization at ξ ¼ 0.
Most of the LIRs [22], however, including the original ones
[38,39], were originally derived for the proton helicity flip
case, or for transversely polarized proton configurations. It
is therefore interesting to study the extension to the off-
forward case for these helicity configurations. We obtain
the following EoM result for the axial-vector GTMD:

1

2
Gð1Þ

12 ¼ x

�
H0

2T −
Δ2

T

4M2
E0
2T

�
−

Δ2
T

4M2
ðH þ EÞ

−
m
M

�
HT −

Δ2
T

4M2
ET

�
−MG12

; ð119Þ

where the genuine twist-three term

MG12
¼ −

Z
d2kTiϵij

Δj

Δ2
T

�
Δ1 þ iΔ2

2M
Mi;A

þ−

þ −Δ1 þ iΔ2

2M
Mi;A

−þ −
Δ2

T

4M2
Mi;A

þþ −
Δ2

T

4M2
Mi;A

−−

�
ð120Þ

has been defined.
Our derivation proceeds in analogy to the steps used in

the longitudinally polarized case, with a few important
differences, as follows. Multiplying the ðΛ0ΛÞ ¼ ðþ−Þ
component of (58) with ðΔ1 þ iΔ2Þ and the ðΛ0ΛÞ ¼
ð−þÞ component of (58) with ðΔ1 − iΔ2Þ, subtracting
these two component equations and contracting with
iϵijΔj=ð2MΔ2

TÞ yields, upon inserting the parametrizations
in terms of GTMDs,

0 ¼ kT · ΔT

2M2
F12 þ

Δ2
T

2M2

�
F13 −

F11

2

�
þ k2TΔ2

T − ðkT · ΔTÞ2
M2Δ2

T

�
G12 −

Δ2
T

2M2
G11

�
ð121Þ

−x
�
kT · ΔT

2M2
G21 þ

Δ2
T

2M2
G22 þ G23 þ

k2TΔ2
T − ðkT · ΔTÞ2
M2Δ2

T
G24

�
ð122Þ

þ m
M

�
kT · ΔT

2M2
H11 þ

Δ2
T

2M2
H12 þH13 þ

k2TΔ2
T − ðkT · ΔTÞ2
M2Δ2

T
H14

�
ð123Þ
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−
iϵijΔj

2MΔ2
T
ððΔ1 þ iΔ2ÞMi;A

þ− þ ð−Δ1 þ iΔ2ÞMi;A
−þÞ ð124Þ

and, upon integration with respect to kT and identifying the corresponding GPDs,

0 ¼ Δ2
T

4M2
Eþ 1

2
Gð1Þ

12 −
Δ2

T

4M2
Gð1Þ

11 − x

�
H0

2T þ Δ2
T

2M2
H̃0

2T

�
þ m
M

�
HT þ Δ2

T

2M2
H̃T

�
ð125Þ

−
iϵijΔj

2MΔ2
T

Z
d2kTððΔ1 þ iΔ2ÞMi;A

þ− þ ð−Δ1 þ iΔ2ÞMi;A
−þÞ: ð126Þ

Finally, eliminating Gð1Þ
11 using Eq. (74), we obtain

Eq. (119).
Equation (119) is a direct, off-forward GPD extension of

the well-known relation involving the polarized twist-three
PDF gT, the kT-moment of the TMD g1T and transversity,
h1 [38], as can be seen by identifying, in the forward limit,
H0

2T → gT , HT → h1, and G12 → g1T ,

0 ¼ 1

2
gð1Þ1T ðxÞ − xgTðxÞ þ

m
M

h1ðxÞ þ xg̃TðxÞ: ð127Þ

Note that our definition of the kT-moment Xð1Þ differs from
the one in Refs. [24,38] by a factor of 2. The intrinsic twist-
three contribution can be given explicitly in terms of quark-
gluon-quark correlators as

xg̃TðxÞ ¼
1

4M

Z
d2kTðM1;A

þ− þ iM2;A
þ− þM1;A

−þ − iM2;A
−þÞ

���
ΔT¼0

¼ MG12

���
ΔT¼0

: ð128Þ

This simplified form for MG12
in the ΔT ¼ 0 limit is obtained from (120) by considering approaches to the ΔT ¼ 0 limit

along both the Δ1 and the Δ2 axes.
The EoM relation (119) is accompanied by a corresponding LIR, which one obtains in complete analogy to the treatment

in Sec. IV B by considering the appropriate decompositions into amplitudes AG, cf. Appendix C. For straight gauge links,
one has

d
dx

Gð1Þ
12 ¼ 4Pþ

M2

Z
d2kT

Z
dk−

P2

M2

�
ðk · P − xP2ÞðAG

18 þ xAG
19Þ þ

k2TΔ2
T − ðkT · ΔTÞ2

Δ2
T

AG
19

�
ð129Þ

as well as

H̃ ¼ 2Pþ
Z

d2kT

Z
dk−

�
−AG

17 þ
xP2 − k · P

M2
ðAG

18 þ xAG
19Þ

�
; ð130Þ

H0
2T −

Δ2
T

4M2
E0
2T ¼ 2Pþ

Z
d2kT

Z
dk−

P2

M2

�
−AG

17 −
ðkT · ΔTÞ2 − k2TΔ2

T

M2Δ2
T

AG
19

�
ð131Þ

leading to the LIR

1

2

dGð1Þ
12

dx
¼ H0

2T −
Δ2

T

4M2
E0
2T −

�
1þ Δ2

T

4M2

�
H̃ þAG12

ð132Þ

whereAG12
≡ 0 in the straight-link case, but in the presence of a staple link with staple direction v on the light cone, cf. the

analogous discussion in Sec. IV C, one has the genuine twist-three contribution

AG12
¼ −

d
dx

ðMG12
−MG12

jv¼0
Þ: ð133Þ

This LIR is likewise an off-forward generalization of a well-known structure function relation; setting ΔT ¼ 0 in (132)
directly yields
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1

2

d
dx

gð1Þ1T ðxÞ ¼ gTðxÞ − g1ðxÞ − ĝTðxÞ ð134Þ

in which the genuine twist-three contribution is given in terms of quark-gluon-quark correlators as

ĝTðxÞ ¼
d
dx

ðMG12
−MG12

jv¼0
Þj
ΔT¼0

: ð135Þ
By using the same techniques as in Sec. IV, eliminating the term containing G12, we obtain the following relation:

H0
2T −

Δ2
T

4M2
E0
2T ¼

�
1þ Δ2

T

4M2

�Z
1

x

dy
y
H̃ þ m

M

�
1

x

�
HT −

Δ2
T

4M2
ET

�
−
Z

1

x

dy
y2

�
HT −

Δ2
T

4M2
ET

��

þ Δ2
T

4M2

�
1

x
ðH þ EÞ −

Z
1

x

dy
y2

ðH þ EÞ
�
þ
�
MG12

x
−
Z

1

x

dy
y2

MG12

�
−
Z

1

x

dy
y
AG12

: ð136Þ

Notice that this relation reduces in the forward limit to the one for the polarized structure functions, g1 and gT [24], namely,
taking H0

2T → gT ¼ g1 þ g2, H̃ → g1, and HT → h1, as well as taking into account (128), (133), and (135),

gT ¼
Z

1

x

dy
y
g1 þ

m
M

�
1

x
h1 −

Z
1

x

dy
y2

h1

�
þ
�
g̃T −

Z
1

x

dy
y
g̃T

�
þ
Z

1

x

dy
y
ĝT: ð137Þ

Taking moments of (136) in x, one obtainsZ
dx

�
H0

2T −
Δ2

T

4M2
E0
2T

�
¼

�
1þ Δ2

T

4M2

�Z
dxH̃ ⇒

ΔT→0
Z

dxðH0
2T − H̃Þ≡

Z
dxg2 ¼ 0; ð138aÞ

Z
dxx

�
H0

2T −
Δ2

T

4M2
E0
2T

�
¼ 1

2

�
1þ Δ2

T

4M2

�Z
dxxH̃ þ Δ2

T

8M2

Z
dxðH þ EÞ þ m

2M

Z
dx

�
HT −

Δ2
T

4M2
ET

�
; ð138bÞ

Z
dxx2

�
H0

2T −
Δ2

T

4M2
E0
2T

�
¼ 1

3

�
1þ Δ2

T

4M2

�Z
dxx2H̃ þ Δ2

T

6M2

Z
dxxðH þ EÞ þ 2m

3M

Z
dxx

�
HT −

Δ2
T

4M2
ET

�

þ 2

3

Z
dxxMG12

���
v¼0

: ð138cÞ

Equation (138a) is the off-forward generalization of the original Burkhardt-Cottingham sum rule; similarly, Eq. (138b) is
the generalization of the Efremov-Leader-Teryaev sum rule [49],Z

dxx

�
gTðxÞ −

1

2
g1ðxÞ

�
¼ 0; ð139Þ

which is valid in the chiral limit, m → 0, whereas Eq. (138c) in the forward and chiral limits reduces to,11Z
dxx2

�
gTðxÞ −

1

3
g1ðxÞ

�
¼ 2

3

Z
dxxMG12

����
v¼0;ΔT¼0

¼ 1

3
d2: ð140Þ

d2, which incorporates quark-gluon-quark correlations, is one of the few quantities where these effects can be obtained
unambiguously from inclusive polarized scattering experiments ([50] and references therein). One can write explicitly the
helicity structure of MG12

as

d2 ¼
1

2M

Z
dxx

Z
d2kTðM1;A

þ− þ iM2;A
þ− þM1;A

−þ − iM2;A
−þÞ

���
v¼0;ΔT¼0

: ð141Þ

A relation involving the GTMDF12, the imaginary part of which in the forward limit is (minus) the Sivers function f⊥1T [10],
is obtained by considering the combination ðΔ1 − iΔ2Þ times the ðΛ0ΛÞ ¼ ð−þÞ helicity component added to ðΔ1 þ iΔ2Þ
times the ðΛ0ΛÞ ¼ ðþ−Þ helicity component of Eq. (58a) and multiplying by Δi=ð2MΔ2

TÞ,

11Note that definitions of d2 in the literature vary by a factor of 2.
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− x

�
F23 þ

k2TΔ2
T − ðkT · ΔTÞ2
M2Δ2

T
F24

�
þ 1

2M2
ðΔ2

TG13 þ kT · ΔTG12Þ þ
k2TΔ2

T − ðkT · ΔTÞ2
M2Δ2

T
F12

þ Δi

2MΔ2
T
ððΔ1 − iΔ2ÞMi;S

−þ þ ðΔ1 þ iΔ2ÞMi;S
þ−Þ ¼ 0: ð142Þ

In the forward limit, Eq. (142) is a relation between purely imaginary quantities. This follows from the fact that, for Δ ¼ 0,
the real parts of all GTMDs entering Eq. (142) except for G12 vanish [10]; on the other hand, G12 is multiplied by ΔT. As a
consequence, also the real part of the genuine twist-three term vanishes for Δ ¼ 0. Turning therefore to the imaginary part,
in the forward limit, one has the TMD identifications Fo

23 ¼ f0T and Fo
24 ¼ f⊥T [10]. Integrated over kT, the term in the first

parenthesis thus combines to
R
d2kTfT ¼ 0 [44]. One is therefore left with the following kT-integrated relation involving

the Sivers function f⊥1T in the forward limit,

f⊥ð1Þ
1T ¼ −Foð1Þ

12 ¼ MF12

���
ΔT¼0

ð143Þ

where the quark-gluon-quark term

MF12
¼ −2i

Δi

2MΔ2
T

Z
d2kTððΔ1 − iΔ2ÞMi;S

−þ þ ðΔ1 þ iΔ2ÞMi;S
þ−Þ ð144Þ

has been introduced. Equation (143) indicates a correspondence of MF12
to the well-known Qiu-Sterman term Tqðx; xÞ in

the forward limit. Indeed, in analogy to the discussion surrounding Eq. (101), a compact expression for MF12
can be

obtained in the fully integrated case. Approaching theΔT ¼ 0 limit either along theΔ2 ¼ 0 axis or theΔ1 ¼ 0 axis, one has

MF12
jΔT¼0

¼ −i
1

M

Z
d2kTðM1;S

þ− þM1;S
−þÞ ¼

1

M

Z
d2kTðM2;S

þ− −M2;S
−þÞ: ð145Þ

Considering, for example, the form given in terms ofM1;S
Λ0Λ, and integrating with respect to x, one can insert (69) and obtain

the Sivers shift

hk2i ¼ M
1

2

Z
dxf⊥ð1Þ

1T ¼ −gv−
1

2Pþ

Z
1

0

dshP; S1jψ̄ð0ÞγþUð0; svÞFþ2ðsvÞUðsv; 0Þψð0ÞjP; S1i ð146Þ

after having converted the states from the helicity basis to a
spin quantization axis in the 1 direction, and having used a
rotation by π in the transverse plane to combine terms
associated with spin in the �1 directions. The case of spin
in the 2 direction can be treated analogously. One thus
obtains the standard Qiu-Sterman form [13] in the forward
limit. For ΔT ≠ 0, MF12

is an off-forward/generalized
analog of the Qiu-Sterman Tqðx; xÞ term.
The EoM relations presented so far in either the

longitudinal or transverse proton polarization cases allow
us to decompose specific twist-three GPDs into a linear
combination of a twist-two GPD, a quark-gluon-quark
correlation, the k2T moment of a twist-two GTMD and a
mass term in the axial-vector case. The k2T moment of the
GTMD can be eliminated using the LIRs. The resulting
relations, when integrated over x, are analogous to the
relations provided by Kiptily and Polyakov in [26]. Note,
however, that not all EoM relations are of this form; in
general, also other GTMD moments besides k2T moments
appear in the EoM relations that we have not discussed in
detail in this work. For instance, one finds a relation in

which the GTMD G13 contributes to the EoM weighted by
ðkT · ΔTÞ. Moreover, that EoM relation cannot have a LIR
counterpart within the twist-two and twist-three sectors,
since G13 is the only GTMD in those sectors which
contains the invariant amplitude AG

21; cf. Appendix C.

VI. CONCLUSIONS AND OUTLOOK

We presented the derivation of a set of relations con-
necting k2T-moments of GTMDs and twist-two as well as
twist-three GPDs, known as Lorentz invariance relations
and equation of motion relations. LIRs stem from the
Lorentz structure of the off-forward correlation function.
By examining their gauge link structure, we find that two
different types of relations exist: one obtained by consid-
ering a staple-shaped gauge link, where an explicit quark-
gluon-quark contribution appears, and one for the straight
gauge link, where this term is instead absent. On the other
hand, the QCD equations of motion yield complementary
relations containing explicit quark-gluon-quark contribu-
tions that have a different structure than the ones in the
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LIRs. By inserting the LIRs in the equations of motion we
can eliminate the k2T-moments of GTMDs, and obtain
relations directly between twist-two and twist-three
GPDs. In the absence of genuine twist-three terms, these
relations represent off-forward generalizations of the origi-
nal Wandzura-Wilzcek relations connecting twist-two and
twist-three PDFs.
Within our general scheme of constructing LIRs, we

focus particularly on ones involving the k2T-moments of
the GTMDs F14 and G11, which describe the x-density
distributions of the quark OAM, Lz, and longitudinal
spin-orbit interaction, LzSz. Our detailed study of the
kT-dependence of these OAM-related observables provides
physical insight that buttresses previous suggestions in the
literature, stemming from OPE-based integral relations,
that partonic OAM is described by twist-three GPDs.
Our results, therefore, represent a step forward in

comprehending parton OAM in the proton, on two
accounts. On the one hand, the obtained relations are
key to accessing information from experiment on the
missing piece in the proton’s angular momentum budget:
we obtain the x-dependent distribution of OAM through the
GPDs Ẽ2T , H, and E, which can be readily measured from
various azimuthal angular modulations in DVCS and
related processes. The new x-dependent expressions writ-
ten in terms of twist-three GPDs including the genuine
quark-gluon-quark terms bring, for the first time, partonic
OAM within experimental grasp. On the other hand, taking
integrals in x, and using the QCD equations of motion, one
recovers the sum rule relating the second Mellin-Barnes
moment of a specific twist-three GPD combination, here
called Ẽ2T þH þ E, to the moments of twist-two GPDs
yielding the combination Jq − Sq. Our result is therefore
not only consistent with previous findings hinting at a
twist-three nature of OAM [12,26,30,46]: it goes beyond
these predictions by providing a physical link, missing
from earlier work, which explains how OAM is described at
twist-three through its connection with the k2T-moment of a
GTMD. The, perhaps, most distinguishing merit of these
new relations lies in that they provide a handle on the
dynamical underpinnings of the parton correlations through
which OAM is generated. OAM is present because of the
transverse motion of partons when they are displaced from
the origin. This is described in QCD by a twist-three parton
correlation; the correlation is generated by the Lorentz
invariant structure of the proton matrix elements appearing
in the QCD equations of motion.
The LIRs will allow us to directly connect, on the one

hand, twist-three GPD measurements of OAM and spin-
orbit correlations, and on the other hand, Lattice QCD
evaluations of GTMDs. The k2T-moment of F14 has already
been accessed in a preliminary Lattice QCD calculation
[18]: GTMD k2T-moments can be obtained by generalizing
the proton matrix elements of quark bilocal operators used
to study TMDs, namely, by supplementing the transverse

momentum information with transverse position informa-
tion through the introduction of an additional nonzero
momentum transfer. The calculation in Ref. [18] also
includes the gauge connection between the quarks in the
quark bilocal operators, enabling the evaluation of both the
staple gauge link path used in TMD calculations, character-
izing Jaffe-Manohar (JM) OAM, and the straight path
yielding Ji OAM. Although this exploration was performed
at the pion mass mπ ¼ 518 MeV, its results suggest a
sizable difference between the two definitions.
Our findings provide a perspective for accessing exper-

imentally all terms appearing in both the JM and the Ji
definitions: Ji OAM is given by the Wandzura-Wilczek
component of Ẽ2T , which is described in terms of twist-two
GPDs, while JM OAM is given by the sum of these terms
and the genuine/intrinsic twist-three contribution, which we
identified as an integral over AF14

, technically a Lorentz
invariance relation violating term. Such a term may be
obtained by a careful analysis of DVCS type experiments
(see e.g., an analogous term in the forward case for the axial
vector components g1ðxÞ and g2ðxÞ, [24]).
Our findings extend to other GTMDs: here, we have

treated specifically G11, encoding spin-orbit correlations,
and G12, the off-forward extension of g1T , leading to a
direct measurement of the color force between quarks.
Understanding the role of GTMDs and twist-three GPDs

in quark OAM has initiated a fruitful interaction between
phenomenology, theory, and lattice QCD which we intend
to pursue further. In particular, the structure of the under-
lying QCD matrix element suggests the study of exper-
imental processes containing two hadronic reaction planes,
one associated with the hadron momentum transfer, and
one associated with the transverse momentum of the
hadronized ejected quark. We envisage developing the
description of such two-jet processes to underpin future
experimental efforts to access quark OAM directly from
GTMDs. Investigations of experimental hard scattering
processes/observables that measure OAM have started, and
the opportunity to measure OAM using deeply virtual
multiple coincidence exclusive processes will be soon
within reach at the new Jlab upgrade and, even more
promisingly, at an upcoming electron ion collider. Having
understood the mechanisms that regulate quark OAM in the
proton paves the way for future studies of the gluon sector
which will be crucial to understand the spin of hadrons.

ACKNOWLEDGMENTS

We thank Aurore Courtoy for taking part in the initial
stages of this work. We are also grateful to Ted Rogers for
many useful discussions, as well as to Matthias Burkardt
and Markus Diehl. This research is funded by DOE Grants
No. DE-SC0016286 (S. L. and A. R.) and No. DE-FG02-
96ER40965 (M. E.), by the Jefferson Science Associates
grant (A. R.), and by the DOE Topical Collaboration
on TMDs.

RAJAN, ENGELHARDT, and LIUTI PHYS. REV. D 98, 074022 (2018)

074022-26



APPENDIX A: EXPLICIT FORM OF QUARK-GLUON-QUARK TERMS

Consider a staple-shaped gauge link U connecting the space-time points y and y0 via three straight segments,

U ¼ P exp

�
−ig

Z
yþv

y
dxμAμðxÞ

�
P exp

�
−ig

Z
y0þv

yþv
dxμAμðxÞ

�
P exp

�
−ig

Z
y0

y0þv
dxμAμðxÞ

�
ðA1Þ

≡U1ð0; 1ÞU2ð0; 1ÞU3ð0; 1Þ; ðA2Þ

which each can be parametrized in terms of a real parameter t as

U1ða; bÞ ¼ P exp

�
−ig

Z
b

a
dtvμAμðyþ tvÞ

�
; ðA3Þ

U2ða; bÞ ¼ P exp

�
−ig

Z
b

a
dtðy0 − yÞμAμðyþ vþ tðy0 − yÞÞ

�
; ðA4Þ

U3ða; bÞ ¼ P exp

�
−ig

Z
b

a
dtð−vμÞAμðy0 þ v − tvÞ

�
: ðA5Þ

The four-vector v describes the legs of the staple-shaped path. The parametrization includes the special case v ¼ 0, in which
the staple degenerates to a straight link between y and y0 given by U2ð0; 1Þ, whereas U1 ¼ U3 ¼ 1. In the following, Ui
given without an argument means Ui ≡Uið0; 1Þ.
The goal of the following treatment is to evaluate

� ∂
∂yν − igAνðyÞ

�
U ¼

�∂U1

∂yν − igAνðyÞU1

�
U2U3 þ U1

∂U2

∂yν U3 ðA6Þ

(note that U3 is independent of y). Consider first ∂U1=∂yν. The derivative of the path-ordered exponential, cf. (A3), is

∂U1

∂yν ¼
Z

1

0

dsU1ð0; sÞ½−igvμ∂νAμðyþ svÞ�U1ðs; 1Þ: ðA7Þ

This can be recast by the following integration by parts. Noting that

d
ds

U1ð0; sÞ ¼ U1ð0; sÞð−igÞvμAμðyþ svÞ; ðA8Þ

d
ds

U1ðs; 1Þ ¼ igvμAμðyþ svÞU1ðs; 1Þ; ðA9Þ

it follows that

U1igAνðyþ vÞ − igAνðyÞU1 ¼
Z

1

0

ds
d
ds

½U1ð0; sÞigAνðyþ svÞU1ðs; 1Þ�

¼
Z

1

0

ds½U1ð0; sÞð−igÞvμAμðyþ svÞigAνðyþ svÞU1ðs; 1Þ

þ U1ð0; sÞigAνðyþ svÞigvμAμðyþ svÞU1ðs; 1Þ
þ U1ð0; sÞigvμ∂μAνðyþ svÞU1ðs; 1Þ�

¼ igvμ
Z

1

0

dsU1ð0; sÞ½Fμνðyþ svÞ þ ∂νAμðyþ svÞ�U1ðs; 1Þ ðA10Þ

having introduced the field strength Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�. Adding the left- and right-hand sides of (A7) to the
initial and final expressions in (A10), respectively, as well as subtracting U1igAνðyþ vÞ from both sides, finally yields
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� ∂
∂yν − igAνðyÞ

�
U1 ¼ igvμ

Z
1

0

dsU1ð0; sÞFμνðyþ svÞU1ðs; 1Þ −U1igAνðyþ vÞ: ðA11Þ

The term ∂U2=∂yν can be treated analogously; the resulting expressions are slightly more involved, since, in this case, also
the line element in U2 depends explicitly on y, cf. (A4):

∂U2

∂yν ¼
Z

1

0

dsU2ð0; sÞð−igÞ½−Aνðyþ vþ sðy0 − yÞÞ þ ðy0 − yÞμ∂νAμðyþ vþ sðy0 − yÞÞð1 − sÞ�U2ðs; 1Þ: ðA12Þ

Noting, in analogy to above,

d
ds

U2ð0; sÞ ¼ U2ð0; sÞð−igÞðy0 − yÞμAμðyþ vþ sðy0 − yÞÞ; ðA13Þ

d
ds

U2ðs; 1Þ ¼ igðy0 − yÞμAμðyþ vþ sðy0 − yÞÞU2ðs; 1Þ; ðA14Þ

one has

−igAνðyþ vÞU2 ¼
Z

1

0

ds
d
ds

½U2ð0; sÞigAνðyþ vþ sðy0 − yÞÞð1 − sÞU2ðs; 1Þ�

¼
Z

1

0

ds½U2ð0; sÞð−igÞðy0 − yÞμAμðyþ vþ sðy0 − yÞÞigAνðyþ vþ sðy0 − yÞÞð1 − sÞU2ðs; 1Þ

þ U2ð0; sÞigAνðyþ vþ sðy0 − yÞÞð1 − sÞigðy0 − yÞμAμðyþ vþ sðy0 − yÞÞU2ðs; 1Þ
þ U2ð0; sÞigðy0 − yÞμ∂μAνðyþ vþ sðy0 − yÞÞð1 − sÞU2ðs; 1Þ
− U2ð0; sÞigAνðyþ vþ sðy0 − yÞÞU2ðs; 1Þ�

¼ ig
Z

1

0

dsU2ð0; sÞ½ð1 − sÞðy0 − yÞμðFμνðyþ vþ sðy0 − yÞÞ þ ∂νAμðyþ vþ sðy0 − yÞÞÞ

− Aνðyþ vþ sðy0 − yÞÞ�U2ðs; 1Þ: ðA15Þ

Adding the left- and right-hand sides of (A12) to the initial and final expressions in (A15), respectively, as well as adding
igAνðyþ vÞU2 to both sides, finally leaves

∂U2

∂yν ¼ ig
Z

1

0

dsU2ð0; sÞð1 − sÞðy0 − yÞμFμνðyþ vþ sðy0 − yÞÞU2ðs; 1Þ þ igAνðyþ vÞU2: ðA16Þ

Inserting (A16) and (A11) on the right-hand side of (A6), one finally obtains an expression in which only field strength
terms remain,

� ∂
∂yν − igAνðyÞ

�
U ¼ igU1

Z
1

0

dsU2ð0; sÞðy0 − yÞμFμνðyþ vþ sðy0 − yÞÞð1 − sÞU2ðs; 1ÞU3

þ ig
Z

1

0

dsU1ð0; sÞvμFμνðyþ svÞU1ðs; 1ÞU2U3: ðA17Þ

In complete analogy, one obtains for the adjoint term,

U
� ∂⃖
∂y0ν þ iAνðy0Þ

�
¼ igU1

Z
1

0

dsU2ð0; sÞðy0 − yÞμFμνðyþ vþ sðy0 − yÞÞsU2ðs; 1ÞU3

− U1U2ig
Z

1

0

dsU3ð0; sÞvμFμνðy0 þ v − svÞU3ðs; 1Þ: ðA18Þ
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APPENDIX B: INTEGRAL RELATION FOR THE
CONSTRUCTION OF LIRS

The construction of LIRs is based on the integral
relation (87) for amplitudes A depending on the integration
variable k via Lorentz invariants as A≡ Aðk · P; k2; k · ΔÞ,
where we take the momentum transfer Δ to be purely
transverse,

d
dx

Z
d2kT

Z
dk−

k2TΔ2
T − ðkT ·ΔTÞ2

Δ2
T

X ½A;x�

¼
Z

d2kT

Z
dk−ðk ·P−xP2ÞX ½A;x�

þ
Z

d2kT

Z
dk−

k2TΔ2
T − ðkT ·ΔTÞ2

Δ2
T

∂X
∂x ½A;x�: ðB1Þ

Here, X ½A; x� is a linear combination of amplitudes A in
which the coefficients, aside from containing the invariants
k · P, k2 and k · Δ, may have an explicit x-dependence.
To see this relation, it is useful to handle the dependences

of the amplitudes A on the invariants k · P, k2, and k · Δ by
introducing new variables embodying these invariants,

σ≡2k ·P¼ xP2þ2k−Pþ⇒ k−¼ 1

2Pþ ðσ−xP2Þ; ðB2Þ

τ≡ k2 ¼ xσ − x2P2 − k2T; ðB3Þ
σ0 ≡ k · Δ ¼ −kT · ΔT ¼ −jkT jjΔT j cosϕ: ðB4Þ

Note again that the present treatment is for vanishing
skewness, in which case P2 ¼ M2 þ Δ2

T=4. Examining the
two terms on the right-hand side of (B1), they take the form

I1 ¼
Z

d2kT

Z
dk−ðk · P − xP2ÞX ½Að2k · P; k2; k · ΔÞ; x�

¼ 1

8Pþ

Z
dσdτdσ0

Z
∞

0

dk2T

Z
2π

0

dϕδðτ − xσ þ x2P2 þ k2TÞδðσ0 þ kT · ΔTÞðσ − 2xP2ÞX ½Aðσ; τ; σ0Þ; x�

¼ 1

4Pþ

Z
dσdτdσ0θðxσ − τ − x2P2ÞθðΔ2

Tðxσ − τ − x2P2Þ − σ02Þ σ − 2xP2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

Tðxσ − τ − x2P2Þ − σ02
p X ½Aðσ; τ; σ0Þ; x�; ðB5Þ

I2 ¼
Z

d2kT

Z
dk−

k2TΔ2
T − ðkT · ΔTÞ2

Δ2
T

∂X
∂x ½Að2k · P; k2; k · ΔÞ; x�

¼ 1

4Pþ

Z
dσdτdσ0

Z
∞

0

dk2T

Z
2π

0

dϕδðτ − xσ þ x2P2 þ k2TÞδðσ0 þ kT · ΔTÞk2Tsin2ϕ
∂X
∂x ½Aðσ; τ; σ0Þ; x�

¼ 1

2Pþ

Z
dσdτdσ0θðxσ − τ − x2P2ÞθðΔ2

Tðxσ − τ − x2P2Þ − σ02Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xσ − τ − x2P2

Δ2
T

−
σ02

Δ4
T

s
∂X
∂x ½Aðσ; τ; σ0Þ; x�; ðB6Þ

where in each case, in the first step, the integration variable k− has been substituted by σ according to
(B2), and two representations of unity have been introduced enforcing the identifications (B3) and (B4); also
the kT-integration has been cast in polar coordinates. In the second step, the angular integrations have been carried
out using Z

2π

0

dϕδðσ0 þ kT · ΔTÞsin2ϕ ¼ 2

k2TΔ2
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2TΔ2

T − σ02
q

θðk2TΔ2
T − σ02Þ; ðB7Þ

Z
2π

0

dϕδðσ0 þ kT · ΔTÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2TΔ2
T − σ02

p θðk2TΔ2
T − σ02Þ; ðB8Þ

followed by the integration over k2T. Consider now the left-hand side of (B1). It is of the same form as (B6), except
for containing X instead of ∂X=∂x, and for the overall derivative with respect to x. Thus, in view of the last line of
(B6), it reads

I ¼ d
dx

1

2Pþ

Z
dσdτdσ0θðxσ − τ − x2P2ÞθðΔ2

Tðxσ − τ − x2P2Þ − σ02Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xσ − τ − x2P2

Δ2
T

−
σ02

Δ4
T

s
X ½A; x� ðB9Þ
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¼ 1

2Pþ

Z
dσdτdσ0δðxσ − τ − x2P2ÞθðΔ2

Tðxσ − τ − x2P2Þ − σ02Þðσ − 2xP2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xσ − τ − x2P2

Δ2
T

−
σ02

Δ4
T

s
X ½A; x�

þ 1

2Pþ

Z
dσdτdσ0θðxσ − τ − x2P2ÞδðΔ2

Tðxσ − τ − x2P2Þ − σ02Þðσ − 2xP2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

Tðxσ − τ − x2P2Þ − σ02
q

X ½A; x�

þ 1

2Pþ

Z
dσdτdσ0θðxσ − τ − x2P2ÞθðΔ2

Tðxσ − τ − x2P2Þ − σ02Þ2
641
2

σ − 2xP2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

Tðxσ − τ − x2P2Þ − σ02
p X ½A; x� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xσ − τ − x2P2

Δ2
T

−
σ02

Δ4
T

s
∂X
∂x ½A; x�

3
75: ðB10Þ

The last term corresponds to I1 þ I2; to see (B1), it thus
remains to argue that the first two lines in (B10) yield no
contribution. In the first term, the δ-function sets
xσ − τ − x2P2 ¼ 0, and therefore the rest of the integrand
is proportional to θð−σ02Þ

ffiffiffiffiffiffiffiffiffi
−σ02

p
, which vanishes for any σ0.

In the second line in (B10), the δ-function sets the quantity in
the square root to zero, Δ2

Tðxσ − τ − x2P2Þ − σ02 ¼ 0. It
should be emphasized that these properties hinge on the
sin2 ϕ weighting of the kT-integral; cf. (B6). Without this
weighting, it is not clear that the two terms do not contribute,
and the LIR could potentially be modified by boundary
terms. The possibility of corrections through boundary
terms in LIRs not weighted by sin2 ϕ has also been noted
in [24].Note furthermore that no pathology arises in the limit
ΔT → 0; this limitmerely generates δðσ0Þ distributions in the
integrands, as is clear from inspecting (B7) and (B8), which
are the source of the superficially singular dependences on
Δ2

T . One can retrace the above derivation analogously in the
ΔT ¼ 0 limit, with (B1) continuing to hold.

APPENDIX C: GTMDs IN TERMS OF A
AMPLITUDES

To relate GTMDs to A amplitudes, one equates the k−

integrals of the GPCF parametrizations (14) and (15), for
μ ¼ þ and μ ¼ i, a transverse vector index, to the corre-
sponding GTMD parametrizations (17), (19), (23), (25).
Complete correspondence between the structures is
achieved by eliminating terms in the GPCF parametriza-
tions containing σi−. This can be effected using the Gordon
identity

0 ¼ Ūðp0;Λ0Þ
�
Δμ

2
þ iσμνPν

�
Uðp;ΛÞ: ðC1Þ

For purely longitudinal P and transverse Δ, this allows one
to substitute

Ūðp0;Λ0Þiσi−PþUðp;ΛÞ

¼ Ūðp0;Λ0Þ
�
−
iσiþP2

2Pþ −
Δi

2

�
Uðp;ΛÞ ðC2Þ

and furthermore implies Ūσþ−U ¼ 0; moreover, in combi-
nation with iσμνγ5 ¼ − 1

2
ϵμνρσσρσ it also yields

Ūðp0;Λ0Þiσi−γ5PþUðp;ΛÞ

¼ Ūðp0;Λ0Þ
�
iσiþγ5P2

2Pþ − iϵij
Δj

2

�
Uðp;ΛÞ: ðC3Þ

In addition, it is useful to contract the twist-three equations,
which carry a transverse vector index, with the two
available transverse vectors kT and ΔT in order to extract
the full information from the equations. The following
relations result:
For the twist-two vector GTMDs as functions of the AF

amplitudes, one obtains

F11¼ 2Pþ
Z

dk−
�
AF
1 þxAF

2 −
xΔ2

T

2M2
ðAF

8 þxAF
9 Þ
�
; ðC4Þ

F12 ¼ 2Pþ
Z

dk−½AF
5 �; ðC5Þ

F13¼ 2Pþ
Z

dk−
�
AF
6 þ

P ·k−xP2

M2
ðAF

8 þxAF
9 Þ
�
; ðC6Þ

F14 ¼ 2Pþ
Z

dk−½AF
8 þ xAF

9 �: ðC7Þ

For the twist-three vector GTMDs as functions of the AF

amplitudes, one obtains

F21 ¼ 2Pþ
Z

dk−
�
AF
2 −

xΔ2
T

2M2
AF
9

�
; ðC8Þ

F22 ¼ 2Pþ
Z

dk−
�
AF
3 −

x
2
AF
5 −

xΔ2
T

2M2
AF
17

�
; ðC9Þ

F23¼ 2Pþ
Z

dk−
P ·k−xP2

M2

�
AF
5 þ

ðkT ·ΔTÞ2−k2TΔ2
T

M2ðkT ·ΔTÞ
AF
9

�
;

ðC10Þ
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F24 ¼ 2Pþ
Z

dk−
P · k − xP2

M2

Δ2
T

kT · ΔT
½AF

9 �; ðC11Þ

F25 ¼ 2Pþ
Z

dk−
xP2 − P · k

M2
½AF

9 �; ðC12Þ

F26¼ 2Pþ
Z

dk−
P ·k−xP2

M2

�
k2T

kT ·ΔT
AF
9 þAF

17

�
; ðC13Þ

F27 ¼ 2Pþ
Z

dk−
�
AF
5 þ kT · ΔT

M2
AF
9 þ Δ2

T

M2
AF
17

�
; ðC14Þ

F28 ¼ 2Pþ
Z

dk−
�
AF
6 −

k2T
M2

AF
9 −

kT · ΔT

M2
AF
17

�
: ðC15Þ

For the twist-two axial vector GTMDs as functions of the
AG amplitudes, one obtains

G11 ¼ 2Pþ
Z

dk−
�
AG
1 þ AG

18 þ xAG
19

2

�
; ðC16Þ

G12 ¼ 2Pþ
Z

dk−
P2

M2
½AG

18 þ xAG
19�; ðC17Þ

G13 ¼ 2Pþ
Z

dk−
P2

M2
½AG

21 þ xAG
22�; ðC18Þ

G14 ¼ 2Pþ
Z

dk−
�
−AG

17 þ
xP2 − k · P

M2
ðAG

18 þ xAG
19Þ

�
:

ðC19Þ

For the twist-three axial vector GTMDs as functions of the
AG amplitudes, one obtains

G21 ¼ 2Pþ
Z

dk−
�
kT · ΔT

2M2
AG
19 þ

Δ2
T

2M2
AG
20

�
; ðC20Þ

G22 ¼ 2Pþ
Z

dk−
�
xP2 − P · k

M2
AG
1 þ 1

2
AG
17

−
k2T
2M2

AG
19 −

kT · ΔT

2M2
AG
20

�
; ðC21Þ

G23 ¼ 2Pþ
Z

dk−
P2

M2

�
−AG

17 þ
ðkT · ΔTÞ2 − k2TΔ2

T

M2ðkT · ΔTÞ
AG
22

�
;

ðC22Þ

G24 ¼ 2Pþ
Z

dk−
P2

M2

�
AG
19 þ

Δ2
T

kT · ΔT
AG
22

�
; ðC23Þ

G25 ¼ 2Pþ
Z

dk−
P2

M2
½AG

20 − AG
22�; ðC24Þ

G26 ¼ 2Pþ
Z

dk−
P2

M2

�
AG
23 þ

k2T
kT · ΔT

AG
22

�
; ðC25Þ

G27 ¼ 2Pþ
Z

dk−
xP2 − P · k

M2
½AG

19�; ðC26Þ

G28 ¼ 2Pþ
Z

dk−
xP2 − P · k

M2
½AG

20�: ðC27Þ

Combining these relations with ones expressing GPDs in
terms of kT-integrals over GTMDs, as given in [10], one
can also obtain the GPD combinations relevant for the
developments in this work in terms of the A amplitudes. In
particular,

H þ E ¼
Z

d2kT2

�
kT · ΔT

Δ2
T

F12 þ F13

�
ðC28Þ

¼ 2Pþ
Z

d2kT

Z
dk−2

�
kT · ΔT

Δ2
T

AF
5 þ AF

6

þ P · k − xP2

M2
ðAF

8 þ xAF
9 Þ
�
; ðC29Þ

H̃ ¼
Z

d2kTG14 ðC30Þ

¼ 2Pþ
Z

d2kT

Z
dk−

�
−AG

17þ
xP2−k ·P

M2
ðAG

18þxAG
19Þ

�
;

ðC31Þ

Ẽ2T ¼
Z

d2kTð−2Þ
�
kT · ΔT

Δ2
T

F27 þ F28

�
ðC32Þ

¼ 2Pþ
Z

d2kT

Z
dk−ð−2Þ

�
kT · ΔT

Δ2
T

AF
5 þ AF

6

þ ðkT · ΔTÞ2 − k2TΔ2
T

M2Δ2
T

AF
9

�
; ðC33Þ

E0
2T þ 2H̃0

2T ¼
Z

d2kT2
�
kT · ΔT

Δ2
T

G21 þ G22

�
ðC34Þ

¼ 2Pþ
Z

d2kT

Z
dk−

�
2
xP2 − k · P

M2
AG
1 þ AG

17

þ ðkT · ΔTÞ2 − k2TΔ2
T

M2Δ2
T

AG
19

�
; ðC35Þ

H0
2T−

Δ2
T

4M2
E0
2T¼

Z
d2kT

�
G23−

Δ2
T

M2

ðkT ·ΔTÞ2−k2TΔ2
T

ðΔ2
TÞ2

G24

�
ðC36Þ
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¼ 2Pþ
Z

d2kT

Z
dk−

P2

M2

�
−AG

17−
ðkT ·ΔTÞ2−k2TΔ2

T

M2Δ2
T

AG
19

�
:

ðC37Þ

APPENDIX D: THE AXIAL VECTOR
PARAMETRIZATION

We outline here the steps used to obtain the GPCFs that
parametrize the completely unintegrated quark-quark cor-
relation function for a straight-line gauge link in the axial
vector case. They parallel the steps followed in [10]. We use
the Gordon identities

ŪγμU ¼ Ū

�
Pμ

M
þ iσμΔ

2M

�
U; ðD1Þ

0 ¼ Ū

�
Δμ

2M
þ iσμP

M

�
U; ðD2Þ

Ūγμγ5U ¼ Ū

�
Δμγ5

2M
þ iσμPγ5

M

�
U; ðD3Þ

0 ¼ Ū

�
Pμγ5

M
þ iσμΔγ5

2M

�
U; ðD4Þ

the ϵ identity

gαβϵμνρσ ¼ gμβϵανρσþgνβϵμαρσþgρβϵμνασþgσβϵμνρα; ðD5Þ

and the σ identity

iσμνγ5 ¼ −
1

2
ϵμνρσσρσ: ðD6Þ

A complete parametrization of the axial vector Dirac
bilinear can be obtained by treating all possible Dirac
currents one after another:
(1) Vector current [Ūðp0;Λ0ÞγμUðp;ΛÞ]: Using the

Gordon identity in Eq. (D1) all vector currents
can be replaced by scalar and tensor currents.

(2) Axial vector current [Ūðp0;Λ0Þγμγ5Uðp;ΛÞ]: Using
the Gordon identity in Eq. (D3) all axial vector
currents can be replaced by pseudoscalar and pseu-
dotensor currents.

(3) Pseudoscalar current [Ūðp0;Λ0Þγ5Uðp;ΛÞ]: Using
Eq. (D4) and contracting with Pμ all pseudoscalar
currents can be replaced by pseudotensor currents.

(4) Tensor current [Ūðp0;Λ0ÞσμνUðp;ΛÞ]: Using the σ
identity in Eq. (D6) all tensor currents can be
replaced by pseudotensor currents.

(5) Pseudotensor current [Ūðp0;Λ0Þσμνγ5Uðp;ΛÞ]: All
possible pseudotensor currents are of the form

Ūðp0;Λ0Þσμaγ5Uðp;ΛÞ; Ūðp0;Λ0Þaμσbcγ5Uðp;ΛÞ
ðD7Þ

where a, b, and c can be any of the vectors P, k
and Δ.

(6) Scalar current [Ūðp0;Λ0ÞUðp;ΛÞ]: There is only one
possible scalar current

ŪU
M3

iϵμPkΔ: ðD8Þ

A useful relation that can be derived by multiplying
the Gordon identity Eq. (D2) by the ϵ identity
Eq. (D5) and using Eq. (D6) is

0¼ Ū

�
Pμ

M
iσνργ5þPν

M
iσρμγ5þPρ

M
iσμνγ5− i

ϵμνρΔ

2M

�
U:

ðD9Þ
Contracting with Pνkρ, PνΔρ, and kνΔρ

0 ¼ Ū

�
Pμ

M
iσPkγ5 þ P2

M
iσkμγ5

þ k · P
M

iσμPγ5 − i
ϵμPkΔ

2M

�
U; ðD10Þ

0 ¼ Ū

�
Pμ

M
iσPΔγ5 þ P2

M
iσΔμγ5 þ P · Δ

M
iσμPγ5

�
U;

ðD11Þ

0 ¼ Ū

�
Pμ

M
iσkΔγ5 þ P · k

M
iσΔμγ5 þ P · Δ

M
iσμkγ5

�
U:

ðD12Þ

Using these relations, we can eliminate currents
σkμγ5, σΔμγ5. On the other hand, contracting with
PμkνΔρ

0 ¼ P2

M
ŪiσkΔγ5U þ P · k

M
ŪiσΔPγ5U

þ P · Δ
M

ŪiσPkγ5U ðD13Þ

which allows us to eliminate σkΔγ5aμ. The para-
metrization can thus be written as

Wγμγ5 ¼ ŪU
M3

iϵμPkΔAG
1 þ ŪiσPμγ5U

M
AG
17

þ ŪiσPkγ5U
M3

ðPμAG
18 þ kμAG

19 þ ΔμAG
20Þ

þ ŪiσPΔγ5U
M3

ðPμAG
21 þ kμAG

22 þ ΔμAG
23Þ:
ðD14Þ
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