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Parton distribution functions (PDFs) are nonperturbative quantities describing the relation between a
hadron and the quarks and gluons within it. We propose to extract PDFs from QCD global analysis of
“data” generated by lattice QCD calculations of good “lattice cross sections,” which are basically single-
hadron matrix elements that are lattice QCD calculable and perturbative QCD factorizable into the PDFs.
To demonstrate the existence of good “lattice cross sections,”we take quasiquark distribution introduced by
Ji [Phys. Rev. Lett. 110, 262002 (2013)] as a case study to show that it could be factorized into the PDFs to
all orders in perturbation theory if it can be multiplicatively renormalized. We calculate the factorized
coefficients at the next-to-leading order in αs.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is believed to be the
fundamental theory for strong interactions and is respon-
sible for holding the quarks and gluons (or, in general,
partons) together to form nucleons and nuclei, the core of
all visible matter in the Universe. However, owing to the
color confinement of QCD dynamics, no quarks or gluons
have ever been observed in isolation by any detector in high
energy scattering experiments. It is the QCD factorization
[1] that enables us to connect the QCD dynamics of quarks
and gluons to physically measured hard scattering cross
sections of identified hadrons. Parton distribution functions
(PDFs), fiðx; μÞ, defined as the probability distributions to
find a quark or a gluon (i ¼ q; q̄; g) in a hadron carrying the
hadron’s momentum fraction between x and xþ dx, probed
at the factorization scale μ, are nonperturbative quantities
to link the short-distance scattering between quarks and

gluons to the confinement-sensitive physics of the colliding
hadron(s).
Enormous theoretical and experimental efforts have been

devoted to the extraction of PDFs by QCD global analysis
of all existing high energy scattering data in the framework
of QCD factorization [2–5]. Although PDFs are well-
defined matrix elements of quark and/or gluon fields in
QCD, it is difficult, if not impossible, to calculate them
directly in QCD due to their nonperturbative nature. Since
the operators defining PDFs depend on Minkowski time,
even lattice QCD (LQCD) with a Euclidean time has only
managed to calculate a few moments of PDFs [6,7].
Recently, Ji [8] introduced a set of quasi-PDFs and
suggested that quasi-PDFs of hadron momentum Pz
become corresponding PDFs when Pz is boosted to infinity.
However, since the hadron momentum in LQCD calcu-
lation is effectively bounded by lattice spacing, the Pz→∞
limit is hard to take, in practice. The connection between
the quasi-PDFs and PDFs is further complicated by the fact
that quasi-PDFs are not defined by the twist-2 operators,
and they have power ultraviolet (UV) divergences, while
PDFs have only logarithmic UV divergences.
In this paper, we propose a rigorous program to extract

PDFs from good “time-independent” and LQCD calculable
hadronic matrix elements, defined with equal-time oper-
ators, that can be factorized into the desired PDFs in the
same spirit of QCD factorization of experimental cross
sections. We refer to these good hadronic matrix elements
as “lattice cross sections” (LCSs). PDFs can be extracted
from QCD global analysis of LQCD generated data of
LCSs, similar to what we have done to extract PDFs from
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experimental data. We can continue improving our knowl-
edge of PDFs by identifying more good LCSs and perform-
ing factorization of these LCSs with better calculated
perturbative coefficient functions. With the current com-
puting power and lattice size, this program provides a
unique opportunity to explore PDFs in the large x region,
where PDFs extracted from fitting experimental data still
have huge uncertainties [2–5].
The key for this program to work is the existence of good

LCSs and the robustness of their calculability in LQCD and
factorizability in perturbative QCD (pQCD). In this paper,
we concentrate on the quasiquark distribution as a case
study to demonstrate that it could be a good LCS for
extracting PDFs, and we leave the effort to identify and
construct more good LCSs to a future publication [9]. Since
quasiquark distribution is LQCD calculable [10], we show
below that quasiquark distribution could be factorized into
PDFs to all orders in QCD perturbation theory with
perturbatively calculable coefficient functions. In addition,
we also derive factorized coefficient functions at next-to-
leading order (NLO) in αs to confirm that they are infrared
(IR) safe.
Our proposed program to extract PDFs from LQCD

calculable LCSs could be extended for extracting other
parton distributions and correlation functions by construct-
ing new LCSs, including matrix elements made of two
states of different momenta. In addition, this program could
provide new opportunities to explore the partonic structure
of hadrons, such as free neutron or various mesons, which
are difficult to do scattering experiments with. With this
program and LQCD generated data on LCSs, along with
experimentally measured data on hadronic cross sections,
we could develop a comprehensive “view” of the quark-
gluon structure of hadrons.

II. LATTICE CROSS SECTION (LCS)

We define a coordinate-space inclusive LCS as a single-
hadron matrix element of a composite nonlocal operator
OðξÞmade of quark-gluon fields or currents of quark-gluon
fields, σðP · ξ; ξ2; μ̃2Þ≡ hhðPÞjTfOðξÞgjhðPÞi, where T
stands for time-ordering, μ̃ is the renormalization scale,
P is the momentum of the hadron h, and ξ is the largest
separation between fields or currents. In addition, to
simplify our discussion, we have assumed ξ2 to be small
enough so that ξ2P2 is negligible. The momentum P and
the separation ξ define the kinematics of the LCS, with
P · ξ=ξ2 as the center-of-mass “collision energy” and 1=ξ2

defining the “hard scale.” In order to ensure that we can
extract PDFs, a good LCS should have the following
properties:

(i) be calculable in LQCD with a Euclidean time,
(ii) have a well-defined continuum limit as the lattice

spacing a → 0, and
(iii) have the same and factorizable logarithmic collinear

(CO) divergences as PDFs.

The first property could be satisfied by setting ξ0 ¼ 0 in
σðP · ξ; ξ2; μ̃2Þ; the second property is closely connected to
the renormalizability of the operator,OðξÞ; and it is the last
property that enables us to extract PDFs from LQCD
calculations. Our strategy to extract PDFs from good
LCSs could be summarized by the following schematic
plot,

σ̄LatE ðP · ξ; ξ2; 1=a2Þ↔Z σEðP · ξ; ξ2; μ̃2Þ
⇕

σMðP · ξ; ξ2; μ̃2Þ↔C fiðx; μ2Þ; ð1Þ

where σ̄LatE ðP · ξ; ξ2; 1=a2Þ is the discretized and LQCD
calculated version of LCS with σEðP · ξ; ξ2; μ̃2Þ as its
renormalized continuum limit, and σMðP · ξ; ξ2; μ̃2Þ is the
Minkowski space version of σEðP · ξ; ξ2; μ̃2Þ as indicated
by its subscript “M.” The two lines in Eq. (1) effectively
represent the two key components of our proposed pro-
gram: calculability and factorizability, respectively. For
the calculability, we need to generate the “data” of
σ̄LatE ðP · ξ; ξ2; 1=a2Þ from LQCD calculations for various
good LCSs, correcting them for the continuum limit with a
proper renormalization at the scale μ̃ and matching coef-
ficient functions Z’s. For the factorizability, we extract
PDFs by performing QCD global analysis of the “data”
with the following factorization formalism and pQCD
calculated matching coefficients C’s,

σðP · ξ; ξ2; μ̃2Þ ≈
X

i¼q;q̄;g

Z
1

0

dx
x
fiðx; μ2ÞCiðxP · ξ; ξ2; μ̃2; μ2Þ

þOðξ2Þ; ð2Þ

where we neglected the subscript “M” for simplicity and μ
is the factorization scale. This procedure is effectively the
same as the traditional QCD global analysis to extract PDFs
from high energy scattering data.
Our program to extract PDFs from the LQCD calculated

data of LCSs sketched in Eq. (1) should also work for LCSs
in momentum space, if the Fourier transformation (F.T.)
from the coordinate space is well behaved. We define a
momentum-space LCS, σ̃ðx̃; Q2; μ̃2Þ, in terms of F.T. of
σðP · ξ; ξ2; μ̃2Þ over the ξwith a dimensionless variable x̃ as
a Fourier conjugate of the variable P · ξ, andQ2 ∼ x̃2jP⃗j2 as
the momentum-space hard scale.
In order to identify good LCSs, we need to demonstrate

both the calculability and factorizability for potential single
hadron matrix elements, as specified in Eq. (1). In the
following, as a complete case study, we show that the
quasiquark distribution could be a good LCS. Since
quasiquark distribution is calculable in LQCD and its
renormalizability has been well studied in Refs. [11–13],
we show below that quasiquark distribution can be
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factorized to PDFs with perturbatively calculable coeffi-
cients to all orders in QCD perturbation theory.

III. QUASI-PDFs AND FACTORIZATION

The quasiquark distribution, introduced by Ji [8], is a
special case of LCS in momentum space with the operator

OðξÞ ¼ ψ̄ðξÞγ · ξΦðfÞ
ξ ðfξ; 0gÞψð0Þ, where ξ ¼ ðξ0; ξ⊥; ξzÞ,

f̃q=hðx̃; Pz; μ̃2Þ≡
Z

dξz
π

e−ix̃PzξzhhðPÞjψ̄ðξzÞ
γz
2

×ΦðfÞ
nz ðfξz; 0gÞψð0ÞjhðPÞi; ð3Þ

where ξ0 ¼ ξ⊥ ¼ 0, the gauge link ΦðfÞ
nz ðfξz; 0gÞ ¼

exp½−ig R ξz
0 dηzA

ðfÞ
z ðηzÞ� with the superscript “(f)” repre-

senting the fundamental representation of QCD’s SU(3)
color, and nμz ¼ ð0; 0⊥; 1Þ with n2z ¼ −1 and v · nz ¼ −vz
for any vector vμ. After ξz is integrated out, the hard scale
for f̃q=hðx̃; Pz; μ̃2Þ is x̃Pz, which is conjugate to ξz.
Similarly, quasigluon distribution is defined accordingly
[8]. As defined, the quasi-PDFs are gauge invariant and
could be calculated in lattice QCD [10]. But, unlike the
PDFs, these quasi-PDFs are not boost invariant, and
therefore, they depend on the hadron momentum Pz.
Their “momentum fraction” x̃ ¼ kz=Pz ∈ ð−∞;∞Þ is
not bounded by Pz, and they do not conserve the total
“parton” momentum,

fM≡ X
i¼q;q̄;g

Z
∞

0

dx̃ x̃ f̃i=hðx̃; Pz; μ̃2Þ ≠ constant: ð4Þ

Like the PDFs, the operators defining the quasi-PDFs have
UV divergences and require UV renormalization.
In addition, like the PDFs, the quasi-PDFs have CO

divergences. We show that quasiquark distribution has
logarithmic CO divergences, which could be systematically
factorized into PDFs with IR-safe coefficients, if its UV
divergences can be renormalized multiplicatively [11–13].
Like normal quark distribution, quasiquark distribution

can be represented by the forward scattering Feynman
diagram, as shown in the left diagram of Fig. 1, with the
active quark of momentum k contracted with the “cut
vertex,” γz=ð2PzÞδðx̃ − kz=PzÞ. The gauge link in Eq. (3) is
represented by the double lines in Fig. 1. Following

effectively the same arguments used in Ref. [14], it is
straightforward to show that the quasiquark distribution of
an asymptotic parton state is free of IR divergence.
In the following, to simplify our discussion, we show the

proof of factorization for flavor nonsinglet quasiquark
distribution, and the proof for the flavor singlet case can
be obtained similarly. We find that if we expand the
quasiquark distribution of an asymptotic parton state of
momentum p in powers of 1=ðx̃PzÞ2, when it is small, the
leading power contributions in the light-cone n · A ¼ 0
gauge with the light-cone vector nμ ¼ ðnþ; n−; n⊥Þ ¼
ð0; 1; 0⊥Þ can be represented by a sum of ladder diagrams,
as shown in Fig. 1, where C0 and K are two-particle
irreducible (2PI) kernels [15]. By definition, K includes the
two quark propagators connecting to the kernel above. The
dependence on the operator definitions of quasiquark
distribution is included in C0, as shown in Fig. 2. The
multiplicative renormalizability of quasiquark distribution
proved in Refs. [11–13] implies that the renormalization of
quasiquark distribution is local and fully included in C0, the
renormalized version of which is denoted as Cren. In
general, the renormalized 2PI kernels with fixed external
momenta are finite in a physical gauge, such as the light-
cone gauge [15].
To identify the leading power CO divergences, the spinor

trace between two neighboring kernels can be approximated
by the decomposition in Fig. 3. The integration of the loop
momentum ki between two neighboring 2PI kernels can be
written as

R
d4ki ¼

R
dxi

R
d4kiδðxi − ki · n=p · nÞ, and it

can be reduced to a one-dimensional integration
R
dxi, if we

approximate the momentum ki entering the top kernel as
ki ≈ xip · n. Since γ · n=2p · nδðxi − ki · n=p · nÞ is the cut
vertex defining the normal quark distribution, the phase
space integration,

R
d4ki over K, with its two lower quark

lines contracted with γ · p=2, gives the well-known

pp

k k

pp

0C

k

pp

k

0

0

K

p p

C

kk

K

K

0

0

C

kk

0

p p

FIG. 1. Ladder expansion of the quasiquark distribution.
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FIG. 2. Process-dependent 2PI kernel with the gauge link along
the direction nμz for quasi-PDFs, and multiplicative UV renorm-
alization factors included.
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FIG. 3. Spinor decomposition between two 2PI kernels.
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perturbative logarithmicUVandCOdivergences of the quark
distribution function [14]. A standard UV renormalization
for PDFs should remove all logarithmic UV divergences
associated with this phase space integration ofK. Generally,
we introduce a projection operator, P̂ with P̂W ≡R
d4ki=ð2πÞ4δðxi − ki · n=p · nÞTr½γ · nWγ · p�=ð4p · nÞ þ

UVCT with the UV counterterm (UVCT), to pick up the
CO divergence of any bottom part of diagram W with its
logarithmic UV divergences removed. Then ð1 − P̂ÞW is
free of CO divergence.
Symbolically, the renormalized quasiquark distribution

of a parton state in Fig. 1 can be expressed as
f̃renq=h ¼ Cren

P∞
i¼0 K

i. To factorize all of its perturbative
CO divergences into PDFs of the same parton state, we
decompose the last K by P̂K and ð1 − P̂ÞK,

f̃renq=h ¼ Cren

�
1þ

X∞
i¼0

Kið1 − P̂ÞK
�
þ f̃renq=hP̂K: ð5Þ

Similarly, we can then decompose Kð1 − P̂ÞK. Following
this procedure repeatedly, we eventually arrive at

f̃renq=h

�
1−P̂K

X∞
i¼0

½ð1−P̂ÞK�i
�
¼Cren

X∞
i¼0

½ð1−P̂ÞK�i: ð6Þ

Now we are ready to obtain a factorized form by dividing
both sides by the CO divergent factor [15], which gives

f̃renq=h ¼
�
Cren

1

1 − ð1 − P̂ÞK

��
1

1 − P̂K

�
; ð7Þ

where all CO divergences of the renormalized quasiquark
distribution are now factorized into the second term, which
is equal to the perturbative contribution to the normal quark
distribution. The derivation of Eq. (7) could be easily
extended to the CO factorization of quasigluon distribution

if it can be “renormalized.” That is, multiplicatively
renormalized quasi-PDFs share the same CO divergence
as that of PDFs, since all quasi-PDF dependence is
included in Cren, and could be factorized into PDFs as
in Eq. (2) plus the power corrections,

f̃renq=h ¼ fi=h ⊗ Cq=i þOððx̃PzÞ−2Þ: ð8Þ

IV. COEFFICIENT FUNCTIONS AT NLO

We calculate the coefficient function in Eq. (2) for
quasiquark distribution at NLO to explicitly verify that it
is free of IR and CO divergences.
By expanding both sides of Eq. (8) to order α0s and using

the normalization f̃ð0Þq=qðx̃Þ¼δð1− x̃Þ and fð0Þq=qðxÞ¼δð1−xÞ,
where we neglect the superscript “ren” for simplicity, we

obtain Cð0Þq=qðtÞ ¼ δð1 − tÞ with t ¼ x̃=x. By expanding both
sides of Eq. (8) to order αs, and keeping only the flavor
nonsinglet contribution, we obtain

f̃ð1Þq=qðx̃Þ¼fð0Þq=qðxÞ⊗Cð1Þq=qðx̃=xÞþfð1Þq=qðxÞ⊗Cð0Þq=qðx̃=xÞ; ð9Þ

where⊗ represents the convolution over x in Eq. (2). Using
the LO results above, we obtain

Cð1Þq=qðt; Pz; μ̃2; μ2Þ ¼ f̃ð1Þq=qðt; Pz; μ̃2Þ − fð1Þq=qðt; μ2Þ: ð10Þ

Both f̃ð1Þq=q and f
ð1Þ
q=q can be calculated by using the Feynman

diagrams in Fig. 4, but with nz · A ¼ 0 and n · A ¼ 0 gauge,
and γz=2Pz and γþ=2Pþ cut vertex, respectively. We only

give the derivation of f̃ð1Þq=q here since f
ð1Þ
q=q and its derivation

are well known [14].
By integrating out the energy component of the gluon’s

momentum, we derive a compact expression,

f̃ð1Þq=qðx̃; Pz; μ̃2Þ ¼ CF
αs
2π

ð4πÞϵ
Γð1 − ϵÞ

Z
μ̃2

0

dl2⊥
l2þ2ϵ⊥

Z þ∞

−∞

dlz
Pz

½δð1 − x̃ − yÞ − δð1 − x̃Þ�

×

�
1

y

�
1 − yþ 1 − ϵ

2
y2
��

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ y2

p þ 1 − yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ð1 − yÞ2

p �

þ ð1 − yÞλ2
2y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ y2

p þ λ2

2y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ð1 − yÞ2

p þ 1 − ϵ

2

ð1 − yÞλ2
½λ2 þ ð1 − yÞ2�3=2

�
; ð11Þ

where y ¼ lz=Pz, λ2 ¼ l2⊥=P2
z , CF ¼ ðN2

c − 1Þ=ð2NcÞ with
Nc ¼ 3 a color factor, and the UV renormalization is
imposed by a cutoff on l2⊥ integration. In Eq. (11), the
½δð1 − x̃ − yÞ − δð1 − x̃Þ� dependence ensures the valence
quark number conservation. The IR divergence from the
1=y2 term, as y ∼ 0, is naturally regularized by the iε
prescription, and its net contribution is equal to taking the

l l

1

k

1

k

2

p pp p

k kk

p p

k

2

FIG. 4. Next-to-leading order diagrams contributing to the
quasiquark distribution of a quark.
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principle value of the y integration. The CO divergence,

when λ2 → 0, is exactly the same as that of fð1Þq=q. Using

Eq. (10) and fð1Þq=q in the MS scheme, we obtain the NLO
coefficient function,

Cð1Þq=qðtÞ
CF

αs
2π

¼
�
1þ t2

1 − t
ln
μ̃2

μ2
þ 1 − t

�
þ

þ
�

tΛ1−t

ð1 − tÞ2 þ
Λt

1 − t
þ SgnðtÞΛt

Λt þ jtj

−
1þ t2

1 − t

�
SgnðtÞ ln

�
1þ Λt

2jtj
�

þ Sgnð1 − tÞ ln
�
1þ Λ1−t

2j1 − tj
���

N
; ð12Þ

where Λt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2=P2

z þ t2
p

− jtj, SgnðtÞ ¼ 1 if t ≥ 0, and
−1 otherwise. In Eq. (12), the “+”-function is conventional,
and the “N”-function is similarly defined asZ þ∞

−∞
dt½gðtÞ�NhðtÞ ¼

Z þ∞

−∞
dtgðtÞ½hðtÞ − hð1Þ�; ð13Þ

where hðtÞ is any well-behaved function. When Pz → ∞,
Λt ¼ Oðμ̃2=P2

zÞ, and terms within “½:::�N” in Eq. (12)
vanish, which is consistent with the large Pz limit found

in Ref. [8]. Our result for Cð1Þq=qðx̃=xÞ is consistent with the

results obtained in Ref. [16]. As expected, the Cð1Þq=q in
Eq. (12) is free of any IR and CO divergences and, in
principle, depends on the choice of renormalization scheme
for the quasi-PDFs.

V. SUMMARY

In summary, we proposed a QCD factorization based
program to extract PDFs from LQCD calculations of good
“lattice cross sections,” which on the one hand are LQCD

calculable and on the other hand factorizable to PDFs. In
this program, one first generates “data” from LQCD
calculation of good LCSs and then extracts PDFs by
QCD global analysis of these data, similar to what has
been done for extracting PDFs with experimental data.
With today’s computing power for LQCD calculation, our
program for extracting PDFs is effectively doing “low
energy collision experiments" on LQCD, which is more
relevant to PDFs at a relatively larger x, complementary to
the global fitting program based on data from high energy
scattering.
We took quasiquark distribution as a case study to show

that good LCSs could indeed exist. We demonstrated to all
orders in pQCD that the multiplicatively renormalized
quasiquark distribution could be systematically factorized
into PDFs with perturbative coefficient functions. That is,
the renormalized quasiquark distribution could serve as a
good LCS, with a finite Pz as collision energy, and x̃Pz as
the hard scale defining the CO factorization. We verified
this explicitly by calculating the NLO coefficient function

Cð1Þq=q’s for quasiquark distribution.
The precision of extracted PDFs from LQCD calcula-

tions could be greatly improved if there are more good
LCSs, which is true [9]. Our proposed new LQCD based
global fitting program to extract PDFs could be naturally
extended to the study of transverse momentum dependent
PDFs (TMDs) and generalized PDFs (GPDs), and other
quark-gluon correlations of various hadrons.
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