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Since the dual fermion condensate be used to describe the center symmetry Z, we extend it to
thermal QED3 and study the deconfinement phase transition by the truncated Dyson-Schwinger
equation for the massive fermion propagator at finite temperature. We show that, for a massive fermion,
the system first appears as a deconfinement phase transition with the increase of temperature and then
the chiral symmetry is restored and the corresponding temperature of the deconfinement phase
transition increases with the enlargement of the fermion mass. It should be pointed out here that the
results obtained in this paper are not model independent but are heavily dependent on the truncated
Dyson-Schwinger equation we have chosen.
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I. INTRODUCTION

Dynamical chiral symmetry breaking (DCSB) and con-
finement are two basic features of quantum chromody-
namics (QCD). Due to the non-Abelian nature of QCD, and
despite the effort made to study DCSB and confinement, it
is still impossible to understand the physical mechanism of
the above two basic characteristics of QCD from the first
principle of QCD. In this case, it is very meaningful to try
to study a relatively simple QCD-like system with physical
properties of DCSB and confinement [1]. Fortunately, there
is such a physical system in nature, the so-called three-
dimensional quantum electrodynamic system (QED3). As a
physical system with Abelian properties, it exhibits some
nonperturbative features similar to QCD, such as DCSB
and confinement. Moreover, it is superrenormalizable,
so it does not suffer from the ultraviolet divergence that
is present in QED4. Therefore, it can serve as a toy model
of QCD. Besides, this model has been applied to some
problems of condensed matter physics. In particular, QED3

can be regarded as an effective model for high-Tc super-
conductivity and the fractional quantum Hall effect [2–5]
and also be widely used to explain the properties of strongly
correlated systems [6–8].
As mentioned above, at zero temperature, QED3 dem-

onstrates the characteristics of DCSB [9] and confinement
[10]. However, as the temperature rises, the chiral sym-
metry is restored and the deconfinement phase transition
happens. The order parameter of the chiral phase transition
is well defined via the trace of the fermion propagator in the
chiral limit,

hψ̄ψi ¼ Tr½Sðx≡ 0Þ� ¼
Z

d3p
ð2πÞ3

4Bðp2Þ
A2ðp2Þp2 þ B2ðp2Þ ;

ð1Þ

where Aðp2Þ, Bðp2Þ are related to the inverse fermion
propagator S−1ðpÞ ¼ iγ · pAðp2Þ þ Bðp2Þ. It should be
pointed out here that the above equation cannot be directly
extended to the case beyond the chiral limit because Eq. (1)
is ultraviolet (UV) divergence beyond the chiral limit and
this divergence cannot be eliminated by a standard field-
based renormalization process. For this reason, one has to
use some regularization schemes to make the fermion
condensate UV limited. At present, two regularization
schemes are commonly used to eliminate ultraviolet diver-
gence. One is to use the method of ultraviolet cutoff; see
Refs. [11–13]. The other is to introduce offsets to eliminate
UV divergence; see Refs. [14–17]. However, as pointed
out in Ref. [15], the regularization by UV cutoff has a
significant weakness—the obtained results depend on the
UV cutoff. Therefore, in this paper, we will adopt a scheme
to introduce offsets to eliminate the UV divergence of the
fermion condensate. Specifically, the contribution of the
“subtracted condensate” term introduced by the free fer-
mion propagator is subtracted from the fermion condensate
term, which can be expressed as

hψ̄ψim ¼ 4

Z
d3p
ð2πÞ3

�
Bðp2Þ

A2ðp2Þp2 þ B2ðp2Þ −
m

p2 þm2

�
:

ð2Þ

The regularization scheme used above has two advantages:
(i) It is easy to find that when we introduce the “subtracted
condensate” term, the right-hand side of Eq. (1) is UV
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finite. More interesting is that when “m” approaches zero,
Eq. (1) returns to the fermion condensate at the chiral limit.
(ii) It is well known that only nonperturbative interactions
can cause a phase transition in the system under study,
while the vacuum condensate is a physical quantity that
reflects the nonperturbative nature of the system. Therefore,
properly reducing the influence of the perturbative inter-
action on the vacuum condensate is a requirement of the
strong interaction theory itself.
To locate the temperature of the phase transition, the

location of the peak of chiral susceptibility,

χc ¼ dhψ̄ψim
dm

; ð3Þ

is considered as the phase transition temperature. Based
on the Dyson-Schwinger equation (DSE) [18–23], one can
investigate DCSB though the fermion propagator at zero
and finite temperature. Now a problem arises naturally—
the “subtracted condensate” term introduces am-dependent
term. Does this m-dependent term cause a change in the
peak position of the regularized chiral susceptibility?
We will discuss this below. The chiral susceptibility of
the “subtracted condensate” is shown as follows:

∂hψ̄ψis
∂m ¼ ∂

∂m
Z

Λ d3p
ð2πÞ3

4m
p2 þm2

¼ 2

π2

Z
Λ p2 −m2

ðp2 þm2Þ2 p
2dp

¼ 2

π2
ðΛ −mπÞ: ð4Þ

As can be seen from the above equation, the “subtracted
condensate” term only contributes a linearly dependent
mass term, which obviously does not affect the location of
the peak of the regularized chiral susceptibility.
How to determine deconfinement is a not a fully

understood problem. In QCD, because of the center
symmetry spontaneous breaking, the Polyakov loop is
considered as an order parameter to determine the
deconfinement phase transition in the limit of the large
current quark mass since the dual quark condensate
transforms as the dressed Polyakov loop under the center
symmetry ZðNÞ transformation. Therefore, the dual fer-
mion condensate in QCD can be considered as an order
parameter to study the deconfinement phase transition
[24–26]. By analogy with QCD, the additive group of the
integers, Z symmetry, is spontaneous broken in the
deconfinement phase of QED3, which is investigated
in Ref. [27]. Since QED3 exhibits a typical nonperturba-
tive feature which is similar to QCD, it is valuable to
generalize the dual fermion condensate to this Abelian
system to investigate the confinement and deconfinement
phase transition with the increasing temperature.

II. DUAL FERMION CONDENSATE
AND SYMMETRY Z

As is known to all, confinement is an open question in
QCD. In the large quark mass limit, deconfinement is
considered the result of center symmetry ZðNÞ breaking.
However, in the case of the finite quark mass, the center
symmetry is explicitly broken [28]. In Ref. [29], the authors
introduce the imaginary chemical potential into the
Lagrangian of QCD and find the relation between con-
finement and the remnant center symmetry ZðNÞwith finite
quark mass. It should be noted that if the fermion mass is
not infinite, there is explicit Z(N) breaking by the finite
mass (m ≠ ∞) of the fermions, just as when the fermion
mass is nonzero, there is finite explicit chiral symmetry
breaking. This will definitely affect the chiral phase
transition. The authors in Ref. [26] link the dressed
Polyakov loop to the dual quark condensate because they
both transform the same under the center symmetry ZðNÞ,
and they find that the dual quark condensate can be used
as an order parameter to describe the confinement-
deconfinement phase transition.
Moreover, the authors express the relation between Z

symmetry and confinement in QED3 [27]. In the confined
phase, the effective potential V with the one-loop approxi-
mation is given by

V ¼ −
T2

π

�
m
T
Li2ðe−m=T; eA0=T þ πÞ

þ Li3ðe−m=T; eA0=T þ πÞ
�
; ð5Þ

where m denotes the fermion mass. Here, A0 ¼ aðrÞ= ffiffiffiffi
T

p
,

Li2ðr;θÞ ¼
R
r
0 dx lnð1− 2x cosθþ x2Þ=2x, and Li3ðr; θÞ ¼R

r
0 dxLi2ðx; θÞ=x. The effective potential shows an obvious
periodicity for eA0 → eA0=T þ 2π. However, in the decon-
finement phase, we have hA0i ¼ 2πnT=e. Then, the effec-
tive potential V becomes constant, and the Z symmetry is
spontaneously broken. In a semiclassical view, the nonzero
expectation value of the zero component of the gauge
potential can be regarded as an imaginary chemical
potential for the fermions. Therefore, in an interesting
attempt, we extend the dual fermion condensate from QCD
to QED3 and study the deconfinement phase transition in
the Abelian system.
From Ref. [24], the order parameter PlðmÞ describing the

confinement-deconfinement phase transition in QCD is
obtained by the dual fermion condensate,

PlðmÞ ¼ −
Z

2π

0

dϕ
2π

e−iϕhψ̄ψimðϕÞ; ð6Þ

where hψ̄ψimðϕÞ is the ordinary fermion condensate using
the U(1)-valued boundary conditions with the angle ϕ in
the temporal direction of the Euclidean space. In analogy
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with QCD, we find the relation between the dressed
Polyakov loop and the dual fermion condensate.
Following the inspiration of Refs. [24–26], we try to

reveal the relation between the dual fermion condensate
and the symmetry Z in QED3. In Euclidean space, the
Lagrangian of QED3 with the massive fermion reads

L ¼ ψ̄ð=∂ þ ie=AþmÞψ þ 1

4
F2
μν þ

1

2ξ
ð∂νAνÞ2; ð7Þ

where the four-component spinors are employed.
According to the procedure of lattice regularization [26],

the condensate with the U(1)-valued boundary condensate
hψ̄ψimðϕÞ can be expressed in powers of the Dirac
operator,

hψ̄ψimðϕÞ ¼
1

m

X∞
k¼0

ð−1Þk
mk hTr½Dk

ϕ�i; ð8Þ

where Dϕ is the staggered lattice Dirac operator shown as
follows,

Dxy ¼
X3
j¼1

ηj
2a

½UjðxÞδxþĵ;y − H:c:� ð9Þ

with the staggered sign function ηj ¼ ð−1Þx1þ���þxj−1 . The
lattice spacing a and U denote the gauge link variables.
Inserting the Dirac operator Eq. (9) into Eq. (8), then, the
dual fermion condensate can be written as follows,

hψ̄ψimðϕÞ ¼
1

m

X
l∈L

sðlÞeiϕqðlÞ
ð2amÞjlj h

Y
ðx;jÞ∈l

Uji; ð10Þ

Where the set L denotes all possible closed loops on the
lattice, sðlÞ denotes the sign of a particular loop l obtained
as product of the staggered sign factors, jlj denotes the
length of the loop l. The winding number qðlÞ ∈ Z is
obtained by the loop l winding around the compact time
direction and the factor expðiϕqðlÞÞ denotes the loops
winding forward around the compact time direction. We
perform a Fourier transformation on Eq. (10), and the dual
fermion condensate is given by

PlðmÞ ¼ −
1

m

X
l∈Lð1Þ

sðlÞ
ð2amÞjlj h

Y
ðx;jÞ∈l

Uji: ð11Þ

Here, we need to emphasize that the subtracted condensate
is not the same as that which appears in Eqs. (8)–(11).
In this paper, the subtracted condensate is adopted as a
free fermion condensate at zero temperature and the
Fourier factor e−iϕ is a project operator to pick up the
loop with winding number 1. Now, it is easy to find
the relation between the dual fermion condensate and the
symmetry Z. Under the group Z transformation, we have
U3ðx; t0Þ → zU3ðx; t0Þ, where z represents the elements of

the group Z. Then, the dual fermion condensate follows
the same transformation: PlðmÞ → zPlðmÞ. At low temper-
ature, the symmetry Z is kept, and we have PlðmÞ ¼
zPlðmÞ, and then PlðmÞ ¼ 0. With the temperature increas-
ing, at the critical temperature Tc, the symmetry Z is
broken, and we have PlðmÞ ≠ 0. Thus, the dual fermion
condensate can be regarded as an order parameter of the
deconfinement phase transition in thermal QED3. It should
be noted that Eq. (8) is strictly valid when the (bare)
fermion mass is large enough. Here, following the inspira-
tion of Refs. [24–26], we perform an analytic continuation
of Eq. (8) into the region of small fermion mass.

III. DYSON-SCHWINGER EQUATION WITH ϕ

To gain the dual fermion condensate and analyze
the deconfinement, we adopt the DSEs for the fermion
propagator,

S−1ðpÞ ¼ iγ ·pþmþ
Z

d3k
ð2πÞ3 γμSðkÞΓνðp; kÞDμνðp− kÞ;

ð12Þ
where the unit e2 ¼ 1 and the boson propagator DμνðqÞ in
the Landau gauge are given as

DμνðqÞ ¼
δμν − qμqν=q2

q2 þ Πðq2Þ : ð13Þ

The self-consistent coupled DSEs, where the full fermion
and boson propagators are involved, reveal the confinement
behaviors of QED3 at zero temperature and density [10,30].
It is very interesting to recall the corresponding perturbative
results for the dressing of the photon propagator by the
fermions: if the massless fermions are introduced,
Πðq2Þ ∝ q, and the potential becomes Columbia at long
distances where the fermion will not be confined; however,
if the massive fermions are employed, Πðq2Þ=q2 → 4

3πm in
the infrared region, and the confining property appears
[10]. To extend the dual fermion condensate to the Abelian
system, we try to analyze the case of massive fermions to
give insight into the deconfinement of QED3 with the
increase of temperature.
At finite temperature T, the inverse fermion propagator is

written as

S−1ϕ ðPÞ ¼ iγ0ϖnðϕÞAϕðP2Þ þ iγ⃗ p⃗ CϕðP2Þ þ BϕðP2Þ;
ð14Þ

where ϖnðϕÞ ¼ ð2nþ 1ÞπT þ ϕT and the boundary
conditions for fermions requires ϕ ¼ 0, while ϕ ¼ π
corresponds to bosons.
Now, let us review some studies on the effect of the

wave function renormalization factor A and C. In the past,
the lowest-order approximation, i.e., A ¼ C ¼ 1, is often
adopted to calculate the critical fermion flavor [31–33], and
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the results show that, although the influence of A, C can
change the numerical results, the low-order approximation of
DSE of the fermion propagator still contains qualitative
nonperturbative properties of QED3 at zero temperature.
However, just as Ref. [33] suggested, one should treat
renormalization factor A and C carefully at finite temper-
ature. Indeed, it is important to obtain A, C beyond the
lowest-order approximation in the case of finite temperature,
but the numerical calculation is complex and it is difficult to

obtain the stable numerical solutions. In this paper, the dual
fermion condensate is extended to QED3 to study the
deconfinement phase transition. In order to obtain the results
qualitatively, as the first step of attempt, the lowest-order
approximation is still adopted to perform numerical calcu-
lation to study deconfinement phase transition.
Then, taking into account the finite temperature, the

integral equation for the dynamically generated fermion
self-energy function with ϕ reduces to

BϕðP2Þ ¼ mþ
X
n

Z
d2K
ð2πÞ2

2TBϕðK2Þ
½ϖnðϕÞ2 þ E2

ϕðK2Þ�½Q2 þ Π0ðQ2Þ� ¼ mþ 1

2

Z
d2K
ð2πÞ2

BϕðK2Þ tanh EϕðK2Þ�iϕT
2T

EϕðK2Þ½Q2 þ Π0ðQ2Þ� ; ð15Þ

where EϕðK2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ B2

ϕðK2Þ
q

, tanh EϕðK2Þ�iϕT
2T ≡ tanh EϕðK2ÞþiϕT

2T þ tanh EϕðK2Þ−iϕT
2T , and the Matsubara frequency is

summed analytically. The corresponding boson polarization is given by [31]

Π0ðQ2Þ ¼ T
π

Z
1

0

dx

8<
:ln

�
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1 − xÞQ2

p
2T

�
−

m2 tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þxð1−xÞQ2

p
2T

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1 − xÞQ2

p
9=
;: ð16Þ

In principle, the boson polarization should depend on ϕ as it depends on chemical potential in the finite chemical potential
case [34]. However, we cannot find the stable numerical solution under the current truncation scheme of the DSE approach.
At the moment, we can only ignore the dependence of ϕ on the boson propagator to study the confinement in QED3, but this is
definitely worth further discussion.
The regularized fermion condensate with ϕ at finite temperature is obtained:

hψ̄ψimðϕÞ ¼ 4T
X
n

Z
d2P
ð2πÞ2

BϕðP2Þ
ϖ2

nðϕÞ þ E2
ϕðP2Þ −

Z
d3p
ð2πÞ3

4m
p2 þm2

¼
Z

d2P
ð2πÞ2

BϕðP2Þ tanh EϕðP2Þ�iϕT
2T

EϕðP2Þ −
Z

d3p
ð2πÞ3

4m
p2 þm2

: ð17Þ

Here, because the divergence term comes from the zero
temperature, the subtracted term is chosen at zero temper-
ature and ϕ ¼ 0 in this paper. We need to emphasize
here that we only subtract the trace of the free propagator
at zero temperature rather than the free propagator at the
finite temperature, because the latter introduces nontrivial
temperature-dependent effects on the regularized quark
condensate.

IV. FERMION CONDENSATE

Next, we numerically resolve Eq. (15) by application of
iteration and plot the evolution of the fermion self-energy
function with temperature and ϕ value in Figs. 1–3. The
dependence of fermion condensate on ϕ with a range of
temperature and fermion mass are shown in Figs. 4–6.
From Figs. 1–3, it is easy to find that the fermion self-
energy is obviously larger than the bare fermion mass at
P2 ¼ 0 with different ϕ. With the increases of momenta,
the BðP2Þ approach the bare fermion mass. Thus, on one

hand, the regularized condensate, which obtained by
subtracting the condensate of free fermion at zero temper-
ature, is nonzero within the temperature range studied; on
the other hand, the ϕ dependence condensate is always

φ π
φ π
φ π
φ π
φ

FIG. 1. The dependence of BðP2Þ on P2 at T ¼ 0.02 with
m ¼ 10−5.
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depend on ϕ and the dressed Polyakov loop would not be
zero at high temperature. From Figs. 4–6, it is also easy to
find that, whether the chiral limit or the nonchiral limit, the
ϕ- dependent condensate is almost flat when the temper-
ature is low, which results in the Polyakov loop being small.
With the increase of temperature, the curve shows an arch

symmetry at the ϕ ¼ π axis. Moreover, we find that the
width of the peak narrows with the increasing temperature.
The next step is to investigate the influence of temper-

ature on the dual fermion condensate. Figure 7 shows the
evolution of the fermion condensate and dual fermion

φ π
φ π
φ π
φ π
φ

FIG. 2. The dependence of BðP2Þ on P2 at T ¼ 0.03 with
m ¼ 10−5.

φ π
φ π
φ π
φ π
φ

FIG. 3. The dependence of BðP2Þ on P2 at T ¼ 0.05 with
m ¼ 10−5.

Ψ
Ψ

φ π

FIG. 4. The dependence of hψ̄ψi on ϕ with a range of
temperature in the chiral limit.

Ψ
Ψ

φ/π

FIG. 5. The dependence of hψ̄ψim on ϕ with a range temper-
ature at m ¼ 10−5.

Ψ
Ψ

φ/π

FIG. 6. The dependence of hψ̄ψim on ϕ with a range of
temperature at m ¼ 0.1.

Τ

<ΨΨ

FIG. 7. The dependence of dual fermion condensate and
fermion chiral condensate on temperature for m ¼ 10−5, where
hψ̄ψim is normalized by its value at T ¼ 0.01 and Pl is
normalized by its value at T ¼ 0.04.
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condensate with temperature. From Fig. 7, it is found that,
at T → 0, the dual fermion condensate has a small, in fact,
zero value but increases with the rise of temperature.
Meanwhile, the normalized fermion chiral condensate
gradually decreases. It should be noted here that the
fermion condensate is nonzero at high temperature, so
the self-energy is larger than the bare fermion mass in the
infrared region within the temperature range studied.

V. PHASE TRANSITION AT FINITE
TEMPERATURE

In order to give an insight into the critical point of the
chiral and deconfinement phase transitions, we adopt chiral
susceptibility which measures the response of the chiral
condensate to an infinitesimal change of fermion mass,

χc ¼ d
dm

hψ̄ψim; ð18Þ

as the probe for locating the temperature of the chiral
phase transition and dual susceptibility which denote the
differential coefficient of dual fermion condensate to
temperature [24,25],

χdðTÞ ¼ dPl

dT
; ð19Þ

for deconfinement. After solving the truncated DSE (15) by
means of the iteration method, we can obtain the evolution
of the two susceptibilities with temperature. A plot of the
chiral and dual susceptibilities with little fermion mass
change with temperature around the critical point is shown
in Fig. 8. For a fixed fermion mass, as the temperature rises,
each of the two susceptibilities illustrates a smooth peak,
which means crossover. Here, the transition temperature is

located by peak of the curves. It is easy to find that the
pseudocritical temperature of chiral transition is obviously
larger than that of deconfinement transition temperature.
This indicates that the deconfinement transition occurs
earlier than chiral transition in the approximate framework
used in our paper, which is different from QCD. In QCD,
beyond the chiral limit, the lattice simulations [35,36] show
that the pseudochiral transition and pseudodeconfinement
transition occur at the same temperature. Moreover, with
the increase of the fermion mass, the curve of chiral
susceptibility trends to flat, which is what we expect.
This is because the chiral symmetry is no longer a good
symmetry in the case of the large fermion mass. Thus, one
generally expects that at large fermions masses, the chiral
phase transition is severely softened.
In order to compare with the change of the chiral and dual

susceptibilities at finite temperature in the small fermion
mass case in Fig. 8, we plot the variation of the chiral
susceptibility with temperature in the chiral limit and the
dual condensate and the dual susceptibility as a function of
temperature in the case of the large fermion mass (m ¼ 0.1)
in Fig. 9. In the chiral limit, from the Fig. 9, one can find that
the chiral susceptibility diverges at T ¼ 0.025. Therefore,
the chiral phase transition is a second-order phase transition
in the chiral limit. However, beyond the chiral limit, even if
there is only a very small fermion mass, the chiral transition
will become crossover (see Fig. 8). For the case of dual
susceptibility with m ¼ 0.1, Fig. 9 shows that the dual
susceptibility has a smooth peak at T ¼ 0.19 and the
transition is still a crossover.

VI. CONCLUSIONS

The purpose of this paper is to generalize the dual
fermion condensate to QED3 and investigate the chiral
phase transition and the deconfinement phase transition
of thermal QED3 through a continuum study of the

χ  
χ   
χ
χ

FIG. 8. The behaviors of chiral and dual susceptibilities around
the critical temperature with the increasing temperature. Here, we
need to make an annotation. In order to make χc and χd compare
in one graph, we intentionally expand the χd in the graph by
10 times than the corresponding actual calculated value.

χ
χ

FIG. 9. The chiral susceptibility in the chiral limit and dual
susceptibility and dual condensate with m ¼ 0.1 as a function of
temperature. Here we need to make an annotation. In order to
make the three curves clearly expressed in one graph, we
intentionally expand the χd and Pl in the graph by 100 times
the corresponding actual calculated value.
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Dyson-Schwinger equation. To this end, we introduced a
regularized fermion condensate that not only eliminates the
UV divergence but also properly describes the nonpertur-
bative characteristics of QED3. Based on this regularized
fermion condensate, we systematically studied the evolu-
tion of the chiral and dual susceptibilities with temperature.
It is found that, with the increase of temperature, the above
two susceptibilities all show smooth peaks, which indicates
that the chiral transition and the deconfinement transition of
QED3 at finite temperature are crossover (The transitions
are crossover because of the presence of explicit breaking.).
More interestingly, in the DSE truncation framework used
in this paper, we found that in QED3 with finite temper-
ature, the deconfinement transition occurred earlier than the

corresponding chiral transition. Obviously, all the conclu-
sions drawn in this paper are based on our model approxi-
mation and are heavily dependent on the model framework
we use. Trying to pursue a good model approximation
should be the direction of our future efforts.
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