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A dynamical investigation of the nucleon-nucleon (NN) interaction by using the resonating group
method (RGM) in a chiral SU(3) quark model has been revisited. The considered quark-quark interaction
includes, besides the one-gluon exchange (OGE) and the phenomenological confinement potential, the
nonet scalar and pseudoscalar meson exchanges derived from the spontaneous SU(3) chiral symmetry
breaking. The physical consistency requirement that the wave functions of single baryons satisfy the
minimums of the Hamiltonian has been strictly imposed in determination of the model parameters. The
calculated masses of the octet and decuplet baryon ground states, the binding energy of the deuteron, and
the NN scattering phase shifts up to a total angular momentum J ¼ 6 are in satisfactory agreement with the
experiments.
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I. INTRODUCTION

Hadrons are composed of quarks and gluons. It is thus an
exciting challenge to understand the phenomena of hadron
physics directly from these fundamental degrees of free-
dom. Despite the progress made in understanding the
consequence of quantum chromodynamics (QCD), the
theory of strong interactions, the complexity of this theory
in its non-perturbative region forces us to employ QCD
inspired models in study of the hadron structures and the
hadron-hadron interactions. Among these models, the
constituent quark model has shown to be quite successful
in describing the single baryon properties and the nucleon-
nucleon (NN) and hyperon-baryon (YN) interactions
[1–14]. In Refs. [15–19], progress has also been made
in understanding the kaon-nucleon (KN) and antikaon-
nucleon (K̄N) interactions in a chiral constituent quark
model. On the hadron level, the NN interaction has been
well described in effective field theory [20,21].
In the constituent quark model study of NN interaction,

the one-gluon exchange (OGE) is found to be one of the
most important sources of the short-range repulsion [1–12].
Therefore, to get a proper understanding of the NN short-
range interaction mechanism on a quark level, one needs
a credibly determination of the coupling strengths of OGE.
In earlier quark model investigations, the OGE coupling
constants are usually determined by the mass differences of
N − Δ and Λ − Σ, where the masses of single baryons are
calculated as the averaged values of the Hamiltonian with

the spacial wave functions of constituent quarks described
by Gaussian wave functions. The assumption behind this
strategy of the OGE couplings determination is that the
harmonic oscillator size parameters in the Gaussian wave
functions are the same for all single baryons. Under such an
assumption, the matrix elements of the kinematic energy
and the confinement potential for N will be the same as
those for Δ. A similar situation applies to Λ and Σ.
Consequently, the mass differences of N − Δ and Λ − Σ
only come from the one-boson exchanges (OBEs) gen-
erated by the quark and chiral-field coupling and the OGE.
One can then fix the OGE couplings by the mass
differences of N − Δ and Λ − Σ with the parameters in
OBEs being predetermined.
The problem for choosing the same size parameter in

Gaussian wave functions for all single baryons is that the
masses of baryon ground states are not guaranteed to be
the minimums of the Hamiltonian, contradictory to the
variational principle. In other words, the wave functions
chosen for single baryons are not consistent with the model
Hamiltonian. Physically, it is hard to understand why
different baryons, e.g., N and Δ, or Σ and Σ�, have exactly
the same sizes although their Hamiltonians are different due
to their different quantum numbers. In earlier quark model
calculations, usually the nucleon is set to be the minimum
of the Hamiltonian by a particular choice of the values for
other model parameters, e.g., the parameters in the confine-
ment potential. One then needs to be very careful when
extends the model from the study ofNN interaction to other
baryon-baryon (BB) systems. There may be cases that one
needs to introduce additional channels to lower the energy*wangwenling@buaa.edu.cn
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of the considered BB system. These channels might not be
physical ones, but are partially needed to change the internal
wave functions of the single baryons. Due cautions should
be taken in explaining the configuration structure of any
bound BB states obtained in such cases. In Refs. [22,23],
Ohta et al. and Liu found that a stability condition of the
nucleon should be satisfied to make a meaningful discussion
of the NN interaction. It is natural to expect that such an
observation also holds for other BB systems.
In this work, we reinvestigate the NN interaction in the

framework of resonating group method (RGM) within a
chiral SU(3) quark model. The quark-quark interaction
includes the OGE, the phenomenological confinement
potential, and the nonet scalar and pseudo-scalar meson
exchanges generated from the spontaneous SU(3) chiral
symmetry breaking. The major difference between the
present work with earlier quark model calculations is that
the quark-quark interaction employed in the present work is
constrained to describe the energies of single baryons, the
binding energy of deuteron, and the NN scattering phase
shifts in a rather consistent manner without introducing any
additional parameters. Specifically, in the present work, the
harmonic oscillator size parameters for constituent quarks
are not treated as predetermined parameters and taken to be
the same for all single baryons. Instead, they are determined
by variational method in calculation of the energies of
single baryon ground states, which ensures that all single
baryons are minimums of the Hamiltonian. The model
parameters in Hamiltonian are then adjusted to simulta-
neously match the calculated energies of single baryons,
the binding energy of the deuteron, and the predicated NN
scattering phase shifts with their experimental values. We
mention that this is the first chiral quark model inves-
tigation where the octet and decuplet baryon ground states
and the NN interactions are handled in a consistent manner.
It is expected that the results will be more reliable when one
extends the present model from the study of NN interaction
to other BB systems, especially to the search for dibaryons,
which is expected to be done in our next step work.
The paper is organized as follows. In the next section, we

review the main aspects of the chiral SU(3) quark model,
the description of the baryon ground states, the formulation
of RGM, and the determination of the model parameters.
The results for masses of octet and decuplet baryon ground
states, the binding energy of deuteron, and the NN
scattering phase shifts are shown and discussed in
Sec. III. Finally, the summary and conclusions are drawn
in Sec. IV.

II. FORMULATION

A. The chiral SU(3) quark model

The idea and details of the chiral SU(3) quark model can
be found in Refs. [9,15,16]. Here we just present the main
features of this model.

The quark and chiral field interaction Lagrangian in the
flavor SU(3) case can be obtained by a linear generalization
of the SU(2) linear σ-model, which gives

Lch
I ¼ −gchψ̄

�X8
a¼0

σaλ
a þ iγ5

X8
a¼0

πaλ
a

�
ψ : ð1Þ

Here ψ is the quark field, πa and σa (a ¼ 0; 1;…; 8) are
nonet pseudoscalar and scalar fields, λa is the Gell-Mann
matrix of the flavor SU(3) group, and gch the quark and
chiral-field coupling constant. Clearly, this Lagrangian is
invariant under the infinitesimal chiral SUð3ÞL × SUð3ÞR
transformation. In practice, a form factor Fðq2Þ will be
inserted into the vertices of quark and chiral field coupling
to describe the chiral-field structure,

Fðq2Þ ¼
�

Λ2

Λ2 þ q2

�
1=2

; ð2Þ

with the cutoff mass Λ indicating the chiral symmetry
breaking scale [24–26]. Equations (1) and (2) result in the
following chiral field induced potentials between the ith
and jth quarks:

Vch
ij ¼

X8
a¼0

Vσa
ij þ

X8
a¼0

Vπa
ij ; ð3Þ

with

Vσa
ij ¼ −Cðgch; m0

σa ;ΛÞY1ðm0
σa ;Λ; rijÞðλai λaj Þ þ Vσa

ls ðrijÞ;
ð4Þ

Vπa
ij ¼ Cðgch; m0

πa ;ΛÞ
m02

πac
a
ij

48
Y3ðm0

πa ;Λ; rijÞ
× ðσi · σjÞðλai λaj Þ þ Vπa

tenðrijÞ; ð5Þ

and

Vσa
ls ðrijÞ ¼ −Cðgch; m0

σa ;ΛÞ
m02

σas
a
ij

8
Z3ðm0

σa ;Λ; rijÞ
× ½L · ðσi þ σjÞ�ðλai λaj Þ; ð6Þ

Vπa
tenðrijÞ ¼ Cðgch; m0

πa ;ΛÞ
m02

πac
a
ij

48
H3ðm0

πa ;Λ; rijÞ
× ½3ðσi · r̂ijÞðσj · r̂ijÞ − σi · σj�ðλai λaj Þ; ð7Þ

where

Cðgch; m;ΛÞ ¼ g2ch
4π

Λ2

Λ2 −m2
m; ð8Þ
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Y1ðm;Λ; rÞ ¼ YðmrÞ − Λ
m
YðΛrÞ; ð9Þ

Y3ðm;Λ; rÞ ¼ YðmrÞ −
�
Λ
m

�
3

YðΛrÞ; ð10Þ

Z3ðm;Λ; rÞ ¼ ZðmrÞ −
�
Λ
m

�
3

ZðΛrÞ; ð11Þ

H3ðm;Λ; rÞ ¼ HðmrÞ −
�
Λ
m

�
3

HðΛrÞ; ð12Þ

YðxÞ ¼ 1

x
e−x; ð13Þ

ZðxÞ ¼
�
1

x
þ 1

x2

�
YðxÞ; ð14Þ

HðxÞ ¼
�
1þ 3

x
þ 3

x2

�
YðxÞ; ð15Þ

caij ¼
8<
:

4
mimj

; ða ¼ 0; 1; 2; 3; 8Þ
ðmiþmjÞ2
m2

i m
2
j

; ða ¼ 4; 5; 6; 7Þ
ð16Þ

saij ¼
8<
:

1
m2

i
þ 1

m2
j
; ða ¼ 0; 1; 2; 3; 8Þ

2
mimj

; ða ¼ 4; 5; 6; 7Þ
ð17Þ

and mi and mj are masses of the ith and jth constituent
quarks.m0

σa andm
0
πa are related to the mass of scalar meson,

mσa , and the mass of pseudoscalar meson, mπa , by

m0
σa ¼

8<
:
mσa ; ða¼0;1;2;3;8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

σa −ðmi−mjÞ2
q

; ða¼4;5;6;7Þ ð18Þ

m0
πa ¼

8<
:
mπa ; ða¼0;1;2;3;8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πa −ðmi−mjÞ2
q

: ða¼4;5;6;7Þ ð19Þ

The relations for a ¼ 4, 5, 6, 7 in Eqs. (18) and (19) come
from an explicit treatment of the mass difference of uðdÞ
and s quarks in the derivation of potentials of Eqs. (4)
and (5) for κ- and K-exchange from the quark and chiral
field interaction Lagrangian of Eq. (1).
For pseudoscalar meson exchanges, the fact that the

physical η and η0 are mixing states of η0 and η8 is
considered in the calculation:

�
η ¼ η8 cos θPS − η0 sin θPS;

η0 ¼ η8 sin θPS þ η0 cos θPS;
ð20Þ

with the mixing angle θPS taken to be the empirical
value θPS ¼ −23°.
Apart from the potentials from OBEs given in Eq. (3), to

study the hadron structure and hadron-hadron dynamics,
one still needs the potential from OGE,

VOGE
ij ¼ gigj

4
ðλci · λcjÞ

�
1

rij
−
π

2
δðrijÞ

�
1

m2
i
þ 1

m2
j

þ 4

3

1

mimj
ðσi · σjÞ

��
þ VOGE

ls ðrijÞ þ VOGE
ten ðrijÞ;

ð21Þ

with

VOGE
ls ðrijÞ ¼ −

gigj
4

ðλci · λcjÞ
m2

i þm2
j þ 4mimj

8m2
i m

2
j

1

r3ij

× ½L · ðσi þ σjÞ�; ð22Þ

VOGE
ten ðrijÞ ¼ −

gigj
4

ðλci · λcjÞ
1

4mimj

1

r3ij

× ½3ðσi · r̂ijÞðσj · r̂ijÞ − σi · σj�; ð23Þ

and a phenomenological confinement potential of which
the frequently used linear and quadratic types are consid-
ered in the present work,

Vconf
ij ¼

�−ðλci · λcjÞðaijrij þ a0ijÞ; ðModel IÞ
−ðλci · λcjÞðaijr2ij þ a0ijÞ: ðModel IIÞ ð24Þ

The total Hamiltonian for a multiquark system can then
be written as

H ¼
XN
i¼1

�
mi þ

p2i
2mi

�
−
ðPN

i¼1 piÞ2
2
P

N
i¼1mi

þ
XN
j>i¼1

ðVconf
ij þ VOGE

ij þ Vch
ij Þ; ð25Þ

with pi being the three-momentum of the ith quark, and N
being the number of quarks for the system considered.

B. Baryon ground states

The antisymmetrized wave function for decuplet or octet
ground state baryon B in spin-flavor-color-orbit space can
be written as

ΨB ¼
8<
:
ΦS

Bχ
S
BζB; ðdecupletÞ

1ffiffi
2

p
� P

MX¼MS;MA
ΦMX

B χMX
B

�
ζB; ðoctetÞ ð26Þ
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where ΦB, χB and ζB are wave functions of baryon B in
orbit-flavor, spin and color spaces, respectively, with the
superscripts S, MX denoting symmetric and mixed-
symmetric under interchange of any pair of quarks in
the corresponding space. Note that the baryon wave
functions in orbit and flavor spaces are coupled together,
since the mass of strange quark ms is different from that of
up (down) quark mu (md),

ΦS
B ¼

X
f1f2f3

CS
Bðf1f2f3Þψðr1r2r3; f1f2f3Þjf1f2f3i; ð27Þ

ΦMX
B ¼

X
f1f2f3

CMX
B ðf1f2f3Þψðr1r2r3; f1f2f3Þjf1f2f3i;

ð28Þ

where fi is the flavor of the ith quark, CBðf1f2f3Þ the
SU(3) Clebsch-Gordon coefficient in flavor space, and
ψðr1r2r3; f1f2f3Þ the orbit wave function for three quarks
with flavor contents f1f2f3. The orbit wave function is
determined by the variational method with the trial wave
function taken to be a product of Gaussian functions,

ψðr1r2r3; f1f2f3Þ ¼
Y3
i¼1

�
1

πb2i

�
3=4

exp

�
−

1

2b2i
r2i

�
: ð29Þ

With the assumption that the harmonic oscillator frequency
is the same for u, d and s quarks which ensures that the
three-quark center-of-mass motion is irrelevant to the
calculation, the size parameter for strange quark, bs, is
related to that for up quark, bu, by

bs ¼
ffiffiffiffiffiffi
mu

ms

r
bu: ð30Þ

In earlier quark model calculations, bu is treated as a
predetermined parameter and taken as the same for all
single baryons. In the present work, bu for each baryon will
be obtained by minimize the corresponding baryon mass
from the model calculation, i.e.,

∂
∂bu hΨBjHjΨB ¼ 0; ð31Þ

which ensures that each single baryon is the solution of the
Hamiltonian of Eq. (25).

C. RGM for NN system

The following Jacobi coordinates are defined to con-
struct the total wave function of the NN system:

ξ1 ¼ r2 − r1; ð32Þ

ξ2 ¼ r3 −
r1 þ r2

2
; ð33Þ

ξ3 ¼ r5 − r4; ð34Þ

ξ4 ¼ r6 −
r4 þ r5

2
; ð35Þ

r ¼ r1 þ r2 þ r3
3

−
r4 þ r5 þ r6

3
; ð36Þ

with ξi (i ¼ 1–4) being the internal coordinates for two
nucleon clusters, and r bing the relative coordinate of two
clusters.
Following the cluster model calculations [27,28], the

RGM wave function is written as

ΨNN ¼ A½ΨNðξ1; ξ2ÞΨNðξ3; ξ4ÞχrelðrÞ�ST; ð37Þ

with χrelðrÞ being the trial wave function of relative motion
of two nucleon clusters, and ST being the total spin and
isospin of the NN system. ΨN is the internal wave function
of each single cluster, taken to be the same as that from
Eq. (26). The wave function of total center-of-mass motion
is stripped off as it is irrelevant to the calculation. The
symbol A is the antisymmetrizing operator for interchange
any pair of constituent quarks between two clusters,

A ¼ 1 −
X3
i¼1

X6
j¼4

Pij; ð38Þ

where Pij is the permutation operator of the ith and jth
quarks that are from different clusters. Substituting ΨNN
into the following projection equation

hδΨNN jH − ð2EN þ ErelÞjΨNN ¼ 0; ð39Þ

with EN and Erel being the inner energy of nucleon and the
relative energy between two nucleon clusters, respectively,
one gets the RGM equation for the unknown relative
motion wave function

Z
Lðr; r0Þχrelðr0Þdr0 ¼ 0; ð40Þ

with

Lðr; r0Þ ¼ Hðr; r0Þ − ð2EN þ ErelÞN ðr; r0Þ; ð41Þ

where the Hamiltonian kernel H and normalization kernel
N can, respectively, be calculated by
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�
Hðr; r0Þ
N ðr; r0Þ

�

¼ h½ΨNðξ1; ξ2ÞΨNðξ3; ξ4Þδðr − rNNÞ�ST j

×

�
H

1

�
jA½ΨNðξ1; ξ2ÞΨNðξ3; ξ4Þδðr0 − rNNÞ�STi:

ð42Þ

In practical calculation, the unknown wave function for
two-cluster relative motion χrelðrÞ is projected into partial
waves,

χrelðrÞ ¼
X
L

1

r
χLrelðrÞYLMðr̂Þ: ð43Þ

For a bound state problem, the L-wave relative wave
function χLrelðrÞ is expanded as

χLrelðrÞ ¼
Xn
i¼1

ciuLðr; SiÞ; ð44Þ

with

uLðr; SiÞ≡ 4πr

�
3

2πb2u

�
3=4

exp

�
−

3

4b2u
ðr2 þ S2i Þ

�

× iL

�
3

2b2u
rSi

�
; ð45Þ

where Si is called the generate coordinate, and iL the
Lth modified spherical Bessel function. The information
about the unknown wave function of two-cluster relative
motion is now exhibited by the coefficients ci’s with
properly chosen values of the generate coordinates.
Performing a variational procedure, one deduces the Lth
partial-wave equation for a bound-state problem,

Xn
j¼1

LL
ijcj ¼ 0; ði ¼ 1;…; nÞ ð46Þ

with

LL
ij ¼

Z
uLðr; SiÞLLðr; r0ÞuLðr0; SjÞrr0drdr0; ð47Þ

LLðr; r0Þ ¼
Z

Y�
LMðr̂ÞLðr; r0ÞYLMðr̂0Þdr̂dr̂0: ð48Þ

Solving Eq. (46), one gets the binding energy and the
corresponding wave function of the two-cluster system.
For a scattering problem, the radial part of the relative

motion wave function is expanded as

χLrelðrÞ ¼
Xn
i¼1

ciũLðr; SiÞ; ð49Þ

with

ũLðr; SiÞ≡
(
piuLðr; SiÞ; ðr ≤ R0Þ
½h−LðkrÞ − sih

þ
L ðkrÞ�r; ðr ≥ R0Þ

ð50Þ

where h�L is the Lth spherical Hankel functions, k is the
momentum of the two-cluster relative motion, and R0 is a
cutoff radius beyond which all the strong interactions
can be disregarded. The complex parameters pi and si
are determined by the smoothness condition at r ¼ R0 and
ci’s satisfy

P
n
i¼1 ci ¼ 1. Performing a variational pro-

cedure, the Lth partial-wave equation for the scattering
problem can be deduced as

Xn−1
j¼1

L̃L
ijcj ¼ M̃L

i ; ði ¼ 1;…; nÞ ð51Þ

with

L̃L
ij ¼ K̃L

ij − K̃L
in − K̃L

nj þ K̃L
nn; ð52Þ

M̃L
i ¼ K̃L

nn − K̃L
in; ð53Þ

and

K̃L
ij ¼

Z
ũLðr; SiÞLLðr; r0ÞũLðr0; SjÞrr0drdr0; ð54Þ

where the RGM kernel LLðr; r0Þ is defined in Eq. (48).
Solving Eq. (51), the S-matrix element SL and the phase
shifts δL can be obtained by

SL ≡ e2iδL ¼
Xn
i¼1

cisi: ð55Þ

D. Model parameters

The predetermined model parameters are: (1) the masses
of mesons, which are taken to be their experimental values
except for σ meson, whose mass is treated as a parameter to
be fitted by the binding energy of deuteron and the NN
scattering phase shifts; (2) the cutoff mass Λ in the form
factor of Eq. (2), which is taken to be 1100 MeV as usual
[13,15–19]; (3) the constituent u, d, s quark masses, which
are chosen to be mu ¼ md ¼ 313 MeV, ms ¼ 470 MeV
[9,13,15–19]; (4) the quark and chiral field coupling
constant, which is fixed by the relation

g2ch
4π

¼ 9

25

m2
u

M2
N

g2NNπ

4π
; ð56Þ

NUCLEON-NUCLEON INTERACTION IN A CHIRAL SU(3) … PHYS. REV. D 98, 074018 (2018)

074018-5



with gNNπ taken to be the empirical value
g2NNπ=4π ¼ 13.67.
The left parameters are the coupling constants of OGE,

the parameters in confinement potential, and the mass of σ
meson. They are adjusted to match the baryon masses
calculated at the minimums of the Hamiltonian, the binding
energy of deuteron, and the NN scattering phase shifts with
their experimental values. The fitted values of those
parameters are listed in Table I, where model I and model
II refer to models with linear and quadratic confinement as
presented in Eq. (24), respectively.
One sees from Table I that the OGE coupling constants

fixed in the present work are a little bit larger than those in
earlier quark model calculations, but they are still quali-
tatively consistent with those usually expected in QCD
at the squared momentum transfer Q2 ∼ 1 GeV2, namely
αsðQ2 ¼ 1Þ ∼ 1.
Note that in earlier quark model calculations, the

harmonic oscillator size parameter bu in the Gaussian
wave functions is also treated as a predetermined param-
eter, and the masses of all the octet and decuplet baryons
are then calculated by using the same bu as that for nucleon.
As mentioned in Sec. I, the problem in such calculations is
that the calculated energies of singe baryon ground states
other than nucleon are not minimums of the Hamiltonian,

contradictory to the variational principle. Therefore, cau-
tions should be taken when one uses the same set of
parameters to study the BB systems other than NN. This
issue will be further discussed in the next section.

III. RESULTS AND DISCUSSIONS

As shown in Table I, we have nine adjustable model
parameters, namely the sigma meson mass mσ, the OGE
coupling constants gu and gs, the confinement strengths
auu, aus, ass and zero point energies a0uu, a0us, a0ss. With the
parameter values listed in Table I, we get the masses of
baryon ground states by variational method of Eq. (31), the
deuteron binding energy by solving Eq. (46), the NN
scattering phase shifts by solving Eq. (51) and calculat-
ing Eq. (55).
Table II shows our results for energies and corresponding

size parameters of octet and decuplet baryon ground states.
One sees that our theoretical masses calculated for all
baryon ground states are consistent with their experimental
values in both linear confinement and quadratic confine-
ment models. One also observes that the size parameters in
the Gaussian wave functions of Eq. (29) are quite different
for various baryons, and they are also different in models
with linear or quadratic confinement.
In earlier quark model calculations, the size parameter bu

is treated as a predetermined parameter and it is the same
for all N, Δ and other single baryons. In our opinion,
once the Hamiltonian is given, the baryon wave functions
should be obtained in principle by solving a Schrödinger
equation. Of course this is impractical due to the complex-
ity of the quark-quark interacting potential [cf. Eq. (25)].
An approximated solution could then be obtained by using
Gaussians as trial wave functions and determining the
baryon masses and sizes by variational method. This has,
for the first time, been strictly imposed in the present work
without introducing any additional parameters compared
with earlier quark model calculations [9,13].
In Fig. 1 we show our calculated baryon mass as a

function of the variational size parameter bu for each
baryon ground state. One sees that the minimums of the
masses of various baryons are located at different values of
the size parameter bu. For octet baryons, the size param-
eters resulted from the linear confinement model are close
to those from the quadratic confinement model. While for
decuplet baryons, the size parameters resulted from the
linear confinement model are much bigger than those from

TABLE II. Resulted mass and size parameter of octet and decuplet baryon ground states.

N Λ Σ Ξ Δ Σ� Ξ� Ω

Expt. [MeV] 939 1116 1193 1318 1232 1385 1533 1672
Theo. [MeV] 939 1116 1193 1318 1232 1385 1533 1672
bu [fm] (r conf.) 0.474 0.478 0.507 0.487 0.642 0.632 0.615 0.593

(r2 conf.) 0.472 0.473 0.495 0.476 0.588 0.578 0.561 0.540

TABLE I. Model parameters. The meson masses and the cutoff
masses: mσ0 ¼ mκ ¼ mϵ ¼ 980 MeV, mπ ¼ 138 MeV, mK ¼
495 MeV, mη ¼ 549 MeV, mη0 ¼ 957 MeV, Λ ¼ 1100 MeV.
The masses of uðdÞ quark and s quark are taken to be 313 MeV
and 470 MeV, respectively. The strengths of confinement auu,
aus, ass are in MeV=fm for linear confinement and in MeV=fm2

for quadrature confinement, respectively. The mass of σ meson,
mσ , and the constants a0uu, a0us, and a0ss are in MeV.

Model I Model II
(r conf.) (r2 conf.)

mσ 608 625
gu 1.06 0.98
gs 1.16 1.07
auu 86.5 56.2
aus 90.4 69.3
ass 100.4 101.3
a0uu −51.4 −36.6
a0us −33.4 −25.1
a0ss −12.8 −14.9
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the quadratic confinement model. This indicates that the
decuplet baryons are much more sensitive than the octet
baryons to the choice of the type of the phenomenological
confinement potential. One also observes that in both
models, the size parameters for decuplet baryons are always
much bigger than those for octet baryons, which is distinct
from the earlier quark model calculations in literature,
where the size parameters for all octet and decuplet baryons
are taken to be the same. Under such an assumption, the
OGE coupling constants are claimed to be determined
by the mass differences of N-Δ and Λ-Σ, with the masses
of all N, Δ, Λ, and Σ baryons calculated at the same size
parameter bu. In these calculations, one may adjust the
parameters in the confinement potential to make the masses
of N and Λ stable against the parameter bu, but then the Δ,
Σ and other baryons are obviously not the minimums of the
Hamiltonian, as indicated by Table II and Fig. 1. When one
extends the model from the study ofNN interaction to other
BB systems especially when the decuplet baryons are
involved, there might be cases that one needs to introduce
additional channels to lower the energy of the considered
BB system by changing the internal wave functions of the
single baryons. Due caution should be exercised in explain-
ing the configuration structure of any bound states obtained
in such kind of calculations.

Table III shows the binding energy of deuteron calcu-
lated in the present work with a comparison with the
experimental value. One sees that our calculated values in
both linear confinement model and quadratic confinement
model are in good agreement with the data. This can be
easily understood, since in the parameters fitting procedure,
we found that this quantity is rather sensitive to the mass
of σ meson, and one thus can fine tune mσ to make the
theoretical binding energy of deuteron close to the exper-
imental data.
Figures 2–8 show the NN scattering phase shifts and

Fig. 9 shows the mixing parameters for NN coupled partial
waves up to a total angular momentum J ¼ 6 calculated
in the present work, where the red solid and blue dashed
lines represent the results calculated in models with linear
confinement and quadratic confinement, respectively. The
scattered symbols are results form SAID’s partial wave
analysis [29], with the full circles representing their single
energy analysis and the empty diamonds representing their
energy dependent solution (SM16). One sees that the
overall agreement of our results with SAID’s partial wave
analysis is satisfactory. At least they are not worse than the
earlier quark model calculations, while in the present work
we have put much more strict constraints on the model
parameters.
Figure 2 shows the S-wave NN phase shifts. For 3S1

partial wave, the theoretical phase shifts are in perfect
agreement with the data. This channel corresponds to the
deuteron quantum numbers, which means that the coupling
to the 3D1-partial wave caused by the tensor force resulted
from OGE and one-pion exchange is important. Given the
size parameter bu for nucleon determined by variational
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FIG. 1. Baryon mass mB as a function of its variational size parameter bu. Left: model I (linear confinement). Right: model II
(quadratic confinement).

TABLE III. Binding energy of deuteron (in MeV).

Model I Model II Expt.
(r conf.) (r2 conf.)

−2.215 −2.218 −2.224
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method of Eq. (31), and the mass of sigma meson mσ fine
tuned to get the deuteron binding energy, the phase shifts
for this partial wave are found to be automatically in
agreement with the data in the present work. The
differences of the phase shifts from the linear confinement
model and quadratic confinement model are found to be
negligible. For 1S0 partial wave, the calculated phase shifts
represented by the red dotted and blue dash-dotted lines of
the left subfigure indicate that there is a lack of attraction in
this partial wave. It is known that the required attraction in
this partial wave is supplied by the coupling to the NΔ 5D0

partial wave [9], caused by the tensor force offered by OGE
and one-pion exchange. In the present work, since N and Δ
have different size parameters, it is rather complicated to
perform a rigorous calculation of the coupling between NN
1S0 and NΔ 5D0 partial waves in the framework of RGM.
Here for the sake of simplicity, we estimate the effect from
this coupling by calculating the off-diagonal transition
matrix elements at nucleon’s size parameter. The resulted
phase shifts are shown as red solid line (linear confinement
model) and blue dashed line (quadratic confinement model)
in left subfigure of Fig. 2. It is clearly seen that the coupling
to the NΔ 5D0 partial wave improves the NN 1S0 phase
shifts significantly. Nevertheless, there are still noticeable
discrepancies in the energy region of T lab < 100 MeV,
indicating a redundant attraction obtained from the cou-
pling to theNΔ 5D0 partial wave. A more complete analysis
of this partial wave requires a strict calculation of the
coupling of NN 1S0 and NΔ 5D0 partial waves in RGM

with the difference of the size parameters bu for N and Δ
been properly taken into account. Such an investigation
requires a new development of the RGM and is postponed
until our future work.
The P-wave NN phase shifts are shown in Fig. 3.

One sees that the phase shifts for 1P1-wave and 3P1-wave
are described satisfactorily. The 3P0 phase shifts are too
attractive, while the 3P2 phase shifts are a little bit less
attractive in the energy region of T lab > 150 MeV, indicat-
ing the need for a moderate spin-orbit force, a topic
deserving special treatment outside this general work.
Figure 4 shows the D-wave NN phase shifts. Apart from

the 3D2 partial wave, which seems too attractive in the
energy region of T lab > 100 MeV, the phase shifts for other
partial waves are described quite well.
The phase shifts for the NN F-wave are shown in Fig. 5.

The 3F3 partial wave is well described. The 3F2 and 3F4
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FIG. 2. NN S-wave phase shifts. The red solid and blue dashed
lines represent the results calculated in models with linear and
quadratic confinement, respectively. For 1S0 partial wave, the red
dotted and blue dash-dotted lines correspond to the results
calculated without considering the coupling of NN 1S0 to ΔΔ
5D0 in models with linear and quadratic confinement, respectively.
The scattered symbols represent the results from partial wave
analysis of SAID, with full circles denoting the single energy
analysis and empty diamonds the energy dependent solution [29].
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partial waves are perfectly described in the T lab <
200 MeV energy region, and they are a little bit too
attractive when T lab > 200 MeV. The 1F3 partial wave is
a little bit too attractive in the T lab > 150 MeV energy
region.
Figures 6–8 show the results for G, H, I and J partial

waves up to a total angular momentum J ¼ 6. The phase
shifts for all the partial waves are described quite well,
except that there are minor deviations in a few partial
waves.
Figure 9 shows the mixing parameters for the relevant

NN coupled partial waves. The coupling of these spin-
triplet partial waves are due to the tensor forces stemming
from the OGE and pseudoscalar meson exchanges. One
sees that the mixing parameters for all the coupled partial
waves considered in the present work are in good agree-
ment with the experimental data, except that for the

coupling of 3P2-3F2, which agrees with data only at very
low energies. Note that the phase shifts for the 3P2 and 3F2

partial waves are not quite well described in the present
work, as shown in Figs. 3 and 5.
In a word, the NN scattering phase shifts for S, P, D, F,

G, H, I, and J partial waves up to a total angular
momentum J ¼ 6 and mixing parameters for the relevant
coupled partial waves have been satisfactorily described in
the present work. Note that the model has only 9 adjustable
parameters as tabulated in Table I. It is known that
the confinement potential itself results in negligible con-
tributions between two color-singlet clusters [15–18].
Therefore, among these 9 adjustable parameters, only gu,
gs, and mσ are relevant to the NN scattering observables.
Since gu and gs have already been determined in fitting the
masses of octet and decuplet single baryons, apart from the
fact thatmσ is fine tuned to reproduce the binding energy of
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the deuteron, the calculation of the NN scattering phase
shifts for 26 partial waves and mixing parameters for the
relevant coupled partial waves in the present work is almost
parameter-free. With this in mind, it is fair to say that the
description of the NN scattering data in the present work
is promising.
In earlier quark model calculations, the couplings of gu,

gs and the mass of sigma meson mσ are independent of the
choice of confinement type (linear or quadratic) which is
assumed to be proportional to the color-color operator as
shown in Eq. (24). There, the masses of all single baryons
are calculated at the same size parameter bu. Of course by
doing so the single baryons other than N and Λ are not
minimums of the model Hamiltonian. In spite of that, the N
andΔ get the same contributions from the kinematic energy
and the confinement potential, so do Λ and Σ. Then the
parameters gu and gs can be uniquely determined by the
mass differences of N − Δ and Λ − Σ once the quark-chiral
field coupling is fixed by Eq. (56) and the cutoff mass is
selected to be around the chiral symmetry breaking scale.
The parameters in the confinement potential are just used to
make the N and Λ stable against the size parameter bu and
to adjust the matrix elements of Hamiltonian calculated at
bu close to the empirical masses of all single baryon ground
states. Since the gu and gs are independent of the choice
of confinement type, and the confinement potential itself
does not considerably contribute to the NN interaction, the
sigma meson mass mσ determined by fitting the NN
scattering data will then also be independent of the choice
of confinement type. When one extends the model to study
other BB systems composed of two color-singlet clusters,
no sizable differences will be observed when different types
of confinement potential are chosen.
The situation is quite different in the present work. One

sees that the parameters gu, gs, andmσ are different in linear
confinement model and quadratic confinement model. The
reason for that is the following. We want to describe the
baryon ground states, the binding energy of deuteron,
and the NN scattering processes in a consistent manner.
This requires the size parameter in the wave functions
of each single baryon to be determined by minimization of
the Hamiltonian. As can be seen in Table II and Fig. 1, the
resulted size parameters are different for different baryons
in both the linear confinement model and the quadratic
confinement model. Therefor, unlike in the earlier quark
model calculations, the kinematic energies and the confine-
ment potential now also contribute to the mass differences
of N − Δ and Λ − Σ due to the unequal size parameters
of these baryons. The mass differences remained for
contributions of OGE are thus usually different for linear
confinement model and quadratic confinement model,
resulting in different OGE coupling constants. The differ-
ence of the parameter mσ is then easy to be understood as
it is partially needed to compensate the difference of the
OGE interaction.

All though the parameters gu, gs, and mσ are different in
linear confinement model and quadratic confinement
model, one sees from Figs. 2–8 that the NN phase shifts
from these two models are very close. In Fig. 10 we show
the diagonal matrix elements of OGE and the total
Hamiltonian in the generator coordinate method (GCM)
calculation for NN 1S0 and 3S1 partial waves, which can
be qualitatively regarded as the effective OGE and
Hamiltonian between two clusters. In this figure, the red
solid and blue dashed lines represent the matrix elements
for Hamiltonian in models with linear and quadratic
confinement, respectively. The red dotted and blue dash-
dotted lines correspond to the results for OGE in models
with linear and quadratic confinement, respectively. The
horizontal axis denotes the generator coordinate which
can qualitatively describe the distance between two clus-
ters. One sees that the interaction of OGE at short range is
more repulsive in linear confinement model than that in
quadratic confinement model, so is the total Hamiltonian.
Nevertheless, these two models result in quite similar NN
phase shifts, implying that the calculated NN phase shifts
in the energy region considered are not that sensitive to the
short range interaction. For deeply bound BB states, one
may see difference of the results from these two models.
The OGE and Hamiltonian matrix elements in the present
work are also different from those in earlier quark model
calculations. This to some extent also indicates that the NN
scattering data alone cannot uniquely determine the param-
eters in a constituent quark model. To get more reliable
quark-quark interactions for the extension to study other
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BB systems in a parameter-free way, one should constrain
the model by fitting as many data as possible. In this regard,
the present work, which describes the energies of single
baryon ground states, the binding energy of the deuteron,
and the NN scattering phase shifts up to a total angular
momentum J ¼ 6 in a rather consistent manner, may be
considered as a step in the right direction.
Using the present model to get predictions for other BB

systems is beyond the scope of the present work. But based
on the parameters listed in Table I and the baryon size
parameters shown in Table II and Fig. 1, it is still possible to
make some interesting arguments without any detailed
calculations. As we all know, the sigma meson exchange
contributes attraction to all baryon-baryon systems. Its
mass, mσ , determined in the present work is 608 MeV
in linear confinement model and 625 MeV in quadratic
confinement model, both higher than that used in Ref. [13],
595 MeV. For NN system, the attraction from the σ meson
exchange is not reduced in the present work since nucleon
has a smaller size parameter, bu ≈ 0.47 fm, compared with
bu ¼ 0.5 fm used in Ref. [13]. However, for decuplet
baryons, the size parameters determined by the variational
method in the present work are much bigger than
bu ¼ 0.5 fm. It is then expected that a much smaller
attraction from the σ meson exchange will be obtained
in the present model when study the interactions of
decuplet baryons, e.g., ΔΔ or ΩΩ. Detailed investigations
of these systems in the present model are in progress, and
the results will be reported subsequently.

In the present work, the short-range quark-quark
interaction is dominated by OGE and quark exchange
effects. In the literature, there are authors who studied the
short-range interaction as stemming from vector-meson
exchanges on quark level [13,30]. As mentioned in
Ref. [17], it is still a controversial and challenging
problem whether OGE or vector-meson exchange is the
right mechanism or both of them are important for
describing the short-range quark-quark interaction. We
postpone the study of this issue by incorporating the
vector-meson exchanges in the quark-quark interaction
Hamiltonian to our next work.

IV. SUMMARY AND CONCLUSIONS

The aim of the present work is to perform a consistent
description of the masses of single baryons and the NN
scattering data by using the same Hamiltonian in a chiral
SU(3) quark model. The considered quark-quark inter-
actions includes, besides the OGE potential and the
phenomenological confinement potential, the potentials
from the nonet scalar meson exchanges and the nonet
pseudo-scalar meson exchanges derived from the sponta-
neous SU(3) chiral symmetry breaking. The masses of
single baryons are calculated by using the Gaussian trial
wave functions with the size parameters determined by the
variational method, which ensures that all single baryons
are minimums of the model Hamiltonian. The NN inter-
action is dynamically investigated by using the resonating
group method. It is found that the calculated masses of the
octet and decuplet baryon ground states, the binding energy
of the deuteron, and the NN scattering phase shifts up to a
total angular momentum J ¼ 6 and mixing parameters for
the relevant coupled partial waves are in satisfactory
agreement with the experiments. The present model may
serve as a good starting point to achieve a consistent and
unified description of the single baryon properties and the
baryon-baryon dynamics. Investigations of baryon spec-
troscopy and the BB interaction dynamics for systems other
than NN in a completely parameter-free way within the
present model are planned for our future work.
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