
 

Thermodynamical properties of strongly interacting matter in a model
with explicit chiral symmetry breaking interactions
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We analyze the effects of the light and strange current quark masses on the phase diagram of QCD at
finite temperature and vanishing baryonic chemical potential, computing the speed of sound, the trace
anomaly of the energy momentum tensor, and the fluctuations and correlations of the conserved charges
associated to baryonic, electric, and strangeness numbers. The framework is a known extension of the three
flavor Nambu Jona Lasinio model, which includes the full set of explicit chiral symmetry breaking
interactions (ESB) up to the same order in large Nc counting as the ’t Hooft flavor mixing terms and eight
quark interactions. It is shown that the ESB terms are relevant for the description of a soft region in the
system’s speed of sound and overall slope behavior of the observables computed. At the same time the role
of the 8q interactions gets highlighted. The model extension with the Polyakov loop is considered and the
results are compared to lattice QCD data.
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I. INTRODUCTION

The study of the thermodynamical properties of strongly
interacting matter is one of the open present day theoretical
and experimental challenges. On the theoretical side the
well known problems of the ab initio approach of lattice
QCD (lQCD) when dealing with finite chemical potential
as well as the will to grasp a deeper understanding of the
interplay of the various underlying mechanisms in strongly
interacting matter can be seen as an incentive to the use of
moderately complex effective Lagrangians. On the other
hand, at vanishing chemical potential the growing con-
fidence in lQCD results means that the agreement with
these is increasingly used as a way to establish the success
of other theoretical predictions.
The values of the current quark masses constitute

undoubtedly one of the most relevant inputs in the study
of the QCD phase diagram, as the quark condensates
become not exact order parameters for the chiral phase
transition. Model estimates of the size of the condensates at
the critical transition points show that they may be

significantly larger than the bare ones [1–7], indicating
that nonperturbative effects are still effective in spite of the
transition. After the transition, a more or less slow con-
vergence to the bare values of the condensates depends
naturally on the size of the current quark masses and how
fast the perturbative regime of QCD is reached, where bulk
thermodynamic observables are conditioned by the Stefan-
Boltzmann limit pertinent to an ideal quark-gluon gas.
The chiral critical endpoint (CEP) which according to

numerous model calculations is expected to occur, sepa-
rating a region of first order transitions at higher baryon
chemical potential μB and lower temperatures T from the
crossover behavior at lower μB and higher T, is not yet
established. A second order transition is likely to occur at
this point in the chiral limit of light quarks and an infinitely
heavy strange quark [8]. Model results, using quark masses
close to physical values, differ drastically regarding its
possible location. The hope that its eventual location may
be narrowed down in lQCD, using the reweighting tech-
nique to extend lattice calculations from μB ¼ 0 to finite
values [9], should the nature of the transition be second
order, requires still a detailed analysis of the quark mass
and volume dependence [10], on which hinges the accuracy
of Lee-Yang zeros of the lQCD partition function [11].
Meanwhile extensive lQCD studies by different groups

report that the algorithmic difficulties that prevented the use
of the light physical quark masses have been mostly
overcome, as well as spurious taste breaking effects for
staggered discretization schemes, making it possible to
achieve a realistic hadron spectrum [12,13]. Their findings
converge to the by now commonly accepted understanding
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that along the μB ¼ 0 line no genuine phase transition
occurs. A crossover takes place around T ∼ 155 MeV in
aT interval of roughly 20MeV [14,15], for recent reports see
[16,17]. This value of T decreased substantially as compared
to the quoted value one decade ago,T ¼ 192 MeV [18], that
used calculations with improved staggered fermions for
various light to strange quark mass ratios in the range [0.05,
0.5], andwith a strange quarkmass fixed close to its physical
value (although with an estimate for the string tension 10%
larger than the usually quoted), while in [19] the crossover
temperaturewas reported to be close to the present day value
for the renormalized chiral susceptibility and about 25MeV
larger for the strange quark number susceptibility and
Polyakov loops, using physical quark mass values. For
comparison, the RHIC freeze-out values indicated at that
time occur below T ∼ 170 MeV [20,21].
The necessity to devise powerful measures of signa-

tures for this crossover, that could also be useful in the
experimental searches, has become a main objective.
Besides the chiral condensate and its derivative with respect
to the quark mass, the chiral susceptibility, used to probe
the restoration of chiral symmetry, fluctuations and corre-
lations in conserved charges have become tools to identify
the transition from hadronic to quark-gluon degrees of
freedom (d.o.f.) in the crossover region. In relativistic
heavy-ion colliders experiments the ratios of such fluctua-
tions are obtained in precision experimental studies for
several collision energies as part of the RHIC beam energy
scan program [22,23], which focuses on the search of the
CEP. Chemical freeze-out parameters are then extracted
within a canonical ensemble description of the data. These
parameters lie below the freeze-out parameters extracted
formerly from particle yields in the hadron resonance
gas (HRG) model [24–26] and the single freeze-out model
[27–29]. A recent analysis using the HRG model to fit the
net Kaon fluctuations at RHIC [30] provides experimental
evidence that the freeze-out temperatures for strange
hadrons could be 10–15MeV higher than for the light ones.
Other measures resort to the equation of state (EoS) for

determination of the trace of the energy momentum tensor
and related specific heat and speed of sound. It has been
pointed out a long time ago that the EoS near the QCD
phase transition might be very soft as compared to an ideal
pion gas [31–33] such that a “longest lived fireball” could
be produced in relativistic heavy ion collisions [34] with
ideal conditions to study signatures of the quark gluon
plasma (QGP) as it goes through the stage of deconfine-
ment. This softest point in the EoS is seen as a minimum in
the velocity of sound, which measures the rate of change of
the pressure with respect to the energy density. lQCD
results show that at the minimum the energy density is only
slightly above that of normal nuclear matter density [15].
In the present study we address the effects of the light

and strange current quark masses in the light of an effective
theory of QCD. As is well known from chiral perturbation

theory the canonical mass term represents only the leading
order of an expansion in the masses themselves [35–37].
The explicit symmetry breaking pattern involves current
quark mass dependent interactions at higher orders.
We use a three flavor Nambu-Jona-Lasinio [38,39]

related Lagrangian in mean field approximation, which
we have previously extended to include relevant spin zero
interactions up to the same order in largeNc counting as the
Uð1ÞA breaking flavor determinantal interaction of ’t Hooft
[40,41]. In the context of the NJL model the ’t Hooft term
has been first introduced in [42–44]; in this form the model
has been extensively used, see, e.g., [2,4,5,7,45–52].
Our extension included first two kinds of eight quark

chiral symmetry preserving interactions [53,54], which
were needed to complete the number of vertices important
for dynamical chiral symmetry breaking in four dimensions
[55,56], and resolved instability issues related to the
model’s effective potential reported in [57]. The next
extension added the set of explicit symmetry breaking
(ESB) multiquark interactions at the specific Nc order
considered [58,59]. The phenomenological impact of the
ESB terms on the quality of the low lying spectra of
pseudoscalars and scalars as well as other related observ-
ables is remarkable, in comparison with the models without
their inclusion. In particular the possibility to accurately
describe the spectra of the scalar mesons together with a
good fit for their strong decays gave us confidence that the
model parameters obtained represented an adequate set for
the analysis of the model related QCD phase diagram.
In a subsequent work [60] we have shown that the

extended model leads to the emergence of two CEPs,
associated with the light and strange quark condensates, in
contrast to the common picture in which only the light
condensate relates to a first order transition (except for a
small effect on the strange condensate due to the coupling
of both sectors), while the strange condensate displays a
crossover behavior. The two CEPs act upon the onset for
formation of strange quark matter, which is shifted to
significantly smaller values of μB.
Recently a similar extension of model interactions within

the quark meson model and taking into account finite size
effects led to the interesting result that quark matter with
only u and d quarks may be the stable configuration in a
region close to the end of the table of elements [61].
In face of these new developments one recognizes that

the current quark mass effects are far from being fully
explored and understood.
The crossover regime which follows after the two CEP’s

reported in [60] toward lower μB until reaching the μB ¼ 0
line at higher temperatures is expected to weaken the
prominent ESB features mentioned for the critical zone.
Nevertheless we show that some observables are sensitive
to the current quark mass values and ESB interactions. We
stress that the numerical values of the current quark masses
are intertwined with the dynamics of the ESB interaction
terms and must always be considered together in the
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extended version. The numerical value of the strange
current quark mass is reduced by roughly a factor 2 (thus
being possible to reach its empirical value and light to
strange quark mass ratios) when ESB interactions are
considered in conjunction with best fits for the hadronic
spectra, compared to the case without ESB interactions.
The obvious drawback of the model is the lack of

confinement. However, it should be noted that the NJL
model shares the global symmetries with QCD. Therefore it
gives a reasonable tool to study the critical phenomena even
if the location of the CEP may differ. For instance, both
NJL and Polyakov-loop NJL models predict that the critical
point is located inside the pion condensed phase. This result
is consistent with the QCD no-go theorem [62], which is a
rigorous statement in the large-Nc limit. Thus, we suppose
that symmetries combined with the 1=Nc approach lead to a
reasonable picture of the phase properties of the hadron
matter even if the confinement mechanism is not included.
The comparison with lQCD data shows that there is

room to improve the model calculations, mainly with
respect to the transition to the Stefan-Boltzmann limit that
occurs in a much shorter temperature interval, as well as a
systematic shift to lower temperatures of the observables
considered. The main observation is that the model is able
to capture important features, such as the presence of a dip
in the sound velocity, and the slopes of most observables
considered.
Polyakov loop extended versions of NJL model have

been extensively used in the study of temperature effects in
strongly interacting matter [63–74].
Here we show that by coupling the model to the gluonic

d.o.f. through the Polyakov loop, the temperature gap
between our model predictions and lQCD data is practically
removed, as well as an improvement is obtained regarding
the height of the peak of one of the correlators. An overall
good agreement with lQCD data is obtained.
The text is organized as follows: after revisiting the

model Lagrangian and thermodynamic potential in Sec. II
we present the thermodynamic observables that we com-
pute and the model fits in Secs. III, III A, and III B and
discuss the results in Sec. IV. Our conclusions are sum-
marized in Sec. V.

II. THE MODEL

A. Model thermodynamic potential

Although the model Lagrangian has been introduced and
applied in previous works we indicate it here for com-
pleteness and refer for further details to [58–60,75].
The effective multiquark Lagrangian is expressed in terms

of the Uð3Þ Lie-algebra valued field Σ ¼ ðsa − ipaÞ 12 λa,
involving the quark bilinears sa ¼ q̄λaq, pa ¼ q̄λaiγ5q;
a¼0;1;…;8, λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
× 1, λa are the standard SUð3Þ

Gell-Mann matrices for 1 ≤ a ≤ 8. The q designates the
color quark fields which enjoy the chiral flavor

Uð3ÞL ×Uð3ÞR global symmetry of QCD in the massless
case. In addition the Lagrangian depends on external sources
χ, which generate explicit symmetry breaking effects. In
terms of these fields and sources the Lagrangian density
reads to next to leading order (NLO) in the largeNc counting

Leff ¼ q̄iγμ∂μqþ Lint þ Lχ ; ð1Þ

with

Lint ¼
Ḡ
Λ2

trðΣ†ΣÞ þ κ̄

Λ5
ðdetΣþ detΣ†Þ

þ ḡ1
Λ8

ðtrΣ†ΣÞ2 þ ḡ2
Λ8

trðΣ†ΣΣ†ΣÞ: ð2Þ

and the source dependent pieces

Lχ ¼
X10
i¼0

Li;

L0 ¼ −trðΣ†χ þ χ†ΣÞ;
L1 ¼ −

κ̄1
Λ
eijkemnlΣimχjnχkl þ H:c:

L2 ¼
κ̄2
Λ3

eijkemnlχimΣjnΣkl þ H:c:;

L3 ¼
ḡ3
Λ6

trðΣ†ΣΣ†χÞ þ H:c:

L4 ¼
ḡ4
Λ6

trðΣ†ΣÞtrðΣ†χÞ þ H:c:;

L5 ¼
ḡ5
Λ4

trðΣ†χΣ†χÞ þ H:c:

L6 ¼
ḡ6
Λ4

trðΣΣ†χχ† þ Σ†Σχ†χÞ;

L7 ¼
ḡ7
Λ4

ðtrΣ†χ þ H:c:Þ2

L8 ¼
ḡ8
Λ4

ðtrΣ†χ − H:c:Þ2;

L9 ¼ −
ḡ9
Λ2

trðΣ†χχ†χÞ þ H:c:

L10 ¼ −
ḡ10
Λ2

trðχ†χÞtrðχ†ΣÞ þ H:c: ð3Þ

Under chiral transformations one has for the quark fields
q0 ¼ VRqR þ VLqL, where qR ¼ PRq, qL ¼ PLq, and
PR;L¼ 1

2
ð1�γ5Þ. Then Σ0 ¼ VRΣV

†
L, and Σ†0 ¼ VLΣ†V†

R;
the sources transform as the field Σ.
At this stage the sources can be fixed as the current quark

masses χ ¼ 1=2diagðmu;md;msÞ, after using the freedom
related with the Kaplan-Manohar ambiguity associated
with L1, L9, L10 [76] and which are henceforth set to zero.
The couplings gi ¼ ḡi=Λn (gi stands generically for any

coupling) carry negative dimensions, given by the powers
of Λ, and thus the Lagrangian is non renormalizable. Here
Λ ∼ 4πfπ ∼ 1 GeV [77] is associated with the scale of
spontaneous chiral symmetry breaking.
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As mentioned in the introduction this Lagrangian con-
tains all nonderivative spin 0 multiquark interactions up to
the same counting in large Nc as the ’t Hooft interaction,
given by the term ∼κ in Eq. (2). It has been shown that the
large Nc counting scheme selects the same interactions that
are also relevant in the effective potential in the limit
Λ → ∞, i.e., those scaling at most as Λ0. The LO
contributions are only the 4q interaction ∼G of the original
NJL Lagrangian and the canonical quark mass term L0, all
the other terms are N−1

c suppressed with respect to LO.
These contain terms which violate the Okubo-Zweig-Iizuka
(OZI) rule ðκ; κ2; g1; g4; g7; g8Þ, of which ðκ; κ2Þ break the
Uð1ÞA symmetry and are thus anomalous, as well as
interactions which describe four-quark component q̄qq̄q
admixtures to the q̄q ones (g2, g3, g5, g6).
The bosonization of the Lagrangian is carried over

with functional integral techniques in the stationary
phase approximation resulting in the effective mesonic
Lagrangian density Lbos at T ¼ μ ¼ 0,

Leff → Lbos ¼ Lst þ Lql;

Lst ¼ haσa þ
1

2
hð1Þab σaσb þ

1

2
hð2Þabϕaϕb þOðfield3Þ;

Wqlðσ;ϕÞ ¼
1

2
ln j detD†

EDEj ¼ −
Z

d4xE
32π2

X∞
i¼0

Ii−1trðbiÞ;

b0 ¼ 1; b1 ¼ −Y;

b2 ¼
Y2

2
þ Δud

2
λ3Y þ Δus þ Δds

2
ffiffiffi
3

p λ8Y;…;

Y ¼ iγαð∂ασ þ iγ5∂αϕÞ þ σ2 þ fM; σg
þ ϕ2 þ iγ5½σ þM;ϕ�; ð4Þ

written in terms of the scalar, σ ¼ λaσa, and pseudoscalar,
ϕ ¼ λaϕa, nonet valued fields.
The result of the stationary phase integration at leading

order, Lst, is shown here as a series in growing powers of σ
and ϕ. The coefficients ha; hab;… depend on the current
quark masses and encode all the dependence in the coupling
constants, see Eq. (12) below for ha. As in the case of the
mass parameters, also only the ha with (a ¼ 0, 3, 8) (or hi,
(i ¼ u, d, s) in the flavor basis) do not vanish [54].
The result of the remaining Gaussian integration over the

quark fields is given byWql. Here the second order operator
in euclidean space-time D†

EDE ¼ M2 − ∂2
α þ Y is associ-

ated with the Euclidean Dirac operatorDE ¼ iγα∂α −M −
σ − iγ5ϕ (the γα, α ¼ 1, 2, 3, 4 are anti-Hermitian and obey
fγα; γβg ¼ −2δαβ);M ¼ diagðMu;Md;MsÞ is the constitu-
ent quark mass matrix resulting from the process of sponta-
neous symmetry breaking, which requires a redefinition of
the field σ → σ þM, such that the new vacuum expectation
value vanishes hσi ¼ 0. The one-quark-loop actionWql has
beenobtainedbyusing amodified inversemass expansionof
the heat kernel associated with the given second order

operator [78,79]. The procedure takes into account the
differences Δij ¼ M2

i −M2
j , in a chiral invariant way at

each order of the expansion, with bi being the generalized
Seeley–DeWitt coefficients. The

Ii ¼
1

3
½JiðM2

uÞ þ JiðM2
dÞ þ JiðM2

sÞ� ð5Þ

is the average over the regularized 1-loopEuclideanmomen-
tum integrals Ji with iþ 1 vertices (i ¼ 0; 1;…)

JiðM2Þ ¼ 16π2Γðiþ 1Þ
Z

d4pE

ð2πÞ4 ρ̂Λ
1

ðp2
E þM2Þiþ1

¼ 16π2
Z

d4pE

ð2πÞ4
Z

∞

0

dτρ̂Λτie−τðp
2
EþM2Þ: ð6Þ

We use the Pauli–Villars regularization [80] with two
subtractions in the integrand [81]

ρ̂Λ ≡ ρðτΛ2Þ ¼ 1 − ð1 − τΛ2Þe−τΛ2

: ð7Þ

We take only the dominant contributions to the heat kernel
series, up to b1, b2 for meson spectra and decays, which
involve the logarithmically I1 and quadratically I0 divergent
integrals in Λ.
The J−1 integral is obtained as [82]

J−1ðM2Þ ¼ −
Z

M2

0

J0ðα2Þdα2: ð8Þ

The model thermodynamical potential Ω in the mean
field approximation is written as a contribution stemming
from the stationary phase approximation containing all the
dependence on the model couplings, Vst, and one which is
related to the heat kernel quark one loop integrals J−1
which now carry the explicit T, μ dependence (for details
please see [83])

Ω ¼ Vst þ
X
i

Nc

8π2
J−1ðMi; T; μiÞ; ð9Þ

J−1 ¼ Jvac−1 þ Jmed
−1 ;

Jvac−1 ¼
Z

d4pE

ð2πÞ4
Z

∞

0

dτ
τ
ρðτΛ2Þ16π2

× ðe−τðp2
0Eþp2þM2Þ − e−τðp2

0Eþp2ÞÞ;

Jmed
−1 ¼ −

Z
d3p
ð2πÞ3 16π

2TðZþ þ Z−ÞjM0 þ CðT; μÞ;

Z� ¼ log

�
1þ e−

E∓μ
T

�
− log

�
1þ e−

EΛ∓μ
T

�

−
Λ2

2TEΛ

e−
EΛ∓μ

T

1þ e−
EΛ∓μ

T

;

CðT; μÞ ¼
Z

d3p
ð2πÞ3 16π

2T log ðð1þ e−
jpj−μ
T Þð1þ e−

jpjþμ
T ÞÞ

ð10Þ
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with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
, EΛ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ Λ2

p
.

Vst ¼
1

16
ð4Gðh2i Þ þ 3g1ðh2i Þ2 þ 3g2ðh4i Þ þ 4g3ðh3i miÞ

þ 4g4ðh2i ÞðhjmjÞ þ 2g5ðh2i m2
i Þ þ 2g6ðh2i m2

i Þ
þ 4g7ðhimiÞ2 þ 8κhuhdhs

þ 8κ2ðmuhdhs þ humdhs þ huhdmsÞÞjMi
0 ; ð11Þ

where hi, i ¼ ðu; d; sÞ are solutions of the following system
of cubic equations

Δf ¼ Mf −mf

¼ −Ghf −
g1
2
hfðh2i Þ −

g2
2
ðh3fÞ −

3g3
4

h2fmf

−
g4
4
ðmfðh2i Þ þ 2hfðmihiÞÞ −

g5 þ g6
2

hfm2
f

− g7mfðhimiÞ −
κ

4
tfijhihj − κ2tfijhimj: ð12Þ

The hi are equal to one half the (unsubtracted) quark
condensates, i.e., without the 2nd term in

hq̄qii ¼ −
Nc

4π2
ððMiJ0½M2

i � −miJ0½m2
i �ÞÞ: ð13Þ

III. THERMODYNAMICAL PROPERTIES OF
STRONGLY INTERACTING MATTER

Strongly interacting matter is expected to undergo two
transitions when subjected to high enough temperature (T)
and/or chemical potential (μ): deconfinement and chiral
symmetry (partial) restoration. Although a straight con-
nection between the two is still unclear they are for the most
part expected to occur more or less simultaneously [84,85].
The temperature and chemical potential dependence of

fluctuations and correlations of conserved charges can be
useful tools serving as indicators for the transition behavior.
The fluctuations and correlations of the charges are given
respectively by:

χin ≡ 1

n!
∂nΩ=T4

∂ðμiTÞn

χi;jn;m ≡ 1

n!
1

m!

∂nþmΩ=T4

ð∂ μj
T Þnð∂ μi

TÞm
ð14Þ

Here we will consider the results pertaining to baryonic
number NB, electric charge number NQ, and strangeness
number NS. The corresponding chemical potentials are
related to μi i ¼ u, d, s through μQ¼μu−μd, μB¼2μdþμu
and μS ¼ μd − μs.

1

The traced energy-momentum tensor Θμ
μ and

the speed of sound Cs are also thermodynamical
quantities of interest. Both of these have been evaluated
in lQCD thus we can use them as benchmarks to evaluate
the adequacy of our models. They can be obtained
respectively as:

Θμ
μ ¼ ϵ − 3P

C2
s ≡ ∂P

∂ϵ ¼ s
CV

¼ − ∂Ω
∂T

T ∂2Ω
∂T2

; ð15Þ

with P denoting the pressure, ϵ ¼ Ts − P the energy
density, s ¼ ∂P=∂T the entropy density and CV ¼
ð∂ϵ=∂TÞV the specific heat at constant volume.

A. Polyakov loop extension

Although no gluonic d.o.f. are present in the NJL model
its extension to the so called Polyakov–Nambu–Jona-
Lasinio Model is an attempt to mimic part of its dynamics
by considering a static homogeneous background gluonic
field in the temporal gauge A4 ¼ iA0 which is diagonal in
color space A4 ¼ A3λ3 þ A8λ8 and couples with strength g
to the quark fields through the covariant derivative
Dμ ¼ ∂μ þ iAμ, Aμ ¼ δμ0gA

0
aλ

a=2, where λa are the Gell-
Mann matrices in color space.
The Polyakov loop L, winding around the imaginary

time with periodic boundary conditions, and its trace in
color space, ϕ (and charge conjugate ϕ̄) are given as

L ¼ Pe
R

β

0
ð{A4Þdx4

ϕ ¼ 1

Nc
Tr½L�; ϕ̄ ¼ 1

Nc
Tr½L†�; ð16Þ

TABLE I. The parameters for the Polyakov potentials
UI and UII given in Eqs. (17) and (18). The parameter T0

sets the temperature scale at which deconfinement arises. The
main effect of a modification of this parameter is that of
shifting the transitional temperatures towards higher/lower
temperatures with larger/smaller T0. While T0 ¼ 270 MeV
is given in [66] as the value stemming from lQCD calcu-
lations in pure gauge, it is expected that this temperature
should be adjusted to reflect the inclusion of dynamical
quarks and the number of flavors considered [87,88]. Here
we chose values for T0 that gave a closer agreement to the
lQCD data.

U1 [66] T0 [MeV] a0 a1 a2 b3
200 0.351−2.47 15.2 −1.75

UII [67,74] T0 [MeV] a0 a1 a2 b3 b4 K
175 6.75 −9.8 0.26 0.805 7.555 0.1

1As can be readily deduced from the relations of the
corresponding numbers: NB ¼ 1

3
ðNu þ Nd þ NsÞ, NQ ¼

þ 2
3
Nu − 1

3
ðNd þ NsÞ and NS ¼ −Ns (by convention strangeness

number is the negative of the number of strange quarks).
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where P stands for path-ordering and β ¼ 1=T. In the
quenched limit ϕ is an order parameter for the transition
between the confined phase where the center of SUðNcÞ
symmetry (ZNc

) is verified (vanishing traced Polyakov
loop) and the deconfined phase where this symmetry is
spontaneously broken [86].
An additional term, the Polyakov potential, must be

added to drive this temperature induced spontaneous
breaking. Its form can be determined by fitting lattice
QCD observables. We take two choices, UI [66] and UII

[67,74], with parameters shown in Table I,
(i) Logarithmic form

UI½ϕ;ϕ̄;T�
T4

¼−
1

2
aðTÞϕ̄ϕ

þbðTÞln½1−6ϕ̄ϕþ4ðϕ̄3þϕ3Þ−3ðϕ̄ϕÞ2�

aðTÞ¼a0þa1
T0

T
þa2

�
T0

T

�
2

bðTÞ¼b3

�
T0

T

�
3

ð17Þ

(ii) Exponential K-Log form

U 0
II½ϕ;ϕ̄;T�

T4

¼−
1

2
aðTÞϕ̄ϕ−b3

6
ðϕ̄3þϕ3Þþb4

4
ðϕ̄ϕÞ2

þK ln

�
27

24π2
ð1−6ϕ̄ϕþ4ðϕ̄3þϕ3Þ−3ðϕ̄ϕÞ2Þ

�

aðTÞ¼a0þa1

�
T0

T

�
e−a2

T0
T ð18Þ

where the term proportional to K is the Van der Monde
determinant, and the exponential term going with a2 is a
modification introduced in [74]. We considered a slight
modification of this potential as we used UII½ϕ; ϕ̄; T� ¼
U 0
II½ϕ; ϕ̄; T� − U 0

II½0; 0; T� which enables the reproduction
of the expected vanishing value for Ω=T4 as we approach
the vacuum (fT; μg ¼ f0; 0g).
From a practical point of view the extension from NJL

to PNJL amounts to the introduction of two new classical
fields in the model, ϕ and ϕ̄, the introduction of the
Polyakov potential and a modification of the occupation
numbers (see for instance [72] for details on the
implementation of the model).2At vanishing baryonic

chemical potential, the case considered in this
work, ϕ ¼ ϕ̄.

B. Parameter fitting

The parameters of the model are the quark current
masses (mu, md and ms), the cutoff (Λ) and the couplings
(G, κ, κ2, g1, g2, g3, g4, g5, g6, g7, and g8). In the formulation
of the model without noncanonical explicit chiral symmetry
breaking, NJLH8q, these 15 parameters are reduced to 8 (κ2
and gi with i ¼ 3;…; 8 are set to zero). If we neglect the
isospin symmetry breaking (ml ≡mu ¼ md) these are
further reduced to 7.
As was shown in [54] the NJLH8q model can be fitted

for several fixed values of the OZI violating eight-quark
interaction coupling g1 (the four-quark interaction strength,
G, is smaller for increasing g1 but the remaining parameters
are unchanged) while keeping the mesonic spectra
unchanged apart from a decrease in the σ meson mass
for increasing value of g1 (the scalar mixing angle also
changes). Two sets, denoted as NJLH8qA and NJLH8qB,
are shown in Table II with the latter corresponding to the
highest value of g1 (and conversely the lowest G). In these
isospin symmetric sets (ml ≡mu ¼ md) we fit the model
parameters by imposing a value of g1 and fitting the
remaining 6 parameters using the pion and kaon weak
decay couplings (fπ and fK) and the meson masses (Mπ ,
MK , Mη0 , and Ma0).
This freedom allowed us to isolate and study the impact

of the eight-quark interaction term in the model phase
diagram in the chemical potential-temperature, fμ; Tg,
plane [83]. One of the main highlights of this study was
the realization that the CEP is shifted to lower chemical
potential and higher temperature with increasing g1. This in
turn leads to a substantial reduction in the related crossover
temperature at μ ¼ 0 compared to the case with weak g1
coupling, as reported before in [6,91], with the lower values
of T complying with lQCD results [19].
The extension to include the noncanonical explicit chiral-

symmetry breaking interactions introduces 7 new parame-
ters. For the parameter set NJLH8qmA from Table II I we
chose to impose the value of the current masses (ml andms).
The remaining 12 parameters can be fitted by fixing fπ , fK ,
the pseudoscalar and scalar mixing angles (θps and θs) and
the 8 meson masses (Mπ ,MK ,Mη,Mη0 ,Ma0 ,MK� ,Mσ, and
Mf0), in the isospin limit. Note that the inclusion of the ESB
interactions allows to fit the pseudoscalar as well as the
scalar spectra to empirical data with a high degree of
accuracy, as well as the weak decay constants and the
current quark mass values. This on the other hand reduces
the former freedom in the interplay of G, g1 parameters,
which is now considerably narrowed down, favoring the
strong g1 coupling strength, (we are considering here a range
470 MeV ⪅ Mσ ⪅ 500 MeV). One also sees that the
increase in g1 comes in this case accompanied not only

2The easiest way to introduce this modification is to
note that the phase of the Polyakov loop appears in the
quark action in the form of an imaginary chemical potential
[63,89,90].
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by a decrease inG, but also a decrease in the ESB couplings
g4, g7.

IV. RESULTS AND DISCUSSION

A. Speed of sound and energy-momentum
trace anomaly

In Fig. 1(a) we see a comparison of the temperature
dependence of the squared speed of sound at vanishing
chemical potential as obtained using lQCD and several
parametrizations of our model. Although a complete
quantitative agreement seems impossible with the consid-
ered parametrizations an approximation of the general
qualitative behavior can be obtained: the squared speed
of sound increases with temperature starting at zero until a
critical point upon which it dips into a local minimum (for 3
of the sets) and then rises again going asymptotically to the
Stefan-Boltzmann limit. For temperatures above this local
minimum the obtained speed of sound overshoots the
lQCD result whereas for lower temperatures we obtain
lower values. Note that as one expects the speed of sound to
go to zero in the limit of vanishing temperature and
chemical potential the lQCD results should be followed
by a dip towards zero for lower temperatures.
The model velocity of sound displays a soft point close to

the one of lQCD, at aroundT ∼ 150 MeV. For this feature to
be present in themodel, the parameter g1 of OZI-violating 8-
quark interactions is required to have a certain strength

g1 ∼ 3000–4000 GeV−8, see set NJLH8qB without ESB
interactions, and sets NJLH8qmA,NJLH8qmBwith ESB in
Table II; at the weak coupling g1 ¼ 500 GeV−8 of set
NJLH8qA the relative minimum is absent and the velocity
of sound shows a monotonous decrease. It had already been
noticed some time ago that the strength of parameter g1 has
impact on the number of d.o.f. [83]; a rather strong (more
than 50%) suppression of the artificial quark excitations
(due to lack of confinement of the model) at T=Tc > 0 was
observed, in comparison to a PNJL model calculation [70].
Thus it is understandable that this property manifests itself
in the occurrence of the relative minimum in the velocity of
sound, as the model emulates partially the missing d.o.f.
attributed to the onset of deconfinement. The inclusion of
the ESB breaking parameters does not change this important
property, in spite of the fact that the accurate fit of the low
lying spectra and related properties strongly constrains the
parameters of the model in the vacuum. On the contrary: as
mentioned before, the ESB interactions together with the
requirement of having good fits of the spectra rule out the
smaller values of g1 strengths. The fact that the former
freedom in the model parameter g1 is narrowed down, and
specifically to the values that describe the soft region in the
speed of sound, can be seen as a major result regarding the
phenomenological importance of including ESB inter-
actions in the model.
Apart from the relative minimum in the speed of sound,

notice that the sets with ESB display a slight dip after the

TABLE II. Model parameters obtained using a regularization kernel with two Pauli-Villars subtractions in the integrand (see [81])
given in the following units: for the current masses ½mi� ¼ MeV (i ¼ l, u, d, s), for the cutoff ½Λ� ¼ MeV, for the couplings
½G� ¼ GeV−2, ½κ2� ¼ GeV−3, ½g5� ¼ ½g6� ¼ ½g7� ¼ ½g8� ¼ GeV−4, ½κ� ¼ GeV−5 and ½g3� ¼ ½g4� ¼ GeV−6, ½g1� ¼ ½g2� ¼ GeV−8. Param-
eters marked with an asterisk ( �) were kept fixed. Several quantities which are either outputs or kept fixed (and used in the fit of the
remaining parameters) are presented in the bottom rows: weak decay couplings (½fπ� ¼ ½fK� ¼ MeV), meson masses for the low-lying
scalars/pseudoscalars, the dynamical masses of the quarks (given in MeV) and the corresponding chiral condensates hq̄qii (given in
MeV3) taking into account the subtraction of the contribution coming from the current mass, see Eq. (13). The pseudoscalar and scalar
mixing angles (θps=θs) are given in degrees. Sets NJLH8qA and NJLH8qB include up to eight-quark interactions but no noncanonical
explicit chiral symmetry breaking terms whereas set NJLH8qmA does include these terms.

Set ml ms G κ κ2 g1 g2 g3 g4 g5 g6 g7 g8 Λ

NJLH8qA 5.94 186.12 10.92 −125.07 0� 500� −47.14 0� 0� 0� 0� 0� 0� 0.851
NJLH8qB 5.94 186.12 8.14 −125.07 0� 3000� −47.14 0� 0� 0� 0� 0� 0� 0.851
NJLH8qmA 4� 100� 10.08 −114.25 6.00 3641.45 49.42 −4313.92 1589.24 190.53 −1171.23 163.28 −60.79 0.838
NJLH8qmB 4� 100� 9.35 −114.25 6.00 3976.88 49.42 −4313.92 1320.29 190.53 −1171.23 116.31 −60.79 0.838�

Set fπ fK θps θs Ml Ms hq̄qil hq̄qis
NJLH8qA 92� 117� −13.98 23.29 359.19 554.40 −ð233.88Þ3 −ð182.76Þ3
NJLH8qB 92� 117� −13.98 19.71 359.19 554.40 −ð233.88Þ3 −ð182.76Þ3
NJLH8qmA 92� 113� −12� 27.50� 360.10 524.49 −ð231.43Þ3 −ð208.51Þ3
NJLH8qmB 92� 113� −12� 25.80 360.10 524.49 −ð231.43Þ3 −ð208.51Þ3

Set Mπ MK Mη Mη0 Ma0 MK⋆ Mσ Mf0

NJLH8qA 138� 494� 477.50 958� 980� 1200.93 691.17 1368.04
NJLH8qB 138� 494� 477.50 958� 980� 1200.93 520.83 1352.94
NJLH8qmA 138� 494� 547� 958� 980� 890� 500� 980�
NJLH8qmB 138� 494� 547� 958� 980� 890� 480� 980�
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steep rise and before flattening out. This is a remnant of the
two CEPs encountered in the model as described previously,
and still visible at μB ¼ 0. This behavior may be guessed to
be very subtly present in the lQCD points as well, although it
would require further investigation to clarify this point.
Moving to Fig. 1(b), one sees that the height of the peak of

the trace of the energy momentum tensor is improved, as
well as the slope before the transition, comparingwith lQCD
data, by the inclusion of the ESB terms (or the selection of
the strong g1 couplingwithout ESB). To understand that this
is natural to expect within our model, we recall that the trace
of the energy momentum tensor and the number of d.o.f.
νðTÞ ¼ ð90=π2Þ PðTÞ−Pð0ÞT4 are closely related

Θμμ

T4
¼ π2

90

�
T

∂
∂T νðTÞ

�
: ð19Þ

Asmentioned above, the number of d.o.f. forweak and strong
g1 coupling was obtained in [72,83], as function of T=Tc,
where Tc is the crossover temperature. Converting by this
factor one obtains the slope behavior displayed in Fig. 1(b).
The slope after the peak is steeper in the model than in

lattice calculations, but this is also expected, since the
model approaches the Stefan-Boltzmann limit faster.
Furthermore since in the non-Polyakov loop extended
case there are no gluonic d.o.f. present, this limit corre-
sponds to a lower value (limT→∞−ΩNJL=T4¼31.5ðπ2=90Þ
whereas limT→∞ −ΩPNJL=T4 ¼ 47.5ðπ2=90Þ, see for in-
stance [72,83]).
The energy density, ϵ, and pressure, P, as well as their

derivatives with respect to the temperature, T, the specific
heat, CV and entropy density, s, are depicted in Fig. 2.
Despite the reasonable agreement, apart from a shift towards
lower temperatures, when we look at the energy-momentum
trace anomaly, Θμ

μ, [see Fig. 1(b)], in the individual

thermodynamical quantities involved, P and ϵ, as well as
s [See Figs. 2(a), 2(b), and 2(c)], the effect of the missing
d.o.f. is clearly present in their asymptotic behavior. In the
cases with stronger eight-quark interactions (NJLH8qB,
NJLH8qmA/B) the specific heat [see Fig. 2(d)] deviates
from the lQCD with a marked peak around the transition
region reflecting the faster transitional behavior. The slope of
the curve for temperatures lower than the transition is
however better reproduced in the cases with stronger g1.

B. Fluctuations and correlations
of conserved charges

In Fig. 3 the fluctuations of several conserved charges
are shown. The main gross feature for the baryonic
susceptibility χB2 in Fig. 3(a) is that the slope improves
significantly for the sets with strong g1 coupling, in
comparison with lQCD data. One sees further a noticeable
change of slope between the steep rise and the flattening of
the curves for sets including ESB interactions, NJLH8qmA
and NJLH8qmB. A hint of such behavior seems to be
present in the HotQCDEoS data as well. In a similar
fashion do the slopes get improved in the fluctuations of
strangeness χS2 , shown in Fig. 3(c) for the sets NJLH8qmA
and NJLH8qmB. As opposed to these the slope is much
steeper for these sets in the calculation of the electric charge
fluctuations χQ2 displayed in Fig. 3(b), when compared to
the lattice points. By expressing these fluctuations in terms
of the quark number susceptibilities

χB2 ¼ 1

9
ðχu2 þ χd2 þ χs2 þ 2χus11 þ 2χds11 þ 2χud11Þ

χQ2 ¼ 1

9
ð4χu2 þ χd2 þ χs2 − 4χus11 þ 2χds11 − 4χud11Þ

χS2 ¼ χs2 ð20Þ
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FIG. 1. The squared speed of sound [1(a)] and the energy-momentum trace anomaly [1(b)] as functions of the temperature
(½T� ¼ GeV) at vanishing chemical potential, obtained using the parameter sets from Table II: dashed lines correspond to the NJLH8q
sets whereas solid lines correspond to the NJLH8qm sets (respectively the ones without and with noncanonical explicit chiral symmetry
breaking). The markers, labeled as WBEoS and HotQCDEoS, correspond to continuum extrapolated lQCD results taken respectively
from [14,15].
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one sees that the weight of χu2 in χ
Q
2 is larger than in χB2 by a

factor 4. We have looked at the individual contributions
within the model and found that the transition for χu2 occurs
faster than for χs2, as expected, and that the slope increases
when the ESB interactions are taken into account, while the
crossed contributions vanish, reflecting the fact that the
model has no gluonic d.o.f. [92,93], (the Polyakov loop
introduces such a correlation, see Sec. IV C below). So it
seems that the slope of χu2 dominates the scene in χQ2 , due to
the weighting factor, while the distribution of weights in the
χB2 leads to the correct slope in comparison to lattice results.
The χS2 provides for a clean probe of the strange quark
number susceptibility, as this is the only contribution. For
this case one sees that the lQCD slope is well reproduced
with the ESB model sets.
Regarding the correlations displayed in Fig. 4, the same

effect seems to be at work for correlation of baryonic and
electric charges χBQ11 , shown in Fig. 4(a); it displays a too
fast increase as compared to lQCD for the sets with ESB

breaking. As opposed to this the correlations of baryonic
and strangeness charges χBS11 in Fig. 4(b) show a slope in
conformity with lQCD. The correlation of strangeness
and electric charges also gets improved for the ESB sets,
Fig. 4(c). This can also be understood by looking at the
dependence of these correlations on the quark number
susceptibilities

χBQ11 ¼ 1

9
ð2χu2 − χd2 − χs2 þ χud11 þ χus11 − 2χds11Þ

χBS11 ¼ −
1

3
ðχs2 þ χus11 þ χds11Þ

χQS
11 ¼ 1

3
ðχs2 − 2χus11 þ χds11Þ ð21Þ

Since the correlations χus11 are smaller in magnitude in
lQCD than the χi2 (i ¼ u, s) [92] (χud11 was shown to be small
in the flavor SUð2Þ case [95]), and vanish identically in the
model, the only dependence is on χs2 for χ

BS
11 , χ

QS
11 . We have
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FIG. 2. Dimensionless quantities obtained by dividing the pressure 2(a), energy density 2(b), entropy 2(c) and specific heat 2(d) by
adequate powers of the temperature, as functions of temperature for vanishing chemical potential (½T� ¼ GeV) using the parameter sets
NJLH8q and NJLH8qm. The markers, labeled as WBEoS and HotQCDEoS, correspond to continuum extrapolated lQCD results taken
respectively from [14,15].
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seen that the slope for χs2 reproduces well the corresponding
lQCD slope, which explains the satisfactory behavior of the
slopes of χBS11 , χ

QS
11 as well. The situation is different for χBQ11 ,

which depends on χu2 , for which a too steep slope occurred
compared to lQCD.

C. PNJL extension

The impact of coupling the quark d.o.f. to the gluonic
sector, using the PNJL model extension with two types of
potentials is discussed in this section.
The gross feature is a systematic shift of all the curves

describing the observables of the last subsection to higher
temperatures, which is an important effect in bringing most
of the observables related with fluctuations and correlated
charges closer to the lQCD curves.

However the effect on the velocity of sound and the trace
of the energy momentum tensor depends strongly on the
type of Polyakov loop potential used. Let us discuss first
these observables.
In Fig. 5(a) the velocity of sound is displayed, calculated

with the Polyakov loop potential UI in Eq. (17), showing
that independently of the NJL parameter sets of Table II
considered, a too deep relative minimum for the velocity of
sound occurs, about a factor 2.5 smaller in magnitude, in
comparison with lQCD. This result supersedes all the
nuances discussed previously in relation with ESB terms.
In Fig. 5(b) one sees that the peak of the trace of the energy
momentum tensor is roughly twice the value of the lQCD
one. These dominating characteristics are also present in
the polylogarithmic variant of the Polyakov loop potential
in [73], which are therefore not shown.
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FIG. 3. Fluctuations of conserved charges as functions of temperature (½T� ¼ GeV) at vanishing chemical potential compared to lQCD
results: in 3(a) fluctuation of baryonic number (χB2 ), in 3(b) electric charge (χQ2 ), and in 3(c) strangeness (χS2). The markers, labeled as
WBEoS and HotQCDEoS, correspond to continuum extrapolated lQCD results taken respectively from [92,94].
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FIG. 4. Correlations of conserved charges as functions of temperature (½T� ¼ GeV) at vanishing chemical potential compared to lQCD
results: in 4(a) correlation of baryonic number and electric charge (χBQ11 ), in 4(b) baryonic number and strangeness (χBS11 ), and in 4(c)
electric charge and strangeness (χQS

11 ). The markers correspond to continuum extrapolated lQCD results taken from [94].
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Contrary to this, the potential UII in Eq. (18) discrim-
inates between the different NJL sets. Minima occur for the
sets with ESB interactions (and large g1 coupling without
ESB) see Fig. 6(a), two shallow minima, and a more
pronounced one for the ESB set with stronger g1 coupling;
the set PNJLH8qA without ESB terms corresponding to
weak g1 coupling does not display aminimum in the velocity
of sound, as also verified in [96] using UII , and as it was the
case without the Polyakov loop extension, see Fig. 1(a).
Regarding the trace of the energy momentum tensor it

turns out to be fairly well represented in comparison with
the lQCD results using UII , see Fig. 6(b). The individual
thermodynamical quantities contributing to Fig. 6(b), ϵ and

P, as well as their derivatives with respect to the temper-
ature T, CV , and s are depicted for the case of the potential
UII in Fig. 7. Overall, the correspondence of the presented
quantities with lQCD is quite satisfactory (note that the
inclusion of the extra d.o.f. enables the correct asymptotic
behavior for P, ϵ, and s). The slight change of slope in ϵ
around T ¼ 0.18, compared to lQCD, results in a visible
peak inCV . ForCV andΘμ

μ the quark interaction parameter
set which presents the best fit is NJLH8qA. For the other
quantities the difference between quark interaction param-
eter sets (mainly in the transition region) is too small for
the purpose of comparison with lQCD results. We omit the
corresponding figures for the choice of UI since the
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FIG. 5. In 5(a) the model Polyakov loop extension with potential UI in Eq. (17) is shown for the squared speed of sound as a function
of temperature (½T� ¼ GeV) at vanishing chemical potential as obtained using the parameter sets from Table II. In the legend a “P” has
been attached at the beginning of each parameter set, meaning that the Polyakov loop extension has been applied, PNJLH8qA and
PNJLH8qB correspond to the sets without the ESB terms, PNJLH8qmA, PNJLH8qmB include the ESB interactions.The markers,
labeled as WBEoS and HotQCDEoS, correspond to continuum extrapolated lQCD results taken respectively from [14,15]. In 5(b) is
shown the energy-momentum trace anomaly for the same Polyakov loop potential.
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FIG. 6. In 6(a) and 6(b) the same observables are shown as in 5(a) and 5(b), but obtained with the Polyakov loop potential UII in
Eq. (18). The markers, labeled as WBEoS and HotQCDEoS, correspond to continuum extrapolated lQCD results taken respectively
from [14,15].
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FIG. 7. Pressure 7(a), energy density 7(b), entropy 7(c), and specific heat 7(d) (divided by the corresponding powers of temperature as
to render them dimensionless, P=T4 ¼ −Ω=T4, ϵ=T4, s=T3, and CV=T3, respectively) as functions of temperature (½T� ¼ GeV). The
markers, labeled as WBEoS and HotQCDEoS, correspond to continuum extrapolated lQCD results taken respectively from [14,15].
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FIG. 8. Polyakov loop extension, using UI in Eq. (17), for the fluctuations of conserved charges as functions of temperature
(½T� ¼ GeV) at vanishing chemical potential, compared to lQCD results: in 8(a) fluctuation of baryonic number (χB2 ), in 8(b) electric
charge (χQ2 ), and in 8(c) strangeness (χS2). Same notation is used as in 5(a) for the lines. The markers, labeled as WBEoS and
HotQCDEoS, correspond to continuum extrapolated lQCD results taken respectively from [92,94].
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FIG. 9. Polyakov loop extension, using UII in Eq. (18) for the same observables as in 8(a),8(b),8(c). The markers, labeled as WBEoS
and HotQCDEoS, correspond to continuum extrapolated lQCD results taken respectively from [92,94].
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FIG. 10. Polyakov loop extension using UI in Eq. (17) for the correlations of conserved charges as functions of temperature
(½T� ¼ GeV) at vanishing chemical potential compared to lQCD results: in 10(a) correlation of baryonic number and electric charge
(χBQ11 ), in 10(b) baryonic number and strangeness (χBS11 ) and in 10(c) electric charge and strangeness (χQS

11 ). Same notation for lines as
before. The markers correspond to continuum extrapolated lQCD results taken from [94].
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FIG. 11. Polyakov loop extension using UII in Eq. (18) for the same observables as in 10(a),10(b),10(c). Notation as before.

THERMODYNAMICAL PROPERTIES OF STRONGLY … PHYS. REV. D 98, 074010 (2018)

074010-13



calculations resulted in large deviations from the respective
lQCD data, as one would expect from Fig. 5(b), and turn
out not to be very instructive.
Turning to the fluctuations and correlations of the

different charge numbers NB, NQ, NS one observes that
all observables which had a good slope in the NJL model,
i.e., χB2 , χ

S
2 , χ

BS
11 , χ

QS
11 for the sets with ESB interactions,

get shifted to higher temperatures and agree fairly well
with the lQCD data for both Polyakov loop potential
implementations, see Figs. 8(a), 8(c), 10(b), 10(c) for the
case with UI and Figs. 9(a),9(c), 11(b),11(c) for the case
UII respectively. Both potentials improve on the height of
the peak of the correlator χQS

11 , bringing it closer to the
lQCD result, compare Fig. 4(a) without Polyakov loop to
Figs. 10(a) and 11(a) with UI and UII respectively.
Unfortunately the slope of the correlator χQ2 is not

improved with either potentials, see Figs. 8(b) and 9(b).
Finally we show in Fig. 12 that the coupling of the quark

and gluonic d.o.f. leads to a nonvanishing correlation
between the light and strange quark numbers, albeit smaller
than in lQCD, with the UII potential yielding a larger
fraction. We also remark that this quantity is not sensitive to
the details of the parametrizations in the quark sector.

V. CONCLUSIONS

We have used the three flavor NJL Lagrangian that has
been enlarged in recent years to accommodate

systematically current quark mass effects at NLO in the
large Nc counting scheme to address several thermody-
namic observables. These explicit symmetry breaking
(ESB) interaction terms are of the same order as the ’t
Hooft UAð1Þ breaking anomalous contribution and the
previously introduced symmetry preserving eight quark
interactions. It has been shown that the ESB terms play a
very important role in the description of accurate character-
istics of pseudoscalar and scalar mesons. This opened for
the first time the possibility to study the model phase
diagram of QCD with a set of parameters which reproduces
the empirical spectra, together with current quark masses
that fit the actual PDG values, allowing to narrow down the
uncertainties related to the model parameters.
While the model reaches systematically the Stefan-

Boltzmann limit too fast as compared to the lattice results
and is systematically shifted to lower temperatures as
compared to lQCD, there are some relevant features which
are reproduced. We highlight the main results:

(i) The ESB terms together with the realistic spectra
select a region of parameters with strong OZI
violating 8q coupling g1. We recall that without
the ESB terms there was an interval of values for
this coupling, which in an interplay with the 4q G
coupling, left the spectra unchanged except for the
σð500Þ mass that got reduced for increasing g1. The
freedom in g1 was accompanied by a sliding CEP
position in the model QCD phase diagram.

(ii) In the strong g1 coupling regime enforced by the
ESB terms the velocity of sound displays a soft point
as predicted by relativistic heavy ion models and
lQCD. This relative minimum is absent in the NJL
model which contemplates only the 4q and ’t Hooft
interactions, or weak g1 couplings.

(iii) The trace of the energy momentum tensor displays a
peak with height close to the lattice results; the slope
of this quantity gets improved as compared to the
model without the ESB interactions. However,
although the strong g1 coupling regime describes
overall better slopes, it leads to a visible peak in the
transition regime for the related quantity CV, which
is not favored by lQCD data.

(iv) The slopes of the susceptibilities χB2 , χ
Q
2 , χ

S
2 of the

conserved baryonic, electric and strange charges are
sensitive to the weighting factors of the quark
number susceptibilities χu2 , χ

d
2, χ

s
2 that enter in their

definition. We find that the slopes for χB2 and χS2 , as
well as for the correlation involving these two
charges, χBS11 , get substantially improved, while it
is too steep for χQ2 . The observable χS2 is a clean
probe for the slope of the strange quark susceptibil-
ity χs2, which agrees well with the corresponding
lQCD slope.

(v) Finally, by coupling the quark to the gluonic
d.o.f. via the Polyakov loop we observe that the
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FIG. 12. Correlation of the up and strange charges (χus11)
compared to continuum extrapolated lQCD results taken from
[92] (labeled as WBEoS). As this quantity is almost insensitive to
the parametrization of the quark interactions we chose to display
the effect of the choice of Polyakov potential (for the fermionic
part we chose set NJLH8qB). Without the inclusion of Polyakov
loop this quantity vanishes.
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temperature gap between the NJL and the lQCD
curves disappears practically and the overall char-
acteristics of the lQCD data is rather well repro-
duced. For the trace of the energy momentum tensor
the Polyakov loop potential UII is better suited to
describe the lQCD data than the potential UI, within
our model calculations.
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