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Inclusive χcJ (J ¼ 0, 1, 2) production from ϒð1SÞ decay is studied within the framework of
nonrelativistic QCD (NRQCD) factorization at leading order in v2Q, which includes the contributions

of bb̄ð3S½1�1 Þ → cc̄ð3P½1�
J Þ þ X and bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ X. For both channels, the short-distance

coefficients are calculated through Oðα5sÞ, which is next-to-leading order for the second one. By fitting
to the measured ϒð1SÞ branching fractions to χc1 and χc2, we obtain the color-octet long-distance matrix

element (LDME) hOχc0ð3S½8�1 Þi ¼ ð4.04� 0.47þ0.67
−0.34 Þ × 10−3 GeV3, where the first error is experimental

and the second one due to the renormalization scale dependence, if we use as input hOχc0ð3P½1�
0 Þi ¼

0.107 GeV5 as obtained via potential-model analysis. Previous LDME sets, extracted from data of prompt
χcJ hadroproduction, yield theoretical predictions that systematically undershoot or mildly overshoot the
experimental values of Bðϒ → χcJ þ XÞ.
DOI: 10.1103/PhysRevD.98.074005

I. INTRODUCTION

Heavy-quarkonium production serves as an ideal labo-
ratory to study both the perturbative and nonperturbative
aspects of QCD due to the hierarchy of energy scales
mQv2 ≪ mQv ≪ mQ, where mQ is the mass of the heavy
quark Q and v is its relative velocity in the rest frame of the
heavy meson. The effective quantum field theory of non-
relativistic QCD (NRQCD) [1] endowed with the factoriza-
tion conjecture of Ref. [2] is the default theoretical approach
to study quarkonium production and decay. This conjecture
states that the theoretical predictions can be separated into
process-dependent short-distance coefficients (SDCs) calcu-
lated perturbatively as expansions in the strong-coupling
constant αs and supposedly universal long-distance matrix
elements (LDMEs), scaling with definite power of v [3]. In
this way, the theoretical calculations are organized as double
expansion in αs and v.
During the past two decades, the NRQCD factorization

approach has celebrated numerous remarkable successes in
describing both the production and decay of heavy quarko-
nium (see Refs. [4,5] and references therein for a review).
However, there are still some challenges in understanding
charmonium production, in particular for the J=ψ meson.
Prompt J=ψ production has been studied in various envi-
ronments onboth experimental and theoretical sides. To date,
the SDCs are available at next-to-leading order (NLO) in αs
for the yield [6,7] and polarization [8] in eþe− annihilation,
the yield in two-photon collisions [9,10], the yield [11] and
polarization [12] in photoproduction, the yield [13,14] and
polarization [15–18] in hadroproduction, etc. Different sets
of LDMEs were obtained by fitting experimental data

adopting different strategies. Unfortunately, none of them
can explain all the experimental measurements, which
challenges the universality of the NRQCD LDMEs.
Recently, it has been found that all the LDME sets deter-
mined from J=ψ production data result in NLO predictions
that overshoot the ηc hadroproduction data [19].
Because the P-wave states χcJ ðJ ¼ 1; 2Þ have substantial

branching fractions to J=ψ though χcJ → J=ψ þ γ, their
production can also be measured, which provides an addi-
tional playground to test the NRQCD factorization hypoth-
esis.Moreover, the feed-down contributions from the χc1 and
χc2 mesons to the yield and polarization of prompt J=ψ
hadropoduction is sizable [17,20].Unlike for theJ=ψ meson,
inclusive χcJ production has only been studied in a few
processes, for example hadroproduction [17,20–23], eþe−
annihilation [24], top-quark decay [25],B hadron decay [26],
and ηb meson decay [27,28].
In this work, we will study another interesting process,

namely inclusive χcJ production through ϒð1SÞ decay. On
the experimental side, thanks to the large number of ϒð1SÞ
decay events collected with the Belle detector, 102 × 106,
the value Bðϒð1SÞ → χc1 þ XÞ ¼ ð1.90� 0.35Þ × 10−4

has recently been obtained [29], which is more precise
than the previous result ð2.3� 0.7Þ × 10−4 extracted by
analyzing 21.2 × 106 ϒð1SÞ decay events collected with
the CLEO III detector [30]. As for Bðϒð1SÞ → χc2 þ XÞ,
the combined result ð2.8� 0.8Þ × 10−4 was reported by the
Particle Data Group in 2016 [31].
This process was considered theoretically more than two

decades ago in Refs. [32,33], where the contributions of cc̄

pairs in color singlet (CS) ð3P½1�
J Þ and color octet (CO)
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ð3S½8�1 Þ Fock states were computed at leading order (LO) in
αs. Moreover, in Ref. [32], a cut on the soft-gluon energy
was introduced to regularized the infrared (IR) divergences.
Many of the theoretical works mentioned above have

shown that the effects of NLO QCD corrections may be
large. Therefore, in this work, we calculate the NLO QCD
corrections to inclusive χcJ production by ϒ decay within
the framework of NRQCD factorization. Note that we do
not take into account the contributions from bb̄ pairs in CO
states, since they are suppressed by v4b. The remainder of
this paper is organized as follows. In Sec. II, we describe
how to calculate the relevant SDCs in detail. In Sec. III, we
present the numerical results and compare them with the
available experimental measurements. In Sec. IV, we
summarize our results. In Appendix A, we list the master
integrals arising in the virtual corrections through OðϵÞ in
the expansion parameter of dimensional regularization. In
Appendix B, we list the soft integrals arising in the real
corrections implemented with phase space slicing.

II. CALCULATION OF SDCS

A. NRQCD factorization and notations

In the NRQCD factorization formalism, at LO in vb and
vc, the decay width of ϒ → χcJ þ X can be written as

Γðϒ→χcJþXÞ
¼hϒjOð3S½1�1 Þjϒi½Γ̂1ðbb̄ð3S½1�1 Þ→cc̄ð3P½1�

J ÞþXÞhOχcJð3P½1�
J Þi

þΓ̂8ðbb̄ð3S½1�1 Þ→cc̄ð3S½8�1 ÞþXÞhOχcJð3S½8�1 Þi�; ð1Þ

where Γ̂1 and Γ̂8 are the SDCs and hϒjOð3S½1�1 Þjϒi,
hOχcJð3P½1�

J Þi, and hOχcJð3S½8�1 Þi are the LDMEs. We adopt
the conventions for the LDMEs introduced in Ref. [2]. The
LDMEs for χcJ production satisfy the multiplicity relations

hOχcJð3P½1�
J Þi ¼ ð2J þ 1ÞhOχc0ð3P½1�

0 Þi;
hOχcJð3S½8�1 Þi ¼ ð2J þ 1ÞhOχc0ð3S½8�1 Þi; ð2Þ

which follow from heavy-quark spin symmetry at LO in vc.
At LO in αs, at Oðα4sÞ, only the CO subprocess

bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg contributes, and its NLO QCD
corrections include both virtual and real corrections at
Oðα5sÞ. CS contributions start to contribute at Oðα5sÞ via

bb̄ð3S½1�1 Þ → cc̄ð3P½1�
J Þ þ ggg. We will calculate this consis-

tently in dimensional regularization, with D ¼ 4 − 2ϵ
space-time dimensions.
Moreover, inclusive J=ψ production by eþe− annihila-

tion [34–37] and ϒ decay [38] is known to receive
substantial contributions from events that also contain an
open cc̄ pair in the final state. This motivates us to include

the contributions from bb̄ð3S½1�1 Þ → cc̄ð3P½1�
J Þ þ cc̄g and

bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ cc̄g at Oðα5sÞ as well. A similar
study of J=ψ production by ϒ decay in the NRQCD
factorization approach will be presented in a forthcoming
paper [39] and compared with previous investigations
[32,33,38,40,41].
There are 6 Feynman diagrams for the partonic subprocess

bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg at tree level (see Fig. 1). The
analytical and numerical results were first presented in
Ref. [33], and we reproduce them. To compute the NLO
QCD corrections, the analytical expression for the scattering
amplitudemust also be obtained inD dimensions.Ultraviolet
(UV) and IR divergences are encountered in the calculation

of the NLO QCD corrections to bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg.
IR divergences also appear in the phase space integration of

the subprocesses bb̄ð3S½1�1 Þ → cc̄ð3P½1�
J Þ þ ggg. We will

present in detail the treatment of these divergences in
dimensional regularization in the next three subsections.
The calculation of the associated open-charm subprocesses
(Fig. 2) is straightforward because no divergences appear in
the phase space integrations. Their analytical expressions are
too lengthy to be displayed here, andwe thus only present the
numerical results for them in the next section.
In our analytical computation, the Feynman diagrams are

generated using FEYNARTS [42]. Algebraic operations such
as color and Dirac algebra are performed with FEYNCALC

[43] and FORM [44]. For the virtual corrections, we use the
Mathematica package $Apart [45] to decompose linearly
dependent propagators in the loop integrals to irreducible
ones. The latter are then reduced to master scalar integrals
using the FIRE [46] package. The master integrals are
evaluated numerically using the Cþþ package QCDLOOP

[47]. Finally, the phase space integrations are performed
numerically with the help of the CUBA [48] library.

B. Virtual corrections

Typical Feynman diagrams of the virtual corrections are
shown in Fig. 3. They fall into four groups, including self-
energy diagrams, vertex correction diagrams, counterterm

FIG. 1. Typical tree-level Feynman diagrams for the partonic

subprocess bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg.

FIG. 2. Typical tree-level Feynman diagrams for partonic

subprocess bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 =3P½1�
J Þ þ cc̄g.
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diagrams, and diagrams that are generated from tree-level
diagrams of Fig. 1 by attaching one virtual-gluon line in all
other possible ways.
In the analytical calculation of the tree-level subprocess

bb̄ ð3S½1�1 ÞðPÞ → cc̄ð3S½8�1 ÞðKÞ þ gðk3Þgðk4Þ and the corre-
sponding virtual corrections, the Mandelstam variables are
defined as

s≡ ðP−k4Þ2; t≡ ðP−KÞ2; u≡ ðP−k3Þ2; ð3Þ

so that sþ uþ t ¼ 4m2
b þ 4m2

c, where mc and mb are the
masses of the charm and bottom quarks, respectively. For
convenience, we also introduce

sc ≡ s − 4m2
c; sb ≡ 4m2

b − s;

uc ≡ u − 4m2
c; ub ≡ 4m2

b − s: ð4Þ
Labeling the tree-level amplitude and the amplitude of

the virtual corrections as MBorn and Mvirtual, respectively,
the SDC of the virtual corrections is evaluated as

dΓ̂VC ¼ 1

4mb
dPS1→3

X
2ReðM�

BornMvirtualÞ; ð5Þ

where dPS1→3 is the three-body phase space and
P

implies
average over the color and polarization states.
The UV divergences are removed through renormaliza-

tion. We adopt a mixed renormalization scheme [9], in
which the renormalization constants Z2, Zm, and Z3 of the
heavy-quark field ψQ, heavy-quark mass mQ, and gluon
field Aa

μ are defined in the on-shell (OS) scheme, while the
renormalization constant Zg of the strong-coupling gs is
defined in modified minimal-subtraction (MS) scheme. At
the one-loop level, they read

δZMS
g ¼ −

β0
2

αs
4π

Cϵ
1

ϵUV
; ð6Þ

δZOS
2 ¼ −CF

αs
4π

Cϵ

�
1

ϵUV
þ 2

ϵIR
þ 3 ln

μ2

m2
þ 4

�
; ð7Þ

δZOS
3 ¼ αs

4π
Cϵðβ0 − 2CAÞ

�
1

ϵUV
−

1

ϵIR

�
; ð8Þ

δZOS
m ¼ −3CF

αs
4π

Cϵ

�
1

ϵUV
þ ln

μ2

m2
þ 4

3

�
; ð9Þ

where Cϵ ¼ ð4πe−γEÞϵ, μ is the renormalization scale,
and β0 ¼ ð11=3ÞCA − ð4=3ÞTFnf is the one-loop coeffi-
cient of the QCD beta function. We have nf ¼ 3 active
quark flavors in our calculation. In Eqs. (7) and (9), m is to
be substituted by mc and mb for charm and bottom,
respectively.
At the end of the reduction done with FIRE [46], the loop

corrections are expressed in terms of some master integrals.
Among them, the coefficients of some tadpole and bubble
integrals carry extra poles 1

ϵ. Therefore, we must calculate
these integrals through OðϵÞ. The results are given in
Appendix A. We extract the divergences analytically and
find that they cancel after combination with the real
corrections, which are IR divergent.

C. Real corrections

In our calculation of the real corrections, we choose
Feynman gauge with the polarization sum of the gluon
given by

X
pol�

ϵμϵ
�
ν ¼ −gμν: ð10Þ

Consequently, the nonphysical degrees of freedom due to
the gluon-ghost contributions should be subtracted asX
col;pol

jMðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gggÞj2

¼
X

col;pol�
ðjMðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gggÞj2

− 2jMðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gugðk4Þūgðk5ÞÞj2

− 2jMðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ ugðk3Þgūgðk5ÞÞj2

− 2jMðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ ugðk3Þūgðk4ÞgÞj2Þ;
ð11Þ

where ug and ūg stand for the ghost and antighost,
respectively.
In thisway,wehave tocalculate (seeFig.4)bb̄ð3S½1�1 ÞðPÞ →

cc̄ð3S½8�1 ÞðKÞ þ gðk3Þgðk4Þgðk5Þ (96 Feynman diagrams)

and bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gugūg =uggūg =ugūgg =qq̄g
(6 Feynman diagrams for each subprocess). These subpro-
cesses share the same kinematics, for which we define

s1≡ ðP−KÞ2; s2≡ ðP−K−k4Þ2; u1≡ ðP−k4Þ2;
u2≡ ðP−k5Þ2; t2≡ ðP−k4−k5Þ2: ð12Þ

FIG. 3. Typical Feynman diagrams for the virtual corrections to

the partonic subprocess bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg.
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In the phase space integrations of the above subprocesses,
we encounter soft, collinear, and soft-collinear divergences,
which we subtract by means of the phase space slicing
method [49]. Specifically, we introduce two slicing param-
eters, δs and δc, to demarcate the soft regions as

E3

mc
< δs or

E4

mc
< δs or

E5

mc
< δs; ð13Þ

and the collinear regions as

s34< δcm2
c or s35< δcm2

c or s45< δcm2
c; ð14Þ

whereE3, E4, and E5 are the energies of the soft gluons with
momenta k3, k4, and k5, respectively, and s34 ¼ ðk3 þ k4Þ2,
s35 ¼ ðk3 þ k5Þ2, s45 ¼ ðk4 þ k5Þ2. In our case, where three
identical gluons are in the final state, it is sufficient to subtract
the soft and collinear divergences in one of the soft regions in
Eq. (13) and one of the collinear regions in Eq. (14).

1. Soft region

As an example, let us consider the case when k5 is soft,
which implies that E5 < δsmc. We parametrize the
momenta in the center-of-mass frame of P and −K, which,
at the same time, is the center-of-mass frame of k3 and k4 in
the limit k5 → 0, as

P ¼ ðEP; 0; j pj sin θ; j pj cos θÞ;
K ¼ ðEK; 0; j pj sin θ; j pj cos θÞ;
k3 ¼ E3ð1; 0; 0; 1Þ;
k4 ¼ E4ð1; 0; 0;−1Þ;
k5 ¼ E5ð1; sin θ1 sin θ2; sin θ1 cos θ2; cos θ1Þ; ð15Þ

where

EP ¼ sb þ ub
2

ffiffi
t

p ; EK ¼ sc þ uc
2

ffiffi
t

p ; E3 ¼ E4 ¼
ffiffi
t

p
2
;

jpj ¼ a

2
ffiffi
t

p ; cos θ ¼ u − s
a

; ð16Þ

with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ uÞ2 − 64m2

cm2
b

q
.

The corresponding contribution from the soft region to
the real corrections is given by

dΓ̂RC
k5soft ¼

1

4mb
dPS1→3

Z
soft

dPSk5
X

jMk5softj2; ð17Þ

where
Z
soft

dPSk5 ≡
Z
soft

μ4−DdD−1k5
2ð2πÞD−1E5

¼ ðπμ2ÞϵΓð1 − ϵÞ
ð2πÞ3Γð1 − 2ϵÞ

×
Z

δsmc

0

E1−2ϵ
5 dE5

Z
π

0

sin θ11−2ϵdθ1

×
Z

π

0

sin θ2−2ϵdθ2: ð18Þ

Therefore, in the limit k5 → 0, we have

dΓ̂RC
k5soft ¼ dΓ̂LOðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ ggÞ

×
3

2

Z
soft

dPSk5

�
t

ðk3 · k5Þðk4 · k5Þ
−

8m2
c

ðK · k5Þ2

þ uc
ðk4 · k5ÞðK · k5Þ

þ sc
ðk3 · k5ÞðK · k5Þ

�
; ð19Þ

where Γ̂LOðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ ggÞ is calculated in D
dimensions and the results of the soft integrals are listed in
Appendix B.

2. Hard-collinear region

Let us assume that k4 is collinear to k5. Then the SDC
can be factorized as

dΓ̂40→45;hardðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gggÞ

¼ dΓ̂LOðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ ggÞ 3g
2
s

8π2

�
4πμ2e−γE

m2
c

�
ϵ

×

��
2 ln

2δsmcffiffi
t

p þ 11

6

��
1

ϵ
− ln δc

�
− ln2

2δsmcffiffi
t

p

þ 67

18
−
π2

3

�
ð20Þ

for g → gg splitting and

dΓ̂40→45;hardðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gþ qq̄Þ
¼ dΓ̂LOðbb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ ggÞ

×
g2s

24π2

�
4πμ2e−γE

m2
c

�
ϵ
�
−
1

ϵ
þ ln δc −

5

3

�
ð21Þ

for g → qq̄ splitting.
In the case of g → gg splitting, hard conditions for the

splitting gluons are applied to avoid double counting of the
soft-collinear region.

3. Hard-noncollinear region

In the hard-noncollinear region, the phase space inte-
gration is finite, so that we can directly perform the

FIG. 4. Typical Feynman diagrams for the real corrections to

the partonic subprocess bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg.
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numerical integration in four dimensions. In the rest frame
of P and −K, the conditions defining the hard-noncollinear
region are given by

E3 ¼
s1 þ u1 þ u2 − t2 − 4m2

b

2
ffiffiffiffiffi
s1

p > δsmc;

E4 ¼
s1 − s2
2

ffiffiffiffiffi
s1

p > δsmc;

E5 ¼
t2 þ s2 − u1 − u2 þ 4m2

b

2
ffiffiffiffiffi
s1

p > δsmc;

s34 ¼ s1 þ u1 þ u2 − t2 − s2 − 4m2
b > δcm2

c;

s35 ¼ s2 > δcm2
c;

s45 ¼ 4m2
b þ t2 − u1 − u2 > δcm2

c: ð22Þ

We express the four-body phase space in covariant form
[50], so that these conditions can be easily implemented
in the numerical phase space integration. Combining the
contributions from the soft, hard-collinear, and hard-
noncollinear regions, the numerical results converge as
δs becomes small (δs < 10−2) with δc being much smaller
than δs. Specifically, we choose δc ¼ δs=100.

D. bb̄(3S[1]1 ) → cc̄(3P[1]
J )+ ggg

There are 36 Feynman diagrams for the tree-level
subprocess bb̄ð3S½1�1 Þ → cc̄ð3P½1�

J Þ þ ggg (see Fig. 5). As
expected, IR divergences appear in the phase space
integration. In NRQCD factorization, this kind of IR
divergences are absorbed into the NLO corrections to

the respective CO LDME hOχcJð3S½8�1 Þi [2,51],

hOχcJð3S½8�1 ÞiBorn ¼ hOχcJð3S½8�1 Þiren
þ 2αs
3πm2

c

�
4πμ2

μ2Λ
e−γE

�
ϵ

×
1

ϵIR

X
J

�
CF

CA
hOχcJð3P½1�

J ÞiBorn

þ
�
CA

2
−

2

CA

�
hOχcJð3P½8�

J ÞiBorn
�
; ð23Þ

where hOχcJð3S½8�1 Þiren is the renormalized LDME and μΛ is

the renormalization scale of the LDME hOχcJð 3S½8�1 Þi.
Here, we adopt the same approach as in the computation

of the real corrections to bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ ggg to
extract the IR divergences, except that only one slicing
parameter, namely δs, is needed. Let us consider the limit of
k5 being soft as an example, in which the squared matrix
element can be factorized as

jMðbb̄ð3S½1�1 Þ → cc̄ð3P½1�
J Þ þ gggÞj2k5soft

¼ 4g2s
ϵβ

0 ðk5Þϵ�βðk5ÞεðJÞ�αβ ðKÞεðJÞα0β0 ðKÞ
ðK · k5Þ2

×Mα
BornðTc − Tc̄ÞðTc − Tc̄ÞM�α0

Born; ð24Þ

where ϵ�βðk5Þ and εðJÞ�αβ ðKÞ are the polarization vector and
tensor of the soft gluon and cc̄ pair, Tc and Tc̄ are the color
matrices corresponding to the soft-gluon attachments
to the charm and anticharm quark lines, and Mα

Born is

the amplitude of the Born-level subprocess bb̄ð3S½1�1 Þ →
cc̄ð3S½8�1 Þ þ gg, with α being the Lorentz index of the
polarization vector of the cc̄ pair.
Choosing axial gauge for the soft gluon, with polarization

sum

X
pol

ϵβ0 ðk5Þϵ�βðk5Þ

¼ −gβ0β þ
Kβ0k5β þ Kβk5β0

K · k5
−
K2k5β0k5β
ðK · k5Þ2

; ð25Þ

the contribution from the region where k5 is soft then reads

dΓ̂k5soft ¼
1

4mb
dPS1→3

Z
soft

dPSk5

×
X

jMðbb̄ð3S½1�1 Þ → cc̄ð3P½1�
J Þ þ gggÞj2k5soft

¼ 1

4mb
dPS1→3

Z
soft

dPSk5
4g2s

ðK · k5Þ2

×

�
−gβ0β þ

K0
βk5β þ Kβk5β0

K · k5
−
K2k5β0k5β
ðK · k5Þ2

�

×
X

εðJÞ�αβ εðJÞα0β0M
α
BornðTc − Tc̄ÞðTc − Tc̄Þ

×M�α0
Born: ð26Þ

Now we tackle the new type of tensor integralR
soft dPSk5

k5βk5β0
ðK·k5Þ4. This cannot be reduced to scalar integrals

through conventional tensor reduction procedures, since
it is not Lorentz covariant due to the cut-off in the soft-
gluon energy. Therefore, we explicitly evaluate these

tensor integrals as they appear, e.g., as
R
softdPSk5

ðk3·k5Þðk4·k5Þ
ðK·k5Þ4 .

FIG. 5. Typical tree-level Feynman diagrams for the partonic

subprocess bb̄ð3S½1�1 Þ → cc̄ð3P½1�
J Þ þ ggg.

INCLUSIVE χcJ PRODUCTION IN ϒ … PHYS. REV. D 98, 074005 (2018)

074005-5



As a result, the D-dimensional Born-level squared matrix

element of subprocess bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg does not
factorize from the D-dimensional squared matrix elements

of subprocess bb̄ð3S½1�1 Þ → cc̄ð3P½1�
J Þ þ ggg in the soft limit.

This is different from the case of the real corrections.
Nevertheless, this does not affect the cancellation of IR
divergences, since the divergences appear to be propor-
tional to the four-dimensional Born-level squared matrix

element of subprocess bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg.

III. PHENOMENOLOGICAL RESULTS

We are now in the position to present our numerical
analysis of inclusive χcJ production in ϒ decay at Oðα5sÞ in
the NRQCD factorization framework. We first list our input
parameters. We take the quark pole masses to be mc ¼
mJ=ψ=2 ¼ 1.5 GeV and mb ¼ mϒ=2 ¼ 4.75 GeV, and fix
the NRQCD factorization scale to be μΛ ¼ mc. For con-
sistency, we employ the one-loop (two-loop) formula for
αsðμÞ [31] in the LO (NLO) part of our analysis, with nf ¼
3 active quark flavors and asymptotic scale parameter
ΛQCD ¼ 249 MeV (389 MeV). Adopting the value
jR0

1Pð0Þj ¼ 0.075 GeV5 of the first derivative of the wave
function at the origin obtained in Ref. [52] for the

Buchmüller-Tye potential [53], we have hOχc0ð3P½1�
0 Þi ¼

0.107 GeV5. As for the CO LDME hOχc0ð3S½8�1 Þi, we
use the results ð2.21� 0.12Þ × 10−3 GeV3 [17] and
ð2.2þ0.5

−0.3Þ × 10−3 GeV3 [20] extracted by fitting to exper-
imental data of χcJ hadroproduction.
We start by investigating the sizes and μ dependencies of

the SDCs of the individual partonic subprocesses. It is
convenient to write:

Γ̂LO
8;gg ¼ fLO8;ggðmc;mbÞα4sðμÞ GeV−5;

Γ̂corr
8;gg ¼ fcorr8;ggðmc;mb; μÞα5sðμÞ GeV−5;

Γ̂8;cc̄g ¼ f8;cc̄gðmc;mbÞα5sðμÞ GeV−5;

Γ̂J
1;ggg ¼ fJ1;gggðmc;mbÞα5sðμÞ GeV−7;

Γ̂J
1;cc̄g ¼ fJ1;cc̄gðmc;mbÞα5sðμÞ GeV−7; ð27Þ

where Γ̂J
1=8;X is the SDC of partonic subprocess

ϒð3S½1�1 Þ → χcJð3P½1�
J =3S½8�1 Þ þ X, and the alternative labels

“LO” and “corr” stand for the LO contribution and the
radiative correction to it. Our numerical results for the
dimensionless factors f1=8;X are listed in Table I. From
there, we observe that there are strong numerical cancella-

tions between the cc̄ð3P½1�
J Þ and cc̄ð3S½8�1 Þ channels. In fact,

the entries for fJ1;ggg in Table I are negative and do not carry
any physical meaning by themselves. This may be under-

stood by observing that the CS SDCs of bb̄ð3S½1�1 Þ →
cc̄ð3P½1�

J Þ þ ggg are IR divergent to start with [32].

Therefore, ϒ → χcJ þ X as a strictly inclusive decay falls
outside the range of applicability of the CS model [54,55].
Within NRQCD factorization, these CS SDCs are rendered
finite by absorbing their IR divergences into the CO LDME

hOχc0ð3S½8�1 Þi associated with the SDC of bb̄ð3S½1�1 Þ →
cc̄ð3S½8�1 Þ þ gg at LO. Consequently, only the combinations

of the cc̄ð3P½1�
J Þ and cc̄ð3S½8�1 Þ channels may be interpreted as

physical observables. This mechanism of IR cancellation
by NRQCD factorization is familiar, e.g., from hadronic hc
decay [56]. Furthermore, Table I tells us that the contri-
butions from χcJ production in association with open charm
are greatly suppressed by phase space as expected.
In Fig. 6(a), we study the dependencies on the renorm-

alization scale μ of Γ̂LO
8;gg, Γ̂corr

8;gg, and Γ̂NLO
8;gg ¼ Γ̂LO

8;gg þ Γ̂corr
8;gg.

As mentioned above, Γ̂LO
8;gg is evaluated with the one-loop

expression of αsðμÞ, while Γ̂corr
8;gg and Γ̂NLO

8;gg are evaluated
with the two-loop expression of αsðμÞ. In Fig. 6(b), the
factor K ¼ Γ̂NLO

8;gg =Γ̂LO
8;gg is shown as a function of μ. As

expected on general grounds, the μ dependence is reduced
as we pass from LO to NLO. Unfortunately, the μ
dependence of Γ̂NLO

8;gg is still appreciable, so that scale
optimization appears appropriate. Since the μ dependence
of Γ̂NLO

8;gg is monotonic, the principle of minimal sensitivity
[57] is not applicable. However, the concept of fastest
apparent convergence (FAC) [58] works, since the value of
μ for which K ¼ 1, μFAC, is a typical energy scale of the
ϒ → χcJ þ X decays. From Fig. 6, we read off that
μFAC ¼ 6.2 GeV. In the following, we will use this as
the central scale and estimate the theoretical uncertainty by
varying μ in the range μFAC=2 < μ < 2μFAC.
From Figs. 1–5, we observe that χcJ production from ϒ

decay may be viewed, at least at LO, as ϒ → ggg decay
followed by g → χcJ þ X via fragmentation. Inspired by
this observation, we express the branching ratio Bðϒ →
χcJ þ XÞ as [38,41]

Bðϒ → χcJ þ XÞ ¼ Γðϒ → χcJ þ XÞ
Γðϒ → gggÞ Bðϒ → gggÞ: ð28Þ

We evaluate the partial decay width Γðϒ → gggÞ through
Oðα4sÞ as [59]

TABLE I. Numerical values of fLO8;gg=cc̄g, f
corr
8;gg, and fJ1;ggg=cc̄g.

fLO8;ggð10−4Þ fcorr8;ggð10−4Þ f8;cc̄gð10−5Þ
2.38 4.85þ 13.62 lnð μ

mb
Þ 1.23

f01;gggð10−5Þ f11;gggð10−5Þ f21;gggð10−5Þ
−4.18 −2.06 −2.65
f01;cc̄gð10−7Þ f11;cc̄gð10−7Þ f21;cc̄gð10−7Þ
1.73 1.04 0.35
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Γðϒ → gggÞ ¼ 20α3sðμÞ
243m2

b

ðπ2 − 9ÞhϒjOð3S½1�1 Þjϒi

×

�
1þ αsðμÞ

π

�
−19.4þ 3β0

2

×

�
1.161þ ln

�
μ

mb

����
; ð29Þ

and useBðϒ → gggÞ ¼ 81.7% as determined by the Particle
Data Group [31]. This has the advantage that the theoretical

prediction no longer depends on hϒjOð3S½1�1 Þjϒi and that its
dependencies on αs and mb are significantly suppressed, so
that the parametric uncertainty is greatly reduced. By the
same token, the μ dependence is greatly reduced as well to

(a) (b)

FIG. 6. μ dependencies of (a) Γ̂LO
8;gg, Γ̂corr

8;gg, and Γ̂NLO
8;gg and (b) K factor.

(a) (b)

(c) (d)

FIG. 7. μ dependencies of Bðϒ → χc1 þ XÞ (upper row) and Bðϒ → χc2 þ XÞ (lower row) evaluated with different choices of
LDMEs, to be compared with experimental values Bðϒ → χc1 þ XÞ ¼ ð1.78� 0.35Þ × 10−4 and Bðϒ → χc2 þ XÞ ¼ ð2.69� 0.8Þ ×
10−4 [31], respectively.
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become quite moderate, as may be seen from Fig. 7 to be
discussed below.
In the following, we compare our theoretical predictions

thus improved with the experimental results for direct
production, Bðϒ → χc1 þ XÞ ¼ ð1.78� 0.35Þ × 10−4 and
Bðϒ → χc2 þ XÞ ¼ ð2.69� 0.8Þ × 10−4, obtained from
Ref. [31] after subtracting the contributions due to the
feed-down from ψð2SÞ mesons. If we adopt the value

hOχc0ð3S½8�1 Þi ¼ ð2.21� 0.12Þ× 10−3 GeV3 from Ref. [17],
then our theoretical predictions for Bðϒ → χc1 þ XÞ and
Bðϒ → χc2 þ XÞ, whose μ dependencies are displayed in
Figs. 7(a) and 7(c), respectively, undershoot the experi-
mental data for all values of μ in the ballpark of μFAC.

It is interesting to find out which value of hOχc0ð3S½8�1 Þi is
favored by the experimental data on Bðϒ → χc1 þ XÞ and
Bðϒ → χc2 þ XÞ. We, therefore, perform a fit to these data,
with the result that

hOχc0ð3S½8�1 Þi ¼ ð4.04� 0.47Þ × 10−3 GeV3; ð30Þ

for hOχc0ð3P½1�
0 Þi ¼ 0.107 GeV5 and our default choice

μ ¼ μFAC. As for the central values, this is about twice
as large as the results of Refs. [17,20]. From Figs. 7(b) and
7(d), we observe that Eq. (30) yields an excellent descrip-
tion of the measurements of Bðϒ → χc1 þ XÞ and
Bðϒ → χc2 þ XÞ, respectively, throughout the considered
μ range, 3.7 GeV < μ < 2μFAC. The lower bound on μ is to
ensure the positivity of Bðϒ → χc0 þ XÞ. Thanks to can-

cellations between the 3P½1�
J and 3S½8�1 channels, the μ

dependencies are relatively mild indicating small theoreti-
cal uncertainties.
Vice versa, this feature may be exploited to argue that the

theoretical uncertainty in hOχc0ð3S½8�1 Þi is small. To this end,
we repeat our fit for different values of μ and show the

outcome in Fig. 8. We read off from Fig. 8 that hOχc0ð3S½8�1 Þi
ranges from ð3.7� 0.28Þ × 10−3 GeV3 at μ ¼ 3.7 GeV to
ð4.71� 0.65Þ × 10−3 GeV3 at μ ¼ 2μFAC. Obviously, the

theoretical uncertainty is comparable to the experimen-
tal one.
In Ref. [60], an alternative set of χcJ production LDMEs

was obtained by fitting cross sections of prompt χc1 and χc2
hadroproduction measured by ATLAS [61] using NLO
SDCs in combination with leading-power fragmentation
functions:

hOχc0ð3P½1�
0 Þi

m2
c

¼ ð3.53� 1.08Þ × 10−2 GeV3;

hOχc0ð3S½8�1 Þi ¼ ð5.74� 1.31Þ × 10−3 GeV3: ð31Þ

The resulting predictions for Bðϒ → χc1 þ XÞ and
Bðϒ → χc2 þ XÞ, which are also included in Figs. 7(a)
and 7(c), respectively, overshoot the experimental data for
μ < μFAC, but the error bands overlap for μ ≳ μFAC.

IV. SUMMARY

In this work, we studied the inclusive decays ϒ → χcJ þ
X throughOðα5sÞ and to LO in vc and vb in the NRQCD [1]
factorization approach [2]. According to the velocity
scaling rules [3], we thus included the Fock states

bb̄ð3S½1�1 Þ, cc̄ð3P½1�
J Þ, and cc̄ð3S½8�1 Þ. Besides gluons and light

quarks, we also allowed for open charm to appear in the
hadronic debris X. Since the partonic subprocess

bb̄ð3S½1�1 Þ → cc̄ð3S½8�1 Þ þ gg already contributes at Oðα4sÞ,
we calculated its quantum corrections at NLO. Since the
dependencies of the branching ratios Bðϒ → χcJ þ XÞ on
the renormalization scale μ turned out to be monotonic, we
applied scale optimization via FAC [58], which led to
μFAC ¼ 6.2 GeV. We then estimated the theoretical uncer-
tainty by varying μ in the range between μFAC=2 and 2μFAC.

Using as input the value hOχc0ð3P½1�
0 Þi ¼ 0.107 GeV5

obtained in Ref. [52] for the Buchmüller-Tye potential

[53], we fitted hOχc0ð3S½8�1 Þ to experimental data of Bðϒ →
χc1 þ XÞ and Bðϒ → χc2 þ XÞ via direct production [31] to
find the value quoted in Eq. (30). This exceeds the fit results
of Refs. [17,20] by roughly a factor of two but is
compatible with the lower bound extracted in Ref. [60].
Further experimental and theoretical efforts are required to
solve this discrepancy.
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APPENDIX A: MASTER INTEGRALS AT O(ϵ)

In the following, we will drop all imaginary parts, since only the real parts contribute to the NLO corrections. We adopt
the notation of Ref. [62],

ID1 ðm2
1Þ ¼

μ4−D

iπ
D
2rΓ

Z
dDl

1

l2 −m2
1 þ iε

;

ID2 ðp2
1;m

2
1; m

2
2Þ ¼

μ4−D

iπ
D
2rΓ

Z
dDl

1

ðl2 −m2
1 þ iεÞ½ðlþ p1Þ2 −m2

2 þ iε� ;

ðA1Þ

where rΓ ¼ Γ2ð1 − ϵÞΓð1þ ϵÞ=Γð1 − 2ϵÞ ¼ 1 − ϵγE þ ϵ2ðγ2E=2 − π2=12Þ þOðϵ3Þ. The tadpole integral is given by

ID1 ðm2Þ ¼ m2

�
μ2

m2

�
ϵ
�
1

ϵ
þ 1þ ϵ

�
1þ π2

6

��
: ðA2Þ

The bubble integral with two vanishing masses is given by

ID2 ðs; 0; 0Þ ¼
�
μ2

s

�
ϵ
�
1

ϵ
þ 2þ ϵ

�
4 −

π2

2

��
: ðA3Þ

The bubble integral with one vanishing mass is given by

ID2 ðs; 0; m2Þ ¼
�
μ2

m2

�
ϵ
�
1

ϵ
− d1 þ ϵ

�
d2
2
þ π2

6

��
; ðA4Þ

where

d1 ¼
s −m2

s
ln
jm2 − sj

m2
− 2; ðA5Þ

and

d2 ¼ 2
s −m2

s

�
ln
m2 − s
m2

ln
m2 − s
jsj − 2 ln

m2 − s
m2

− Li2

�
m2 − s
m2

�
þ π2

6

�
þ 8 ðA6Þ

for s < m2 and

d2 ¼
s −m2

s

�
ln2

s −m2

m2
þ ln2

s −m2

s
− 4 ln

s −m2

m2
þ 2Li2

�
s −m2

s

�
−
5π2

3

�
þ 8 ðA7Þ

for s > m2. The bubble integral with two different masses is given by

ID2

�
t
4
;m2

c; m2
b

�
¼

�
μ2

t=4

�
ϵ
�
1

ϵ
− c1 þ ϵ

�
c2
2
þ π2

6

��
; ðA8Þ

where

c1 ¼ −
1

t

�
−a ln

sþ u − a
8mcmb

þ 2ðm2
b −m2

cÞ ln
m2

c

m2
b

þ t ln
t

4mcmb

�
− 2;

c2 ¼
2a
t

�
ln
sþ uþ a

8m2
c

�
ln
a − sb − ub

2a
þ ln

t
4m2

b

þ 2

�
þ 1

2
ln2

sþ uþ a
8m2

c
þ Li2

�
sb þ ub þ a

2a

�

− Li2

�
−sc − uc þ a

2a

��
þ sc þ uc þ a

t
ln
m2

c

m2
b

�
ln

t
4mcmb

þ 2

�
þ
�
ln

t
4m2

b

þ 2

�
2

þ 4: ðA9Þ
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APPENDIX B: SOFT INTEGRALS

To extract the IR divergences of the real corrections in the limit k5 → 0, we need to know the results of the following
integrals:

Z
soft

dPSk5
ðK · k5Þ2

¼ Cϵ

32π2m2
c

�
−
1

ϵ
−
sc þ uc

a
ln
sc þ uc þ a
sc þ uc − a

− ln
μ2

4δ2sm2
c

�
;

Z
soft

dPSk5
ðk3 · k5Þðk4 · k5Þ

¼ Cϵ

4π2t

�
1

ϵ2
þ 1

ϵ
ln

μ2

4δ2sm2
c
þ 1

2
ln2

μ2

4δ2sm2
c
−
π2

4

�
;

Z
soft

dPSk5
ðK · k5Þðk3 · k5Þ

¼ Cϵ

8π2sc

�
1

ϵ2
þ 1

ϵ
ln

μ2t
s2cδ2s

þ ln2
sc þ uc − a

2sc
þ 1

2
ln2

μ2

4δ2sm2
c
− ln

s2c
4m2

ct
ln

μ2

4δ2sm2
c

−
1

2
ln2

sc þ uc þ a
sc þ uc − a

þ 2Li2

�
−

s − uþ a
sc þ uc − a

�
− 2Li2

�
s − u − a

2s1

�
−
π2

4

�
;

Z
soft

dPSk5
ðK · k5Þðk4 · k5Þ

¼ Cϵ

8π2uc

�
1

ϵ2
þ 1

ϵ
ln

μ2t
u2cδ2s

þ ln2
sc þ uc − a

2uc
þ 1

2
ln2

μ2

4δ2sm2
c
− ln

u2c
4m2

ct
ln

μ2

4δ2sm2
c

−
1

2
ln2

sc þ uc þ a
sc þ uc − a

þ 2Li2

�
−

u − sþ a
sc þ uc − a

�
− 2Li2

�
u − s − a

2uc

�
−
π2

4

�
: ðB1Þ
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