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It has been suggested that the production of a heavy quarkonium near threshold in electron-proton
scattering can shed light on the origin of the proton mass via the QCD trace anomaly. We study the
photoproduction of J=ψ off the proton using gauge/string duality and demonstrate that the t dependence of
the differential cross section dσ=dt at small t is a sensitive probe of the trace anomaly.
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I. INTRODUCTION

From the early days of QCD, the origin of hadron masses
has been a profound puzzle. At the most naive level, one
asks the question: How can the QCD Lagrangian, written in
terms of massless gluons and nearly massless quarks, give
rise to the mass of the proton M ∼ 1 GeV? More seriously,
knowing that energy and mass are equivalent in special
relativity, one asks whether the “missing mass” comes from
the relativistic orbital motion of quarks and gluons inside
the proton. These kinetic energy contributions can be
unambiguously defined and have been measured in deep
inelastic scattering experiments [1] as well as in lattice
QCD simulations [2–4]. However, they are not sufficient to
account for the total mass. The fundamental reason the
proton has a nonvanishing mass in the first place is because
the approximate conformal symmetry of the classical QCD
Lagrangian is broken by the quantum effects. This is
quantified by the trace anomaly of the energy-momentum
tensor Tμν

Tμ
μ ¼

βðgÞ
2g

Fμν
a Fa

μν þ � � � ; ð1Þ

where βðgÞ is the QCD beta function. The full decom-
position formula thus reads [5]

M ¼ Mq þMg þMm þMa; ð2Þ

where Mq=g is the kinetic energy of quarks/gluons which
comes from the traceless part of Tμν, Mm is the current

quark mass and Ma ∝ hPjTμ
μjPi is the trace anomaly

contribution. The decomposition (2) is gauge invariant
and well defined, but is not entirely without controversy
(see, e.g., Refs. [6,7]).
Recently, there has been a lot of interest among the

nucleon structure community in determining the anomaly
contribution Ma [8] as a key to understanding the origin of
the proton mass. Experiments dedicated to this goal have
been proposed at the Jefferson Laboratory [9], and the
subject will likely continue to be discussed in the era of the
future Electron-Ion Collider (EIC). Specifically, it has been
proposed, based on some theory suggestions [10], that one
can access Ma via the exclusive production of heavy
quarkonium states such as J=ψ at threshold in electron-
proton scattering ep → e0γ�p → e0p0J=ψ [11–18]. Heavy
quarkonia are useful here because they only couple to
gluons, not light quarks, and are therefore sensitive to the
gluonic structure of the proton. However, a formula which
relates the actual cross section to the trace anomaly has not
been explicitly written down in the literature, although such
a formula is crucial for the proper interpretation of the data.
The main obstacle, from the perturbative QCD point of
view, is that the QCD factorization for the twist- four
operator FμνFμν is difficult to establish despite the presence
of a hard scale—the heavy quark mass. In view of this, one
may seek alternative approaches which do not rely on the
weak coupling/factorization framework.
In this paper, we use the gauge/string duality to calculate

the J=ψ cross section in ep collisions and study its
connection to the trace anomaly.1 This approach allows
us to bypass the issue of factorization and directly evaluate
the scattering amplitude in string/gravity theory dual to
QCD (or QCD-like theories). The original version of the
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1Vector-meson production at high energy has been previously
studied in holographic frameworks [19–21], but not in connection
with the proton mass problem.
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duality is for conformal theories in which particles are
massless and Tμν is traceless. Subsequently, it has been
generalized to theorieswith conformal symmetrybreaking so
that the problem of the proton mass can be addressed. Our
work is distinct from the previousworks on the application of
gauge/string duality to high-energy, lepton-hadron deep
inelastic scattering (see e.g., Refs. [22–33]) where scattering
amplitudes are dominated by the exchange of the graviton.
Because of its spin-2 nature, the graviton exchange predicts a
too steep rise of cross sections with increasing energy to be
compatible with the experimental data.2 Here instead,
we apply gauge/string duality to low-energy scatteringwhere
the relevant momentum scales are on the order of a fewGeV.
Near the threshold, the cross section rises from zero, and
our idea is to explain this behavior using the graviton
exchange picture. An interesting complication in this regime
is that the contribution from other supergravity modes can
become equally important. In particular, we shall be inter-
ested in the exchange of the dilaton which, according to the
AdS/CFT correspondence, is dual to the operator FμνFμν

in (1).
We work in the simplest setup to introduce heavy quarks

(the so-called “D3/D7 model” [34]) and compute the cross
section of the subprocess γp → p0J=ψ in the photopro-
duction limit. We consider both the graviton and dilaton
exchanges in an asymptotically anti–de Sitter (AdS) space,
and relate this amplitude to the matrix elements of the
traceless and trace parts of the energy-momentum tensor.
Our goal is to write down a formula for the differential cross
section dσ=dt which explicitly depends on the gluon
condensate hPjFμνFμνjPi, and quantitatively study its
impact on the shape of the t distribution.
This paper is structured as follows. In Sec. II, we give

a brief review of the nucleon mass sum rule (2) and
discuss the nonforward matrix element of the QCD
energy-momentum tensor. In Sec. III, we explain the basic
kinematics of the γp → J=ψp0 process. In Sec. IV, we
compute the cross section by using gauge/string duality
and numerically evaluate the differential cross section
dσ=dt. We then conclude in Sec. V.

II. NUCLEON MASS AND THE QCD
ENERGY-MOMENTUM TENSOR

A. Nucleon mass decomposition

We begin by briefly reviewing how the formula (2) is
derived from the QCD energy-momentum tensor. Consider
the standard matrix elements

hPjTμνjPi ¼ 2PμPν; hPjTα
αjPi ¼ 2M2; ð3Þ

where the proton single-particle state is normalized as
hP0jPi ¼ 2P0ð2πÞ3δð3ÞðP⃗ − P⃗0Þ. We write the energy-
momentum tensor in the form

Tμν ¼ −Fμλ
a Faν

λ þ
ημν

4
Fαβ
a Fa

αβ þ iψ̄γðμDνÞψ

¼ Tμν
g þ Tμν

q ; ð4Þ
where ημν ¼ ð1;−1;−1;−1Þ.3 Throughout this paper, we
use the notation AðμBνÞ ≡ AμBνþAνBμ

2
. As is well known, the

trace of this energy-momentum tensor contains the QCD
trace anomaly,

Tα
α ¼

βðgÞ
2g

Fαβ
a Fa

αβ þmð1þ γmÞψ̄ψ ; ð5Þ

where βðgÞ ¼ − g3

16π2
ð11Nc

3
− 2nf

3
Þ þ � � � is the QCD beta

function, m is the current quark mass, and γm is the
anomalous dimension of the mass operator. One can
decompose the tensor into the traceless and trace parts
(in d ¼ 4 dimensions)

Tμν ¼
�
Tμν −

ημν

d
Tα

α

�
þ ημν

d
Tα

α ≡ T̄μν þ T̂μν: ð6Þ

The traceless part T̄μν can be further decomposed into the
quark and gluon parts T̄μν ¼ Tμν

q;kin þ Tμν
g;kin which can be

interpreted as the kinetic energy contributions. Also, the
trace part (5) is a sum of the mass and anomaly contribu-
tions T̂μν ¼ Tμν

m þ Tμν
a . We can thus write

Tμν ¼ Tμν
q;kin þ Tμν

g;kin þ Tμν
m þ Tμν

a : ð7Þ

From Lorentz symmetry, their matrix elements can be
parametrized as

hPjTμν
q;kinjPi ¼ 2aðμ2Þ

�
PμPν −

ημν

4
M2

�
; ð8Þ

hPjTμν
g;kinjPi ¼ 2ð1 − aðμ2ÞÞ

�
PμPν −

ημν

4
M2

�
; ð9Þ

hPjTμν
m jPi ¼ 1

2
bðμ2ÞημνM2; ð10Þ

hPjTμν
a jPi ¼ 1

2
ð1 − bðμ2ÞÞημνM2; ð11Þ

where μ2 is the renormalization scale. Let us now work in
the rest frame and define the Hamiltonian Hi ¼

R
d3xT00

i .
We can then write

2This problem may be cured by modifying the graviton or
adding unitarity corrections. We do not pursue these directions in
the present paper.

3We shall use this “mostly minus” metric throughout this
paper, differently from most of the literature on gauge/string
duality.
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M ¼ Mq þMg þMm þMa; ð12Þ

where

Mq ¼
hPjHqjPi
hPjPi ¼ 3a

4
M; ð13Þ

Mg ¼
hPjHgjPi
hPjPi ¼ 3ð1 − aÞ

4
M; ð14Þ

Mm ¼ hPjHmjPi
hPjPi ¼ b

4
M; ð15Þ

Ma ¼
hPjHajPi
hPjPi ¼ 1 − b

4
M: ð16Þ

(Note that hPjPi ¼ 2M
R
d3x.) We see that the trace part

Mm þMa accounts for a quarter of the proton mass. Ji
proposed a slightly different decomposition [5] by reshuf-
fling terms in Eq. (12). From the equation of motion, one
can write

T00
q;kin ¼ iψ̄D0γ0ψ −

m
4
ψ̄ψ þ � � �

¼ iψ̄ D⃗ · γ⃗ψ þ 3m
4

ψ̄ψ þ � � � : ð17Þ

It is more reasonable to interpret the last term as a part of
the quark mass contribution. By moving this term into T00

m ,
one gets an alternative decomposition

M ¼ eMq þ eMg þ eMm þ eMg ð18Þ

where

eMq ¼
hPjHqjPi
hPjPi ¼ 3

4

�
a −

b
1þ γm

�
M; ð19Þ

eMg ¼
hPjHgjPi
hPjPi ¼ 3ð1 − aÞ

4
M; ð20Þ

eMm ¼ hPjHmjPi
hPjPi ¼ b

4

4þ γm
1þ γm

M; ð21Þ

eMa ¼
hPjHajPi
hPjPi ¼ 1 − b

4
M: ð22Þ

The parameter aðμ2Þ is related to the matrix element of the
quark and gluon twist-two operators, and can be extracted
from the experimental data of deep inelastic scattering. It is
more difficult to access the parameter bðμ2Þ. Being asso-
ciated with the twist-four operator F2, any dependence on b
is strongly suppressed in high-energy scattering. Instead,
one should look at low-energy scattering.

B. Nonforward proton matrix element

In the actual experimental process ep → e0p0J=ψ , one
cannot directly access the forward matrix element
hPjTμνjPi because it is kinematically impossible. In prac-
tice, experimentalists measure the nonforward matrix
element hP0jTμνjPi and extrapolate it to the forward
limit Δμ ¼ P0μ − Pμ → 0. The general parametrization of
the nonforward matrix element of Tμν

q;g for a spin-1
2
hadron

is [35]

hP0jTμν
q;gjPi¼ ūðP0Þ

�
Aq;gγ

ðμP̄νÞ þBq;g
P̄ðμiσνÞαΔα

2M

þCq;g
ΔμΔν−gμνΔ2

M
þ C̄q;gMημν

�
uðPÞ

¼ ūðP0Þ
�
ðAq;gþBq;gÞγðμP̄νÞ−

P̄μP̄ν

M
Bq;g

þCq;g
ΔμΔν−gμνΔ2

M
þ C̄q;gMημν

�
uðPÞ; ð23Þ

where P̄μ ≡ PμþP0μ
2

. In the second line we used the Gordon
identity. A, B, C, C̄ all depend on Δ2 ¼ t (and also on the
renormalization scale). In the literature, often the notation
Dq;gðtÞ ¼ 4Cq;gðtÞ is used, and is called the “D-term.”
Multiplying both sides by ∂μ ∼ Δμ, we see that all terms
on the right-hand side except the C̄q;g term vanish
h∂μT

μν
q;gi ∼ ΔνC̄q;g. Since the sum Tμν

q þ Tμν
g is conserved,

C̄q þ C̄g ¼ 0.
Taking the trace of Eq. (23) we find4

hP0jðTgÞμμjPi ¼ hP0j
�
βðgÞ
2g

Fa
μνF

μν
a þmγmψ̄ψ

�
jPi

¼ ūðP0Þ
�
AgM þ Bg

4M
Δ2 − 3

Δ2

M
Cg þ 4C̄gM

�
× uðPÞ: ð24Þ

From this we can deduce that

hP0j βðgÞ
2g

Fa
μνF

μν
a jPi

¼ ūðP0Þ
�
ðAg − γmAqÞM þ ðBg − γmBqÞ

Δ2

4M

− 3
Δ2

M
ðCg − γmCqÞ þ 4ðC̄g − γmC̄qÞM

�
uðPÞ: ð25Þ

Comparing with Eqs. (8)–(11), we find the following
relations:

4In dimensional regularization, the anomaly entirely comes
from the gluon part Tg; see, e.g., Ref. [36].
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Aqð0Þ ¼ a; Agð0Þ ¼ 1 − a; ð26Þ

and

b ¼ ðAqð0Þ þ 4C̄qð0ÞÞð1þ γmÞ;
1 − b ¼ ðAgð0Þ þ 4C̄gð0ÞÞð1þ γmÞ − γm: ð27Þ

For a later purpose, let us define the “transverse-
traceless” part of Tμν

g . First consider the transverse part
of Tμν

g

Tμν
g⊥ ≡ Tμν

g −
1

□
∂μ∂αTνα

g −
1

□
∂ν∂αT

μα
g

þ 1

□2
∂μ∂ν∂α∂βT

αβ
g ; ð28Þ

where □ ¼ ∂μ∂μ, such that ∂μT
μν
g⊥ ¼ 0. Its matrix element

can be readily inferred from Eq. (23)

hP0jTμν
g⊥jPi ¼ hP0j

�
Tμν
g −

1

Δ2
ΔμΔαTνα

g −
1

Δ2
ΔνΔαT

μα
g

þ 1

Δ4
ΔμΔνΔαΔβT

αβ
g

�
jPi

¼ ūðP0Þ
�
ðAg þ BgÞγðμP̄νÞ −

P̄μP̄ν

M
Bg

þ
�
Δ2

M
Cg − C̄gM

��
ΔμΔν

Δ2
− ημν

��
uðPÞ:

We then define the transverse-traceless (TT) part by making
Tμν
⊥ traceless while preserving its transverse property

Tμν
gTT ≡ Tμν

g⊥ þ 1

3

�∂μ∂ν

□
− ημν

�
Tα
g⊥α: ð29Þ

This has the following matrix element:

hP0jTμν
gTT jPi ¼ ūðP0Þ

�
ðAg þ BgÞγðμP̄νÞ −

P̄μP̄ν

M
Bg

þ 1

3

�
ΔμΔν

Δ2
− ημν

��
AgM þ Δ2

4M
Bg

��
uðPÞ:

ð30Þ

Note that the forward limit is ambiguous as it depends on
the angle of Δ⃗.

lim
P0→P

hP0jTμν
gTT jPi ¼ lim

Δ→0
2Ag

�
PμPν þM2

3

�
ΔμΔν

Δ2
− ημν

��
:

ð31Þ

III. EXCLUSIVE PHOTOPRODUCTION
OF J=ψ IN ep SCATTERING

In this section we briefly review the basic kinematics of
the process ep → e0γ�p → e0p0J=ψ which will be studied
at the Jefferson Laboratory and possibly at the future EIC
[9]. The connection to the trace anomaly will be discussed
in the next section. The electron part can be factored out, so
in practice one considers the subprocess γ�ðqÞpðPÞ →
pðP0ÞJ=ψðkÞ. The cross section is given by the formula

σðγp → pJ=ψÞ ¼ e2

4MK

Z
d3k

2Ekð2πÞ3
d3P0

2E0ð2πÞ3 ð2πÞ
4

× δð4ÞðPþ q − P0 − kÞhPjϵ · Jð0ÞjP0ki
× hP0kjϵ� · Jð0ÞjPi

¼ e2kcm
64π2MKW

Z
dΩhPjϵ · JjP0ki

× hP0kjϵ� · JjPi ð32Þ

where K ¼ 2P·q−Q2

2M ¼ W2−M2

2M , and W2 ¼ ðPþ qÞ2 is the
virtual photon-proton c.m. energy (Q2 ¼ −q2). Since the
integral is Lorentz invariant, it can be conveniently evalu-
ated in the photon-proton c.m. frame, which was done in
the second line. We also defined

k2cm ¼ ðW2 − ðMψ þMÞ2ÞðW2 − ðMψ −MÞ2Þ
4W2

; ð33Þ

as the J=ψ momentum in the c.m. frame. (Mψ denotes the
mass of J=ψ .) Switching back to the Lorentz-invariant
variable t¼ðP−P0Þ2¼2M2−2ðEE0− jPjjpjcosθÞ we get

σðγp→p0J=ψÞ

¼ e2

64πMKWjPcmj
Z

dthPjϵ ·JjP0kihP0kjϵ� ·JjPi ð34Þ

where

jPcmj2 ¼
W4 − 2W2ðM2 −Q2Þ þ ðM2 þQ2Þ2

4W2
ð35Þ

is the incoming proton momentum in the c.m. frame. In the
photoproduction limit q2 ¼ −Q2 → 0, only the transverse
polarizations survive and we find

σðγp → p0J=ψÞ

¼ e2

16πðW2 −M2Þ2
1

2

X1;2
i

Z
dthPjϵi · Jð0ÞjP0ki

× hP0kjϵ�i · Jð0ÞjPi: ð36Þ
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The t integral in Eq. (36) is for 0 > tmin > t > tmax.
Ideally, one would like to study the forward matrix
element t ¼ 0, but this is kinematically not allowed. In
practice one has to extrapolate the amplitude from t≲ tmin
to t → 0.
To find tmin we again work in the c.m. frame and take the

photoproduction limit Q2 → 0. Then Pcm ¼ W2−m2

2W and

t¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
cmþM2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2cmþM2

q �
2
− ðP⃗cmþ k⃗cmÞ2

≤
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
cmþM2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2cmþM2

q �
2
− ðjPcmj− jkcmjÞ2≡ tmin:

ð37Þ

This gives a complicated function of W. At the threshold
W ¼ Wth ¼ M þMψ ≈ 4.04 GeV, we get

tmin ¼ −
MM2

ψ

M þMψ
≈ −ð1.5 GeVÞ2; ð38Þ

where we used M ≈ 0.94 GeV and Mψ ≈ 3.10 GeV. At
large W, on the other hand, we find

tmin ¼ −
M2M4

ψ

W4
þ � � � ; tmax ¼ −W2 þ � � � : ð39Þ

In Fig. 1, we plot jΔminj ¼
ffiffiffiffiffiffiffiffiffiffiffi
−tmin

p
and jΔmaxj ¼

ffiffiffiffiffiffiffiffiffiffiffi
−tmax

p
as

a function of W > Wth. Away from the threshold, Δmin
decreases rapidly and becomes negligible compared to the
other mass scales.
We shall be interested in the “threshold region” which

we loosely define as Wth ≤ W ≲ 6 GeV, or in terms of the
photon energy in the proton rest frame,

W2
th −M2

2M
≈ 8.2 GeV ≤ Eγ ≲ 20 GeV: ð40Þ

While the considered energy range is rather narrow, it is
actually sufficient to discuss the effect of the trace anomaly,
as we shall demonstrate in the following.

IV. HOLOGRAPHIC COMPUTATION
OF THE CROSS SECTION

A. Setup

In the cross section formula (36), the difficult part is the
nonperturbative matrix element

hPjϵiðqÞ ·JðqÞjP0ki
¼ ð2πÞ4δð4ÞðPþq−P0−kÞhPjϵiðqÞ ·Jð0ÞjP0ki: ð41Þ

In this section we evaluate this using holography. Our setup
is as follows. The four-dimensional Minkowski space is
located at the boundary of a five-dimensional, asymptoti-
cally AdS space with the metric

ds2 ¼ gMNdxMdxN

≈ R2
ημνdxμdxν − dz2

z2
; ðz ≈ 0Þ ð42Þ

where R is the AdS radius. z denotes the fifth dimension
and the boundary is at z ¼ 0. In the infrared region (large z),
the metric is modified such that the dual theory breaks
conformal symmetry and contains light quarks/hadrons.
The precise way in which these modifications are done is
not important for our purpose. We simply assume that the
theory contains baryons which are described by an unspeci-
fied bulk action SB. (We have in mind models such as, e.g.,
those in Refs. [37–39].)
We introduce “charm” quarks in the theory by adding

one D7 brane with the action

SD7 ¼ −TD7

Z
d8ξ̄e−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðGab þ 2πα0F abÞ

p
¼ −TD7

Z
d8ξ̄e−ϕ

ffiffiffiffiffiffiffi
−G

p �
1þ ð2πα0Þ2

4
F abF ab þ � � �

�
;

ð43Þ

where TD7 ¼ ð32π6g2α04Þ−1 denotes the D7-brane tension,
ϕ is the dilaton and Gab ¼ gM̄ N̄∂ ξ̄ax

M̄∂ ξ̄bx
N̄ is the induced

metric. In addition, ξ̄aðbÞ denote the world-volume coor-
dinates on the D7 branes, while xM̄ðN̄Þ represent the ten-
dimensional spacetime coordinates in AdS5 × S5. The
worldvolume of the D7 brane wraps S3 ∈ S5 and extends
into the fifth dimension from z ¼ 0 to z ¼ zm where zm is
inversely proportional to the heavy quark mass mq as

zm ¼
ffiffiffiffiffiffiffi
g2Nc

p
2πmq

. Explicitly, the induced metric reads

4.5 5.0 5.5 6.0

1

2

3

4

5

FIG. 1. jΔmaxj ¼
ffiffiffiffiffiffiffiffiffiffiffi
−tmax

p
(upper curve) and jΔminj ¼

ffiffiffiffiffiffiffiffiffiffiffi
−tmin

p
(lower curve) in units of GeV as a function of W > Wth with
M ¼ 0.94 GeV and Mψ ¼ 3.1 GeV.
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ds2D7 ¼
R2

z2
ημνdxμdxν −

R2

z2ð1 − z2

z2m
Þ dz

2 −
�
1 −

z2

z2m

�
R2dΩ2

3:

ð44Þ

An important point to emphasize is that the supports of SB
and SD7 are well separated in the z direction: zm is much
smaller than the typical z values of the baryon wave
function. The latter is a normalizable mode localized
around z ∼ 1=ΛQCD.
In Eq. (43), F represents the field strength coming from

gauge field fluctuations. It can be decomposed into two
parts,

F ¼ F̄ þ F; ð45Þ

where Āμ and Aμ correspond to heavy vector mesons (such
as J=ψ) and the electromagnetic gauge field (photon),
respectively. The wave function of an on-shell photon with
momentum qμ (q2 ¼ 0) is simply a plane wave

Aμ ∝ ϵμeiq·x; ð46Þ

where ϵμðqÞ is the polarization vector with the property
ϵ · q ¼ 0. The spectrum of vector mesons is well under-
stood in this model [34]. They are characterized by the
normalizable bulk wave function

Āμ ∝ ξμϕn;lðzÞe−ik·xYlðS3Þ; ð47Þ

and their masses are given by

Mn;l ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ lþ 1Þðnþ lþ 2Þp
zm

: ð48Þ

ξμ is the vector-meson polarization vector which satisfies
ξðkÞ · k ¼ 0, and Yl is the spherical harmonics on S3. We
may identify the lightest state n ¼ l ¼ 0 with J=ψ . It has

mass Mψ ¼ 2
ffiffi
2

p
zm

¼ 4
ffiffi
2

p
πmqffiffiffiffiffiffiffi
g2Nc

p and its wave function is

ϕn¼l¼0 ¼
z2

z2m
: ð49Þ

We have not specified the proportionality constant in
Eqs. (46) and (47) (see, however, Refs. [25,31,40]). Fixing
this amounts to fixing the strength of the couplingF 2 ∼ F̄F
between the photon and J=ψ , and hence the overall
normalization of the cross section. Instead of introducing
extra assumptions, we treat the overall factor as a free
parameter to be fitted to the experimental data. Our
prediction, then, is the t dependence of the differential
cross section dσ=dt. As we demonstrate in what follows,
the shape of dσ=dt is sensitive to the QCD trace anomaly.

B. Scattering amplitude

We now explain how we evaluate the matrix element
hPjϵ · JjP0ki. In the framework of gauge/string duality, the
current insertion JðqÞ on the boundary field theory creates a
gauge field excitation in the bulk AdS space. This scatters
off the bulk proton field via graviton and dilaton exchanges.
This amplitude, the so-called Witten diagram, is evaluated
as (see e.g., Refs. [22,25,38,41])

hPjϵ · JðqÞjP0ki

¼ i
fψ

Z
d4xdzeiðq−kÞ·x

Z
d4x0dz0eiðP−P0Þ·x0

×
�
δSD7ðq; k; zÞ

δgMN
GMNM0N0 ðxz; x0z0Þ δSBðP; P

0; zÞ
δgM0N0

þ δSD7

δϕðxzÞDðxz; x0z0Þ δSB
δϕðx0z0Þ

�
; ð50Þ

where GMNM0N0 and D are the graviton and dilaton bulk-to-
bulk propagators, respectively. fψ is the decay constant
defined as h0jOμ

ψ ð0Þjki ¼ fψξμ, where O
μ
ψ is an interpolat-

ing operator of J=ψ . The notation δS=δgMN (or δS=δϕ)
means that after the coupling to the graviton (or dilaton) is
extracted, the action is evaluated with the on-shell bulk
wave functions of the external states [including the polari-
zation part ϵμ, ξμ, ūðPÞ, uðP0Þ]. The plane-wave phases are
trivial and have been factored out in Eq. (50).
Since δS=δgMN is covariantly conserved, the amplitude

is gauge (diffeomorphism) invariant and can be evaluated in
any convenient gauge. For our purpose, it is crucial to work
in the TT gauge [42]

δgMz ¼ 0; δgμμ ¼ ∇μδgμν ¼ 0; ð51Þ

for the metric fluctuations

gMN ¼ gAdSMN þ δgMN: ð52Þ

In this gauge, only the MN ¼ μν components in Eq. (50)
survive. Moreover, all the components δgμν are decoupled
in the equation of motion. We argue that in this gauge one
can make a connection between Eq. (50) and the matrix
element of Tμν. (See Ref. [43] for a related discussion.) To
see this, note that the z integral in Eq. (50) is restricted to a
small region z < zm near the boundary. In this region, the
bulk-to-bulk propagators GMNM0N0 and D essentially
become the boundary-to-bulk propagators up to a propor-
tionality constant ∝ z4. The latter are associated with the
so-called non-normalizable modes which are excited by the
insertion of dual boundary operators Tμν and FμνFμν,
respectively. In the graviton sector, such a direct connection
is most transparent in the TT gauge where the M, N ¼ z
components of the propagator are eliminated. The details of
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this “matching” is presented in the Appendix. Based on
this, we rewrite Eq. (50) as

hPjϵ ·Jð0ÞjP0ki

≈−
2κ2

fψR3

Z
zm

0

dz
δSD7ðq;k;zÞ

δgμν

z2R2

4
hPjTgTT

μν jP0i

þ 2κ2

fψR3

3

8

Z
zm

0

dz
δSD7ðq;k;zÞ

δϕ

z4

4
hPj1

4
Fμν
a Fa

μνjP0i; ð53Þ

where 2κ2 ¼ 8π2

N2
c
R3 is the five-dimensional gravitational

constant. Tμν
gTT is the transverse-traceless part of the gluon

energy-momentum tensor introduced in the previous sec-
tion. We have removed the momentum-conserving delta
function ð2πÞ4δðPþ q − P0 − kÞ. Note that only the gluon
part of Tμν appears. This is because the graviton has been
emitted by a J=ψ , and we know in QCD that heavy
quarkonia only couple to gluons, not light quarks.
Holographically, this is manifested by the fact that the
quarkonium-graviton coupling occurs in the asymptotically
AdS region z ∼ 0 where the theory is dual to pure
gluodynamics and heavy quarks, while the light quark
degrees of freedom reside at much larger values of z.5

It is important to mention that after the approximation
mentioned above, the amplitude (53) now depends on the
matrix element of local gluonic operators. This is indeed
what one expects in the low-energy, near-threshold region
[14,16]. At high energy, on the other hand, the amplitude is
sensitive to nonlocal gluonic operators and the correspond-
ing generalized parton distributions.

C. Graviton and dilaton couplings

Next we proceed to compute the graviton and dilaton
couplings to the external states. It is straightforward to
evaluate the photon-vector meson-graviton coupling
δSD7=δgμν. Similarly to Ref. [41], we find

δSD7 ¼ −KD7

Z
dΩ2

3Y
lðS3Þ

Z
d4xdz

R5

z5

�
1 −

z2

z2m

�

×

��
FμρF̄ν

ρ þ F̄μρFν
ρ −

ημν

2
FαβF̄αβ

�
δgμν

−
gzz

2
FαβF̄αβδgzz þ 2F̄zρFμ

ρδgzμ

�
; ð54Þ

where KD7 ≡ NfTD7ð2πα0Þ2
2

R3 and we used Fzμ ¼ 0. Note
that FμρF̄ν

ρ¼GμαGρβFαβGνλF̄λρ¼ðz=RÞ6ημαηρβFαβη
νλF̄λρ.

In the TT gauge, we only have to consider δgμν and find

δSD7

δgμν
∝ −2KD7

Z
dΩ2

3Y
lðS3Þ z

R
ϕðzÞ

�
1 −

z2

z2m

�

×

�
Πμν −

ηαβΠαβ

4
ημν

�
; ð55Þ

where

Πμνðq; kÞ≡ qðμkνÞϵ · ξþ ϵðμξνÞq · k

− qðμξνÞk · ϵ − kðμϵνÞq · ξ: ð56Þ

The proportionality symbol in Eq. (55) is because of the
normalization issue mentioned below Eq. (49). The term
proportional to ημν in Eq. (55) drops out when contracted
with the traceless tensor TgTT

μν in Eq. (53).
On the other hand, computing the photon-vector meson-

dilaton coupling δSD7=δϕ requires some care. This is
because the coupling with the dilaton depends on the
frame (string or Einstein frame). If one switches to the ten-
dimensional Einstein frame GE

MN ¼ e−ϕ=2GMN in Eq. (43)

SD7 ¼ −NfTD7

Z
d8ξ̄eϕ

ffiffiffiffiffiffiffiffiffiffi
−GE

p

×

�
1þ ð2πα0Þ2

4
e−ϕF abF ab þ � � �

�
; ð57Þ

one finds that the relevant coupling vanishes. However, we
actually work in the five-dimensional Einstein frame
gEMN ¼ e−4ϕ=3gMN in the background AdS5 space

Ssugra ¼
1

2κ2

Z
d5x

ffiffiffiffiffiffiffiffi
−gE

p �
R − 12 −

4

3
ð∇ϕÞ2

�
; ð58Þ

and in this frame the dilaton coupling is nonvanishing. To
get this, we write the S5 part of the ten-dimensional metric
in the form

dΩ2
5 ¼ R2ðdθ2 þ sin2 θdΩ2

3 þ cos2 θdη2Þ: ð59Þ

The Gzz component of the brane-induced metric is then
[cf. Eq. (44)]

Gzz ¼ gzz þ ð∂zθÞ2gθθ
¼ −

R2

z2

�
1þ z2R4ð∂z cos θÞ2

sin2θ

�

¼ −
R2

z2

�
1þ z2

z2m − z2

�
: ð60Þ

This means that the ten-dimensional string frame and five-
dimensional Einstein frame are related as

5Note also that Tμν
q ∼OðNcÞ is subleading compared to

Tμν
g ∼OðN2

cÞ in the large-Nc limit.
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GS
zz ¼ e4ϕ=3gEzz þ ð∂zθÞ2gEθθ ¼ −

e4ϕ=3R2

z2

�
1þ e−4ϕ=3z2

z2m − z2

�
;

ð61Þ

for this particular component, and we find

e−ϕ
ffiffiffiffiffiffiffiffiffi
−GS

p
ðFαβF̄αβÞS

¼ e−ϕ=3R3

�
R
z

�
5
�
1−

z2

z2m

�
3=2

�
1þe−4ϕ=3z2

z2m− z2

�
ðFαβF̄αβÞE:

ð62Þ

This leads to

∂ϕ

�
e−ϕ

ffiffiffiffiffiffiffiffiffi
−GS

p
ðFαβF̄αβÞS

�			
ϕ¼0

¼ −R3

�
R
z

�
5
�
1

3

�
1−

z2

z2m

�
þ 2z2

3z2m

�
1−

z2

z2m

��
ðFαβF̄αβÞE

¼ −
1

3

ffiffiffiffiffiffiffiffiffiffi
−GE

p �
1þ 2z2

z2m

�
ðFαβF̄αβÞE: ð63Þ

From this, we obtain the effective coupling

δSD7

δϕ
∝ −KD7

Z
dΩ2

3Y
lðS3ÞRϕðzÞ

z

�
1 −

z2

z2m

��
1þ 2z2

z2m

�

×
ημνΠμν

6
: ð64Þ

D. Results

Collecting all the factors we write

hPjϵ · JjP0ki ¼ ūðP0ÞðXΠμνΓμν þ YΠμ
μΓÞuðPÞ; ð65Þ

where [see Eqs. (30) and (25)]

Γμν ¼ ðAg þ BgÞγðμP̄νÞ −
P̄μP̄ν

M
Bg

þ 1

3

�
ΔμΔν

Δ2
− ημν

��
AgM þ Δ2

4M
Bg

�
; ð66Þ

Γ ¼ g
2βðgÞ

�
ðAg − γmAqÞM þ Bg − γmBq

4M
Δ2

− 3
Δ2

M
ðCg − γmCqÞ þ 4ðC̄g − γmC̄qÞM

�
; ð67Þ

and

X ¼ c
κ2KD7

R2

Z
dΩ2

3Y
l¼0ðS3Þ

Z
zm

0

dzz3ϕðzÞ
�
1 −

z2

z2m

�
;

ð68Þ

Y ¼ −c
κ2KD7

16R2

Z
dΩ2

3Y
l¼0ðS3Þ

×
Z

zm

0

dzz3ϕðzÞ
�
1 −

z2

z2m

��
1þ 2z2

z2m

�
: ð69Þ

c is a parameter which absorbs the unknown prefactors. As
already mentioned, we shall fix this by fitting the exper-
imental data. Using the wave function (49) and also the
formula

R
d3ΩYl¼0ðS3Þ ¼ ffiffiffi

2
p

π, we find

X ¼ c

ffiffiffi
2

p
π

24
κ2KD7

z4m
R2

; ð70Þ

Y ¼ −c
11

ffiffiffi
2

p
π

1920
κ2KD7

z4m
R2

¼ −
11

80
X: ð71Þ

The differential and total cross sections are computed
from Eq. (65) as

dσ
dt

¼ αem
4ðW2 −M2Þ2

1

2

X
pol

1

2

X
spin

jhPjϵ · JjP0kij2;

σtot ¼
Z

tmax

tmin

dt
dσ
dt

: ð72Þ

The first sum is over the photon and J=ψ polarizations.
This can be done according to the formula

X
s¼1;2

ϵμsϵ�νs → −ημν
X

s0¼1;2;3

ξμs0ξ
�ν
s0 ¼ −ημν þ kμkν

M2
ψ
: ð73Þ

The second sum is over the initial and final proton spins.
Defining Πμν ≡ Πμν

αβϵ
αξβ, we get

Is ≡
X
pol

X
spin

jhPjϵ · JjP0kij2

¼ Tr½ðXΠμν
αβΓμν þ YðΠμ

μÞαβΓÞðPþMÞ
× ðXΠμ0ν0;αβΓμ0ν0 þ YðΠμ0

μ0 ÞαβΓÞðP0 þMÞ�

−
kβkγ

M2
ψ
Tr½ðXΠμν

αβΓμν þ YðΠμ
μÞαβΓÞðPþMÞ

× ðXΠμ0ν0;α
γΓμ0ν0 þ YðΠμ0

μ0 ÞαγΓÞðP0 þMÞ�: ð74Þ

We computed Eq. (74) using FEYNCALC and expressed the
result in terms of W2 ¼ M2 þ 2P · q and t ¼ M2

ψ − 2q · k.

(Note that P0 ¼ Pþ q − k and P · k ¼ W2þt−M2

2
.) The full

analytical expression turns out to be too lengthy to be
reproduced here, but the following points are worth noting.
(i) Formally, the result can be Laurent expanded in t as
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Is ¼
A2
gM4M8

ψX2

9t2
þ AgM2M4

ψX

36t
× ½AgXð24M4 þ 16M2ðM2

ψ − 3W2Þ þ 5M4
ψ

− 24M2
ψW2 þ 24W4Þ þ 2BgM4

ψX þ 96MM2
ψYΓ�

þOðt0Þ: ð75Þ

One immediately recognizes an apparent singularity 1=t2

and might worry that such a rapid behavior of dσ=dt at
small t is at odds with the experimental data. However, this
is totally innocuous. In practice jtj cannot be smaller than
the value determined from Eq. (37), and when t ¼ tmin, the
“singular” terms in Eq. (75) are numerically comparable,
or even smaller than the other “nonsingular” terms.6 (ii) If
one expands Is in W2, one finds that the highest power is
W8. When combined with the prefactor 1=W4 in Eq. (72),
this gives a very strong energy dependence dσ=dt ∼ s2 at
large s ¼ W2. This is an artifact of the graviton exchange
which is a spin-2 particle. We are not concerned about this
asymptotic behavior, since our focus is near the threshold
region W ≳Wth where the graviton and dilaton contribu-
tions are comparable.
For a numerical evaluation, we use M ¼ 0.94 GeV,

Mψ ¼ 3.1 GeV and assume the dipole form for the
gravitational form factors7

Aq;gðtÞ ¼
Aq;gð0Þ

ð1 − t=Λ2Þ2 ;

C̄gðtÞ ¼
1−bþγm
1þγm

− Agð0Þ
4ð1 − t=Λ2Þ2 ¼ −C̄qðtÞ; ð76Þ

with Λ2 ¼ 0.71 GeV2. We fix Agð0Þ ¼ 0.43 ¼ 1 − Aqð0Þ
[4] and vary the parameter 1 ≥ b ≥ 0. As seen in Eq. (16),
when b ¼ 0 the trace anomaly contributes maximally to the
proton mass, whereas b ¼ 1 corresponds to a vanishing
anomaly contribution. A recent model calculation has
found a rather small value for C̄gð0Þ¼−C̄qð0Þ∼Oð10−2Þ
[44]. As for BgðtÞ, we simply neglect it following indica-
tions [2,3,45] that Bqð0Þ ¼ −Bgð0Þ happens to be numeri-
cally very small. Unfortunately, almost nothing is known
about CgðtÞ, or the gluon D-term DgðtÞ ¼ 4CgðtÞ. We
employ a simple model inspired by the asymptotic behavior
and the quark counting rule [46]8 (nf ¼ 3 here)

CgðtÞ ¼
16

3nf
CqðtÞ ¼

16

3nf

−0.4
ð1 − t=Λ2Þ3 ; ð77Þ

where the value 4Cqð0Þ ¼ Dqð0Þ ≈ −1.6 is taken from
Ref. [47]. As one might expect from the explicit Δ2 ¼ t
factor in the coefficient (67), the effect of the Cg term is

minor in the small-t region,
ffiffiffiffiffijtjp

< 1 GeV, whereas it
becomes significant at large

ffiffiffiffiffijtjp
> 1 GeV. Very close to

the threshold,
ffiffiffiffiffiffiffiffiffiffijtminj

p
∼ 1 GeV (see Fig. 1), so the uncer-

tainties in Cg should not be underestimated. Finally, we
assume fixed coupling g ¼ 2 (αs ≈ 0.32) withNc ¼ nf ¼ 3

in the one-loop beta function so that the prefactor in
Eq. (67) becomes g

2β ≈ −2.2. The mass anomalous dimen-

sion evaluated at the same order is γm ¼ 2αs
π ≈ 0.2. Of

course, all these form factors should be modeled in a more
sophisticated manner [38,45,48–50]. We leave this to
future work.
We first plot in Fig. 2 the total cross section σtot as a

function ofW and compare with the experimental data from

FIG. 2. The total cross section in units of nb as a function of W. Upper red curve: Maximal anomaly contribution. Lower blue curve:
Zero anomaly contribution.

6One might wonder why poles in 1=t appear although there is
no divergence in the limit Δ → 0 at the amplitude level (66). The
answer is that the limit Δ → 0 has to be taken together with the
(unphysical) limit Mψ → 0 in order to be kinematically consis-
tent. Note that poles in 1=t are proportional to Mψ .

7While the dipole form for Aq;gðtÞ is commonly used (see e.g.,
Ref. [17]), we are not aware of any literature which discusses the t
dependence of C̄q;g. Equation (76) is just an assumption which
should be used with care at large t.

8Incidentally, in the present model Is behaves as t5C2
gðtÞ at

large t, so the strong falloff Cg ∼ 1=t3 as predicted by the
counting rule [46] is needed to ensure that dσ=dt is a decreasing
function of t at large t. On the other hand, in the small-t region,
different powers of t, or even the exponential form CgðtÞ ∼ ebt are
indistinguishable in practice [17].
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Cornell [11], SLAC [12], Fermilab [13] and HERA [15] as
summarized in Ref. [18]. The overall normalization factor
has been fixed by performing a χ2 fit of the low-energy
ðW ≤ 6 GeV) data points. The upper red curve corresponds
to b ¼ 0 (maximal anomaly) and the lower blue curve
corresponds to b ¼ 1 (zero anomaly). The χ2 per degree of
freedom is 0.53 and 0.81 in the two cases. The effect of the
trace anomaly is visible only near the threshold
W ≲ 5 GeV. As expected, the graviton exchange gives a
too strong rise of the cross section σtot ∼W4 ¼ s2 in the
high-energy region where the experimental data show a
much milder growth. This is due to the different nature of
the “Pomeron” between QCD and gravity theories, and
there are many attempts in the literature to correct for this
difference. Our focus, instead, is on the low-energy regime
where the W dependence in the SLAC region is roughly
reproduced. However, we have difficulty in fitting the
Cornell data points which are almost flat inW. It should be
kept in mind that these old data points suffer from low
statistics and the lack of exclusivity, and should be revised
in future experiments [9]. We hope to redo our fit when new
data become available. Figure 3 shows σtot very close to the
threshold W ≲ 4.5 GeV. In this regime, the trace anomaly
can enhance the cross section by a factor of 2 or more.
Next we plot dσ=dt as a function of t at W ¼ 4.3 GeV

(Fig. 4). On the right panel, we artificially set CgðtÞ ¼ 0 to
see the impact of this poorly constrained function. We
clearly see the effect of the trace anomaly on the shape of

the distribution dσ=dt. With the anomaly (upper curve),
dσ=dt is enhanced at small t, and it falls off more rapidly
with jtj. This tendency is more pronounced as one
decreases W and approaches the threshold. Note however,
that closer to the threshold the uncertainty due to the CgðtÞ
term also becomes larger. Although this mostly affects the
overall normalization rather than the shape, more serious
models of CgðtÞ in this region are certainly welcome.
Finally, in Fig. 5 we plot the following ratio:

dσr ≡ ðdσdtÞb¼0

ðdσdtÞb¼1

; ð78Þ

evaluated at t ¼ tmin as a function of W. This plot shows
that the effect of the trace anomaly is largest when W ≈
4.06 GeV where it enhances the peak value of dσ=dt by a
factor of about 4. In order to explore the peak region in
Fig. 5, one should tune the collision energy W to be less
than 4.5 GeV (or Eγ ≲ 10 GeV in the proton rest frame). At
larger energies, the ratio flattens but stays larger than unity.

V. CONCLUSIONS

In this paper we have undertaken the first study of the
detailed relation between the J=ψ production cross section
and the QCD trace anomaly from holography. The key

FIG. 4. The differential cross section at W ¼ 4.3 GeV, for Cg ≠ 0 (left) and Cg ¼ 0 (right).

FIG. 3. The total cross section very close to the threshold.

FIG. 5. The ratio (78) evaluated at t ¼ tmin.
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observation is that the trace anomaly enters the cross
section via the dilaton exchange, and we have shown
how it is related to the matrix element of Tμν. Our findings
carry important messages to the experimentalists who are
planning to measure this process. First, the center-of-mass
energy W should be W ≲ 4.5 GeV, in order to clearly see
the effect of the trace anomaly. At higher energies the
dilaton contribution is overwhelmed by the graviton con-
tribution. Once the energy is chosen in this regime, the
shape of the differential cross section contains information
about the trace anomaly. Of course, in reality one cannot
turn the anomaly contribution on and off to see the
difference. But at least one can compare with model
predictions without the trace anomaly to see if there are
noticeable differences, especially in the peak value of
dσ=dt at t ¼ tmin. One caveat is that if W is too close to
the threshold, uncertainties in the Cg term (or the gluon
D-term) become large. More theoretical work is needed to
constrain this form factor.
Our study also shows that the t dependence is not the

exponential form dσ=dt ∼ ebt as is often assumed. It is not
purely that of the square of some form factors [17], either.
The cross section does contain the square of various
gravitational form factors, but they are multiplied by
complicated (but rational) functions of t. Moreover, our
result for dσ=dt cannot be naively extrapolated to t → 0

because of the presence of the 1=t2 term. Nevertheless, if
one knows the t dependence of various nucleon form
factors, one can extract the trace anomaly parameter b from
the experimental results at finite t.
There are many directions for future studies. We have

used the simplest setup, namely, D7 branes embedded in an
asymptotically AdS5 space, or the “D3/D7 model.” It
would be very interesting to study the present process
in more realistic AdS/QCD models. More precise para-
metrizations of the form factors Ag; Bg;… are certainly
important to confront the experimental data. These gluonic
form factors are difficult to access, but there has been
steady progress in the QCD community toward this goal.
Also, 1=Nc corrections have to be taken into account in
order to be more realistic, though in general these
corrections are rather hard to estimate in gauge/string
duality. Finally, it is important, but quite challenging to
include the stringy effects beyond the supergravity
approximation. Once the stringy effects are included,
we would expect the amplitude to become complex
valued [23,24]. An extensive discussion of the case of
deeply virtual Compton scattering can be found in
Refs. [31,51]. The present process could also be studied
in such a framework.
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APPENDIX: PROPAGATORS IN AdS

Consider the massless scalar (dilaton) action in the AdS5
background

Sϕ ¼ c
2κ2

Z
d5x

ffiffiffiffiffiffi
−g

p 1

2
ð∇ϕÞ2; ðA1Þ

where c is some constant and 2κ2 ¼ 8π2R3

N2
c
. In the five-

dimensional Einstein frame, c ¼ 8
3
. The bulk-to-bulk propa-

gator is

Dðxz; x0z0Þ ¼ hϕðxzÞϕðx0z0Þi

¼ 2κ2i
cR3

3

2π2
1

ð2uÞ4 F
�
4;
5

2
; 5;−

2

u

�
; ðA2Þ

where

u ¼ ðz − z0Þ2 − ðx − x0Þ2
2zz0

; ðA3Þ

is the chordal distance in AdS5. Taking the limit z → 0,
we find

Dðx;z→ 0;x0z0Þ≈2κ2i
cR3

3

2π2

�
zz0

z02− ðx−x0Þ2þ iϵ

�
4

: ðA4Þ

Now consider the gauge theory matrix element
hPj 1

4
Fμν
a Fa

μνðxÞjP0i. The insertion of the operator F2 at
the boundary point x excites a dilaton field excitation in
the bulk

ϕðx0z0Þ ¼ 6i
π2

�
z0

z02 − ðx − x0Þ2 þ iϵ

�
4

: ðA5Þ

[This is normalized as ϕðx0z0 → 0Þ ¼ δð4Þðx − x0Þ.] The
point is that Eqs. (A4) and (A5) are simply proportional
to each other. Thanks to this, we may approximate the
proton side of the amplitude

R
d4x0dz0Dðxz; x0z0ÞδSB=δϕ

by hPj 1
4
F2jP0i after taking into account the difference in

the prefactor ∼z4.
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Specifically, the expectation value of F2 is given by the
variation of the on-shell dilaton action in the presence of a
source (proton) [52]9

hPj 1
4
Fμν
a Fa

μνjP0i ¼ δSϕ
δϕðz ¼ 0Þ ¼

cR3

2κ2
1

z3
∂zϕ

			
z¼0

: ðA8Þ

The bulk field ϕ is determined by solving the equation of
motion

−
c
2κ2

ffiffiffiffiffiffi
−g

p ∇2ϕþ δSB
δϕ

¼ 0; ðA9Þ

with the solution

ϕðxzÞ ¼
Z

d4x0dz0iDðxz; x0z0Þ δSB
δϕ

: ðA10Þ

Substituting this into Eq. (A8) and noting that

1

z3
∂zDðxz; x0z0Þ ≈ 4

z4
Dðxz; x0z0Þ; ðA11Þ

because Dðz; z0Þ ∝ z4 as z → 0, we find the following
correspondence:

hPj 1
4
F2jP0i ≈ cR3

2κ2
4

z4

Z
d4x0dz0iDðxz; x0z0Þ δSB

δϕ
: ðA12Þ

Similarly, the bulk-to-bulk graviton propagator can be
approximately replaced by the expectation value of Tμν.
The metric perturbation due to the source term SB is

δgMNðxzÞ ¼
Z

d4x0dz0iGMN;M0N0
δSB
δgM0N0

: ðA13Þ

From this one can read off the matrix element of the energy-
momentum tensor via the “holographic renormalization”
[53]

hTμνi ¼ −
R3

2κ2
lim
z→0

4

z4

�
z2

R2
δgμν

�
: ðA14Þ

[The minus sign is because we use the mostly minus
metric ημν ¼ ð1;−1;−1;−1Þ.]
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[7] C. Lorcé, Eur. Phys. J. C 78, 120 (2018).
[8] Proceedings of the SecondWorkshop on the ProtonMass; At

the Heart of Most Visible Matter, Trento, Italy, 2017 (to be
publihsed), https://www.jlab.org/indico/event/194/overview.

[9] S. Joosten and Z. E. Meziani, Proc. Sci. QCDEV2017
(2017) 017 [arXiv:1802.02616].

[10] D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130, 105
(1996).

[11] B.Gittelman,K.M.Hanson,D.Larson, E.Loh,A. Silverman,
and G. Theodosiou, Phys. Rev. Lett. 35, 1616 (1975).

[12] U. Camerini et al., Phys. Rev. Lett. 35, 483 (1975).
[13] M. E. Binkley et al., Phys. Rev. Lett. 48, 73 (1982).
[14] D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, Eur.

Phys. J. C 9, 459 (1999).
[15] S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C

24, 345 (2002).
[16] S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Phys.

Lett. B 498, 23 (2001).
[17] L. Frankfurt and M. Strikman, Phys. Rev. D 66, 031502

(2002).
[18] O. Gryniuk and M. Vanderhaeghen, Phys. Rev. D 94,

074001 (2016).
[19] J. R. Forshaw and R. Sandapen, Phys. Rev. Lett. 109,

081601 (2012).
[20] M. S. Costa, M. Djuric, and N. Evans, J. High Energy Phys.

09 (2013) 084.

9Since the relative sign between the graviton and dilaton
exchanges is important, let us quickly check the sign in Eq. (A8).
The D3 brane action is

SD3 ¼ −TD3

Z
d4xe−ϕTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ 2πα0FÞ

p
∼ −

Z
d4xe−ϕ

ffiffiffiffiffiffiffi
−G

p 2

4g2
TrFμνFμν

¼ −
Z

d4xe−ϕ
ffiffiffiffiffiffiffi
−G

p 1

4
Fμν
a Fa

μν; ðA6Þ

where TD3 ¼ 1
8π3α02gs

and 4πgs ¼ g2. F here denotes the SU(Nc)
gauge field. In the last line we rescaled F=g → F which is the
standard normalization in QCD used in earlier sections. We thus
find

1

4
Fμν
a Fa

μν ¼
δS
δϕ

: ðA7Þ

YOSHITAKA HATTA and DI-LUN YANG PHYS. REV. D 98, 074003 (2018)

074003-12

https://doi.org/10.1103/PhysRevD.93.033006
https://doi.org/10.1103/PhysRevD.77.094502
https://doi.org/10.1103/PhysRevD.77.094502
https://doi.org/10.1103/PhysRevLett.119.142002
https://doi.org/10.1051/epjconf/201817514002
https://doi.org/10.1051/epjconf/201817514002
https://doi.org/10.1103/PhysRevLett.74.1071
https://doi.org/10.1007/s00601-016-1168-z
https://doi.org/10.1140/epjc/s10052-018-5561-2
https://www.jlab.org/indico/event/194/overview
https://www.jlab.org/indico/event/194/overview
https://www.jlab.org/indico/event/194/overview
http://arXiv.org/abs/1802.02616
https://doi.org/10.3254/978-1-61499-215-8-105
https://doi.org/10.3254/978-1-61499-215-8-105
https://doi.org/10.1103/PhysRevLett.35.1616
https://doi.org/10.1103/PhysRevLett.35.483
https://doi.org/10.1103/PhysRevLett.48.73
https://doi.org/10.1007/s100520050039
https://doi.org/10.1007/s100520050039
https://doi.org/10.1007/s10052-002-0953-7
https://doi.org/10.1007/s10052-002-0953-7
https://doi.org/10.1016/S0370-2693(00)01373-3
https://doi.org/10.1016/S0370-2693(00)01373-3
https://doi.org/10.1103/PhysRevD.66.031502
https://doi.org/10.1103/PhysRevD.66.031502
https://doi.org/10.1103/PhysRevD.94.074001
https://doi.org/10.1103/PhysRevD.94.074001
https://doi.org/10.1103/PhysRevLett.109.081601
https://doi.org/10.1103/PhysRevLett.109.081601
https://doi.org/10.1007/JHEP09(2013)084
https://doi.org/10.1007/JHEP09(2013)084


[21] C. H. Lee, H. Y. Ryu, and I. Zahed, Phys. Rev. D 98, 056006
(2018).

[22] J. Polchinski and M. J. Strassler, J. High Energy Phys. 05
(2003) 012.

[23] R. C. Brower, J. Polchinski, M. J. Strassler, and C. I. Tan,
J. High Energy Phys. 12 (2007) 005.

[24] Y. Hatta, E. Iancu, and A. H. Mueller, J. High Energy Phys.
01 (2008) 026.

[25] C. A. Ballon Bayona, H. Boschi-Filho, and N. R. F. Braga,
J. High Energy Phys. 09 (2008) 114.

[26] Y. Hatta, T. Ueda, and B.W. Xiao, J. High Energy Phys. 08
(2009) 007.

[27] L. Cornalba, M. S. Costa, and J. Penedones, J. High Energy
Phys. 03 (2010) 133.

[28] C. A. Ballon Bayona, H. Boschi-Filho, N. R. F. Braga, and
M. A. C. Torres, J. High Energy Phys. 10 (2010) 055.

[29] E. Koile, S. Macaluso, and M. Schvellinger, J. High Energy
Phys. 02 (2012) 103.

[30] M. S. Costa and M. Djuric, Phys. Rev. D 86, 016009 (2012).
[31] R. Nishio and T. Watari, Phys. Rev. D 90, 125001 (2014).
[32] A. Watanabe and H. n. Li, Phys. Lett. B 751, 321 (2015).
[33] N. Kovensky, G. Michalski, and M. Schvellinger, arXiv:

1807.11540.
[34] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Winters,

J. High Energy Phys. 07 (2003) 049.
[35] X. D. Ji, Phys. Rev. Lett. 78, 610 (1997).
[36] N. K. Nielsen, Nucl. Phys. B120, 212 (1977).
[37] C. G. Callan, Jr., A. Guijosa, K. G. Savvidy, and O. Tafjord,

Nucl. Phys. B555, 183 (1999).

[38] Z. Abidin and C. E. Carlson, Phys. Rev. D 79, 115003
(2009).

[39] E. Avsar, Y. Hatta, and T. Matsuo, J. High Energy Phys. 03
(2010) 037.

[40] S. Hong, S. Yoon, and M. J. Strassler, J. High Energy Phys.
04 (2004) 046.

[41] Y. Hatta and T. Ueda, Nucl. Phys. B837, 22 (2010).
[42] J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778

(2000).
[43] Z. Abidin and C. E. Carlson, Phys. Rev. D 77, 115021

(2008).
[44] M. V. Polyakov and H. D. Son, arXiv:1808.00155.
[45] O. V. Selyugin and O. V. Teryaev, Phys. Rev. D 79, 033003

(2009).
[46] K. Tanaka, Phys. Rev. D 98, 034009 (2018).
[47] B. Pasquini, M. V. Polyakov, and M. Vanderhaeghen, Phys.

Lett. B 739, 133 (2014).
[48] M. Wakamatsu, Phys. Lett. B 648, 181 (2007).
[49] D. Chakrabarti, C. Mondal, and A. Mukherjee, Phys. Rev. D

91, 114026 (2015).
[50] K. Goeke, J. Grabis, J. Ossmann, M. V. Polyakov, P.

Schweitzer, A. Silva, and D. Urbano, Phys. Rev. D 75,
094021 (2007).

[51] R. Nishio and T. Watari, Phys. Rev. D 90, 125001
(2014).

[52] U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski, J.
High Energy Phys. 01 (1999) 002.

[53] S. de Haro, S. N. Solodukhin, and K. Skenderis, Commun.
Math. Phys. 217, 595 (2001).

HOLOGRAPHIC J=ψ PRODUCTION NEAR THRESHOLD … PHYS. REV. D 98, 074003 (2018)

074003-13

https://doi.org/10.1103/PhysRevD.98.056006
https://doi.org/10.1103/PhysRevD.98.056006
https://doi.org/10.1088/1126-6708/2003/05/012
https://doi.org/10.1088/1126-6708/2003/05/012
https://doi.org/10.1088/1126-6708/2007/12/005
https://doi.org/10.1088/1126-6708/2008/01/026
https://doi.org/10.1088/1126-6708/2008/01/026
https://doi.org/10.1088/1126-6708/2008/09/114
https://doi.org/10.1088/1126-6708/2009/08/007
https://doi.org/10.1088/1126-6708/2009/08/007
https://doi.org/10.1007/JHEP03(2010)133
https://doi.org/10.1007/JHEP03(2010)133
https://doi.org/10.1007/JHEP10(2010)055
https://doi.org/10.1007/JHEP02(2012)103
https://doi.org/10.1007/JHEP02(2012)103
https://doi.org/10.1103/PhysRevD.86.016009
https://doi.org/10.1103/PhysRevD.90.125001
https://doi.org/10.1016/j.physletb.2015.10.069
http://arXiv.org/abs/1807.11540
http://arXiv.org/abs/1807.11540
https://doi.org/10.1088/1126-6708/2003/07/049
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1016/0550-3213(77)90040-2
https://doi.org/10.1016/S0550-3213(99)00312-0
https://doi.org/10.1103/PhysRevD.79.115003
https://doi.org/10.1103/PhysRevD.79.115003
https://doi.org/10.1007/JHEP03(2010)037
https://doi.org/10.1007/JHEP03(2010)037
https://doi.org/10.1088/1126-6708/2004/04/046
https://doi.org/10.1088/1126-6708/2004/04/046
https://doi.org/10.1016/j.nuclphysb.2010.04.017
https://doi.org/10.1103/PhysRevLett.84.2778
https://doi.org/10.1103/PhysRevLett.84.2778
https://doi.org/10.1103/PhysRevD.77.115021
https://doi.org/10.1103/PhysRevD.77.115021
http://arXiv.org/abs/1808.00155
https://doi.org/10.1103/PhysRevD.79.033003
https://doi.org/10.1103/PhysRevD.79.033003
https://doi.org/10.1103/PhysRevD.98.034009
https://doi.org/10.1016/j.physletb.2014.10.047
https://doi.org/10.1016/j.physletb.2014.10.047
https://doi.org/10.1016/j.physletb.2007.03.013
https://doi.org/10.1103/PhysRevD.91.114026
https://doi.org/10.1103/PhysRevD.91.114026
https://doi.org/10.1103/PhysRevD.75.094021
https://doi.org/10.1103/PhysRevD.75.094021
https://doi.org/10.1103/PhysRevD.90.125001
https://doi.org/10.1103/PhysRevD.90.125001
https://doi.org/10.1088/1126-6708/1999/01/002
https://doi.org/10.1088/1126-6708/1999/01/002
https://doi.org/10.1007/s002200100381
https://doi.org/10.1007/s002200100381

