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We perform a systematic study of the modifications to the QCD vacuum energy density ϵvac in the zero-
temperature case (T ¼ 0) caused by a small, but nonzero, value of the parameter θ, using different effective
Lagrangian models which include the flavor-singlet meson field and implement the Uð1Þ axial anomaly of
the fundamental theory. In particular, we derive the expressions for the topological susceptibility χ and for
the second cumulant c4 starting from the θ dependence of ϵvacðθÞ in the various models that we have
considered. Moreover, we evaluate numerically our results, so as to compare them with each other, with the
predictions of the chiral effective Lagrangian and, finally, also with the available lattice data.
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I. INTRODUCTION

The discovery of instantons in the 1970s [1] made it clear
that topology was a relevant aspect of the dynamics of the
low-energy degrees of freedom (d.o.f.)in QCD [2–4], but it
also raised another important issue: if one introduces in the
QCD Lagrangian an additional term Lθ ¼ θQ, where

QðxÞ ¼ g2

64π2
εμνρσFa

μνðxÞFa
ρσðxÞ is the so-called topological

charge density, despite the fact thatQ ¼ ∂μKμ, whereKμ is
the so-called Chern-Simons current, its contribution in the
quantum theory would be nonzero thanks to the existence
of configurations with nontrivial topology (such as instan-
tons). This term, usually referred to as a topological term or
as θ-term (from the name of the coefficient that appears in
front of it), is particularly interesting as it introduces an
explicit breaking of the CP symmetry in QCD (referred to
as strong-CP violation), absent in the original theory. So
far, however, no violation of the CP symmetry in strong
interactions has been observed experimentally, so that the
parameter θ is believed to be zero (or “practically” zero),
despite the fact that it could assume, in principle, whatever
value in ½0; 2πÞ. In particular, one can find a relation
between the magnitude of the parameter θ and the neutron

electric-dipole moment [5], dN ≃ M2
π

M3
N
ejθj ≃ 10−16jθj e · cm,

where MN is the neutron mass, whereas Mπ is the pion

mass. From the experimental data [6] we know that
dN < 10−26 e · cm, which leads to an upper bound:

jθj < 10−10: ð1:1Þ

(More refined relations among the neutron electric dipole
moment and the θ angle were derived by Baluni [7], in
the framework of the so-called bag model, by Crewther,
Di Vecchia, Veneziano, and Witten [8], using the
chiral perturbation theory, and by many others using
different approaches; see Sec. 7.1 of Ref. [9] for a more
detailed discussion and also Ref. [10] for a recent lattice
determination.)
This “fine-tuning” problem (usually referred to as the

strong-CP problem) is still an open issue, even though
possible solutions have been proposed (the most famous
one being that of Peccei and Quinn [11], who proposed a
mechanism based on a new Uð1Þ symmetry and involving
a new light pseudoscalar particle called axion [12], in
order to dynamically rotate away the θ-dependence of the
theory).
However, it is nonetheless interesting to study the

dependence of QCD on finite θ: the insertion of the
topological term with θ ≠ 0 in the QCD Lagrangian causes
(by virtue of the nontrivial topology) a modification of the
partition function of the theory and, therefore, a nontrivial
dependence on θ of the vacuum energy density ϵvacðθÞ,
which will be the object of our investigations in this paper.
Let us write explicitly the expression for the partition

function of the theory with Nf quark flavors and with the
inclusion of the θ-term:

Z ¼
Z

½dA�½dq̄dq�ei
R

d4xLtot ; ð1:2Þ
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where Ltot¼−1
2
Tr½FμνFμν�þiq̄γμDμq−q̄RMqL−q̄LM†qRþ

θQ, withM a general complex mass matrix for the quarks.
If we now perform a change of the (dummy) fermionic
integration variables in (1.2) in the form of a SUðNfÞL ⊗
SUðNfÞR ⊗ Uð1ÞA transformation,1

�
qL → q0L ¼ ṼLqL ¼ eiαVLqL;

qR → q0R ¼ ṼRqR ¼ e−iαVRqR;
ð1:3Þ

where VL, VR ∈ SUðNfÞ, we see that, because of the
noninvariance of the fermionic functional-integral measure

(½dq̄dq� → ½dq̄0dq0� ¼ ½dq̄dq�e−i2Lα
R

d4xQðxÞ) and of the
mass term, the partition function Z is invariant under the
following changes:

�
M → M0 ¼ Ṽ†

RMṼL;

θ → θ0 ¼ θ − 2Lα:
ð1:4Þ

We immediately notice that, ifM is invertible (detM ≠ 0),
we have argðdetM0Þ ¼ argðdetMÞ þ 2Lα, so that, under
the transformation (1.3)–(1.4), the following combination,

θphys ≡ θ þ argðdetMÞ; ð1:5Þ

stays unchanged. This is the physical value of the parameter
θ: a nonzero value of θphys implies a strong CP-violation,
and the upper bound (1.1) actually refers to θphys.
Equations (1.4) and (1.5) also imply that, if the mass

matrix is invertible, then it is possible to move all the
dependence on the parameter θ into the mass term. In fact,
performing a transformation (1.3)–(1.4) with α ¼ θ

2L, we
obtain θ0 ¼ 0 and argðdetM0Þ ¼ θphys. On the other hand,
if we take M to coincide with the physical quark-mass
matrixM≡ diagðm1;…mNf

Þ, withmi ∈ Rþ ∀ i [which
is always possible, by means of a transformation (1.3)–
(1.4)], we have argðdetMÞ ¼ 0 and θ ¼ θphys. (Of course,
if at least one quark is massless, we have detM ¼ 0 and, in
this case, it is possible to rotate away all the dependence on
θphys from the theory.)
From now on, we shall consider the partition function

Z½θ� in this case (M ¼ M and θ ¼ θphys). In particular, we
are interested in the θ-dependence of the vacuum energy
density ϵvacðθÞ, which is related to the partition function
Z½θ� by the following well-known relation:

Z½θ�≡ 1

N
e−iΩϵvacðθÞ ⇒ ϵvacðθÞ ¼

i
Ω
logZ½θ� þ const:;

ð1:6Þ
whereN is a normalizing constant andΩ ¼ VT is the four-
volume considered (sending Ω → ∞4 at the end).2 With θ
being very small, it makes sense to Taylor expand the
vacuum energy density around θ ¼ 0:

ϵvacðθÞ ¼ ϵvacð0Þ þ
1

2!
c2θ2 þ

1

4!
c4θ4 þ � � � ;

with∶ cn ≡ ∂nϵvacðθÞ
∂θn

����
θ¼0

: ð1:7Þ

Only even powers of θ appear in (1.7) as the coefficients cn
of the odd-power terms vanish by parity invariance at
θ ¼ 0. The coefficients cn of this expansion are related to
the correlation functions of the topological charge density
at θ ¼ 0. More explicitly, starting from the expression (1.6)
and indicating Qtot ≡

R
d4xQðxÞ as the (total) topological

charge, one easily finds that

c2 ≡ ∂2ϵvacðθÞ
∂θ2

����
θ¼0

¼ −
i
Ω
hQ2

totiθ¼0 ≡ χ; ð1:8Þ

i.e., the coefficient c2 of the θ2 term in (1.7) coincides with
the so-called topological susceptibility of the theory at
θ ¼ 0: χ ≡ − i

Ω hQ2
totiθ¼0 ¼ −i

R
d4xhTQðxÞQð0Þiθ¼0.

Concerning the coefficient c4, it turns out to coincide
with the second cumulant of the probability distribution of
the topological charge-density operator Q [9]:

c4 ≡ ∂4ϵvacðθÞ
∂θ4

����
θ¼0

¼ i
Ω
ðhQ4

totiθ¼0 − 3hQ2
toti2θ¼0Þ; ð1:9Þ

which is related to the η0 − η0 elastic scattering amplitude
[4] and to the nongaussianity of the topological charge
distribution [9].
Therefore, the expansion (1.7) can be rewritten as

ϵvacðθÞ ¼ ϵvacð0Þ þ
1

2
χθ2 þ 1

24
c4θ4 þ � � � ð1:10Þ

The strategy of this paper consists in computing the
dependence on θ of the vacuum energy density, so as to
obtain, exploiting the relations (1.8) and (1.9), the expres-
sions of the topological susceptibility χ and of the second
cumulant c4 in terms of the fundamental parameters of the
theory, not using directly the fundamental theory (which is
anyhow possible using its formulation on the lattice; see the

1Throughout this paper, we shall use the following notations
for the left-handed and right-handed quark fields: qL;R≡
1
2
ð1� γ5Þq, with γ5 ≡ −iγ0γ1γ2γ3. Moreover, we shall adopt

the convention ε0123 ¼ −ε0123 ¼ þ1 for the (Minkowskian)
completely antisymmetric tensor εμνρσð¼ −εμνρσÞ which appears
in the expression of the topological charge density QðxÞ.

2The expression (1.6) refers to the partition functionof the theory
in the Minkowski space-time. It is also common to express it in
terms of the partition function ZE½θ� of the theory in the Euclidean
space-time as follows: ϵvacðθÞ ¼ − 1

ΩE
logZE½θ� þ const, where

ΩE ¼ VTE is the Euclidean four-volume, with Euclidean time TE.
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discussion in Sec. VI), but using some relevant effective
Lagrangian models.
We shall first consider, in Sec. II, the chiral effective

Lagrangian in the case of L (≤ Nf) light quark flavors
(taken to be massless in the ideal chiral limit): the
physically relevant cases are L ¼ 2, with the quarks up
and down, and L ¼ 3, including also the strange quark
[13–16]. This effective theory describes the low-energy
dynamics for the lightest hadronic states in the spectrum of
QCD, i.e., the lightest nonflavor singlet pseudoscalar
mesons, which are identified with the L2 − 1 pseudo-
Goldstone bosons originated by the spontaneous breaking
of the SUðLÞL ⊗ SUðLÞR chiral symmetry. The results that
we shall report in Sec. II are already well known in the
literature (see, in particular, Refs. [17–20]). However, for
the benefit of the reader, we have decided to report here
some details of the calculations of χ and c4 also in this case
as this will allow us to introduce the basic notations and
the main techniques for performing the calculations in the
other cases. Moreover, this case is an important frame of
reference for the other effective models that we shall
discuss in the rest of the paper.
In Secs. III and IV we shall consider different effective

Lagrangian models which include the flavor singlet meson
field and also implement the Uð1Þ axial anomaly of the
fundamental theory. In the past decades there were essen-
tially two different “schools of thought” debating on how to
address this issue: the first assumes that the dominant
fluctuations are semiclassical instantons, whereas the
second is based upon the large-Nc limit of a SUðNcÞ
gauge theory and assumes that the dominant fluctuations
are not semiclassical but quantum. The two models that we
shall consider in Secs. III and IV belong, respectively, to the
first trend (the so-called extended (non)linear sigma model
[21–23]) and to the second one (the model of Witten, Di
Vecchia, Veneziano, et al. [24–26]).
In Sec. V, we shall consider another effective Lagrangian

model (which was originally proposed in Ref. [27] and
elaborated on in Refs. [28–30]), which is in a sense in
between the extended (non)linear sigma model and the
model of Witten, Di Vecchia, Veneziano, et al.; for this
reason we shall call it the interpolating model.
Finally, in Sec. VI we shall draw our conclusions,

summarizing the analytical results that we have obtained
for the topological susceptibility χ and the second cumulant
c4 in the four different frameworks mentioned above and
also evaluate numerically our results, so as to critically
compare them with each other and with the available lattice
results.

II. THE CHIRAL EFFECTIVE LAGRANGIAN

We first consider the chiral effective Lagrangian in the
case of L light quark flavors: the results that we shall report
in this section are already well known in the literature (see,
in particular, Refs. [17–20]). However, for the benefit of the

reader, we have decided to report here some details of the
calculations of χ and c4 also in this case as this will allow us
to introduce the basic notations and the main techniques for
performing the calculations in the other cases. Moreover,
this case is an important frame of reference for all the other
models that we shall discuss; in fact, if one “neglects” the
presence of the flavor singlet meson field and of the Uð1Þ
axial anomaly (formally sending its mass to infinity), all the
predictions derived in the other models must reduce to
those that will be found in this section.
The chiral effective Lagrangian formulation was intro-

duced by Weinberg [13] and was later elaborated on,
becoming one of the most important tools to investigate
the dynamics of the effective d.o.f. of the low-energy
regime of QCD [14–16]. The idea carried on by Weinberg
et al. was that of building an effective theory for the lightest
hadronic states in the spectrum of the theory, i.e., the
lightest pseudoscalar mesons, which are the pseudo-
Goldstone bosons originated by the spontaneous breaking
of the chiral symmetry. This purpose can be achieved by
writing down all the terms consistent with the symmetries
of the fundamental theory, thereby obtaining an “exact”
theory. However, the number of terms which satisfy the
requirement is infinite; so, in order to be able to make any
definite physical prediction, it is necessary to endow the
theory with a power-counting ordering scheme which
organizes the terms, providing a criterion to decide whether
to keep or not a term at a given order. Such a criterion is the
low-energy expansion, or the p-expansion; it consists of
sorting the terms of the chiral effective Lagrangian on the
basis of their number of derivatives, i.e., for the amplitudes
in momentum space, on their order in the momentum scale
p. So, a generic chiral effective Lagrangian is written as

Leff ¼ Lð0Þ
eff þ Lð2Þ

eff þ Lð4Þ
eff þ Lð6Þ

eff þ � � � ; ð2:1Þ
where Lð2nÞ

eff gathers all the terms on the order of p2n (i.e.,
with 2n derivatives, the quark-mass matrix M counting as
p2, i.e., as two derivatives), whereas the odd-power terms

are ruled out by Lorentz invariance. The term Lð0Þ
eff turns out

to be an irrelevant constant, which can be neglected. In this
paper, we shall make use of the chiral effective Lagrangian
at the lowest (leading) nontrivial order Oðp2Þ. Here, we
limit ourselves to report the final result (for a dissertation on
the chiral effective Lagrangian up to the next-to-leading
order Oðp4Þ, see Ref. [16]):

Lð2Þ
eff ðU;U†Þ ¼ 1

2
Tr½∂μU∂μU†� þ Bm

2
ffiffiffi
2

p Tr½MU þM†U†�;

ð2:2Þ
where

(i) the field U, describing only the L2 − 1 nonflavor
singlet pseudo-Goldstone bosons, is an element of
the group SUðLÞ, up to a multiplicative constant.
In other words, it can be written as
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U≡ Fπffiffiffi
2

p U0; U0 ∈ SUðLÞ; ð2:3Þ

where Fπ is the usual pion decay constant;
(ii) M is a complex quark-mass matrix, which, consid-

ering the relation (1.5) between the coefficient θ of
the topological term and the argument of the
determinant of the mass matrix, can be taken to be

M ¼ Mei
θphys
L ; ð2:4Þ

where M ¼ diagðm1;…; mLÞ is the physical (real
and diagonal) quark-mass matrix. In this way, we are
moving all the dependence on θphys into the mass
term. In order to simplify the notation, from now on
we shall write θ in place of θphys;

(iii) Bm is a constant having the dimension of an energy
squared, often written as

Bm ¼ 2FπB; ð2:5Þ

where B is a constant, carrying the dimension of an
energy, which relates the mass of the quarks up and
down to the mass of the pions through M2

π ¼
Bðmu þmdÞ.

We can rewrite the chiral effective Lagrangian (2.2) as

Lð2Þ
eff ðU;U†Þ ¼ 1

2
Tr½∂μU∂μU†� − VðU;U†Þ; ð2:6Þ

where the potential V is given by

VðU;U†Þ ¼ −
Bm

2
ffiffiffi
2

p Tr½MU þM†U†�

¼ −
Bmffiffiffi
2

p Re½TrðMeiθ=LUÞ�: ð2:7Þ

We shall use the fact that (up to an irrelevant constant with
respect to θ) the vacuum energy density ϵvacðθÞ coincides
with the minimum of the potential V obtained with a
configuration of fields constant with respect to space-time
coordinates x (see Refs. [17,31] and references therein):

ϵvacðθÞ ≃ VminðθÞ þ const: ð2:8Þ

Given that we are considering M ¼ diagðm1;…; mLÞ, it is
reasonable to look for the minimum of the potential
guessing a configuration of the field U in a diagonal form.
So, being, in this case, U ¼ Fπffiffi

2
p U0, where U0 is an element

of SUðLÞ, we set

U ¼ Fπffiffiffi
2

p diagðeiα1 ;…; eiαLÞ; ð2:9Þ

where the αj are constant phases, satisfying the constraint:

detU0 ¼ ei
P

j
αj ¼ 1 ⇒

XL
j¼1

αj ¼ 0: ð2:10Þ

Substituting the explicit expressions for M and U into
Eq. (2.7), we find

V ¼ −
FπBm

2

XL
j¼1

mj cosϕj; ð2:11Þ

where we have defined ϕj ≡ θ
L þ αj. Starting from

Eq. (2.10), we see that the phases ϕj must satisfy the
constraint:

XL
j¼1

ϕj ¼
XL
j¼1

�
θ

L
þ αj

�
¼ θ: ð2:12Þ

It is now more convenient to consider separately the special
case L ¼ 2 and the more general case L ≥ 2; in fact, the
former can be easily solved exactly for any values of θ and
of the quark masses; on the contrary, the latter cannot be
solved exactly (in “closed form”) in general, but only an
approximate solution can be derived.

A. A special case: L= 2

In this case, it is easy to find the explicit expressions of
the phases ϕ1 and ϕ2 which minimize the potential (2.11),
with the constraint (2.12):

ϕ1 ¼ arctan

�
m2 sin θ

m1 þm2 cos θ

�
; ϕ2 ¼ θ − ϕ1: ð2:13Þ

Substituting (2.13) in (2.11), the following expression for
the minimum of the potential is found:

VðθÞ ¼ ϵvacðθÞ ¼ −
FπBm

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þ 2m1m2 cos θ

q
:

ð2:14Þ

In the end, we are able to find the expressions for the
topological susceptibility χ and the second cumulant c4
[17–20]:

χ ¼ ∂2ϵvacðθÞ
∂θ2

����
θ¼0

¼ FπBm

2

�
1

m1

þ 1

m2

�
−1
; ð2:15Þ

c4 ¼
∂4ϵvacðθÞ

∂θ4
����
θ¼0

¼ −
FπBm

2

�
1

m3
1

þ 1

m3
2

��
1

m1

þ 1

m2

�
−4
:

ð2:16Þ

FRANCESCO LUCIANO and ENRICO MEGGIOLARO PHYS. REV. D 98, 074001 (2018)

074001-4



B. The more general case: L ≥ 2

In the more general case L ≥ 2 it is not possible to find
an exact analytical solution, as in the previous case.
However, given that our final purpose is to obtain the
expressions for χ and c4, which are by definition evaluated
at θ ¼ 0, we can implement a Taylor expansion of the
potential around θ ¼ 0. If we set θ ¼ 0, it is easy to
show that the form of the field U which minimizes the
potential is U ¼ Fπffiffi

2
p I. We can thus implement a Taylor

expansion of the potential (2.11) considering both θ ≪ 1
and ϕi ≪ 1 ∀ i. After some calculations, the following
expression for the phases ϕi which minimize the potential
(2.11), with the constraint (2.12), is found:

ϕi ¼
m̄
mi

θ þ 1

6

m̄
mi

��
m̄
mi

�
2

−
XL
j¼1

�
m̄
mj

�
3
�
θ3 þOðθ5Þ;

ð2:17Þ

where we have defined

m̄≡
�XL

i¼1

1

mi

�−1
: ð2:18Þ

Finally, inserting (2.17) in (2.11), we find

VðθÞ ¼ ϵvacðθÞ ¼ const:þ 1

2

�
FπBmm̄

2

�
θ2

þ 1

24

�
−
FπBmm̄

2

XL
j¼1

�
m̄
mj

�
3
�
θ4 þ � � � ð2:19Þ

From this expression, we extract the final results for the
topological susceptibility and for the second cumulant
[17–20]:

χ ¼ FπBmm̄
2

¼ FπBm

2

�XL
j¼1

1

mj

�−1
; ð2:20Þ

c4 ¼−
FπBmm̄

2

XL
j¼1

�
m̄
mj

�
3

¼−
FπBm

2

�XL
j¼1

1

mj

�−4XL
j¼1

1

m3
j
:

ð2:21Þ

These expressions correctly reduce to (2.15)–(2.16) if the
number of light flavors considered is set to L ¼ 2. In this
respect, we also want to observe that, if one of the quark
masses, let us say mL, is much larger than the other masses
m1;…; mL−1, we can formally take the limit mL → ∞ in

the expressions (2.20) and (2.21) for χðLÞ and cðLÞ4 , which

then reduce to χðL−1Þ and cðL−1Þ4 , respectively. In the real-
world case, e.g., the mass of the strange quark,ms, is much
larger than the masses mu and md of the up and down

quarks; for this reason, in Sec. VI we shall evaluate
numerically the expressions (2.20) and (2.21) both for
the case L ¼ 2, with only the quarks up and down, and for
the case L ¼ 3, where also the strange quark is taken into
account.

C. Considerations on the results

We recall that, if at least one quark is massless, the
partition function of the theory (and, so, the vacuum energy
density) turns out to be independent of θ; we thus expect
that, being the topological susceptibility and the second
cumulant derivatives of the vacuum energy density with
respect to θ, if we let one of the quark masses tend to zero,
both χ and c4 will tend to zero as well. It is easy to check
that the expressions (2.20) and (2.21) satisfy this property;
in fact, considering a certain quark mass, say mi, tending to
zero, we have

χ≃
FπBmmi

2
; c4≃−

FπBmmi

2
; formi → 0: ð2:22Þ

Or, also, if we take m1 ¼ � � � ¼ mL ≡m, we find that

χ ≃
FπBmm
2L

; c4 ≃ −
FπBmm
2L3

; for m → 0: ð2:23Þ

The result found for the topological susceptibility χ in this
limit is in agreement with that predicted by the relevant
(flavor singlet) Ward-Takahashi identities [32].
In the next sections, we shall consider different effective

Lagrangian models which include the flavor singlet meson
field and also implement the Uð1Þ axial anomaly of the
fundamental theory. As we have said in the Introduction,
in the past decades, there were essentially two different
“schools of thought” debating on how to address this issue:
the first assumes that the dominant fluctuations are semi-
classical instantons, whereas the second is based upon the
large-Nc limit of a SUðNcÞ gauge theory and assumes that
the dominant fluctuations are not semiclassical but quan-
tum. The model that we shall consider in Sec. III (the so-
called extended (non)linear sigma model) belongs to the
first trend, whereas the model of Witten, Di Vecchia,
Veneziano, et al., that we shall consider in Sec. IV, belongs
to the second one.

III. THE EXTENDED (NON)LINEAR
SIGMA MODEL

The first effective Lagrangian model with the inclusion
of the flavor singlet meson field that we consider was
originally proposed in Ref. [21] to study the chiral
dynamics at T ¼ 0 and later used in many different
contexts (e.g., at nonzero temperature, around the chiral
transition); in particular, ’t Hooft (see Refs. [22,23] and
references therein) argued that it reproduces, in terms of
an effective theory, the Uð1Þ axial breaking caused by
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instantons in the fundamental theory. For brevity, from
now on we shall refer to it as the extended linear sigma
(ELσ) model. This model is described by the following
Lagrangian:

LðU;U†Þ ¼ L0ðU;U†Þ þ Bm

2
ffiffiffi
2

p Tr½MU þM†U†�

þ LIðU;U†Þ; ð3:1Þ

where L0ðU;U†Þ is the Lagrangian of the so-called linear
sigma model, originally proposed in Ref. [33] but later
elaborated on and extended:

L0ðU;U†Þ ¼ 1

2
Tr½∂μU∂μU†� − V0ðU;U†Þ;

V0ðU;U†Þ ¼ 1

4
λ2πTr½ðUU† − ρπIÞ2� þ

1

4
λ02π ½TrðUU†Þ�2;

ð3:2Þ

where LIðU;U†Þ is the term which is claimed to describe,
in terms of the effective variables, the 2L-fermion inter-
action vertex generated by the instantons. Its form is

LIðU;U†Þ ¼ κðdetU þ detU†Þ; ð3:3Þ

where κ is a constant which (according to ’t Hooft) is
expected to be proportional to the typical instanton factor
e−8π

2=g2 [2]. In this model, the mesonic effective fields are
represented by a L × L complex matrix Uij which can be
written, in terms of the quark fields, as

Uij ∼ q̄j

�
1þ γ5

2

�
qi ¼ q̄jRqiL; ð3:4Þ

up to a multiplicative constant. Under a chiral transforma-
tion (1.3) the field U transforms as

U → ṼLUṼ†
R; ð3:5Þ

and, as a consequence, the determinant of the field U
varies as

detU → detðṼLÞ detðṼRÞ� detU: ð3:6Þ

Therefore, the term (3.3) is invariant under SUðLÞL ⊗
SUðLÞR ⊗ Uð1ÞV , whereas under a Uð1ÞA transformation,
U → ei2αU, it varies as

κðdetUþdetU†Þ→ κðei2Lα detUþe−i2LαdetU†Þ: ð3:7Þ

When using this model in our work, we have found it more
convenient to set the mass matrix in the real diagonal form
M ¼ diagðm1;…; mLÞ, by performing a Uð1ÞA rotation of
the field U with α ¼ − θ

2L, that is,

U → e−iθ=LU: ð3:8Þ

After this rotation, the Lagrangian (3.1) is modified as

LðU;U†Þ ¼ L0ðU;U†Þ þ Bm

2
ffiffiffi
2

p Tr½MðU þ U†Þ�

þ κðe−iθ detU þ eiθ detU†Þ: ð3:9Þ

For the potential V0ðU;U†Þ appearing in Eq. (3.2), recall
that the parameter ρπ is responsible for the fate of the chiral
symmetry SUðLÞL ⊗ SUðLÞR. In particular, if (as it hap-
pens at T ¼ 0) ρπ > 0, then the vacuum expectation value
Ū of the mesonic field U (i.e., the value of U for which the
potential is at the minimum) is (even in the chiral limit
M ¼ 0) different from zero and of the form Ūjρπ>0 ¼ vI,
meaning that the chiral symmetry is spontaneously broken
down to the vectorial SUðLÞV subgroup.
If we are interested in describing only the low-energy

dynamics of the effective pseudoscalar d.o.f. [that is, the
Goldstone (or would-be-Goldstone) bosons], we can decou-
ple the scalarmassive fields by letting λ2π → ∞; in fact, in this
way, we are implementing the static limit for the scalar
fields, giving them infinite mass. In this limit, looking at the
potential term in (3.2), we are forcing the constraint

UU† ¼ ρπI≡ F2
π
2
I, which implies TrðUU†Þ ¼ const; there-

fore, the term proportional to λ02π is just an irrelevant constant
term, which can be dropped. So, we shall neglect the scalar
d.o.f. and consider

U ¼ Fπffiffiffi
2

p U0; U0 ∈ UðLÞ: ð3:10Þ

In this way, the Lagrangian of the model reduces to

L ¼ 1

2
Tr½∂μU∂μU†� − VðU;U†Þ; ð3:11Þ

where the potential V is (apart from a trivial constant)

VðU;U†Þ ¼ −
Bm

2
ffiffiffi
2

p Tr½MðU þ U†Þ�

− κðe−iθ detU þ eiθ detU†Þ: ð3:12Þ

For brevity, from now on we shall refer to it as the extended
nonlinear sigma (ENLσ) model. Setting M in the usual
diagonal form and U as in (2.9) [but without the constraint
(2.10) since now U0 belongs to UðLÞ], we find

Vðα⃗Þ ¼ −
FπBm

2

XL
j¼1

mj cos αj

− 2κ

�
Fπffiffiffi
2

p
�

L
cos

�
θ −

XL
j¼1

αj

�
: ð3:13Þ
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The minimization equation is, therefore

∂Vðα⃗Þ
∂αi ¼FπBm

2
mi sinαi−2κ

�
Fπffiffiffi
2

p
�

L
sin

�
θ−

XL
j¼1

αj

�
¼ 0:

ð3:14Þ

Again (as in theprevious section), ifwe set θ ¼ 0 the solution
of the equation is αj ¼ 0 ∀ j: we can thus consider
both θ ≪ 1 and αj ≪ 1 ∀ j; moreover, from (3.13) we
see that the change θ → −θ is equivalent to the change
αj → −αj ∀ j. Therefore we can expand the phases αj
in powers of θ, as in the previous section, but keeping only
the odd-power terms. So, we set

αi ¼ Aiθ þ Ciθ
3 þ � � � ; ð3:15Þ

where the coefficients Ai and Ci have to be determined from
the minimization condition. Inserting (3.15) in (3.14) and
expanding up to θ3, we have

∂Vðα⃗Þ
∂αi ¼

�
FπBmmi

2
Ai − 2κ

�
Fπffiffiffi
2

p
�

L
�
1 −

X
j

Aj

��
θ

þ
�
FπBmmi

2

�
Ci −

1

6
A3
i

�
þ 2κ

�
Fπffiffiffi
2

p
�

LX
j

Cj

þ 2κ

�
Fπffiffiffi
2

p
�

L 1

6

�
1 −

X
j
Aj

�
3
�
θ3 þ � � � ¼ 0:

ð3:16Þ

Requiring that these equalities are satisfied order by order in
θ, we derive the following expressions for the coefficientsAi
and Ci:

Ai ¼
2κðFπffiffi

2
p ÞL

FπBmm̄
2

þ 2κðFπffiffi
2

p ÞL
m̄
mi

; ð3:17Þ

Ci ¼
1

6

2κðFπffiffi
2

p ÞL
ðFπBmm̄

2
þ 2κðFπffiffi

2
p ÞLÞ4

m̄
mi

×

�
FπBmm̄

2

��
2κ

�
Fπffiffiffi
2

p
�

L
�

2
�
m̄
mi

�
2

−
�
FπBmm̄

2

�
2
�

þ
�
2κ

�
Fπffiffiffi
2

p
�

L
�

3
��

m̄
mi

�
2

−
X
j

�
m̄
mj

�
3
�	

; ð3:18Þ

with m̄ defined in Eq. (2.18). Substituting the form (3.15) in
(3.13) and expanding up to the order θ4, we find

VðθÞ¼ const

þ1

2

�
FπBm

2

X
j

mjA2
j þ2κ

�
Fπffiffiffi
2

p
�

L
�
1−

X
j

Aj

�
2
�
θ2

þ 1

24

�
24

FπBm

2

X
j

mjAjCj−
FπBm

2

X
j

mjA4
j

−48κ

�
Fπffiffiffi
2

p
�

L
�
1−

X
j

Aj

�X
j

Cj

−2κ

�
Fπffiffiffi
2

p
�

L
ð1−

X
j

AjÞ4
�
θ4þ��� ð3:19Þ

Finally, substituting the relations (3.17)–(3.19), we can
directly read, inside the square brackets, the expressions
of the topological susceptibility and of the second cumulant.
We report here the final results:

χ ¼ FπBmm̄
2

2κðFπffiffi
2

p ÞL
FπBmm̄

2
þ 2κðFπffiffi

2
p ÞL ; ð3:20Þ

c4 ¼ −
FπBmm̄

2

2κðFπffiffi
2

p ÞL
ðFπBmm̄

2
þ 2κðFπffiffi

2
p ÞLÞ4

×

��
2κ

�
Fπffiffiffi
2

p
�

L
�

3X
j

�
m̄
mj

�
3

þ
�
FπBmm̄

2

�
3
�
:

ð3:21Þ

A. Considerations on the results

First of all, we notice that, if we take the (formal) limit
κ → ∞, the expressions for the topological susceptibility
and for the second cumulant obtained in the ENLσ model
reduce precisely to those found in the previous section
using the chiral effective Lagrangian. To explain this fact, it
is sufficient to observe that the flavor singlet squared mass
takes a contribution from the term proportional to κ in the
Lagrangian [see Eq. (3.3), which, using U ¼ ðFπ=

ffiffiffi
2

p ÞU0

with U0 ¼ ei
ffiffi
2
L

p
Sπ
Fπ Ũ0, Ũ0 ∈ SUðLÞ; see Eq. (3.10), gives

M2
Sπ

¼ 2L
F2
π
2κðFπffiffi

2
p ÞL in the chiral limit of zero quark

masses…] So, implementing the limit κ → ∞, we are
sending the flavor singlet mass to infinity, decoupling it
from the theory, which thus reduces to the chiral effective
Lagrangian discussed in the previous section.
We also remark that (assuming that the parameter κ is

independent of the quark masses or, at least, that it has a
finite nonvanishing value in the chiral limit) the expressions
(3.20) and (3.21) have the right behavior (2.22), in the
chiral limit mi → 0, or (2.23), in the chiral limit
m1 ¼ � � � ¼ mL ≡m → 0, as predicted by the relevant
(flavor singlet) Ward-Takahashi identities [32].
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If, on the contrary, we take the infinite quark-mass limit,
by sending allmj → ∞ (which results in m̄ → ∞),3 we find
that (assuming, again, that the parameter κ is independent
of the quark masses or, at least, that it has a finite,
nondivergent value in the infinite quark-mass limit) the
expressions (3.20) and (3.21) become

χ → 2κ

�
Fπffiffiffi
2

p
�

L
; c4 → −2κ

�
Fπffiffiffi
2

p
�

L
: ð3:22Þ

In this way, we are implementing the static limit for the
quarks, so that the theory should reduce to a pure Yang-
Mills one. Indeed, the results (3.22) are in agreement with
the θ dependence of the vacuum energy density expected in
a pure-gauge theory as derived in an instanton-gas model
[34]. In fact, in this case one finds that

ϵvacðθÞ ≃ const − K cos θ ¼ constþ 1

2
Kθ2 −

1

24
Kθ4 þ � � � ;

ð3:23Þ

that, by virtue of Eq. (1.10), leads to the relation
χ ¼ −c4 ¼ K, which, taking K ¼ 2κðFπffiffi

2
p ÞL, is satisfied

by the results (3.22).

IV. THE EFFECTIVE LAGRANGIAN MODEL OF
WITTEN, DI VECCHIA, VENEZIANO, et al.

A different chiral effective Lagrangian, with the inclu-
sion of the flavor singlet meson field, which implements the
Uð1Þ axial anomaly of the fundamental theory, was
proposed by Witten, Di Vecchia, Veneziano, et al. [24–
26]; for brevity, in the following we shall refer to this model
as the WDV model. Even if this model was derived and
fully justified in the framework of the 1=Nc expansion (i.e.,
in the limit Nc → ∞), the numerical results obtained using
the WDV model with Nc ¼ 3 are quite consistent with the
real-world (experimental) values. This model is described
by the Lagrangian (see Ref. [25] for a complete derivation):

LðU;U†; QÞ ¼ L0ðU;U†Þ þ Bm

2
ffiffiffi
2

p Tr½MðU þU†Þ�

þ i
2
QðxÞTr½logU − logU†� þ 1

2A
Q2ðxÞ

þ θQðxÞ; ð4:1Þ

where L0ðU;U†Þ is the Lagrangian of the linear sigma
model, reported in Eq. (3.2); QðxÞ is the topological charge
density and is introduced here as an auxiliary field, whereas
A is a parameter which (at least in the large-Nc limit) can be

identified with the topological susceptibility in the pure
Yang-Mills theory (A ¼ −i

R
d4xhTQðxÞQð0ÞijYM). One

immediately sees that the “anomalous” term Lanom ≡
i
2
QðxÞTr½logU − logU†� in Eq. (4.1) is invariant under

SUðLÞL ⊗ SUðLÞR ⊗ Uð1ÞV , whereas under a Uð1ÞA
transformation, U → ei2αU, it transforms as

Lanom → Lanom − 2LαQ; ð4:2Þ

so correctly reproducing the Uð1Þ axial anomaly of the
fundamental theory.4

According to what one is investigating, it may be
convenient to integrate out the auxiliary field QðxÞ using
its equation of motion, i.e.,

QðxÞ ¼ −A
�
θ þ i

2
TrðlogU − logU†Þ

�
: ð4:3Þ

After the substitution, we are left with

LðU;U†Þ ¼ L0ðU;U†Þ þ Bm

2
ffiffiffi
2

p Tr½MðU þ U†Þ�

−
A
2

�
θ þ i

2
TrðlogU − logU†Þ

�
2

: ð4:4Þ

As we have done in the previous section for the ELσ model,
we shall neglect the scalar d.o.f. (retaining only the low-
energy dynamics of the effective pseudoscalar d.o.f.), by
taking the formal limit λ2π → ∞ (i.e., by taking the limit of
infinite mass for the scalar fields), which, as we have
shown, implies the constraint (3.10) for the matrix field U.
In this way, the Lagrangian of the model reduces to

L ¼ 1

2
Tr½∂μU∂μU†� − VðU;U†Þ; ð4:5Þ

where the potential V is (apart from a trivial constant):

VðU;U†Þ ¼ −
Bm

2
ffiffiffi
2

p Tr½MðU þ U†Þ�

þ A
2
½θ þ i

2
TrðlogU − logU†Þ�2: ð4:6Þ

SettingM in the usual diagonal form and U as in (2.9) [but
without the constraint (2.10)], we find the following
expression for the potential:

3This limit is clearly a bit stretched because, from the
beginning, we have based all the discussion on the existence
of L light quarks. Nevertheless, it is interesting to formally
investigate the trend of the results also in this limit.

4We recall here the criticism by Crewther (see also the third
Ref. [32]), Witten [24], Di Vecchia and Veneziano [25] to the
“anomalous” term (3.3) of the ELσ model, which apparently does
not correctly reproduce the Uð1Þ axial anomaly of the funda-
mental theory and, moreover, is inconsistent with the 1=Nc
expansion.
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Vðα⃗Þ ¼ −
FπBm

2

XL
j¼1

mj cos αj þ
A
2

�
θ −

XL
j¼1

αj

�
2

: ð4:7Þ

Therefore, the minimization equation is

∂Vðα⃗Þ
∂αi ¼ FπBm

2
mi sin αi − A

�
θ −

X
j

αj

�
¼ 0: ð4:8Þ

As usual, as we are interested in the limit of small θ and,
therefore, also of small phases αi (in fact, θ ¼ 0 implies that
αi ¼ 0 ∀ i), we can Taylor expand the sine in Eq. (4.8)
up to the third order in the phases:

∂Vðα⃗Þ
∂αi ≃

FπBm

2
mi

�
αi −

α3i
6
þ � � �

�
− A

�
θ −

X
j

αj

�
¼ 0;

ð4:9Þ

and, moreover, observing that in (4.7) the change θ → −θ
corresponds to the change αj → −αj ∀ j, we can use for
each phase αi the following expansion in θ:

αi ¼ Aiθ þ Ciθ
3 þ… ð4:10Þ

Inserting the expressions (4.10) into Eq. (4.9), we find that

∂Vðα⃗Þ
∂αi ðθÞ ¼

�
FπBmmi

2
Ai − A

�
1 −

X
j

Aj

��
θ

þ
�
FπBmmi

2

�
Ci −

1

6
A3
i

�
þ A

X
j

Cj

�
θ3

þ � � � ¼ 0: ð4:11Þ

Requiring that these equalities are satisfied order by order
in θ, we find the following expressions for the coefficients
Ai and Ci:

Ai ¼
A

FπBmm̄
2

þ A

m̄
mi

; ð4:12Þ

Ci¼
1

6

�
A

FπBmm̄
2

þA

�
3 m̄
mi

��
m̄
mi

�
2

−
A

FπBmm̄
2

þA

X
j

�
m̄
mj

�
3
�
;

ð4:13Þ

with m̄ defined in Eq. (2.18). Finally, Taylor expanding the
potential (4.7) up to the fourth order in the phases,

Vðα⃗Þ ≃ constþ FπBm

4

XL
j¼1

mj

�
ᾱ2j −

ᾱ4j
12

þ � � �
�

þ A
2

�
θ −

XL
j¼1

ᾱj

�
2

; ð4:14Þ

and inserting the form (4.10), with the expressions (4.12)
and (4.13) for the coefficients Ai and Ci into Eq. (4.14),
we find

VðθÞ ¼ constþ 1

2
χθ2 þ 1

24
c4θ4 þ � � � ; ð4:15Þ

with the following expressions for the topological suscep-
tibility χ and the second cumulant c4 in this model:

χ ¼ FπBmm̄
2

A
FπBmm̄

2
þ A

; ð4:16Þ

c4 ¼ −
FπBmm̄

2

�
A

FπBmm̄
2

þ A

�
4XL
j¼1

�
m̄
mj

�
3

: ð4:17Þ

A. Considerations on the results

At first, we notice that the result (4.16) was already
known in the literature [25], but it was obtained by studying
the two-point correlation function of the topological charge
density operator QðxÞ rather than by means of the θ
expansion of the vacuum energy density; instead, for the
result (4.17), it has been derived for the first time in this
paper. If we consider the (formal) limit A → ∞, the results
(4.16)–(4.17) obtained in theWDV model precisely reduce
to those found in the framework of the chiral effective
Lagrangian in Sec. II. The reason is similar to the one
discussed in the previous section for the ENLσ model:
being the anomalous term proportional to A in the
Lagrangian (4.5)–(4.6) quadratic in the flavor singlet field

[using U ¼ ðFπ=
ffiffiffi
2

p ÞU0 with U0 ¼ ei
ffiffi
2
L

p
Sπ
Fπ Ũ0, Ũ0 ∈ SUðLÞ,

see Eq. (3.10), it givesM2
Sπ

¼ 2LA
F2
π
in the chiral limit of zero

quark masses…], such limit corresponds to send the flavor
singlet mass to infinity, decoupling it from the theory,
which thus reduces to the SUðLÞ chiral effective
Lagrangian discussed in Sec. II.
For the topological susceptibility, we also observe that

the result (4.16) coincides with the result (3.20) found in
the ENLσ model provided that the following substitution is
implemented:

A ↔ 2κ

�
Fπffiffiffi
2

p
�

L
: ð4:18Þ

This correspondence also applies to the expression for the
flavor singlet squared massM2

Sπ
. Remarkably, this is not so

for the second cumulant; indeed, even after such substitu-
tion, the result (4.17) does not turn into (3.21). This is due
to the difference between the anomalous terms in
Eqs. (4.6)–(4.7) and (3.12)–(3.13); whereas the anomalous
term in Eqs. (4.6)–(4.7) is purely quadratic in the combi-

nation θ −
ffiffiffiffi
2L

p
Fπ

Sπ (or θ −
P

jαj), the anomalous term in
Eqs. (3.12)–(3.13) is the cosine of such a combination.

STUDY OF THE THETA DEPENDENCE OF THE VACUUM … PHYS. REV. D 98, 074001 (2018)

074001-9



We also remark that the expressions (4.16) and (4.17)
have the right behavior (2.22), in the chiral limitmi → 0, or
(2.23), in the chiral limit m1 ¼ … ¼ mL ≡m → 0, as
predicted by the relevant (flavor singlet) Ward-Takahashi
identities [32].
Instead, if we take the infinite quark-mass limit, by

sending all mj → ∞ (which results in m̄ → ∞), we find
that

χ → A; c4 → 0: ð4:19Þ

As we have already observed in the previous section, this
limit is meant to “freeze” the dynamics of the quarks,
reducing the model to a pure Yang-Mills one. So, we expect
that in this limit the topological susceptibility coincides
with that of the pure-gauge theory: it is exactly what
happens in our case. For the second cumulant, it is null in
this infinite quark-mass limit. This is due to the fact that the
WDV model is built considering only the leading terms in
the expansion in 1=Nc and, so, although it contains the term
1
2AQ

2 [see Eq. (4.1)], it does not also contain a term
proportional to Q4, which would contribute to the pure-
gauge value of the second cumulant c4; indeed, this kind of
term is the next-to-leading order in 1=Nc (for a detailed
discussion on the next-to-leading terms, see Ref. [35]).

V. AN INTERPOLATING MODEL WITH
THE INCLUSION OF A Uð1Þ AXIAL

CONDENSATE

In this section, we shall consider another effective
Lagrangian model (which was originally proposed in
Refs. [27] and elaborated on in Refs. [28–30]), which is
in a sense in between the ELσ model and theWDV model;
for this reason we shall call it the interpolating model.
Indeed, in this model the Uð1Þ axial anomaly is imple-
mented, as in the WDV model (4.1), by properly intro-
ducing the auxiliary field Q, so that it correctly satisfies the
transformation property (4.2) under the chiral group.
Moreover, it also includes an interaction term proportional
to the determinant of the mesonic field U, which is similar
to the interaction term (3.3) in the ELσ model, assuming
that there is another Uð1ÞA-breaking condensate (in addi-
tion to the usual quark-antiquark chiral condensate hq̄qi).
This extra Uð1Þ chiral condensate has the form CUð1Þ ¼
hOUð1Þi, where, for a theory with L light quark flavors,
OUð1Þ is a 2L-quark local operator that has the chiral
transformation properties of [2,36,37] OUð1Þ ∼ detst
ðq̄sRqtLÞ þ detstðq̄sLqtRÞ, where s, t ¼ 1;…; L are flavor
indices. The color indices (not explicitly indicated) are
arranged in such a way that (i) OUð1Þ is a color singlet and
(ii) CUð1Þ ¼ hOUð1Þi is a genuine 2L-quark condensate, i.e.,
it has no disconnected part proportional to some power of
the quark-antiquark chiral condensate hq̄qi; the explicit
form of the condensate for the cases L ¼ 2 and L ¼ 3 is

discussed in detail in Appendix A of Ref. [29] (see
also Ref. [38]).
The effective Lagrangian of the interpolating model is

written in terms of the topological charge density Q, the
mesonic field Uij ∼ q̄jRqiL (up to a multiplicative con-
stant), and the new field variable X ∼ det ðq̄sRqtLÞ (up to a
multiplicative constant), associated with the Uð1Þ axial
condensate:

LðU;U†;X;X†;QÞ

¼ 1

2
Tr½∂μU∂μU†�þ1

2
∂μX∂μX†

−V0ðU;U†;X;X†Þþ i
2
ω1QðxÞTr½logU− logU†�

þ i
2
ð1−ω1ÞQðxÞ½logX− logX†�þ 1

2A
Q2ðxÞþθQðxÞ;

ð5:1Þ

where

V0ðU;U†;X;X†Þ¼1

4
λ2πTr½ðUU†−ρπIÞ2�þ

1

4
λ02π ½TrðUU†Þ�2

þ1

4
λ2X½XX†−ρX�2−

Bm

2
ffiffiffi
2

p Tr½MðUþU†Þ�

−
κ1
2

ffiffiffi
2

p ½X†detUþXdetU†�: ð5:2Þ

Under a chiral UðLÞL ⊗ UðLÞR transformation (1.3) the
field X transforms exactly as detU [see Eq. (3.6)], i.e.,

X → detðṼLÞ detðṼRÞ�X; ð5:3Þ

where X is invariant under SUðLÞL ⊗ SUðLÞR ⊗ Uð1ÞV,
whereas, under aUð1Þ axial transformation,X → ei2LαX, we
have that, in the chiral limitM ¼ 0, the effective Lagrangian
(5.1) is invariant under SUðLÞL ⊗ SUðLÞR ⊗ Uð1ÞV, and
under aUð1Þ axial transformation, it correctly transforms as
in Eq. (4.2).
As in the case of the WDV model, the auxiliary field

QðxÞ in (5.1) can be integrated out using its equation of
motion:

QðxÞ ¼ −A
�
θ þ i

2
½ω1TrðlogU − logU†Þ

þ ð1 − ω1ÞðlogX − logX†Þ�
	
: ð5:4Þ

After the substitution, we obtain

LðU;U†; X; X†Þ ¼ 1

2
Tr½∂μU∂μU†� þ 1

2
∂μX∂μX†

− ṼðU;U†; X; X†Þ; ð5:5Þ
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where

ṼðU;U†; X; X†Þ

¼ V0ðU;U†; X; X†Þ þ A
2

�
θ þ i

2
½ω1TrðlogU − logU†Þ

þ ð1 − ω1ÞðlogX − logX†Þ�
	

2

: ð5:6Þ

Let us now briefly focus on the interaction term between U
and X in Eqs. (5.1)–(5.2):

Lint ¼
κ1
2

ffiffiffi
2

p ½X† detU þ X detU†�: ð5:7Þ

This term has a form very similar to the “instantonic” term
(3.3) of the ELσ model, but, differently from it, this term is
invariant under the entire chiral group UðLÞL ⊗ UðLÞR.5
As usual, proceeding as we have done in the previous

sections for the ELσ model and the WDV model, we shall
neglect the scalar d.o.f. (retaining only the low-energy
dynamics of the effective pseudoscalar d.o.f.), by taking the
formal limits λ2π → ∞ and λ2X → ∞ (i.e., by taking the limit
of infinite mass for the scalar fields), which, in addition to
the constraint (3.10) for the matrix field U, also implies the

analogous constraint XX† ¼ ρX ≡ F2
X
2
for the X field, i.e.,

X ¼ FXffiffiffi
2

p eiβ; ð5:9Þ

having introduced the decay constant FX of the field X,
analogous to the decay constant Fπ of the pions. In this
way, the Lagrangian of the model reduces to

LðU;U†; X; X†Þ ¼ 1

2
Tr½∂μU∂μU†� þ 1

2
∂μX∂μX†

− VðU;U†; X; X†Þ; ð5:10Þ
where the potential V is (apart from a trivial constant)

VðU;U†; X; X†Þ
¼ −

Bm

2
ffiffiffi
2

p Tr½MðU þ U†Þ� − κ1
2

ffiffiffi
2

p ½X† detU þ X detU†�

þ A
2

�
θ þ i

2
½ω1TrðlogU − logU†Þ

þ ð1 − ω1ÞðlogX − logX†Þ�
	

2

: ð5:11Þ

SettingM in the usual diagonal form, U as in Eq. (2.9) [but
without the constraint (2.10)] and the analogous para-
metrization (5.9) for the field X, where the phase β (exactly
as the phases αj) is constant with respect to x, we find the
following expression for the potential:

Vðα⃗; βÞ ¼ −
FπBm

2

XL
j¼1

mj cos αj − c cos

�
β −

XL
j¼1

αj

�

þ A
2

�
ω1

XL
j¼1

αj þ ð1 − ω1Þβ − θ

�
2

; ð5:12Þ

where we have defined

c≡ κ1
FX

2

�
Fπffiffiffi
2

p
�

L
: ð5:13Þ

In order to find the minimum of the potential, we have to
solve the following system of minimization equations:

∂Vðα⃗; βÞ
∂αi ¼ 0 ∀ i ¼ 1;…; L;

∂Vðα⃗; βÞ
∂β ¼ 0;

ð5:14Þ

which, after a slight rearrangement, read as follows:

8>><
>>:

FπBm
2

mi sin αi þ A½ω1

P
L
j¼1 αj þ ð1 − ω1Þβ − θ� ¼ 0;

c sin

�
β −

P
j
αj

�
þ Að1 − ω1Þ½ω1

P
L
j¼1 αj þ ð1 − ω1Þβ − θ� ¼ 0:

ð5:15Þ

5Assuming that the field X has a nonzero vacuum expectation value X̄ [which is the case if the parameter ρX in the potential (5.2) is
positive; see also Eq. (5.9) below] and expanding detU ¼ ðFπ=

ffiffiffi
2

p ÞLei
ffiffiffiffi
2L

p
Sπ=Fπ and X ¼ X̄eiSX=X̄ in powers of the (pseudoscalar)

excitations Sπ and SX, one finds that Lint is quadratic at the leading order in the fields: considering for simplicity the chiral limitM ¼ 0
(and θ ¼ 0), this term and the “anomalous” term [the last term in Eqs. (5.6) and (5.11)] generate a squared-mass matrix for the fields Sπ
and SX, whose eigenstates are two different nonzero-mass singlets, called η0 and ηX (see the original Refs. [27–29] for more details). This
is what happens at T ¼ 0. Instead, at nonzero temperature, above the chiral transition, where Ū ¼ 0 (and U is thus “linearized”),
assuming that X̄ is still different from zero (and, moreover, ω1 ¼ 0; see Ref. [30]), one finds that, expanding in the fields:

Lint ¼ κ½detU þ detU†� þ � � � ; with∶ κ≡ κ1X̄

2
ffiffiffi
2

p : ð5:8Þ

In this case, therefore, the leading-order term in the fields has exactly the same form of the “instantonic” term (3.3): the dots in Eq. (5.8) stay
for higher-order interaction terms containing also SX .
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It is easy to check that, in the case θ ¼ 0, setting β ¼ 0 and
αj ¼ 0 ∀ j puts the potential in its minimum. So, if we
consider the case θ ≪ 1, we are allowed to use for the
phases αi and β the following Taylor expansion in powers
of θ:

αi ¼ Aiθ þ Biθ
2 þ Ciθ

3 þ � � � ;
β ¼ Wθ þ Yθ2 þ Zθ3 þ � � � ð5:16Þ

The coefficients Ai, Bi, Ci, W, Y, Z have to be determined
by solving (order by order in θ) the system (5.15). Looking
at Eq. (5.15), it is easy to see that the change θ → −θ
corresponds to the changes αj → −αj ∀ j and β → −β,
and, as a consequence, the coefficients of the even powers
of θ in the expansions (5.16) must vanish:

Y ¼ 0; Bi ¼ 0 ∀ i: ð5:17Þ

For the coefficients of the odd powers of θ, the following
expressions are found:

W ¼ A½1þ FπBmm̄
2c ð1 − ω1Þ�

FπBmm̄
2

ð1þ Að1−ω1Þ2
c Þ þ A

; ð5:18Þ

Ai ¼
A

FπBmm̄
2

ð1þ Að1−ω1Þ2
c Þ þ A

m̄
mi

; ð5:19Þ

Z ¼ 1

6

�
FπBmm̄

2

�
A3

�
FπBmm̄

2

�
1þ Að1 − ω1Þ2

c

�
þ A

�−4

×

��
FπBmm̄

2

�
2 ð1 − ω1Þ3

c3

�
FπBmm̄

2
þ Aω1

�

þ
�
1 −

Aω1ð1 − ω1Þ
c

�X
j

�
m̄
mj

�
3
�
; ð5:20Þ

and

Ci ¼
1

6

�
A

FπBmm̄
2

ð1þ Að1−ω1Þ2
c Þ þ A

�
3 m̄
mi

×

��
m̄
mi

�
2

−
A½Pjð m̄mj

Þ3 þ ðFπBmm̄
2c Þ3ð1 − ω1Þ4�

FπBmm̄
2

ð1þ Að1−ω1Þ2
c Þ þ A

	
;

ð5:21Þ
with m̄ defined in Eq. (2.18). Substituting the expressions
(5.16) (with Bi ¼ Y ¼ 0) into Eq. (5.12) and expanding the
potential up to the fourth order in θ, we find

VðθÞ ≃ constþ 1

2

�
FπBm

2

X
j

mjA2
j þ cðW −

X
j

AjÞ2 þ A

�
ω1

X
j

Aj þ ð1 − ω1ÞW − 1

�
2
	
θ2

þ 1

24

�
24

FπBm

2

X
j

mjAjCj −
FπBm

2

X
j

mjA4
j þ 24c

�
W −

X
j

Aj

��
Z −

X
j

Cj

�

− c

�
W −

X
j

Aj

�
4

þ 24A

�
ω1

X
j

Aj þ ð1 − ω1ÞW − 1

��
ω1

X
j

Cj þ ð1 − ω1ÞZ�
	
θ4 þ � � � ; ð5:22Þ

from which, after inserting the expressions (5.18)–(5.21),
we obtain the following expressions for the topological
susceptibility χ and the second cumulant c4 in this model:

χ ¼ FπBmm̄
2

A
FπBmm̄

2
ð1þ Að1−ω1Þ2

c Þ þ A
; ð5:23Þ

c4 ¼ −
FπBmm̄

2

�
A

FπBmm̄
2

ð1þ Að1−ω1Þ2
c Þ þ A

�
4

×

�XL
j¼1

�
m̄
mj

�
3

þ
�
FπBmm̄

2c

�
3

ð1 − ω1Þ4
�
: ð5:24Þ

A. Considerations on the results

We first notice that the result (5.23) was originally found
in Ref. [27], but once again it was obtained by a different

approach, i.e., by directly studying the two-point function
of the fieldQðxÞ. On the contrary, the result (5.24) has been
derived in this paper for the first time. Moreover, we notice
that, if ω1 ≠ 1, the topological susceptibility obtained in
this interpolating model is smaller than the one obtained in
the WDV model, due to the positive (assuming c > 0: see
Refs. [29,30]) corrective factor in the denominator. If,
instead, we set ω1 ¼ 1 (which, as we shall comment in the
next section, represents the most natural choice at T ¼ 0)
the results for both χ and c4 coincide precisely with those of
the WDV model (independently of the other parameters κ1
and FX of the model). The explanation of this fact lies in the
potential (5.12); indeed, if we set ω1 ¼ 1, we immediately
see that, so as to obtain the minimum value for Vðα⃗; βÞ, it is
clear that we must set β ¼ P

jαj, so that the cosine in the
second term is equal to one. In this way, we find that the
potential (5.12) coincides with the potential (4.7) of the
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WDV model apart from a constant with respect to θ: so,
the final results for the topological susceptibility and for the
second cumulant in the interpolating model with ω1 ¼ 1

are indeed expected to coincide with those of the WDV
model.

VI. CONCLUSIONS: SUMMARY AND ANALYSIS
OF THE RESULTS

In this conclusive section, we shall summarize the
analytical results that we have found for the topological
susceptibility χ and the second cumulant c4 in the various
cases that we have considered. Moreover, we shall also
report numerical estimates for these quantities, obtained
both for L ¼ 2 and L ¼ 3 in the case of the chiral effective
Lagrangian (see the discussion at the end of Sec. II), and for
L ¼ 3 in the other cases (effective Lagrangian models with
the inclusion of the flavor singlet meson field).6 For our
numerical computations, the following values of the known
parameters have been used:

(i) A ¼ ð180� 5 MeVÞ4 (see Ref. [39] and references
therein).

(ii) Fπ ¼ 92.2� 0.2 MeV (see Ref. [40], where the
value of fπ ¼

ffiffiffi
2

p
Fπ is reported).

(iii) For the parameter Bm, we shall rewrite it making use
of the relation (2.5) in terms of the quantity B, which
directly relates the quark masses to the light pseu-
doscalar meson masses. In particular, the following
relations hold, at the leading order in the chiral
perturbation theory:

Bmu ¼ M2
π0
−
1

2
ðM2

K0 −M2
Kþ þM2

πþÞ;

Bmd ¼
1

2
ðM2

K0 −M2
Kþ þM2

πþÞ;

Bms ¼
1

2
ðM2

K0 þM2
Kþ −M2

πþÞ: ð6:1Þ

So, these expressions can be numerically evaluated
using the known values for the masses of the mesons
πþ, π0, Kþ, K0 [40]:

Mπþ ¼ 139.57061ð24Þ MeV;

Mπ0 ¼ 134.9770ð5Þ MeV;

MKþ ¼ 493.677ð16Þ MeV;

MK0 ¼ 497.611ð13Þ MeV: ð6:2Þ

(iv) For the quantity κ, its value is not known a priori. A
possible way to evaluate it numerically is to make
use of the relation among κ, Fπ and the meson
masses, obtained within the ENLσ model in the case
L ¼ 3:

M2
η0 þM2

η −M2
K0 −M2

Kþ ¼ 6κ
Fπffiffiffi
2

p : ð6:3Þ

Substituting the experimental values of the meson
masses {in addition to those given in (6.2) we need
Mη ¼ 547.862� 0.017 MeV and Mη0 ¼ 957.78�
0.06 MeV [40]}, we find for this parameter the
value κ ¼ 1856.38� 4.04 MeV.

The values of all the parameters we listed above allow us to
evaluate numerically all the results coming from the chiral
effective Lagrangian at the leading order Oðp2Þ, the ENLσ
model and the WDV model. The situation of the inter-
polating model is more complicated: due to the fact that
very little is known about its peculiar parameters, it is not
possible to give a complete numerical form to the results
found in this model. In particular,

(i) For the parameter FX, only an upper bound is known
for it [27–29]: jFXj ≤ 20 MeV.

(ii) For the parameter κ1 (which was named “c1” in the
original papers), we cannot say too much, apart from
the fact that (assuming FX ≠ 0) it cannot be zero
(see Ref. [29] for a detailed discussion on the role
of this parameter).

(iii) At last, concerning the parameter ω1, we observe
that the Lagrangian of the WDV model is obtained
from that of the interpolating model by choosing
ω1 ¼ 1 (and then letting FX → 0). At low temper-
atures, one expects that the deviations from the
WDV Lagrangian are small, in some sense, and
therefore that ω1 should not be much different from
the unity near T ¼ 0 (on the other side, ω1 must
necessarily be taken equal to zero above the chiral
transition temperature, in order to avoid a singular
behavior of the anomalous term [27,30]). Therefore,
ω1 ¼ 1 seems to be the most natural choice for
T ¼ 0: with this choice, all the numerical values
coincide with those of the WDV model, regardless
of the values of the other (unknown) parameters of
the model, i.e., κ1 and FX.

Here is (in the following two subsections) a summary of
both analytical and numerical results. [We recall that m̄ is
defined in Eq. (2.18).]

A. Topological susceptibility

(i) Chiral effective Lagrangian Oðp2Þ:

χ ¼ FπBmm̄
2

χðL¼2Þ ¼ ð77.25� 0.08 MeVÞ4
χðL¼3Þ ¼ ð76.91� 0.08 MeVÞ4 ð6:4Þ

6As discussed in detail in Ref. [4], when including the flavor
singlet meson field in the effective Lagrangian, we must consider
the case L ¼ 3 if we want to have a realistic description of the
physical world (at least at T ¼ 0): this is essentially due to the fact
that (see below) the value of Bms, while being considerably larger
than Bmu and Bmd, is comparable to (or even smaller than) the
anomalous contribution proportional to 2A=F2

π in the meson
squared mass matrix.
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(ii) ENLσ model:

χ ¼ FπBmm̄
2

2κðFπffiffi
2

p ÞL
FπBmm̄

2
þ 2κðFπffiffi

2
p ÞL

χðL¼3Þ ¼ ð76.271� 0.085 MeVÞ4 ð6:5Þ

(iii) WDV model:

χ ¼ FπBmm̄
2

A
FπBmm̄

2
þ A

χðL¼3Þ ¼ ð76.283� 0.106 MeVÞ4 ð6:6Þ

(iv) Interpolating model:

χ ¼ FπBmm̄
2

A
FπBmm̄

2
ð1þ Að1−ω1Þ2

c Þ þ A

χðL¼3Þ
ðω1¼1Þ ¼ ð76.283� 0.106 MeVÞ4 ð6:7Þ

B. Second cumulant

(i) Chiral effective Lagrangian Oðp2Þ:

c4 ¼ −
FπBmm̄

2

XL
j¼1

�
m̄
mj

�
3

cðL¼2Þ
4 ¼ −ð11.05� 0.49Þ × 106 MeV4

cðL¼3Þ
4 ¼ −ð10.30� 0.46Þ × 106 MeV4 ð6:8Þ

(ii) ENLσ model:

c4 ¼ −
FπBmm̄

2

2κðFπffiffi
2

p ÞL
ðFπBmm̄

2
þ 2κðFπffiffi

2
p ÞLÞ4

×

��
2κ

�
Fπffiffiffi
2

p
�

L
�

3X
j

�
m̄
mj

�
3

þ
�
FπBmm̄

2

�
3
�

cðL¼3Þ
4 ¼ −ð9.007� 0.426Þ × 106 MeV4 ð6:9Þ

(iii) WDV model:

c4 ¼ −
FπBmm̄

2

�
A

FπBmm̄
2

þ A

�
4XL
j¼1

�
m̄
mj

�
3

cðL¼3Þ
4 ¼ −ð9.030� 0.134Þ × 106 MeV4 ð6:10Þ

(iv) Interpolating model:

c4 ¼ −
FπBmm̄

2

�
A

FπBmm̄
2

ð1þ Að1−ω1Þ2
c Þ þ A

�
4

×

�XL
j¼1

�
m̄
mj

�
3

þ
�
FπBmm̄

2c

�
3

ð1 − ω1Þ4
�

cðL¼3Þ
4ðω1¼1Þ ¼ −ð9.030� 0.134Þ × 106 MeV4 ð6:11Þ

Let us make some remarks on these results. We observe
that, within the present accuracy, there are no significant
numerical differences between the results found in the
ENLσ model and those found in theWDV model (or in the
interpolating model with ω1 ¼ 1), even if the theoretical
expressions for the topological susceptibility and the
second cumulant are in principle different [even consider-
ing the correspondence (4.18); see the discussion in
Sec. IVA]. On the contrary, the numerical results found
in the ENLσ model, theWDV model, and the interpolating
model with ω1 ¼ 1 are sensibly different from those found
using the chiral effective Lagrangian at orderOðp2Þ. In this
respect, we must here recall that in Refs. [18–20] also the
nonleading order (NLO) correction to the result for
the topological susceptibility using the chiral effective
Lagrangian has been computed, and it turned out that it
is on the order of percent for physical quark masses.
Starting from our results, we can derive the order of the
corrections caused by the presence of the flavor singlet to
the numerical values obtained using the chiral effective
LagrangianOðp2Þ, so as to make a comparison with that of
the NLO corrections; for the topological susceptibility,
these corrections are on the order of some percent and, so,
are comparable with the NLO ones; for the second
cumulant, instead, the corrections are considerably larger,
being about the 12%.

C. Comparison of the results with the literature

In the end, let us make a comparison between the above-
reported numerical estimates and the available lattice results
in the literature. We first consider the topological suscep-
tibility. The value of the topological susceptibility in full
QCD has been measured through Monte Carlo simulations
on the lattice.We report here two recent results, obtainedwith
L ¼ 2þ 1 light flavors with physical quark masses:

χ1=4 ¼ 73ð9Þ MeV ðsee Ref: ½41�Þ;
χ1=4 ¼ 75.6ð2.0Þ MeV ðsee Ref: ½42�Þ; ð6:12Þ

where, for the second value, the error in parentheses has been
obtained adding in quadrature the statistical error (1.8)
and the systematic error (0.9). These results are in perfect
agreement (within the large errors)with all those found in our
work. In Fig. 1, the numerical values obtained for the
topological susceptibility in our work are reported together
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with the lattice results.With the help of this figure, we clearly
see that the numerical value obtained using the chiral
effective Lagrangian Oðp2Þ (the first point in the figure
on the right) is clearly detached from the ones related to the
ENLσ model and to the WDV (or interpolating) model
(respectively, the second and the third point in the figure on
the right). In addition, these last two values are evidently
compatible within the uncertainties.
Let us now move to the second cumulant. In lattice

simulations, a quantity which is linked to the second
cumulant is usually measured rather than the second
cumulant itself, due to a simpler definition on the lattice.
We report here the definition of this quantity, usually called
b2 (a more detailed description of this parameter can be
found in Ref. [9]):

b2 ≡ c4
12χ

¼ −
hQ4

totiθ¼0 − 3hQ2
toti2θ¼0

12hQ2
totiθ¼0

: ð6:13Þ

All the lattice determinations of this parameter at T ¼ 0 are
obtained, to date, in SUðNcÞ pure-gauge frameworks,
considering Nc ≥ 3; it must be taken into account that
our final results have been obtained in a full QCD
framework. There are, in the literature, a number of results
for b2 at Nc ¼ 3, obtained using different approaches (see
Ref. [9] and references therein):

b2 ¼ −0.023ð7Þ ðcooling methodÞ;
b2 ¼ −0.024ð6Þ ðheating methodÞ;
b2 ¼ −0.025ð9Þ ðoverlap methodÞ; ð6:14Þ

whereas more recent results are

b2 ¼ −0.026ð3Þ ðsee Ref: ½43�Þ;
b2 ¼ −0.0216ð15Þ ðsee Ref: ½44�Þ: ð6:15Þ

Starting from our results for the topological susceptibility
and for the second cumulant in the various cases described,
we find

(i) Chiral effective Lagrangian Oðp2Þ:

bðL¼2Þ
2 ¼ −0.026ð1Þ

bðL¼3Þ
2 ¼ −0.025ð1Þ ð6:16Þ

(ii) ENLσ model:

bðL¼3Þ
2 ¼ −0.0222ð1Þ ð6:17Þ

(iii) WDV model:

bðL¼3Þ
2 ¼ −0.0222ð4Þ ð6:18Þ

(iv) Interpolating model:

bðL¼3Þ
2ðω1¼1Þ ¼ −0.0222ð4Þ ð6:19Þ

In Fig. 2, these theoretical estimates for b2 (for the
full theory with L ¼ 3) are reported together with the

FIG. 1. On the left, the two lattice results (6.12) for the topological susceptibility (in the full theory with quarks) and the three
theoretical estimates for L ¼ 3, reported in Eqs. (6.4)–(6.7), are shown (from left to right). On the right, only the three theoretical
estimates are shown (in a different scale), so as to better compare them with each other.

FIG. 2. Five lattice (pure-gauge) results, reported in Eqs. (6.14)
and (6.15), and the three theoretical estimates for the full theory
with L ¼ 3, reported in Eqs. (6.16)–(6.19), are shown (from left
to right).
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above-mentioned lattice (pure-gauge) results. We notice
that the lattice (pure-gauge) results turn out to be compat-
ible (in almost all cases) with our theoretical estimates;
this global accordance is quite impressive, considering that
our results have been derived in full QCD rather than in a
pure Yang-Mills theory. We also recall that, on the basis of
the results obtained in Secs. III A, IVA, and VA, the value
of the ratio b2 tends, in the infinite quark-mass limit, to the

pure-gauge value bðYMÞ
2 ¼ − 1

12
≃ −0.083 (also obtained

using a pure-gauge instanton gas model) in the ENLσ

model [see Eq. (3.22)], whereas it tends to the pure-gauge

value bðYMÞ
2 ¼ 0 in the WDV model (and in the interpolat-

ing model with ω1 ¼ 1) [see Eq. (4.19)]; therefore, we see
that both the lattice pure-gauge data and our full QCD
theoretical estimates lie in between these two different
values, and (considering the errors) they disagree with both
of them, even if they are considerably closer to the second
one. It will be interesting to see if future more precise lattice
data (including also the effects of quarks with physical
masses) will confirm (or not) this curious coincidence.
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