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The study of pion production in nuclei is important for signal and background determinations in
current and future neutrino oscillation experiments. The first step, however, is to understand the pion
production reactions at the free nucleon level. We present an exhaustive study of the charged-current
and neutral-current neutrino and antineutrino pion production off nucleons, paying special attention to
the angular distributions of the outgoing pion. We show, using general arguments, that parity violation
and time-reversal odd correlations in the weak differential cross sections are generated from the
interference between different contributions to the hadronic current that are not relatively real. Next, we
present a detailed comparison of three state-of-the-art, microscopic models for electroweak pion
production off nucleons, and we also confront their predictions with polarized electron data, as a test of
the vector content of these models. We also illustrate the importance of carrying out a comprehensive
test at the level of outgoing pion angular distributions, going beyond comparisons done for partially
integrated cross sections, where model differences cancel to a certain extent. Finally, we observe that all
charged and neutral current distributions show sizable anisotropies, and identify channels for which
parity-violating effects are clearly visible. Based on the above results, we conclude that the use of
isotropic distributions for the pions in the center of mass of the final pion-nucleon system, as assumed
by some of the Monte Carlo event generators, needs to be improved by incorporating the findings of
microscopic calculations.
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I. INTRODUCTION

Knowledge of neutrino interaction cross sections is
an important and necessary ingredient in any neutrino
measurement, and it is crucial for reducing systematic
errors affecting present and future neutrino oscillation
experiments. This is because neutrinos do not ionize the
materials they are passing through, and hence neutrino
detectors are based on neutrino-nucleus interactions
[1–6].
The precise determination of neutrino oscillation param-

eters requires an accurate understanding of the detector
responses and this can only be achieved if nuclear effects

are under control. Before addressing the nuclear effects,
one first needs to fully understand the reaction mechanisms
at the hadron level. All this represents a challenge for both
hadron and nuclear physics. From a hadron physics
perspective, neutrino reactions allow us to investigate the
axial structure of the nucleon and baryon resonances,
enlarging our knowledge of hadron structure beyond what
is presently inferred from experiments with hadronic and
electromagnetic probes.
Pion production is one of the main reaction mechanisms

for neutrinos with energies of a few GeV [2]. The
MiniBooNE [7] and MINERνA [8,9] collaborations have
reported high quality data for weak pion production in the
Δð1232Þ region from CH2 and CH targets, respectively.
Although the best theoretical calculations have been unable
to reproduce MiniBooNE data, the models implemented
in event generators have been more successful [6]. All
approaches combine pion production off nucleons and pion
final state interaction (FSI) models based on the analysis of
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previous data. The most recent MINERνA data have
features similar to the MiniBooNE data; however, event
generators are unable to reproduce simultaneously the
magnitude of both data sets.
Some of the differences for pion production cross

sections in nuclei found in different approaches have their
origin in the differences already existing in the production
models used at the free nucleon level. Thus, the first step
towards putting neutrino-induced pion production on
nuclear targets on a firm ground is to have a realistic
model at the nucleon level. From this perspective, in this
work we make an exhaustive study of charged current (CC)
and neutral current (NC) neutrino and antineutrino pion
production reactions off nucleons, paying special attention
to the angular distributions of the outgoing pion. We show,
using general arguments, that the possible dependencies on
the azimuthal angle (ϕ�

π) measured in the final pion-nucleon
center of mass (CM) system are 1; cosϕ�

π; cos 2ϕ�
π; sinϕ�

π

and sin 2ϕ�
π , and that the two latter ones give rise to

parity violation and time-reversal odd correlations in the
weak differential cross sections, as already found in
Refs. [10,11]. Here, we make a detailed discussion of
the origin of the parity-violating contributions, and explic-
itly show that they are generated from the interference
between different contributions to the hadronic current that
are not relatively real. Next, we present a detailed com-
parison of three state-of-the-art, microscopic models for
electroweak pion production off nucleons. One is the
dynamical coupled-channel model (DCC) developed at
Argonne National Laboratory (ANL) and Osaka
University [12–14]. This approach provides a unified
treatment of all resonance production processes. It satisfies
unitarity and its predictions have been extensively and
successfully compared to data on πN and γN reactions up
to invariant masses slightly above 2 GeV. The second
model included in this comparison is the one initiated by
Sato and Lee (SL) to describe pion production by photons
and electrons [15,16] and also by neutrinos [17–19], in the
Δð1232Þ region. In fact, one can consider the DCC model
as an extension of the SL model to higher πN invariant
masses. The last model we consider was initially developed
by Hernández, Nieves and Valverde (HNV) in Ref. [10],
and it is based on the approximate chiral symmetry of
QCD. The model was later improved in Refs. [20–22],
incorporating among other effects a partial restoration of
unitarity, through the implementation of the Watson theo-
rem in the P33 pion-nucleon channel. A brief description of
these models will be given below, while further details can
be consulted in the above given references.
Though in this work we are mainly interested in

neutrino-induced reactions, we shall dedicate a full section
to pion electroproduction. In this way, we can make a direct
comparison of the vector part of the different models and
data. Since the quality of the data is very good in this case,
we can use this comparison to extract relevant information

on the vector part of the models.1 We will show that the
bulk of the DCC model predictions for electroproduction
of pions in the Δ region could be reproduced, with a
reasonable accuracy, by the simpler HNV model. Given the
high degree of complexity and sophistication of the DCC
approach, we find that this validation is remarkable. The
HNV model might be more easily implemented in the
Monte Carlo event generators used for neutrino oscillation
analyses, and this would contribute to a better theoretical
control of such analyses.
Furthermore, we show that the DCC and HNV models

agree reasonably well for CC and NC neutrino and
antineutrino total cross sections, as well as for the corre-
sponding differential cross sections with respect to the
outgoing lepton variables. With respect to the pion angular
dependence of the weak cross sections, we will observe,
first of all, that CC and NC distributions show clear
anisotropies. This means that using an isotropic distribution
for the pions in the CM of the final pion-nucleon system, as
assumed by some of the Monte Carlo event generators, is
not supported by the results of the DCC and HNV models.
We will also illustrate the importance of carrying out a
comprehensive test of the different models at the level of
outgoing pion angular distributions, going beyond compar-
isons done for partially integrated cross sections, where
model differences tend to cancel. Finally, we will discuss
the pion azimuthal angular distributions, where parity
violation shows up mainly through the sinϕ�

π term men-
tioned above and discussed in detail in what follows. We
will show that parity violation is quite significant for NC
neutrino reactions producing charged pions, and especially
for the νen → e−nπþ and ν̄ep → eþpπ− CC processes,
where background nonresonant contributions are sizable.
The azimuthal distributions for these weak processes could
provide information on the relative phases of different
hadronic current contributions that would be complemen-
tary to that inferred from polarized electron scattering.
The work is organized as follows: In Sec. II, we give a

brief description of the DCC and HNV models. In Sec. III
we discuss different expressions for neutrino-induced pion
production differential cross sections. One of them makes
explicit the dependence on the pion azimuthal angle, which
is easily related to the violation of parity. Next, we discuss
how parity violation originates from the interference of
different contributions to the hadronic current that are not

1To make this information more meaningful for the case of
pion production by neutrinos, we will select kinematical regions
as close as possible to the ones examined in the case of pion
electroproduction. Thus, most of the results that we are going to
show correspond to pion production by electron neutrinos.
However, in order to compare with actual experimental data,
we will also show results for pion production by muon neutrinos.
In fact, cross sections are equal for NC processes, while there is
not much difference for CC reactions for neutrino energies above
1 GeV.
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relatively real. In Sec. IV, we present an extensive collec-
tion of results for total and differential cross sections for
pion production by neutrinos and antineutrinos. Section V
is dedicated to pion electroproduction. Finally in Sec. VI
we present an exhaustive summary of this study. In
addition, we include four appendixes. In Appendix A,
we give the Lorentz transformation from the laboratory
system to the CM of the final pion-nucleon, paying special
attention to the form of the different four-vectors in the
latter system. In Appendix B, we compile some auxiliary
equations that help determine the dependence on the pion
azimuthal angle of the electroweak pion production off the
nucleon. In Appendix C, we give the CC differential cross
section for pion production by neutrinos as a sum over
cross sections for virtual W of different polarization. For
that purpose, we introduce and evaluate the helicity
components of the lepton and hadron tensors. The final
expression, evaluated for massless leptons, is analogous to
the corresponding one commonly used for pion electro-
production, which is rederived in Appendix D.

II. BRIEF DESCRIPTION OF THE DCC
AND HNV MODELS

A. DCC model

The DCC model [12,13] was designed to describe
meson-baryon scattering and electroweak meson produc-
tion in the nucleon resonance region in a unified manner.
To describe the hadron states up to invariant masses
W ≲ 2 GeV, the model includes stable two-particle chan-
nels πN; ηN;KΛ; KΣ and unstable particle channels
ρN; σN; πΔ, the latter being the doorway states to the
three-body ππN state. The T-matrix for the meson-baryon
scattering is obtained by solving the coupled-channel
Lippmann-Schwinger equation,

hα; p⃗0jTðWÞjβ; p⃗i ¼ hα; p⃗0jVðWÞjβ; p⃗i

þ
X
γ

Z
d3khα; p⃗0jVðWÞjγ; k⃗i

×G0
γðk⃗;WÞhγ; k⃗jTðWÞjβ; p⃗i; ð1Þ

where α, β and γ denote meson-baryon two-body states
and p⃗, etc., the three-momenta in their CM. The energy
(W) dependent effective potential is split into three con-
tributions,

VðWÞ ¼ vnon−res þ Γ
1

W −m0
res

Γ† þ ZðWÞ: ð2Þ

The vnon−res term consists of nonresonant meson-baryon
interactions that include t-channel meson exchange and u-
and s-channel baryon exchange mechanisms. The second
term includes bare N� and Δ excitation s-channel proc-
esses, with m0

res and Γ the bare mass and bare decay vertex

of an unstable resonance. The last term ZðWÞ is a particle-
exchange diagram including ππN intermediate states. The
Green function G0

γðk⃗; WÞ is the meson-baryon (Mγ − Bγ)
propagator for a channel γ and is written as

G0
γðk⃗;WÞ¼ 1

W− ½EBγ
ðk⃗ÞþEMγ

ðk⃗ÞþΣγðk⃗;WÞ�þ iϵ
: ð3Þ

The decay of an unstable particle channel into ππN is
included in Σγðk⃗;WÞ. By considering ZðWÞ and Σγ, the
T-matrix satisfies not only two-body unitarity but also
three-body unitarity [12].
The electroweak meson production amplitudes from the

DCC model are given as

hα; p⃗0jJμðqÞjNðp⃗Þi ¼ hα; p⃗0jjμðqÞjNðp⃗Þi

þ
X
γ

Z
d3khα; p⃗0jTðWÞjγ; k⃗i

× G0
γðk⃗;WÞhγ; k⃗jjμðqÞjNðp⃗Þi; ð4Þ

where the electroweak meson production current (jμ)
consists of a nonresonant meson production current
jμnon−res including s-, t- and u-channel exchange mecha-
nisms similar to vnon−res, and a nucleon resonance excita-
tion contribution:

jμ ¼ jμnon−res þ Γ
1

W −m0
res

Γμ: ð5Þ

One of the present authors, T. S., initiated a development
of a dynamical approach, referred to in this work as the SL
model, with the aim of providing a reasonable description
of πN scattering and electroweak pion production in the
Δð1232Þ region in a unified manner [15–19]. The aim of
the SL model was to study the electroweak pion production
of the Δð1232Þ resonance. Therefore, the only meson-
baryon channel included is the πN state and the model
cannot be applied beyond the Δð1232Þ resonance region.
The DCC approach described in the above paragraph can
be viewed as an extension of the SL model to a higher
resonance region, and it has been developed through the
analysis of the large available data sample on differential
cross sections and polarization observables for pion- and
photo-induced meson production reactions (∼23; 000 data
points). The resonance masses, widths, and electromag-
netic couplings for N → N�;Δ transitions have been
extracted from the partial wave amplitudes of the model
at the pole positions. The DCC approach was extended to
describe the neutrino-induced meson production reactions
in Refs. [14,23]. The vector current at finite q2 (four-
momentum transfer square) and the isovector couplings of
the isospin 1=2 resonances are determined by analyzing
data for pion electroproduction and the photo reaction on
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the neutron. The axial couplings for the N → N�;Δ
transitions are determined by the pion coupling constants,
assuming partial conservation of the axial current (PCAC),
while dipole q2 dependence is assumed for the axial form
factors. In this work, we use a 10% weakened bare axial
coupling constant, gANΔðnewÞ ¼ 0.9gANΔðoriginalÞ, for the
N → Δð1232Þ transition, as compared to the value used in
[14,23]. While gANΔðoriginalÞ was obtained using PCAC,
gANΔðnewÞ is chosen so as to give a better reproduction of
the neutrino cross section data of Ref. [24] that have been
obtained from a reanalysis of old ANL and Brookhaven
National Laboratory (BNL) data.

B. HNV model

The HNV model was originally introduced in Ref. [10]
to describe pion production by neutrinos in theΔ resonance
region. In its first version, it included the dominant direct
and crossed Δ-pole terms plus a set of background terms.
The weak N → Δ transition matrix element was para-
metrized in terms of four-vector CV

3–6 and four axial CA
3–6

form factors. Vector form factors were known from the
study of pion electroproduction [in fact CV

6 was set exactly
to zero from conservation of the vector current (CVC)],
while axial form factors were mostly unknown. The term
proportional to CA

5 gives the dominant contribution.
Assuming the pion pole dominance of the pseudoscalar
CA
6 form factor, the PCAC hypothesis gives CA

6 in terms of
CA
5 . In the absence of good experimental data that allowed

for an independent determination of all axial form factors,
Adler’s model [25], in whichCA

3 ¼ 0 andCA
4 ¼ − 1

4
CA
5 , was

adopted. Thus, CA
5 remained as the only unknown form

factor and its value at q2 ¼ 0 and its q2 dependence were
fitted to experiment.
The background terms are required and fixed by chiral

symmetry and they were obtained from the leading order
predictions of a SU(2) nonlinear sigma model. The weak
vertexes were supplemented with well-established form
factors in a way that preserved CVC and PCAC. The
Feynman diagrams for the different contributions to
WþN → N0π (corresponding to a CC process induced by
neutrinos) are depicted in Fig. 1. All sorts of details can be
found in Ref. [10]. NC pion production by neutrinos and
antineutrino-induced processes were also discussed in [10].
NC amplitudes were also given in terms of the resonant and
background contributions introduced above, though in this
case nucleon strange form factors needed to be considered.
Some preliminary results were also shown in Ref. [11],
where NC neutrino and antineutrino pion production reac-
tions were suggested as a way to distinguish ντ-neutrinos
from antineutrinos, below the τ-production threshold, but
above the pion production one.
To extend the HNV model to neutrino energies up to

2 GeV, in Ref. [20], the authors included the two con-
tributions depicted in Fig. 2, which are driven by the

exchange of the spin-3=2 D13ð1520Þ resonance. According
to Ref. [26], this is the only extra resonance giving a
significant contribution in that neutrino energy region. All
the details concerning the DP and CDP contributions can
be reviewed in the Appendix of Ref. [20].
In Ref. [21] the HNV model was partially unitarized by

imposing the Watson theorem. The Watson theorem is a
consequence of unitarity and time-reversal invariance. It
implies that, below the two-pion production threshold, the
phase of the electropion or weak pion production amplitude
should be given by the πN → πN elastic phase shifts
½δL2Jþ1;2Tþ1

ðWπNÞ�, with WπN the final πN invariant mass.
The procedure followed in Ref. [21] was inspired by that
implemented by Olsson in Ref. [27]. To correct the
interference between the dominant ΔP term and the
background (including here not only the nonresonant
background, but also the CΔP, DP and CDP terms),
the authors introduced two independent vector and axial
phases that are functions of q2 andWπN . The amplitude was
changed as

TB þ TΔP → TB þ eiδVTV
ΔP þ eiδATA

ΔP ð6Þ

where the vector δV and axial δA Olsson phases were fixed
by requiring that the dominant vector and axial multipoles

FIG. 1. Model for the WþN → N0π reaction as introduced in
Ref. [10]. It contains the Delta (ΔP) and crossed Delta pole (CΔP)
terms (first row), the nucleon (NP) and crossed nucleon pole (CNP)
terms (second row), the contactCT and pion pole (PP) terms (third
row), and the pion in flight (PF) term (fourth row).

+W +W
D13

D13
N N’

N’

ππ

N

FIG. 2. D13ð1520Þ contributions to WþN → N0π introduced in
Ref. [20]. Both D13 (DP) and crossed D13 pole (CDP) terms are
considered.

J. E. SOBCZYK et al. PHYS. REV. D 98, 073001 (2018)

073001-4



with the Δð1232Þ quantum numbers have the correct phase
δP33

ðWπNÞ. See Ref. [21] for details.
Very recently [22], the HNV model has been supple-

mented with additional local terms. The aim was to
improve the description of the νμn → μ−nπþ channel,
for which most theoretical models give predictions much
below experimental data. As discussed in Ref. [22], this
channel gets a large contribution from the CΔP term
and then it is sensitive to the spin 1=2 component of the
Rarita-Schwinger (RS) covariant Δ propagator. Starting
from the case of zero width, the Δ propagator was modified
in that reference as

PμνðpΔÞ
p2
Δ −M2

Δ
→

PμνðpΔÞ þ cðPμνðpΔÞ − p2
Δ

M2
Δ
P

3
2
μνðpΔÞÞ

p2
Δ −M2

Δ

¼ PμνðpΔÞ þ cðp2
Δ −M2

ΔÞδPμνðpΔÞ
p2
Δ −M2

Δ

¼ PμνðpΔÞ
p2
Δ −M2

Δ
þ cδPμνðpΔÞ ð7Þ

where Pμν and P
3
2
μν are, respectively, the RS covariant

and pure spin-3=2 projectors [22]. This modification was
motivated by the discussion in Ref. [28], where the authors
advocated for the use of the so-called consistent Δ
couplings, derivative couplings that preserve the gauge
invariance of the free massless spin-3=2 Lagrangian. One
can convert an inconsistent coupling into a consistent one
(see Ref. [28]), the net effect being a change of the Δ
propagator into

p2
Δ

M2
Δ
P

3
2
μνðpΔÞ

p2
Δ −M2

Δ
ð8Þ

where only its spin-3=2 part contributes. This prescription
would correspond to taking c ¼ −1 in Eq. (7). What one
can see from Eq. (7) is that the difference between the
usual approach and the one based on the use of consistent
couplings amounts to the new local term generated by
−δPμνðpΔÞ. Thus, as long as both approaches include all
relevant local terms consistent with chiral symmetry, the
strengths of which have to be fitted to data, they will give
rise to the same physical predictions. To keep the HNV
model simple, the authors of Ref. [22] just took c in Eq. (7)
as a free parameter that was fitted to data. Before that, theΔ
width was reinserted in the first term so that the final
modification was

PμνðpΔÞ
p2
Δ −M2

Δ þ iMΔΓΔ
→

PμνðpΔÞ
p2
Δ −M2

Δ þ iMΔΓΔ
þ cδPμνðpΔÞ:

ð9Þ

This amounted to the introduction of new contact terms
originating from δPμνðpΔÞ and with a strength controlled
by c. In this way a much better agreement for the
νμn → μ−nπþ channel was achieved. In the new fit, the
value c ¼ −1.11� 0.21, close to −1, was obtained. Note,
however, that due to the presence of the Δ width, the
prescription in Eq. (9) with c ¼ −1 does not correspond
exactly to the use of a consistent coupling (see the
discussion in Ref. [22]). Another good feature of this
modification was that the Olsson phases needed to satisfy
the Watson theorem were smaller in this case. This means
that after the latter modification, the model without the
Olsson phases was closer to satisfying unitarity than before
the modification in Eq. (9) was implemented.
In this work we refer to the HNV model as the original

model introduced in Ref. [10] with the modifications
discussed above and that were added in Refs. [20–22]. It
contains the contributions shown in Figs. 1 and 2, the
modified Δ propagator of Eq. (9), and it implements the
Watson theorem through the procedure just sketched here
and explained in detail in Ref. [21]. In the case of pion
photo- or electroproduction, the corresponding HNVmodel
derives directly from the vector part of that constructed for
weak pion production by neutrinos. The different contri-
butions to the hadronic current are given in the Appendix of
Ref. [22]. The Watson theorem as well as the Δ propagator
modification of Eq. (9) are also taken into account in
those cases.

III. PION PRODUCTION DIFFERENTIAL CROSS
SECTION: PARITY-VIOLATING TERMS

Let us consider the case of a CC process induced by
neutrinos:

νlðkÞ þ NðpÞ → l−ðk0Þ þ Nðp0Þ þ πðkπÞ: ð10Þ

The cross section in the laboratory (LAB) system is
given by

σCCþ ¼ G2
F

4π2jk⃗j

Z
d3k0

E0
d3kπ
Eπ

Lμνðk; k0ÞWμνðq; p; kπÞ; ð11Þ

where kμ¼ðjk⃗j;0;0;jk⃗jÞ; k0μ¼ðE0;k⃗0Þ; pμ¼ðM;0;0;0Þ, with
M the nucleon mass; and kμπ ¼ ðEπ; k⃗πÞ are respectively the
four-momenta of the initial lepton, final lepton, initial nucleon
and final pion in the LAB frame. Also, q¼k−k0 is the
four-momentum transfer and GF ¼ 1.1664 × 10−11 MeV−2

is the Fermi constant. The leptonic tensor is given by

Lμνðk; k0Þ ¼ kμk0ν þ kνk0μ − gμνk · k0 þ iϵμναβk0αkβ; ð12Þ

where we use ϵ0123 ¼ þ1 and the metric gμν ¼ diagðþ1;
−1;−1;−1Þ. The expression is valid both for CC and NC
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processes induced by neutrinos.2 For the case of antineutrinos
the antisymmetric part of the leptonic tensor changes sign.
The hadronic tensor is given by

Wμνðq; p; kπÞ ¼
1

4M

Z
d3p0

ð2πÞ32E0
N
δ4ðqþ p − p0 − kπÞ

×Hμνðp; p0; kπÞ ð13Þ

with

Hμνðp; p0; kπÞ ¼
1

2

X
s;s0

hN0ðp0; s0ÞπðkπÞjJμCCþð0ÞjNðp; sÞi

× hN0ðp0; s0ÞπðkπÞjJνCCþð0ÞjNðp; sÞi�;
ð14Þ

where s is the helicity of the initial nucleon, and
p0 ¼ ðE0

N; p⃗
0Þ and s0 are the four-momentum and helicity

of the final nucleon, respectively. JμCCþð0Þ represents the
hadronic current operator for a CC process induced by
neutrinos. For CC reactions induced by antineutrinos, we
need JμCC−ð0Þ ¼ Jμ†CCþð0Þ, while in theNCcase onehas to use
the corresponding JμNCð0Þ NC operator. In every case, one
trivially finds that Hμν can be written as the sum of a real
symmetric and a pure imaginary antisymmetric part:

Hμν ¼ Hμν
s þ iHμν

a ;

Hμν
s ¼ 1

2
ðHμν þHνμÞ ∈ R;

Hμν
a ¼ −

i
2
ðHμν −HνμÞ ∈ R: ð15Þ

Making use of the invariant nature of the LμνWμν tensor
product under a proper Lorentz transformation Λ, we
can write

Lμνðk; k0ÞWμνðq; p; kπÞ ¼ LμνðΛk;Λk0ÞWμνðΛq;Λp;ΛkπÞ:
ð16Þ

For each value of k0, theΛ Lorentz transformation is chosen
such that the transformed momenta correspond to those
measured in the CM of the final pion-nucleon system.
The corresponding axes, which we denote as X�Y�Z�, are
such that Z�þ is oriented along q⃗, Y�þ is oriented along
k⃗ ∧ k⃗0 and X�þ is oriented along ðk⃗ ∧ k⃗0Þ ∧ q⃗ (see Fig. 3).
With the above result, and making the change of variables

Λ⃗kπ → k⃗�π , for which d3kπ=Eπ → d3k�π=E�
π , we can rewrite

the cross section as

σCCþ ¼ G2
F

4π2jk⃗j

Z
d3k0

E0
d3k�π
E�
π
LμνðΛk;ΛkÞWμνðΛq;Λp; k�πÞ:

ð17Þ

In Appendix A we give the value for Λ and the corre-
sponding transformed four momenta that we shall simply
denote as k�; k0�; q�; p� in what follows. One of the features
of the new momenta is that k�; k0�; q�; p� do not depend
on ϕ0 so that the integral on that variable would just give
rise to a factor of 2π. Another salient feature is that the
second spatial components of k� and k0� are zero. This
latter property allows us to immediately identify symmetric
and antisymmetric nondiagonal components of the lepton
tensor

L02ðk�; k0�Þ ¼ −L20ðk�; k0�Þ;
L12ðk�; k0�Þ ¼ −L21ðk�; k0�Þ;
L23ðk�; k0�Þ ¼ −L32ðk�; k0�Þ;
L01ðk�; k0�Þ ¼ L10ðk�; k0�Þ;
L03ðk�; k0�Þ ¼ L30ðk�; k0�Þ;
L13ðk�; k0�Þ ¼ L31ðk�; k0�Þ: ð18Þ

In the case of q� and p�, both the first and the second spatial
components are zero, a fact that will be used below. For k�π,
which is nothing but the four-momentum of the final pion
measured in the CM of the final pion-nucleon system, we
shall use

k�μπ ¼ ðE�
π; jk⃗�πj sin θ�π cosϕ�

π; jk⃗�πj sin θ�π sinϕ�
π; jk⃗�πj cos θ�πÞ;

ð19Þ

FIG. 3. Definition of the scattering and reaction planes. The
X�Y�Z� coordinate axes move along with the CM system of the
final pion-nucleon and their orientation has been chosen in such a
way that the lepton momenta lie in the O�X�Z� plane with the
positive Z� axis chosen along q⃗ and the positive Y� axis chosen
along k⃗ ∧ k⃗0.

2Note that for NC processes there is an extra factor of 1=4 in
the definition of the cross section when using the normalization
of the NC current used in the HNV model. In the DCC and SL
models, the NC current is defined with an extra factor of 1=2, as
compared to the one used in the HNV model, and thus there is
no need to correct the expression of the cross section in that
case.
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where the pion angles are defined with respect to the
X�Y�Z� axes (see Fig. 3).
From Eq. (17), we can now write the differential cross

section

dσCCþ
dΩ0dE0dΩ�

π

¼ jk⃗0j
jk⃗j

G2
F

4π2

Z jk⃗�πj2djk⃗�πj
E�
π

Lμνðk�; k0�ÞWμνðq�; p�; k�πÞ:

ð20Þ

The integral in jk⃗�πj can be easily done using that

Wμνðq�;p�;k�πÞ ¼
1

4M

Z
d3p0�

2E0
N

1

ð2πÞ3 δ
4ðq� þp�−p0� − k�πÞ

×Hμνðp�;p0� ¼ p� þq� − k�π;k�πÞ: ð21Þ

After the trivial d3p0� integration, there remains a delta of
energy conservation that can be used to integrate in jk⃗�πj.
One gets

Z jk⃗�πj2djk⃗�πj
E�
π

1

E0
N
δðWπN − E0

N − E�
πÞ ¼

jk⃗�πj0
WπN

; ð22Þ

with jk⃗�πj0 ¼ λ1=2ðW2
πN;M

2; m2
πÞ=ð2WπNÞ and λða; b; cÞ ¼

ðaþ b − cÞ2 − 4ab. The differential cross sections can thus
be simplified to

dσCCþ
dΩ0dE0dΩ�

π
¼ G2

Fjk⃗�πj0
256π5MWπN

jk⃗0j
jk⃗j

Lμνðk�; k0�Þ

×Hμνðp�; p0� ¼ p� þ q� − k�π; k�πÞ: ð23Þ

Changing variables from ðθ0; E0Þ → ðQ2 ¼ −q2;WπN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ pÞ2

p
Þ, we further obtain

dσCCþ
dQ2dWπNdΩ�

π
¼ G2

Fjk⃗�πj0
256π4M2jk⃗j2

Lμνðk�; k0�Þ

×Hμνðp�; p0� ¼ p� þ q� − k�π; k�πÞ;
ð24Þ

where the trivial dependence on ϕ0 (final lepton laboratory
azimuthal angle) has been integrated out, giving rise to a
factor of 2π.

A. The ϕ�
π dependence of the dσCC+ =ðdΩ0dE0dΩ�

πÞ and
dσCC+ =ðdQ2dWπNdΩ�

πÞ differential cross sections
The ϕ�

π dependence of the differential cross section can
be isolated using very general arguments. For that purpose,
let us consider the active rotation R̂ defined as

R̂μ
ν ¼

0
BBB@

1 0 0 0

0 cosϕ�
π − sinϕ�

π 0

0 sinϕ�
π cosϕ�

π 0

0 0 0 1

1
CCCA; ð25Þ

which is such that

ðR̂−1k�πÞμ ¼ ðE�
π; jk⃗�πj sin θ�π; 0; jk⃗�πj cos θ�πÞ; ð26Þ

while R̂−1q� ¼ q�; R̂−1p� ¼ p�. Thus, making use of the
tensor character of Wμνðq�; p�; k�πÞ, we will have

Wμν ¼ Wμνðq�; p�; k�πÞ
¼ WμνðR̂R̂−1q�; R̂R̂−1p�; R̂R̂−1k�πÞ
¼ R̂μ

αR̂
ν
βWαβðR̂−1q�; R̂−1p�; R̂−1k�πÞ

¼ R̂μ
αR̂

ν
βWαβðq�; p�; R̂−1k�πÞ ¼ R̂μ

αR̂
ν
βW̃αβ ð27Þ

where, for short, we have introduced the notation

Wμν ¼ Wμνðq�; p�; k�πÞ;
W̃μν ¼ Wμνðq�; p�; R̂−1k�πÞ ¼ Wμνjϕ�

π¼0: ð28Þ

It is interesting to note that, since the second spatial
components of q�; p�; R̂−1k�π are zero, the nonzero contribu-
tions to the W̃a2 and W̃2a components of the hadronic tensor
for a ¼ 0, 1, 3 should always involve terms constructed
using the Levi-Cività pseudotensor, vaϵ2αβρq�αp�

βðR̂−1k�πÞρ
or ϵ2aαβvαwβ, with v ≠ w being any of the four-vectors
q�; p�; R̂−1k�π . On the other hand, any component of the
type W̃ab, with a, b ¼ 0, 1, 3, cannot contain the Levi-Cività
pseudotensor, because the coordinate 2 will appear in the
contraction of the pseudotensor with the available vectors,
and none of them has a spatial component in the Y� axis.
In the case of photo- or electropion production on

unpolarized nucleons, and since the electromagnetic
interaction conserves parity,3 one has

W̃a2
em ¼ W̃2a

em ¼ 0; a ¼ 0; 1; 3: ð29Þ

Going back to the ϕ�
π dependence ofWμν, we see that it is

now fully contained in R̂. Thus, performing the rotations in
Eq. (27), the different components of the tensorWμν can be
written in terms of W̃μν ¼ Wμνjϕ�

π¼0 and the pion azimuthal
angle ϕ�

π . The explicit expressions are given in Eq. (B1)
of Appendix B, from where it follows that the possible
dependencies are 1; cosϕ�

π; cos 2ϕ�
π; sinϕ�

π and sin 2ϕ�
π , as

discussed in detail also in Refs. [10,11,17]. We have then

3For electromagnetic processes, terms containing the Levi-
Cività pseudotensor should necessarily involve the polarization
(pseudovector) of the nucleons to prevent parity violation.
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dσCCþ
dΩ0dE0dΩ�

π
¼ jk⃗0j

jk⃗j
G2

F

4π2
ðA� þ B� cosϕ�

π þ C� cos 2ϕ�
π þD� sinϕ�

π þ E� sin 2ϕ�
πÞ;

dσCCþ
dQ2dWπNdΩ�

π
¼ G2

FWπN

4πMjk⃗j2
ðA� þ B� cosϕ�

π þ C� cos 2ϕ�
π þD� sinϕ�

π þ E� sin 2ϕ�
πÞ; ð30Þ

with the A�; B�; C�; D� and E� structure functions given by

A� ¼
Z jk⃗�πj2djk⃗�πj

E�
π

h
L00W̃ðsÞ

00 þ 2L03W̃ðsÞ
03 þ L33W̃ðsÞ

33 þ 1

2
ðL11 þ L22ÞðW̃ðsÞ

11 þ W̃ðsÞ
22 Þ þ 2iL12W̃ðaÞ

12

i
;

B� ¼
Z jk⃗�πj2djk⃗�πj

E�
π

2
h
L01W̃ðsÞ

01 þ L13W̃ðsÞ
13 þ iL02W̃ðaÞ

02 þ iL23W̃ðaÞ
23

i
;

C� ¼
Z jk⃗�πj2djk⃗�πj

E�
π

1

2

h
ðL11 − L22ÞðW̃ðsÞ

11 − W̃ðsÞ
22 Þ

i
;

D� ¼
Z jk⃗�πj2djk⃗�πj

E�
π

2
h
−L01W̃ðsÞ

02 − L13W̃ðsÞ
23 þ iL02W̃ðaÞ

01 þ iL23W̃ðaÞ
13

i
;

E� ¼
Z jk⃗�πj2djk⃗�πj

E�
π

h
ðL22 − L11ÞW̃ðsÞ

12

i
; ð31Þ

where we have made use of Eq. (18), and we have denoted
Lμν ¼ Lμνðk�; k0�Þ for simplicity. In addition, following
Eq. (15), we have split the hadron tensor into symmetric
(W̃ðsÞ

μν ) and antisymmetric (W̃ðaÞ
μν ) parts:

W̃μν ¼ W̃ðsÞ
μν þ iW̃ðaÞ

μν ; W̃ðs;aÞ
μν ∈ R: ð32Þ

Thus, and thanks to the fact that La2 (a ¼ 0, 1, 3) is purely
imaginary while the rest of the components of the lepton
tensor are real, we trivially confirm that all A�; B�; C�; D�
and E� structure functions are real.
Also, since

Wμν �Wνμ ¼ R̂μ
αR̂

ν
βðW̃αβ � W̃βαÞ ð33Þ

we have that the symmetric and antisymmetric parts ofWμν

are determined respectively from W̃ðsÞ
μν and W̃ðaÞ

μν using the
same rotation. Therefore, we can conclude that the C� and
E� structure constants are generated from the contraction of
the symmetric parts of the lepton and hadronic tensors,
while A�; B� and D� also get contributions from the
contraction of the antisymmetric parts of the lepton and
hadronic tensors [see also Eqs. (A8) and (A9) of Ref. [10] ].
As already mentioned, the antisymmetric part of the lepton
tensor changes sign for the case of antineutrino-induced
reactions. Note also that from Eq. (29), it trivially follows
that for electropion production off unpolarized nucleons,
the E� structure function vanishes; i.e., there is no sin 2ϕ�

π

term in the differential cross section. Moreover, the
symmetric contribution to D� will also vanish. Thus, the
dependence on sinϕ�

π will only survive for polarized

electrons, for which the lepton tensor has an antisymmetric
part that leads to nonzero L02 and L23 components
[see Eq. (18)].
The above differential cross sections can be

written as a sum over differential cross sections,
dσðW�N → N0πÞ=dΩ�

πjϕ�
π¼0, for virtual W of different

polarizations. This relation is given, in the zero lepton
mass limit, in Eq. (C22) of Appendix C. Such a limit is
exact for NC processes and provides an excellent approxi-
mation for CC processes induced by electron neutrinos.

B. Parity violation in the dσCC+ =ðdΩ0dE0dΩ�
πÞ and

dσCC+ =ðdQ2dWπNdΩ�
πÞ differential cross sections

The terms proportional to sinϕ�
π and sin 2ϕ�

π in Eq. (30)
give rise to parity violation in the weak dσ=ðdΩ0dE0dΩ�

πÞ
and dσ=ðdQ2dWπNdΩ�

πÞ differential cross sections [10,11].
The reason is the following. After a parity transformation
k⃗; k⃗0; q⃗ ¼ k⃗ − k⃗0; p⃗ and k⃗π change direction (v⃗→ v⃗P ¼ −v⃗).
The new Z�þ

P ≡ q⃗P and X�þ
P ≡ ðk⃗P ∧ k⃗0PÞ ∧ q⃗P axes also

change direction accordingly, but Y�þ
P ≡ k⃗P ∧ k⃗0P does not.

Measured in the new X�
PY

�
PZ

�
P system we have that the

transformed four-vectors k�; k0�; q� and p� have exactly the
same components as before the parity transformation, since
none of these vectors has components along the Y� axis.
However, the pion momentum does have a component
along the Y� axis and therefore the values of θ�π and ϕ�

π for
the reversed pion momentum measured with respect to the
new X�

PY
�
PZ

�
P system change now as

θ�π → θ�π;ϕ�
π → 2π − ϕ�

π:
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As a result, Lμν and W̃μν ¼ Wμνjϕ�
π¼0 remain the same and

thus the A�; B�; C�; D� and E� structure functions do not
change. However, for the ϕ�

π dependence we have that

cosϕ�
π → cosð2π − ϕ�

πÞ ¼ cosϕ�
π;

cos 2ϕ�
π → cosð2ð2π − ϕ�

πÞÞ ¼ cos 2ϕ�
π;

sinϕ�
π → sinð2π − ϕ�

πÞ ¼ − sinϕ�
π;

sin 2ϕ�
π → sinð2ð2π − ϕ�

πÞÞ ¼ − sin 2ϕ�
π: ð34Þ

The sign change in the sinϕ�
π and sin 2ϕ�

π terms implies
that the D� and E� contributions to the differential cross
sections violate parity. Parity violation in weak production
is then reflected by the fact that the pion angular distribu-
tions above and below the scattering plane are different
(see the discussion of Fig. 18 in Sec. IV B). Note, however,
that after integrating in ϕ�

π , the parity-breaking terms
cancel, and one obtains that the dσCCþ=ðdΩ0dE0d cos θ�πÞ
and dσCCþ=ðdQ2dWπNd cos θ�πÞ differential cross sections
are invariant under parity.
From the discussion below Eq. (28), one notices that the

structure functions A�; B� and C� always involve either
symmetric hadron tensor terms that do not contain the Levi-
Cività pseudotensor or antisymmetric hadron tensor terms
constructed using the Levi-Cività pseudotensor. In turn, D�
and E� always involve either symmetric hadron tensor
terms constructed using the Levi-Cività pseudotensor or
antisymmetric hadron tensor terms that do not contain
the Levi-Cività pseudotensor. Using the terminology of
Refs. [10,11], the structure functions A�; B� andC� (D� and
E�) are therefore constructed out of the parity-conserving
(parity-violating) hadron tensors [see for instance Eq. (A1)
of Ref. [10] and the related discussion].
A further remark concerns time reversal (T). As dis-

cussed in Refs. [10,11], the sinϕ�
π and sin 2ϕ�

π terms encode
T-odd correlations. However, the existence of these terms
does not necessarily mean that there exists a violation of
T-invariance in the process because of the existence of
strong final state interaction effects [29,30].
There is a subtlety, worth mentioning, for the case of

pion production induced by initial polarized electrons.
Following the above discussion, one could wrongly con-
clude that there exists parity violation in these processes.
This is because, as commented before, though the sin 2ϕ�

π

contribution is absent, the L02
em and L23

em terms in D� sinϕ�
π

survive, since they do not involve the vanishing W̃a2
em

and W̃2a
em components.4 What happens is that L02

em and
L23
em change sign under a parity transformation, contrary to

the weak pion production case. This is because the
antisymmetric part of the electromagnetic lepton tensor
is proportional to the helicity, h, of the initial electron
(∝ hϵμνρσk�ρk0�σ ). The helicity is a pseudoscalar and it
changes sign under parity, which induces also a change
of sign in L02

em and L23
em that compensates the change of sign

under parity of sinϕ�
π . As a consequence D� sinϕ�

π remains
parity invariant. With respect to time reversal, the helicity
does not change sign under T, and thus the lepton tensors in
electropion and weak pion production behave in the same
way under time-reversal transformations, and therefore
T-odd correlations exist also in the case of electromagnetic
reactions.

1. Origin of the parity-conserving and parity-violating
contributions to the hadronic tensor

In this section, we will use the terminology parity-
conserving (PC) and parity-violating (PV) terms to refer
to contributions to the hadronic tensor that give rise to
parity conservation/violation when contracted with the
leptonic tensor. Taking into account the structure of the
leptonic tensor, where the symmetric part is a true tensor
while the antisymmetric part is proportional to the Levi-
Cività pseudotensor, it is clear that (i) any symmetric part in
the hadron tensor that contains a Levi-Cività pseudotensor
or (ii) any antisymmetric part in the hadron tensor that does
not contain a Levi-Cività pseudotensor is a PVone [10,11].
We have explicitly seen this in the expressions ofD� and E�
of Eq. (31), as we pointed out above in the main body of
Sec. III B [we recall here again the discussion of Eq. (33),
where we have shown that the symmetric and antisym-
metric parts of the tensors Wμν and W̃μν are connected by
the rotations of Eq. (27)]. As we are going to show in the
following, the PV terms originate from the interference
between different contributions to the hadronic current that
are not relatively real.
For our purposes, it is enough to consider the nucleon

tensor defined in Eq. (14) associated to W̃μν (independent
of ϕ�

π) that can be written as the trace5

H̃μνðp�; p0�; R̂−1k�πÞ ¼
1

2
Tr½ð=p0� þMÞJ μðp�; p0�; R̂−1k�πÞð=pþMÞγ0J ν†ðp�; p0�; R̂−1k�πÞγ0�; ð35Þ

where here p0� ¼q�þp�− R̂−1k�π , and J μðp�; p0�; R̂−1k�πÞ is defined from the hadronic current operator matrix element:

4The hadron tensor that describes the virtual-photon pion production off an unpolarized nucleon can never have Levi-Cività
pseudotensor contributions, but it can have antisymmetric W̃ðaÞ

01 and W̃ðaÞ
03 terms, since they do not involve the Levi-Cività pseudotensor.

5The discussion runs totally in parallel if one makes instead reference toWμν, where the pion three-momentum, k⃗�π , conserves its full
ϕ�
π dependence. We choose to use explicitly H̃μν to make direct contact with Eq. (31).
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hN0ðp0�; s0ÞπðR̂−1k�πÞjJμCCþð0ÞjNðp�; sÞi ¼ ūs0 ðp0�ÞJ μðp�; p0�; R̂−1k�πÞusðp�Þ: ð36Þ

The amputated J μðp�; p0�; R̂−1k�πÞ current contains a vector and an axial contribution that one can write as

J μðp�; p0�R̂−1k�πÞ ¼
X
j1

γ5e
iφVj1

ðp�;p0�R̂−1k�πÞJ μ
Vj1

ðp�; p0�; R̂−1k�πÞ þ
X
j2

eiφAj2
ðp�;p0�;R̂−1k�πÞJ μ

Aj2
ðp�; p0�; R̂−1k�πÞ; ð37Þ

where the J μ
Vj and J

μ
Aj correspond to the different Dirac operator structures present in the hadronic current.

6 They are built
from γ matrices (no γ5 however) and momenta and, for each term in the two sums, eiφVjðp�;p0�;R̂−1k�πÞ and eiφAjðp�;p0�;R̂−1k�πÞ stand
for the global phase of all multiplicative factors in that term other than γ matrices. Note that for the HNV model there is a
correspondence between the phases φA and φV and the complex structure of the Δ [corrected by the Olsson phases
introduced in Eq. (6) and the D13ð1520Þ resonance]. However, for the DCC and SL models, in addition to the complex
structure of the resonances (mR and ΓR) one should account for loop effects that provide further relative phases between
different contributions to the amplitude. Simplifying the notation, we will have

H̃μν ¼ 1

2
Tr

�
ð=p0� þMÞ

�X
j1

γ5e
iφVj1J μ

Vj1
þ
X
j2

eiφAj2J μ
Aj2

�
ð=p� þMÞγ0

�X
k1

e−iφVk1J ν†
Vk1

γ5 þ
X
k2

e−iφAk2J ν†
Ak2

�
γ0
�

ð38Þ

that can be split into two contributions H̃μν ¼ H̃μν
VVþAA þ H̃μν

VAþAV , given by

H̃μν
VVþAA ¼ 1

2

X
j1

X
k1

eiðφVj1
−φVk1

ÞTr½ð=p0� −MÞJ μ
Vj1

ð=p� þMÞγ0J ν†
Vk1

γ0�

þ 1

2

X
j2

X
k2

eiðφAj2
−φAk2

ÞTr½ð=p0� þMÞJ μ
Aj2

ð=p� þMÞγ0J ν†
Ak2

γ0�

H̃μν
VAþAV ¼ −

1

2

X
j1

X
j2

eiðφVj1
−φAj2

ÞTr½ð=p0� −MÞJ μ
Vj1

ð=p� þMÞγ0J ν†
Aj2

γ0γ5�

−
1

2

X
j1

X
j2

e−iðφVj1
−φAj2

ÞTr½ð=p0� þMÞJ μ
Aj2

ð=p� þMÞγ0J ν†
Vj1

γ0γ5�: ð39Þ

Let us pay attention first to H̃μν
VVþAA. Since the two traces are real,7 we therefore get real symmetric contributions to the

hadronic tensor, H̃μνðsÞ
VVþAA, given by8

H̃μνðsÞ
VVþAA|fflfflfflffl{zfflfflfflffl}
PC

¼ 1

2

X
j1

X
k1

cosðφVj1 − φVk1ÞTr½ð=p0� −MÞJ μ
Vj1

ð=p� þMÞγ0J ν†
Vk1

γ0�

þ 1

2

X
j2

X
k2

cosðφAj2 − φAk2ÞTr½ð=p0� þMÞJ μ
Aj2

ð=p� þMÞγ0J ν†
Ak2

γ0�; ð41Þ

and purely imaginary antisymmetric contributions, iH̃μνðaÞ
VVþAA, given by (in this case we have a sine which is an

odd function)

6Such an expansion can be seen for instance in Ref. [25], though there the hadronic current is already contracted with the
leptonic one.

7For α1;…; α2n ¼ 0, 1, 2, 3, one has that Trðγα1 � � � γα2nÞ ∈ R and does not contain any Levi-Cività pseudotensor. Also the trace of an
odd number of γ matrices is always zero.

8Aμν
jk ¼ Tr½ð=p0� ∓ MÞΓμ

j ð=p� þMÞγ0Γν†
k γ0� is real when the vector Dirac matrix Γμ

j does not contain an odd number of γ5 matrices; this
is to say it is built from γ matrices (no γ5 however) and momenta. Then, it trivially follows that Aμν

jk ¼ ðAμν
jkÞ� ¼ Aνμ

kj . Hence making use
of the fact that the cosine is an even function, we conclude

Tμν ¼
X
j;k

cosðφj − φkÞAμν
jk ¼

X
j;k

cosðφj − φkÞAνμ
kj ¼

X
j;k

cosðφk − φjÞAνμ
kj ¼ Tνμ: ð40Þ
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iH̃μνðaÞ
VVþAA|fflfflfflfflffl{zfflfflfflfflffl}
PV

¼ i
2

X
j1≠k1

sinðφVj1 − φVk1ÞTr½ð=p0� −MÞJ μ
Vj1

ð=p� þMÞγ0J ν†
Vk1

γ0�

þ i
2

X
j2≠k2

sinðφAj2 − φAk2ÞTr½ð=p0� þMÞJ μ
Aj2

ð=p� þMÞγ0J ν†
Ak2

γ0�: ð42Þ

The symmetric part, H̃μνðsÞ
VVþAA, does not contain a Levi-

Cività pseudotensor and it is thus PC since when it is
contracted with the symmetric part of the leptonic tensor
it will give rise to a true scalar. On the other hand, the
antisymmetric part, H̃μνðaÞ

VVþAA, does not contain a Levi-
Cività pseudotensor either; it is thus PV since when it is
contracted with the antisymmetric part of the leptonic
tensor it will give rise to a pseudoscalar.
With respect to H̃μν

VAþAV , we see that in this case the
traces involved are purely imaginary and contain a
Levi-Cività pseudotensor.9 Then, it gives rise to purely

imaginary and antisymmetric contributions, H̃μνðaÞ
VAþAV , to the

hadronic tensor given by10

iH̃μνðaÞ
VAþAV|fflfflfflfflffl{zfflfflfflfflffl}
PC

¼ −
1

2

X
j1

X
j2

cosðφVj1 − φAj2Þ

× fTr½ð=p0� −MÞJ μ
Vj1

ð=p� þMÞγ0J ν†
Aj2

γ0γ5�
þ Tr½ð=p0� þMÞJ μ

Aj2
ð=p� þMÞγ0J ν†

Vj1
γ0γ5�g;

ð44Þ

and to real symmetric contributions, H̃μνðsÞ
VAþAV , given by11

H̃μνðsÞ
VAþAV|fflfflfflffl{zfflfflfflffl}
PV

¼ −
i
2

X
j1

X
j2

sinðφVj1 − φAj2Þ

× fTr½ð=p0� −MÞJ μ
Vj1

ð=p� þMÞγ0J ν†
Aj2

γ0γ5�
− Tr½ð=p0� þMÞJ μ

Aj2
ð=p� þMÞγ0J ν†

Vj1
γ0γ5�g:

ð45Þ

The symmetric part, H̃μνðsÞ
VAþAV , is now PV since it contains a

Levi-Cività pseudotensor coming from the trace, whereas

the antisymmetric part, H̃μνðaÞ
VAþAV , is PC for the same reason.

Note that Eqs. (41), (42), (44) and (45) show explicitly the
decomposition

H̃μν ¼ H̃ðsÞ
μν þ iH̃ðaÞ

μν ; H̃ðs;aÞ
μν ∈ R; ð46Þ

which trivially leads to that of the tensor W̃μν in Eq. (32).
As we have just shown, the PV terms are always

proportional to the sine of phase differences and they
would cancel exactly if all contributions to the hadronic
current were relatively real. These PV terms give rise to the
sinϕ�

π and sin 2ϕ�
π terms in the differential cross sections in

Eq. (30). As seen in Eq. (31), E� is given in terms of a

symmetric contribution to the hadronic tensor (W̃ðsÞ
12 ) that

involves Levi-Cività tensors, and thus the sin 2ϕ�
π depend-

ence in the differential cross section must come necessarily

from the symmetric H̃μνðsÞ
VAþAV PV term. The latter is

generated from vector-axial interference and then it will
be absent in the case of photo- or electroproduction. On
the other hand, the sinϕ�

π dependence in the differential
cross section gets contributions from both PV terms: the

symmetric H̃μνðsÞ
VAþAV and the antisymmetric H̃μνðaÞ

VVþAA tensors,

which give rise to W̃ðsÞ
02;23 and W̃ðaÞ

01;13, respectively. The
former (symmetric) ones contain Levi-Cività tensors, while
the latter (antisymmetric) ones do not. We remark that

H̃μνðaÞ
VVþAA is generated from vector-vector and axial-axial

interferences, and the VV part will also appear in polarized
electron scattering. The PV hadron tensors also lead to
time-reversal odd correlations in the amplitudes (see dis-
cussion in Refs. [10,11]).
In the case of the HNV model, neglecting for

simplicity in the discussion the D13ð1520Þ contribution,
and in the absence of Olsson phases, those PV terms can
only be generated by the interference between the part

9In this case, for α1;…; α2n ¼ 0, 1, 2, 3, one has that
iTrðγ5γα1 � � � γα2nÞ ∈ R. Also, all the contributions to the
above trace are proportional to the Levi-Cività pseudotensor.

10This now follows from the fact that by construction, the
purely imaginary Eμν

Vj1;Aj2
tensor defined as

Eμν
Vj1;Aj2

¼ Tr½ð=p0� −MÞJ μ
Vj1

ð=p� þMÞγ0J ν†
Aj2

γ0γ5�
þ Tr½ð=p0� þMÞJ μ

Aj2
ð=p� þMÞγ0J ν†

Vj1
γ0γ5� ð43Þ

satisfies −Eμν
Vj1;Aj2

¼ ðEμν
Vj1;Aj2

Þ� ¼ Eνμ
Vj1;Aj2

[note that under the
complex-conjugate operation in Eq. (43), implemented by
taking † inside of the traces, the first (second) term is
reduced to the second (first) one, with the exchange of
μ by ν.]

11In this case −Fμν
Vj1;Aj2

¼ ðFμν
Vj1;Aj2

Þ� ¼ −Fνμ
Vj1;Aj2

, where F is
the tensor between the curly brackets in Eq. (45); the minus
sign appears in the last identity because F is defined as the
difference between two terms.
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of the ΔP contribution that is proportional to the Δ
propagator and all other nonresonant terms [10]. They
are not relatively real due to the presence of a nonzero Δ
width in the Δ propagator. Once the Olsson phases are
included, there are other sources of parity violation in
the model like the interference between the contact
term generated from the ΔP amplitude by the
cδPμνðpΔÞ term in Eq. (7) and the background, or the
interference between the vector and axial parts of
the contact term in ΔP.
In the case of the SL and DCC models, the unitariza-

tion procedure guarantees that, for energies below the
two-pion production threshold, each amplitude M cor-
responding to a given isospin, total angular momentum
and pion orbital angular momentum is given by eiδjMj,
with δ the corresponding πN phase shift for the given
quantum numbers. In this case it is better to work in a
multipole language. For that, we can rewrite

H̃μνðp�; p0�; R̂−1k�πÞ

¼ 1

2
Tr½hμðp�; p0�; R̂−1k�πÞhν†ðp�; p0�; R̂−1k�πÞ�; ð47Þ

with hμðp�; p0�; R̂−1k�πÞ and the J μðp�; p0�; R̂−1k�πÞ of
Eq. (36) related via

ūs0 ðp0�ÞJ μðp�;p0�;R̂−1k�πÞusðp�Þ¼ χ†s0h
μðp�;p0�;R̂−1k�πÞχs;

ð48Þ

with χs;s0 Pauli bispinors. Since the main objective is to
see the origin of the PV terms, we use in what follows a
very simplified notation. Corresponding full expressions
can be found for instance in Refs. [19,25]. One can
expand

hμ ¼
X
j1

eiδj1 ðjMVj1 jOμ
Vj1

− jMAj1 jOμ
Aj1

Þ ð49Þ

where the sum is over all possible multipoles and the
Oμ

V;A operators are constructed from Pauli matrices and
momenta. The Oμ

V operators violate parity while the Oμ
A

ones do not. Then,

H̃μν ¼ 1

2

X
j1

X
j2

eiðδj1−δj2 ÞTr½ðjMVj1 jOμ
Vj1

− jMAj1 jOμ
Aj1

Þ

× ðjMVj2 jOν†
Vj2

− jMAj2 jOν†
Aj2

Þ�:

Similar to the case before, the traces

TrðOμ
Vj1

Oν†
Vj2

Þ; TrðOμ
Aj1

Oν†
Aj2

Þ ð50Þ

are real and do not violate parity (they are tensors), while

TrðOμ
Vj1

Oν†
Aj2

Þ; TrðOμ
Aj1

Oν†
Vj2

Þ ð51Þ

are imaginary and violate parity (they are pseudotensors).
Thus, we will have

H̃μνðsÞ
VVþAA|fflfflfflffl{zfflfflfflffl}
PC

¼ 1

2

X
j1

X
j2

cosðδj1 − δj2Þ
�
jMVj1 jjMVj2 jTr½Oμ

Vj1
Oν†

Vj2
� þ jMAj1 jjMAj2 jTr½Oμ

Aj1
Oν†

Aj2
�
�
; ð52Þ

which is real, symmetric and parity conserving since when it is contracted with the symmetric part of the lepton tensor it
gives rise to a pure scalar, and

iH̃μνðaÞ
VVþAA|fflfflfflfflffl{zfflfflfflfflffl}
PV

¼ i
2

X
j1≠j2

sinðδj1 − δj2Þ
�
jMVj1 jjMVj2 jTr½Oμ

Vj1
Oν†

Vj2
� þ jMAj1 jjMAj2 jTr½Oμ

Aj1
Oν†

Aj2
�
�
; ð53Þ

which is imaginary, antisymmetric and parity violating since when it is contracted with the antisymmetric part of the lepton
tensor it gives rise to a pseudoscalar. We also have

iH̃μνðaÞ
VAþAV|fflfflfflfflffl{zfflfflfflfflffl}
PC

¼ −
1

2

X
j1

X
j2

cosðδj1 − δj2ÞfjMVj1 jjMAj2 jTr½Oμ
Vj1

Oν†
Aj2

� þ jMVj2 jjMAj1 jTr½Oμ
Aj1

Oν†
Vj2

�g; ð54Þ

which is imaginary, antisymmetric and parity conserving, since when it is contracted with the antisymmetric part of the
leptonic tensor it produces a scalar, and

H̃μνðsÞ
VAþAV|fflfflfflffl{zfflfflfflffl}
PV

¼ −
i
2

X
j1

X
j2

sinðδj1 − δj2ÞfjMVj1 jjMAj2 jTr½Oμ
Vj1

Oν†
Aj2

� − jMVj2 jjMAj1 jTr½Oμ
Aj1

Oν†
Vj2

�g; ð55Þ
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which is real, symmetric and parity violating, since when it
is contracted with the symmetric part of the leptonic tensor
it produces a pseudoscalar. The conclusion from this
analysis is that, in fully unitarized models, parity-violating
effects are due to the interference between multipoles that
have different phases and thus correspond to different sets
of isospin, total angular momentum and pion orbital
angular momentum values (e.g., interference between the
Delta resonance P33 amplitude and other partial waves).
Other conclusions extracted before as to which part

contributes to the D� (sinϕ�
π) and E� (sin 2ϕ�

π) structure
function remain unchanged.

IV. COMPARISON OF THE νe- AND
ν̄e-INDUCED CROSS SECTIONS

In this section we compare the results of the SL and DCC
models with those from the HNV approach for pion
production cross sections for both CC and NC processes.
As mentioned before, since we want the kinematics to be

FIG. 4. νμp → μ−pπþ total cross section as a function of the neutrino energy. In the left panel a kinematical cutWπN < 1.4 GeV has
been included. The corresponding experimental data have been taken from the reanalysis done in Ref. [24] of old ANL (crosses) and
BNL (open squares) data, where the WπN < 1.4 GeV cut is also implemented. In the right panel a kinematical cut WπN < 2 GeV has
also been applied to the theoretical calculation. The data have been taken from the reanalysis done in Ref. [33] of old ANL (crosses) and
BNL (open squares) data, without any cut on WπN .

FIG. 5. νμn → μ−nπþ (left panels) and νμn → μ−pπ0 (right panels) total cross sections as a function of the neutrino energy. In the
upper panels, the kinematical cut WπN < 1.4 GeV has been included in the data points, taken from the reanalysis of the experimental
cross sections carried out in [24], and both in the DCC and HNV theoretical predictions. For the DCC model, we also show the results
for WπN < 2 GeV in the bottom panels. The corresponding experimental data have also been taken from the reanalysis carried out in
Ref. [24] of the old ANL (crosses) and BNL (open squares) data that does not incorporate any cut in the available phase space.

ANGULAR DISTRIBUTIONS IN ELECTROWEAK PION … PHYS. REV. D 98, 073001 (2018)

073001-13



very similar to the case of pion electroproduction, we will
show mainly results for processes induced by electron
(anti)neutrinos, though we will also compare to the scarce
available data obtained from neutrino and antineutrino
muon beams.

A. Total cross sections

We start by showing in Figs. 4–6 the total cross section
results for νμ-induced reactions for which there are exper-
imental data measured in deuterium. The theoretical results
we present have been evaluated, however, at the nucleon
level. Taking into account deuteron wave function effects
reduces the cross section by some 5% [31]. For a mean-
ingful comparison between the HNV and DCC models we
impose aWπN < 1.4 GeV cut. This is done to minimize the
effect of higher order contributions in the chiral expansion

not taken into account in the evaluation of the nonresonant
background within the HNV model and, also, the possible
unphysical behavior of the Δ amplitudes far from the Δ
peak that would affect the HNV model (this unphysical
behavior is discussed in Ref. [32]). Also, below this WπN
cut, contributions from higher mass resonances, not taken
into account in the HNV model, should be negligible.
For the νμp → μ−pπþ channel we see that the DCC and

HNV models produce similar results that lie above exper-
imental data in the 1–2 GeV neutrino energy region. To a
lesser extent, this seems to also be the case for the DCC
model evaluated with WπN < 2 GeV and shown in com-
parison with data in the right panel of Fig. 4. Note,
however, that for the latter data no cut in WπN has been
applied. For the νμn → μ−nπþ channel the discrepancies
between the two models are larger in the high neutrino
energy region (see the top left panel of Fig. 5). The fact that
the HNV model gives larger cross sections for that channel
is a direct consequence of the Δ propagator modification in
Eq. (9). The HNV predictions for this channel, without
including the additional terms generated by the latter
modification, can be seen (black dashed line) in the bottom
panel of Fig. 3 in Ref. [22], and they were smaller than
those obtained in the DCC model and shown here. For the
νμn → μ−pπ0 and the NC νμp → νμpπ− channels, both the
HNVand DCC models give again similar results that are in
a good global agreement with data, as can be appreciated in
the right upper panel of Fig. 5 and in Fig. 6.
Moving now to reactions induced by electron (anti)

neutrinos, in Figs. 7 and 8 we compare the HNV, SL and
DCC total cross section predictions for all possible chan-
nels. We show results up to 2 GeV neutrino energy but
imposing the cut WπN < 1.4 GeV. First, in Fig. 7, we
display the CC channels, where we observe that the HNV

FIG. 6. νμn → νμpπ− total cross section as a function of the
neutrino energy. The corresponding experimental data have been
taken from Ref. [34] where no kinematical cut was implemented.
A kinematical cut WπN < 1.4 GeV has been, however, imposed
for the HNV model (it has a moderate effect in this energy range).
We present the DCC results both with WπN < 1.4 GeV and
WπN < 2 GeV cuts.

FIG. 7. CC total cross sections as a function of the neutrino energy from different theoretical models. A kinematical cut
WπN < 1.4 GeV on the final pion-nucleon invariant mass has been included.
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and DCCmodels always produce a larger cross section than
the SL approach. This is mainly because the SL model uses
the axial N → Δ coupling predicted by a constituent quark
model, while the DCC and HNV models use somewhat
stronger couplings close to the PCAC prediction. The
difference is particularly large in neutrino nπþ and anti-
neutrino pπ− channels,12 for which the HNV cross sections
are also significantly bigger than those predicted using the
DCC model. As mentioned, this latter enhancement in the
HNV predictions is due to the new contact term resulting
from the Δ propagator modification of Eq. (9), and as
discussed in Ref. [22], it seems to be supported by the old
ANL and BNL bubble chamber νμn → μ−nπþ data (see
also the upper left panel of Fig. 5). In these two channels,
the strength of the crossed Δ term is enhanced by spin and
isospin factors and it greatly cancels with the rest of the
background. The modification of the Δ propagator signifi-
cantly reduces the crossed Δ contribution, leading to a
smaller cancellation with the background and, as a net
result, to an increase of the cross section. For the rest of the
channels, the crossed Δ term is much smaller, and the DCC
and HNV models produce similar results.
Next in Fig. 8 we compare the results for the NC

channels. The pattern is similar to that outlined above
for the CC cross sections. DCC and HNV predictions agree
reasonably well in general, while those obtained from the
SL model are systematically lower for the reason men-
tioned in the previous paragraph. Here the modification in
theΔ propagator of Eq. (9) implemented in the HNVmodel
produces significantly smaller effects, because the isovec-
tor contribution to the amplitudes in all NC channels
always involves both the pπþ and nπþ CC amplitudes,

and there are no NC channels determined only by the latter
of the two [10].

B. Differential cross sections

In Figs. 9 and 10, we now show CC and NC
dσ=ðdQ2dWπNÞ differential cross sections as a function
of WπN , for fixed Eν ¼ 1 GeV and Q2 ¼ 0.1 GeV2=c2

values. The Q2 value is in the range where the dσ=dQ2

differential cross section is maximum. Very similar results
(not shown) are obtained when Q2 is varied in the interval
ð0.05; 0.15Þ GeV2=c2. All the distributions show the char-
acteristic peak at the Δ pole. Apart from the differences
in normalization, stemming from different total cross
section predictions, we see that, in general, the SL and
DCC models show more strength at lower WπN values,
whereas the opposite happens for the HNV model. Again,
this is more pronounced for the νen → e−nπþ and ν̄ep →
eþpπ− channels where the effects of the changes in the Δ
propagator in Eq. (9) are more relevant. Nevertheless, and
with the exception of these two latter reactions, we observe
a reasonable agreement between the HNV and DCC
models, in spite of the relative simplicity of the former
as compared to the latter.
Further fixing WπN ¼ 1.23 GeV, we show, in Figs. 11

(neutrinos) and 12 (antineutrinos), the cos θ�π dependence of
the A�; B�; C�; D� and E� CC structure functions intro-
duced in Eq. (31). Some gross features of the shapes of
these functions can be understood from the expressions
given in the latter set of equations, bearing in mind that not
only the second but also the first spatial components of q�

and p� are zero, and that only R̂−1k�π has a nonvanishing X�
component, which is proportional to sin θ�π. Thus, we
immediately see that C� and E� must be proportional to

sin2 θ�π , since ðW̃ðsÞ
11 − W̃ðsÞ

22 Þ and W̃ðsÞ
12 are necessarily

proportional to the square of ½R̂−1k�π�1. In addition, there

FIG. 8. NC total cross sections as a function of the neutrino energy from different theoretical models. A kinematical cut
WπN < 1.4 GeV on the final pion-nucleon invariant mass has been included.

12Note that isospin invariance tells us that hpπ−jJμcc−ð0Þjpi ¼
hnπþjJμccþð0Þjni so that the νen → e−nπþ and ν̄ep → eþpπ−
channels share the same hadronic tensor and they only differ in
the antisymmetry part of the lepton tensor that changes sign.
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might exist some additional dependence on θ�π , because all
the nucleon structure responses could be a function of the
Lorentz scalar q� · k�π. These corrections look small for C�
and more sizable for E�, for which the DCC model, e.g.,
predicts a change of sign in the νep → e−pπþ and ν̄en →
eþnπ− channels. If one uses a multipole expansion of the
hadronic amplitude, the deviation of E� from a pure sin2 θ�π
dependence originates from the interference with multi-
poles corresponding to a pion orbital angular momentum
higher than 1 [19,25].
Using the same type of argument, one can also factorize

the sin θ�π function in B� and D�, which explains why these
structure functions vanish at the extremes (cos θ�π ¼ �1).
The additional θ�π dependencies, generated by q� · k�π
and by some other tensor terms in B� and D�, give rise

to large deviations from the sin θ�π shape for these response
functions.
Let us focus now on the neutrino processes. For the

νen → e−pπ0 and νen → e−nπþ channels, the three mod-
els produce structure functions with a similar shape. For the
νep → e−pπþ, the D� structure function, and to a lesser
extent the E� structure function, show larger differences in
shape. These are precisely the two PV contributions to the
differential cross section. As discussed in Sec. III B 1, PV
terms in the hadronic tensor derive from the interference
between different contributions to the hadronic current that
are not relatively real. The origin of these discrepancies
should be found in the different pattern of relative phases in
the three models. As seen from Eqs. (53) and (55), D� and
E� are sensitive to the difference in phase of the multipole

FIG. 9. CC–dσ=ðdQ2dWπNÞ differential cross sections as a function of WπN , for fixed Eν ¼ 1 GeV and Q2 ¼ 0.1 GeV2=c2.

FIG. 10. NC–dσ=ðdQ2dWπNÞ differential cross sections as a function of WπN , for fixed Eν ¼ 1 GeV and Q2 ¼ 0.1 GeV2=c2.
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amplitudes. Below the two-pion production threshold, the
Watson theorem tells us that those phases are determined
by the corresponding πN phase shifts. The latter require-
ment is fully satisfied by the DCC and SL models,
whereas this is not true for the HNV model where only
a partial unitarization of the P33 amplitude is imple-
mented through the use of the Olsson phases. In the case
of the E� structure function for the νp → e−πþp reaction,
and keeping only s and p pion partial waves, one can
explicitly observe that its value is given by the

interference between the P33 (dominated by the Δ) and
the P31 (nonresonant) amplitudes:

E� ∝ sin2θπ sinðδP33
− δP31

Þ½jMV
1þjjEA

1−j
þ jMV

1−jð4jMA
1þj þ 2jEA

1þjÞ�: ð56Þ

Hypothetical future measurements of these structure
functions might serve to further constrain the pion
production models. Let us notice, however, that for the

FIG. 11. CC-neutrino A�; B�; C�; D� and E� structure functions, as defined in Eq. (31), represented as a function of cos θ�π for fixed
Eν ¼ 1 GeV, WπN ¼ 1.23 GeV and Q2 ¼ 0.1 GeV2=c2.
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νep → e−pπþ channel the magnitude of D� and E� is
much smaller than A�, getting at most 10% of its value,
whereas for the other two channels it reaches ∼30%.
For all structure functions, the various predictions differ

not only in shape but also in size. This shows how
demanding the test carried out in this work is. This is
even more evident when the antineutrino structure func-
tions, shown in Fig. 12, are examined. Isospin symmetry
[10] implies that the hadron tensors of the νep → e−pπþ
and ν̄en → eþnπ− reactions are equal. The same happens
for the νen → e−nπþ and ν̄ep → eþpπ− processes, and for
the νen → e−pπ0 and ν̄ep → eþnπ0 processes. Therefore,

the structure functions depicted in the first, second and third
columns of Figs. 11 (neutrino) and 12 (antineutrino) should
differ only in the terms proportional to the antisymmetric
part of the lepton tensor, which changes sign. From the
explicit expressions given in Eqs. (31), we immediately
realize that neutrino and antineutrino C� and E� structure
functions are identical, when looking at the appropriate
channels. For the A� response function one sees significant
differences between the DCC and HNV predictions for the
antineutrino case. Thus, for instance in the ν̄en → eþnπ−
channel, we see that, compared to the HNVand SL models,
the DCC model predicts a different shape, in contrast to the

FIG. 12. Same as Fig. 11 for CC-antineutrino reactions.
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situation discussed above for the related neutrino νep →
e−pπþ channel. For the antineutrino reaction, the first two
approaches lead to concave-up profiles, as a function of
cos θ�π, while the latter one gives rise to a concave-down
shape. However, DCC and HNV integrated A� structure
functions differ by less than 5%, as can be inferred from the
dσ=dQ2dWπN differential cross sections depicted in the left
bottom panel of Fig. 9. To shed light on this different
behavior, we show in Fig. 13 the symmetric and antisym-
metric contributions13 to A� for the νep → e−pπþ=ν̄en →
eþnπ− (first row), νen → e−nπþ=ν̄ep → eþpπ− (second

row) and νen → e−pπ0=ν̄ep → eþnπ0 (third row) isospin
related channels, atWπN ¼ 1.23 GeV andQ2 ¼ 0.1 GeV2=
c2 as in Figs. 11 and 12. DCC antisymmetric contributions to
A� are larger than those obtained within the HNV and SL
models. If we focus on the results found for νep →
e−pπþ=ν̄en → eþnπ−, we see that all models predict similar
cos θ�π shapes (concave-down) for both the symmetric and
antisymmetric terms of A�, but when they are subtracted to
obtain the antineutrino structure functions, they give rise to
concave-up shapes in the HNV and SL approaches. This
illustrates the importance of carrying out a thorough test of
the different model results at the level of outgoing pion
angular distributions, going beyond comparisons done for
partially integrated cross sections, where the differences tend
to cancel. In addition, we can conclude from Fig. 13 that the
inclusion in the HNV model of a local term, induced by the
Δ propagator modification discussed in Eq. (9), produces
visible effects in the symmetric contribution to A� in the
νen → e−nπþ and ν̄ep → eþpπ− reactions.
Returning to the discussion of Figs. 11 and 12, we see

that, in general, jD�j is greater than jE�j, and thus PVeffects

FIG. 13. Semisums and semidifferences (in MeV units) of the neutrino and antineutrino A� structure functions displayed in
Figs. 11 and 12.

13The antisymmetric contribution, whose sign is different for
neutrinos and for antineutrinos, is given by

A�
antisymmetric ¼

Z jk⃗�πj2djk⃗�πj
E�
π

2iL12W̃ðaÞ
12 ; ð57Þ

while the rest of the terms in the expression of A� in Eq. (31) are
the same for neutrino and antineutrino reactions, and it is driven
by the symmetric lepton tensor.
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are dominated by the sinϕ�
π dependence of the differential

cross section. Comparing the relative sizes of A� and jD�j,
we expect the largest parity violations in the νen → e−nπþ,
ν̄ep → eþpπ−, νen → e−pπ0 and ν̄ep → eþnπ0 reactions,
while the smallest ones should occur in the isospin 3=2
νep → e−pπþ and ν̄en → eþnπ− channels that are domi-
nated by the direct Δ mechanism. In addition, in this latter
case, we observe that PV effects are greatly reduced for
ν̄en → eþnπ−, since the relative size of the jD�j=A� ratio
for this reaction is significantly smaller than for the isospin
related one νep → e−pπþ.
All of the above features are visible in the neutrino

and antineutrino CC dσ=ðdQ2dWπNdΩ�
πÞ differential cross

sections that are displayed as contour plots in Figs. 14 and

15 for the DCC and HNV models. They are given as a
function of ϕ�

π and θ�π , and have been evaluated for fixed
Eν ¼ 1 GeV, Q2 ¼ 0.1 GeV2=c2 and WπN ¼ 1.23 GeV
values. Despite the differences, we find a good qualitative
agreement between the two models that predict similar
regions where the pion angular distribution reaches its
maximum and minimum. The same applies to the case
of NC processes that are shown in Figs. 16 and 17. Note
that the nπ0 and pπ0 NC reactions are driven by the
same isovector amplitude, and they differ only in the sign of
the interference of the latter with the isoscalar part of the
amplitude, which is also the same in both reactions [10].
This is the reason why, as long as these processes are
largely dominated by the isovector excitation of the

FIG. 14. Neutrino CC–dσ=ðdQ2dWπNdΩ�
πÞ differential cross section in units of 10−38 cm2 c2=GeV3, as a function of ϕ�

π and θ�π ,
evaluated for fixed Eν ¼ 1 GeV, Q2 ¼ 0.1 GeV2=c2 and WπN ¼ 1.23 GeV values.

FIG. 15. The same as in Fig. 14 for antineutrino CC–dσ=ðdQ2dWπNdΩ�
πÞ.
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Δ-resonance, the cross sections are similar. The same
occurs in the case of the pπ− and nπþ NC reactions.
Let us note, in addition, that the isoscalar contributions for
these two latter processes are a factor of 2 bigger than for
the two previous NC reactions where neutral pions are
produced [10].
Since in Figs. 14–17 we take ϕ�

π in the interval ½−π; π�,
parity violation for dσ=ðdQ2dWπNdΩ�

πÞ is clearly seen in
most cases by the lack of reflection symmetry with respect
to the ϕ�

π ¼ 0 line. It is significant for CC νe scattering off
neutrons (ν̄e off protons), where the directΔ excitation term
is not so dominant, and for neutrino NC reactions produc-
ing charged pions.14 It means that for these channels, theD�
and/or E� terms should have sizes comparable in magnitude

to those of the A�, B� and C� parity-conserving structure
functions. Parity violation is less prominent for the anti-
neutrino NC processes for which both models predict rather
symmetric distributions. By looking at the NC channels
with a final charged pion, one sees a transition between a
clear asymmetry for neutrino reactions to a fairly sym-
metric distribution for the antineutrino case. Since the NC
hadronic tensor is the same for neutrinos and antineutrinos,
the different behavior seen in the figures originates from the
change of sign of the antisymmetric part of the leptonic
tensor. From the general discussion in Sec. III B 1, there are
two types of PV terms in D�, which correspond to those

induced by the antisymmetric H̃μνðaÞ
VVþAA and the symmetric

H̃μνðsÞ
VAþAV nucleon tensors, discussed in Eqs. (42) and (45),

respectively. When contracted with the leptonic tensor,
these two contributions tend to cancel each other for the
NC antineutrino case, implying that both PV contributions

FIG. 16. The same as in Fig. 14 for neutrino NC–dσ=ðdQ2dWπNdΩ�
πÞ.

FIG. 17. The same as in Fig. 14 for antineutrino NC–dσ=ðdQ2dWπNdΩ�
πÞ.

14Remember that background isoscalar contributions in this
case are twice as high as for NC production of neutral pions.
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must be similar in magnitude for NC processes.15 A similar
behavior is seen in the HNV model for NC channels with a
final π0. For this latter case, the DCC model produces
almost perfect symmetric distributions for antineutrinos,
and though some asymmetries can be seen for neutrinos,
they are not as pronounced as in the HNV case.
Another feature worth noticing, easily deduced from

Figs. 14–17, is that the ϕ�
π dependence of the differential

cross section is very different for cos θ�π < 0 and cos θ�π > 0.
In Fig. 18 we show now the dσ=dΩ�

π differential cross
section for the νep→e−pπþ;νen→e−nπþ; ν̄en→eþnπ−

and νep → νepπ0 channels evaluated at Eν ¼ 1 GeV and
with a cut WπN < 1.4 GeV. Parity violation is seen in both
models in the case of the νen → e−nπþ reaction, while for

νep → e−pπþ and νep → νepπ0 a PV pattern is only
clearly appreciable in the HNVmodel. Both models predict
very small PV effects in the case of the ν̄en → eþnπ−
reaction. The three latter processes are largely dominated
by the excitation of the Δ and its subsequent πN decay,
and thus finding small PV signatures is not surprising.
Moreover, we see once more that PV effects get substan-
tially reduced in the antineutrino ν̄en → eþnπ− reaction as
compared to those found in the isospin related neutrino
νep → e−pπþ process (see discussion of Figs. 11 and 12).
In any case, all distributions show a clear anisotropy.

This means that using an isotropic distribution for the pions
in the center of mass of the final pion-nucleon system, as
assumed in some Monte Carlo event generators, is not
supported by the results in Fig. 18. Moreover, different
channels have different angular distributions.
In Figs. 19 and 20 we display the dσ=d cos θ�π and

dσ=dϕ�
π differential cross sections, respectively, for the

same channels and incoming neutrino energy as the ones
shown in Fig. 18, and with the same WπN < 1.4 GeV cut
applied. They are not flat and again different channels show
different behaviors. Looking at the dσ=d cos θ�π differential
cross section one sees that the two models predict dis-
tributions similar in shape and size for the νep → e−pπþ

and νep → νepπ0 channels. The discrepancies are more

FIG. 18. dσ=dΩ�
π differential cross section in units of 10−38 cm2, as a function of ϕ�

π and θ�π , evaluated at Eν ¼ 1 GeV and with a
WπN < 1.4 GeV cut.

FIG. 19. dσ=d cos θ�π differential cross section in units of 10−38 cm2 for Eν ¼ 1 GeV, and with a WπN < 1.4 GeV cut.

15Note that in the antineutrino A� and B� PC terms, there exist
also some cancellations between symmetric and antisymmetric
contributions, which explain why they are smaller than those
found for neutrinos. However, the point is that these latter
cancellations should be less effective than those produced in
D�, and this imbalance gives rise to smaller PV effects in
antineutrino NC driven processes. In addition, one might also
have to consider possible modifications in the interference pattern
between the PVD� sinϕ�

π and E� sin 2ϕ�
π contributions. However,

in general jE�j is significantly smaller than jD�j, though details
depend on the particular kinematics under study.
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visible for ν̄en → eþnπ−. Note that isospin invariance
guarantees that the hadron tensors of the νep → e−pπþ
and the ν̄en → eþnπ− processes should be identical, and
therefore the differences in the cross sections should only
be produced by the change of sign of the interference
between vector and axial contributions. The largest
differences between DCC and HNV predictions are found,
however, for the νen → e−nπþ channel, as we have already
seen in Figs. 7, 9 and 11. They are mainly due to the
inclusion in the HNV model of a local term induced by the
Δ propagator modification discussed in Eq. (9). This term
notably improves the description of the νμn → μ−nπþ total
ANL cross section data [22] (see also Fig. 5 here).
As for the dσ=dϕ�

π differential cross section, first we
observe that the distributions are not symmetric around

ϕ�
π ¼ π, implying certain violations of parity, which are

quite significant for the νen → e−nπþ reaction. Both the
HNV and the DCC models predict more pions to be
produced above the scattering plane, i.e., ϕ�

π ∈ ½0; π½, for
the νμn → μ−nπþ and νep → νepπ0 reactions. The asym-
metry for the νep → e−pπþ channel is predicted to be
small in both models but with a different sign. For
ν̄en → eþnπ−, PVeffects are larger in the DCC predictions
than in the HNV ones, since in the former, the number of
pions produced above the scattering plane is clearly smaller
than that below that plane.
Finally, in Fig. 21, we make a shape-only comparison of

our theoretical results for the dσ=d cos θ�π and dσ=dϕ�
π

differential cross sections for the νμp → μ−pπþ reaction
with unnormalized ANL [35] and BNL [36] old bubble

FIG. 20. dσ=dϕ�
π differential cross section in units of 10−38 cm2 for Eν ¼ 1 GeV, and with a WπN < 1.4 GeV cut.

FIG. 21. Shape comparison of the theoretical dσ=d cos θ�π (left panels) and dσ=dϕ�
π (right panels) differential cross sections with

unnormalized ANL [35] and BNL [36] data. A cut WπN < 1.4 GeV, in the final pion-nucleon invariant mass, is imposed in both data
and the theoretical results. Theoretical results have been obtained averaging over the neutrino flux for neutrino energies in the [0.5,
6] GeV interval, setting their overall size to reproduce the areas under the experimental data. Predictions from two previous versions of
the HNV model are also displayed: HNV1 stands for the HNV model without the Δ propagator modification of Eq. (9), while to
compute the HNV2 results, the implementation of the Watson theorem has been further suppressed.
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chamber data. Both in the data and in the theoretical
calculations, the cut WπN < 1.4 GeV in the final pion-
nucleon invariant mass is imposed, and the theoretical
distributions have been obtained averaging over the neu-
trino flux for neutrino energies in the [0.5, 6] GeV interval.
The theoretical results have been area-normalized to the
data. Predictions from two previous versions of the HNV
model are also shown to elucidate how the local terms
discussed in Eq. (9) [22] and the implementation of the
Watson theorem [21] affect this channel, dominated by the
direct excitation of the Δ resonance.
All the models give similar predictions for the flux

averaged dσ=d cos θ�π differential cross section, and
show a good agreement with BNL data. This means that
the corrections for the HNV model proposed in
Refs. [21,22] have little effect not only on the integrated,
but also on the cos θ�π differential cross section for the
νμp → μ−pπþ reaction, which we remind the reader again
is largely dominated by the directΔ excitation term. For the
flux averaged dσ=dϕ�

π differential cross section, the DCC
model exhibits a global better agreement with data. As
expected, the PV effects, both in the data and theoretical
predictions, are small, being largely obscured by the
uncertainties in the experimental distribution. HNV models
predict larger asymmetries, though still small in absolute
value, around 10% maximum. On the other hand, the
inclusion of the local terms discussed in Eq. (9) [22]
increases the differences with the DCC results, and it also
seems that the induced changes in the shape of the
distribution do not receive data support.

V. STUDY OF PION ELECTROPRODUCTION
AS A TEST OF THE VECTOR PART OF THE

DCC, SL AND HNV MODELS

Pion electroproduction provides a testing ground for
the vector part of the pion production models. We do not
aim here to perform an exhaustive comparison with the

abundant data that are available. In fact, such a test has
already been done for the SL and DCC models [13,15,16].
Here we just want to show the observables which are
described in a similar way by the HNV, SL and DCC
models, as well as those that differ, trying to understand the
origin of the discrepancies. This should help us to better
understand the differences observed in the weak pion
production.
In Sec. IV we have compared the three models for CC

and NC reactions induced by neutrinos in the vicinity of the
Δ peak, and for a relatively low Q2 value in the region
where the dσ=dQ2 cross section is maximum. For a similar
kinematical setup, we now show the results for pion
electroproduction differential cross sections integrated
over the outgoing pion variables. In Fig. 22, we show
results for the dσ=ðdE0dΩ0Þ differential cross section off
protons evaluated for an incoming electron energy of E ¼
0.73 GeV and for fixed θ0 ¼ 37.1°. The results are plotted
as a function of WπN and we compare them with exper-
imental data taken from Ref. [37]. In its left panel we see
that the HNV and DCC models give very similar predic-
tions which, in turn, are in a good agreement with the data.
The HNV model predicts less strength for low WπN,
something that has also been observed for the neutrino-
induced reactions; see Figs. 9 and 10. At the Δ resonance
peak and below, the SL and DCC give very similar results,
since the N → Δ vector form factors were adjusted to
reproduce the pion electroproduction data. Above reso-
nance, the SL model gives smaller cross sections. In the
case of neutrino cross sections, the differences seen
between the SL and the DCC models are, however, mainly
due to the difference in strength in the axial current in those
two models. In the right panel we show the predictions of
the HNV model when the modification of the Δ propagator
in Eq. (9) is not taken into account (HNV1), and when we
further suppress the implementation of the Watson theorem
(HNV2). One sees that the results significantly improve
when going from HNV2 to HNV1 and from HNV1 to the

FIG. 22. Inclusive dσ=ðdΩ0dE0Þ cross section off protons (sum of the differential distributions for the e−p → e−pπ0 and e−p →
e−nπþ reactions), as a function of the invariant massWπN and for fixed θ0 ¼ 37.1°. The four-momentum transfer squareQ2 varies in the
interval ½0.18; 0.04� GeV2=c2, when WπN ∈ ½1; 1.4� GeV. Data are taken from Ref. [37]. In the right panel, predictions from the HNV
and two previous versions of that model are displayed: HNV1 stands for the HNV model without the Δ propagator modification of
Eq. (9), while to compute the HNV2 results, the implementation of the Watson theorem has been further suppressed.
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full HNV model, leading to an excellent description of the
experimental distribution. This is particularly reassuring
because, though the HNV model uses vector form factors
that have been in principle fitted to data, its latest refine-
ment [22] (modification of the Δ propagator, motivated by
the use of the so-called consistent couplings [28]) was
derived only from neutrino pion production data. Note
that the final pπ0 and nπþ states in the electron-induced
reactions are not purely isospin 3=2 states, and thus they
receive sizable contributions from nonresonant mecha-
nisms, in particular from the Δ crossed term which is
corrected by the use of consistent couplings.
For electrons we have access to very precise experi-

mental measurements of the pion angular distributions. It is
common to write the differential cross section as [see
Eq. (D4)]

dσem
dΩ0dE0dΩ�

π
¼ Γem

n
σT þ εσL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
σLT cosϕ�

π

þ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
σLT0 sinϕ�

π þ εσTT cos 2ϕ�
π

o
ð58Þ

where the different quantities have been introduced in
Appendix D. It is a valid expression when both electrons
are ultrarelativistic and the initial electron is polarized with
well-defined helicity h. As also mentioned in Sec. III B
and the Appendix D, the presence of the sinϕ�

π term does
not imply parity violation in this case, since the helicity
also changes sign under parity. It is straightforward to
see a direct correspondence of the terms σT þ εσL, σLT , σTT
and σLT 0 and the A�, B�, C� and D� structure functions
introduced for neutrinos in Eq. (31).
After integrating over Ω�

π, only the σT and σL terms
contribute to the dσem=ðdΩ0dE0Þ differential cross section.
These partially integrated distributions

σ̃T ¼
Z

σTdΩ�
π; σ̃L ¼

Z
σLdΩ�

π

have been measured for various values of Q2 and WπN . In
Fig. 23, we present the predictions for σ̃T;L obtained from
the DCC, SL and HNV models and they are compared to
the data of Ref. [38]. Not much can be said about the
accuracy of the predictions for σ̃L because of the large
experimental uncertainties. For σ̃T, which largely domi-
nates over σ̃L, we find an acceptable description of the
data, and we observe a similar behavior as in the case of
dσem=ðdΩ0dE0Þ presented in Fig. 22: the HNV predicts less
strength below the Δ peak, while the SL model under-
estimates the experimental points above it.
In the following, we shall further compare the theoretical

pion angular distributions for the e−p → e−pπ0 and
e−p → e−nπþ channels, for WπN invariant masses in the
vicinity of the Δ peak and for two Q2 values for which
precise data are available. In Fig. 24, we show results for
WπN ¼ 1.221 GeV and a very low Q2 ¼ 0.06 GeV2=c2

value and compare them to data taken from Ref. [39]. The
latter correspond to the lowest Q2 measurement of these
observables that has been performed so far. They cover a
small θ�π range, above 140°, and only for the e−p → e−pπ0

channel. We show results from the three models, for both
pπ0 and nπþ final states, and the full θ�π range. For the
e−p → e−nπþ channel (right panels in Fig. 24) all models
give very similar results for all the structure functions. For
e−p → e−pπ0 (left panels in Fig. 24), the theoretical
predictions differ for the transverse-longitudinal interfer-
ence terms, σLT 0 and σLT , and also for the longitudinal σL
differential cross section. These contributions are much
smaller than σT (≤ 5%), in particular σL, so that all models
would predict similar dσ=dQ2dWπN cross sections. As it
has been discussed at the end of Sec. III B 1, in the case
of the HNV model, σLT 0 (or correspondingly the D�
function for neutrinos) appears as a consequence of
interference between the ΔP term and the background
contributions (which have different phases mainly because
of the nonzero imaginary part of the Δ propagator).
Background terms in the e−p → e−pπ0 channel are small
within the HNV model (isospin symmetry forbids the CT

FIG. 23. Data and theoretical predictions for the σ̃T ¼ R
σTdΩ�

π and σ̃L ¼ R
σLdΩ�

π inclusive cross sections off protons (pπ0 þ nπþ),
as a function of the πN invariant mass, and for two fixed values of Q2 ¼ 0.2 GeV2 (left panel) and Q2 ¼ 0.5 GeV2 (right panel). Data
are taken from Ref. [38].
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and the PF contributions), and thus that interference is
necessarily small. The situation is entirely different for the
e−p → e−nπþ channel, for which the background contri-
bution is sizable. This is the reason why the three models
give very similar predictions in this case. By looking at
Eq. (D8), one realizes that σL, σLT and σLT 0 depend on the
third component of the hadronic electromagnetic current.

The above discussion tells us that for the e−p → e−pπ0

channel, this component may not be correct within the
HNV model.
In a multipole language, the main features of the σLT 0

angular distribution in the Δ region can be understood
using s and p wave pion production multipoles, as done for
instance in Ref. [40],

FIG. 24. Comparison of the σT þ εσL, σL, σTT , σLT , σLT 0 pion polar angular distributions obtained using the DCC, SL and HNV
models for the e−p → e−pπ0 (left panels) and e−p → e−nπþ (right panels) channels. The kinematics correspond to
Q2 ¼ 0.06 GeV2=c2, WπN ¼ 1.221 GeV and an incoming electron energy of 0.855 GeV. For e−p → e−pπ0, the σL contribution
is negligible so that σT þ εσL ≈ σT , while for e−p → e−nπþ we also show σT in the first panel. Data from Ref. [39] are available only for
the pπ0 channel.
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σLT 0 ≈
jk⃗�πj0
kγ

ffiffiffiffiffiffiffiffiffiffi
Q2

jq⃗�j2

s
sin θ�πðAþ B cos θ�πÞ; ð59Þ

with

A ¼ Im½S�0þð−M1þ þ 3E1þ þM1−Þ þ ðS1− − 2S1þÞ�E0þ�;
B ¼ 6Im½S�1−E1þ þ S�1þðE1þ −M1þ þM1−Þ�; ð60Þ

and kγ defined in Appendix C. A comes from the
interference between s and p wave multipoles while B
is generated from the interference among p wave multi-
poles. Since the direct Delta contributes only to P33

multipoles, all with the same phase, σLT0 is very sensitive
to background contributions. In the DCC and SL models,
the main contributions to A and B are respectively
−Im½S�0þM1þ� and −Im½S�1þM1þ�. The latter can only come

FIG. 25. Comparison of the σT þ εσL, σTT and σLT pion polar angular distributions obtained using the DCC, SL and HNV models for
e−p → e−pπ0 (left panels) and e−p → e−nπþ (right panels) at Q2 ¼ 0.4 GeV2=c2 and WπN ¼ 1.22 GeV or 1.23 GeV, respectively.
Data from Refs. [41,42] for e−p → e−pπ0 and e−p → e−nπþ, respectively, are displayed as well. In the two bottom panels, we also
show the pπ0 and nπþ measurements of Refs. [43] (left) and [40] (right) atQ2 ¼ 0.4 GeV2=c2 andWπN ¼ 1.22 GeV, together with the
theoretical predictions, of the σLT 0 distribution. Finally in all panels, the HNV1 curves stand for the results obtained within the HNV
model, when the propagator modification of Eq. (9) is not considered, while to obtain the HNV2 predictions, the implementation of the
Watson theorem is further suppressed.
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from isospin 3=2 and isospin 1=2 interference and it
changes sign when going from π0 to πþ production.
This change of sign of B explains the difference in shape
for σLT 0 seen when going from π0 to πþ production. It is
also clear that the relative phases between the multipoles
have to be well under control to get σLT 0 right. This is
achieved in the DCC and SL models below the two-pion
production threshold.
Next, we show e−p → e−pπ0 and e−p → e−nπþ results

evaluated at a higher Q2 ¼ 0.4 GeV2=c2 value, and for πN
invariant masses located at the Δ peak (Fig. 25) or slightly
above (Fig. 26). The three models give similar results in
good agreement with data, with the exceptions of the SL
σT þ εσL and σTT distributions above the Δ, and the HNV

σLT 0 structure function, particularly for the e−p → e−pπ0

channel, for which the background contribution within the
HNV model is small. We also show in these two figures
results obtained when we eliminate from the HNV model
the Δ propagator modification of Eq. (9), and when we
further suppress the partial unitarization of the amplitudes,
implemented by imposing the Watson theorem for the
multipoles dominated by the Δ resonance. In the pπ0 case,
one sees a clear improvement in the σT þ εσL and σTT
observables when going from HNV2 to HNV1 and from
the latter to the full HNV calculation. For σLT the quality of
the data does not allow us to be very conclusive, while the
three versions of the HNV model fail to reproduce the data
of the small σLT 0 . For the nπþ reaction, though in general

FIG. 26. Same as Fig. 25 (Q2 ¼ 0.4 GeV2=c2), but for higher πN invariant masses, WπN ¼ 1.30 GeV and 1.29 GeV for
e−p → e−pπ0 and e−p → e−nπþ, respectively.
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the modifications proposed in Refs. [21,22] improve the
global agreement with data, the effects are not as pro-
nounced as those found in the pπ0 case.
The conclusion to be drawn from this comparison of

electromagnetic results is that one needs a full unitarization
procedure, like the one implemented in the complex DCC
model, in order to get a good reproduction of all scattering
observables. Its effect seems to be crucial to explain the σLT
and σLT 0 data for the e−p → e−pπ0 reaction, where back-
ground contributions are small. In the e−p → e−nπþ chan-
nel, the nonresonant contributions are much more important,
and the simple HNV model predictions agree reasonably
well with those obtained within the sophisticated DCC
approach. All that notwithstanding, it is important to stress
that the σL, σLT and σLT 0 structure functions, where the HNV
model shows larger discrepancies with the DCC results, are
much smaller in magnitude than σT and σTT and thus their
effects are not so relevant when looking at pion angular
distributions. Also, if one integrates on the outgoing pion ϕ�

π

variable, the contributions from σLT and σLT 0 (and σTT)
cancel exactly and the resulting differential cross section is
governed by σT þ εσL, for which both the HNV and DCC
models give similar predictions.

VI. SUMMARY AND CONCLUSIONS

We have carried out a careful analysis of the pion angular
dependence of the CC and NC neutrino and antineutrino
pion production reaction off nucleons. We have shown
that the possible dependencies on the azimuthal angle
measured in the final pion-nucleon CM system are
1; cosϕ�

π; cos 2ϕ�
π; sinϕ�

π and sin 2ϕ�
π , and that the two

latter ones give rise to parity violation and time-reversal
odd correlations in the weak dσ=ðdΩ0dE0dΩ�

πÞ and
dσ=ðdQ2dWπNdΩ�

πÞ differential cross sections. These find-
ings were already derived in Refs. [10,11,17], but here we
have made a detailed discussion of the origin of the PV
contributions. Hence, we have seen that these are generated
from the interference between different contributions to the
hadronic current that are not relatively real. When the
hadronic current is further expanded in multipoles, one sees
that the only PV contributions that survive are the ones
associated to the interference between multipoles corre-
sponding to different quantum numbers. In particular, we
have shown that the sin 2ϕ�

π term comes from symmetric
contributions to the hadronic tensor generated from vector-

axial interference (H̃μνðsÞ
VAþAV). Thus, as expected, the sin 2ϕ

�
π

structure function will be absent in the case of photo- or
electroproduction. On the other hand, the sinϕ�

π depend-
ence in the differential cross section gets contributions from
two different PV tensors. The first one, as in the sin 2ϕ�

π

case, comes from the symmetric H̃μνðsÞ
VAþAV tensor, while the

second one comes from the antisymmetric H̃μνðaÞ
VVþAA tensor

generated from vector-vector and axial-axial interferences.
The pion electroproduction polarized differential cross

section contains a sinϕ�
π structure function, σLT 0 , coming

only from the vector-vector interference.
As a test of the vector content of the DCC, SL and HNV

models, we have compared their predictions for pion
electroproduction in the Δ region, and we have also
confronted these predictions with data. The DCC scheme
provides an excellent description of the existing measure-
ments for σT þ εσL, σTT , σLT and σLT 0 pion polar angular
distributions and also for ðQ2;WπNÞ differential cross
sections, obtained after integrating over the angles of the
outgoing pion. Despite its simplicity, the HNV model
works also quite well and it leads to a fair description of
the data and a good reproduction of the DCC predictions,
except for σLT 0 in the e−p → e−π0p reaction where the
background contribution is small.
Within the DCC model, the hadronic rescattering proc-

esses are taken into account by solving coupled-channel
equations for the Δð1232Þ and higher resonances. In this
approach, a unified treatment of all resonance production
processes satisfying unitarity is provided, and the predic-
tions extracted from the DCC model have been extensively
and successfully compared to data on πN and γN reactions,
up to invariant masses slightly above 2 GeV. The meson-
baryon channels included in the calculations are πN, ηN,
KΛ, KΣ and ππN through πN, ρN and σN resonant
components, and the analysis includes 20 partial waves,
up to theH19 andH39 (isospin 1=2 and 3=2, orbital angular
momentum L ¼ 5 and total angular momentum J ¼ 9=2)
[13]. The model includes a few tens of bare strangenessless
baryon resonances, whose properties (bare masses and
couplings to the different channels and form factors) need
to be fitted to data. The meson-exchange interactions
between different meson-baryon pairs, as well as the
ultraviolet cutoffs, needed to make the unitarized
coupled-channel amplitudes finite, should be phenomeno-
logically determined, as well. There is a total of few
hundred parameters that were fitted in [13] to a large
sample (≥ 22300 data points) of πN → πN and π�p; γp →
πN; ηN;KΛ; KΣ measurements. Given the high degree of
complexity of the DCC approach, it is really remarkable
that the bulk of its predictions for electroproduction of
pions in the Δ region could be reproduced, with a
reasonable accuracy, by the simpler HNV model. The
latter has the advantage that it might be more easily
implemented in the Monte Carlo event generators used
for neutrino oscillation analyses. Electron data also support
the latest improvements of the HNV model (approximate
unitarization of the amplitudes [21], implemented by
imposing the Watson theorem for the multipoles dominated
by the Δ resonance, and the modification of the Δ
propagator [22], motivated by the use of the so-called
consistent couplings) that lead to an accurate reproduction
of the bubble chamber ANL and BNL neutrino data,
including the νμn → μ−nπþ channel, using amplitudes
fully consistent with PCAC.
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We have presented an exhaustive comparison of the
DCC, SL and HNV model predictions for CC and NC
neutrino and antineutrino pion production integrated and
differential cross sections. DCC and HNV totally integrated
and dσ=dQ2dWπN differential cross sections agree reason-
ably well, except for the channels like νen → e−nπþ, where
the crossed Δ mechanism is favored by spin-isospin factors
with respect to the direct excitation of theΔ resonance. This
is because the modification of the Δ propagator, imple-
mented in the HNV model, greatly cancels the crossed Δ
mechanism, leading to larger cross section values than the
ones obtained in the DCC model. This enhancement allows
for a better description of the ANL νμn → μ−nπþ total
cross sections. In most of the cases, the SL model
predictions are smaller, the main reason for that being that
the SL model uses a smaller N → Δ axial coupling
extracted from a constituent quark model. It should also
be kept in mind that the old bubble chamber data were
obtained from neutrino-deuteron reactions and that the
effects of the final state interaction studied in Ref. [44] may
modify the current cross section data at the nucleon level
extracted from deuteron data.
With respect to the pion angular dependence of the weak

cross sections, we have observed, first of all, that CC and
NC distributions show clear anisotropies. This means that
using an isotropic distribution for the pions in the CM of
the final pion-nucleon system, as assumed by some of the
Monte Carlo event generators, is not supported by the
results of the DCC and HNV models. In addition, we have
seen that different channels show different angular distri-
butions. We want to stress once more the importance of
carrying out an exhaustive test of the different models at the
level of outgoing pion angular distributions, going beyond
comparisons done for partially integrated cross sections,
where model differences cancel to a certain extent (see for
instance dσ=dQ2dWπN and A� for ν̄en → eþnπ−, depicted
in Figs. 9 and 12 respectively).
The dσ=dϕ�

π differential cross section is not symmetric
around ϕ�

π ¼ π, implying certain violations of parity, which
are dominated by the sinϕ�

π term. PV effects are quite
significant for neutrino NC reactions producing charged
pions, but even more for the νen → e−nπþ and ν̄ep →
eþpπ− CC processes. Both the HNV and the DCC models
predict more pions to be produced above the scattering plane.
However, parity violation effects are less prominent for the
antineutrino NC reactions, implying some cancellations

between the PVeffects induced by the H̃μνðsÞ
VAþAV (vector-axial

interference) and H̃μνðaÞ
VVþAA (vector-vector and axial-axial

interference) tensors. These cancellations are not produced
in the case of neutrinos, because the contribution of the latter
tensor to the cross sections changes sign.
Going into finer details, the terms proportional to

1; cosϕ�
π; cos 2ϕ�

π; sinϕ�
π and sin 2ϕ�

π for the DCC and
HNV models show some moderate differences in size

and even in shape, for instance for the sinϕ�
π structure

function in the νep → e−pπþ reaction. In this latter case,
the reason is the same as the one commented above for the
σLT 0 differential cross section in the e−p → e−π0p reaction.
This channel is largely dominated by the direct Δ mecha-
nism, and thus PV effects are notably smaller than in other
channels for which the interferences between resonant and
nonresonant amplitudes are larger. In the channels where
the nonresonant background contributions are sizable, for
instance νen → e−pπ0 or νen → e−nπþ, both DCC and
HNV models predict qualitatively similar results. The same
occurs in the case of the sin 2ϕ�

π structure function,
suggesting that the PV effects encoded in the vector-axial
interference are similar in both models.
Given the safety restrictions in current and future experi-

ments, presumably, we will be bound to extract the pion
angular dependence from nuclear cross sections, rather than
from reactions with nucleon targets. In that case, the particles
produced in the primary interaction should travel across the
high-density nuclear medium which alters the particle
composition of the event. Experimentally, the picture is
confused even further by the typically broad neutrino energy
spectrum and by beam flux uncertainties. The viability of
measuring the pion angular distribution associated with the
production off nucleons from neutrino interactions with
nuclei was analyzed in Ref. [45]. The results based on
the NEUT Monte Carlo [46] showed that this angular
distribution can be determined, with certain accuracy,
because the information is reasonably well maintained
despite the FSI and the need to reconstruct the energy of
the incoming neutrino from the experimental data.
Nevertheless, further studies are needed to reliably estimate
the distortion induced in the angular distributions by the FSI.
Since pion production becomes one of the main reaction

mechanisms for neutrinos with energies of a few GeV, the
theoretical knowledge of the nuclear cross sections is an
important and necessary ingredient to reduce systematic
errors affecting present and future neutrino oscillation
experiments. The first requirement for putting neutrino-
induced pion production on nuclear targets on a firm
ground is, however, to have a realistic model at the nucleon
level. This work, where we have presented a detailed
comparison of three state-of-the-art, microscopic models
for electroweak pion production off nucleons is, in our
understanding, a first step forward in that direction.
Moreover, we are firmly convinced that the physics content
of the Monte Carlo event generators used in the analysis
of neutrino oscillation experiments should necessarily be
confronted with the predictions of the three models dis-
cussed in this work. A last remark we want to make is
the following. Even the realistic models described in this
work rely on old data obtained in deuterium, so that any
improvement requires us to have pion production experi-
ments by neutrinos carried out at the nucleon level. We
strongly support any experimental effort on that line.
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APPENDIX A: LORENTZ TRANSFORMATION
TO THE CM MASS OF THE FINAL

PION-NUCLEON SYSTEM

The Lorentz transformation will be constructed as the
product of a rotation and a boost to the CM system of the
final pion-nucleon:

Λ ¼ BR:

The rotation matrix is chosen in a way that, when seen as a
passive rotation, it takes the Z axis over q⃗ and the Y axis
over k⃗ ∧ k⃗0. It can be written as

Rμ
ν ¼

0
BBB@

1 0 0 0

0 cos θ 0 sin θ

0 0 1 0

0 − sin θ 0 cos θ

1
CCCA

×

0
BBB@

1 0 0 0

0 − cosϕ − sinϕ 0

0 sinϕ − cosϕ 0

0 0 0 1

1
CCCA; ðA1Þ

where θ;ϕ are the q⃗ ¼ k⃗ − k⃗0 polar angles in the original
fixed reference frame [the LAB frame that we chose

to be oriented such that k⃗ ¼ ð0; 0; jk⃗jÞ] and they are
given by

cos θ ¼ jk⃗j − jk⃗0j cos θ0
jq⃗j ;

sin θ ¼ jk⃗0j
jq⃗j sin θ

0;

jq⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þ jk⃗0j2 − 2jk⃗jjk⃗0j cos θ0

q
;

ϕ ¼ ϕ0 þ π; ðA2Þ

with θ0, ϕ0 the final lepton polar and azimuthal angles
measured in the same fixed reference frame. The rotated
vector components are given by16

ðRqÞμ ¼ ðq0; 0; 0; jq⃗jÞ;
ðRkÞμ ¼ ðE; jk⃗j sin θ; 0; jk⃗j cos θÞ;
ðRk0Þμ ¼ ðE0; jk⃗j sin θ; 0; jk⃗j cos θ − jq⃗jÞ;
ðRpÞμ ¼ pμ ¼ ðM; 0; 0; 0Þ;
ðRkÞμπ ¼ ðEπ; R1

jk
j
π; R2

jk
j
π; R3

jk
j
πÞ: ðA3Þ

Now the boost to the CM mass is given by

B ¼

0
BBB@

γ 0 0 −γv
0 1 0 0

0 0 1 0

−γv 0 0 γ

1
CCCA;

v ¼ jq⃗j
q0 þM

;

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ q0 þM
WπN

ðA4Þ

and the fully transformed four-vectors are

q�μ ¼ ðΛqÞμ ¼ ðγðq0 − vjq⃗jÞ; 0; 0; γð−vq0 þ jq⃗jÞÞ;
k�μ ¼ ðΛkÞμ ¼ ðγðE − vjk⃗j cos θÞ; jk⃗j sin θ; 0; γð−vEþ jk⃗j cos θÞÞ;
k0�μ ¼ ðΛk0Þμ ¼ ðγ½E0 − vðjk⃗j cos θ − jq⃗jÞ�; jk⃗j sin θ; 0; γ½−vE0 þ ðjk⃗j cos θ − jq⃗jÞ�Þ;
p�μ ¼ ðΛpÞμ ¼ ðγM; 0; 0;−γvMÞ;

ðΛkπÞμ ¼ ðBRkπÞμ ¼ Bμ
αRα

βk
β
π: ðA5Þ

These are the four-vectors as seen in a reference frame X�Y�Z� that moves along with the CM system of the final
pion-nucleon and that is oriented such that Z�þ ≡ q⃗, Y�þ ≡ k⃗ ∧ k⃗0 and X�þ ≡ ðk⃗ ∧ k⃗0Þ ∧ q⃗.

16We illustrate here the general case. For a CC reaction E ¼ jk⃗j, while for a NC reaction one will further have E0 ¼ jk⃗0j.
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There are a few things that have to be noticed. First, none of the q�; k�; k0� and p� four-vectors depend on ϕ0. Second, their
second spatial components are all zero. And third, for q� and p� also the first spatial components are zero.

APPENDIX B: DEPENDENCE OF THE HADRON TENSOR ON THE PION AZIMUTHAL ANGLE

Performing the rotations of Eq. (27), one finds

W00 ¼ W̃00; W03 ¼ W̃03; W30 ¼ W̃30; W33 ¼ W̃33;

W01 ¼ cosϕ�
πW̃01 − sinϕ�

πW̃02; W10 ¼ cosϕ�
πW̃10 − sinϕ�

πW̃20;

W02 ¼ sinϕ�
πW̃01 þ cosϕ�

πW̃02; W20 ¼ sinϕ�
πW̃10 þ cosϕ�

πW̃20;

W13 ¼ cosϕ�
πW̃13 − sinϕ�

πW̃23; W31 ¼ cosϕ�
πW̃31 − sinϕ�

πW̃32;

W23 ¼ sinϕ�
πW̃13 þ cosϕ�

πW̃23; W32 ¼ sinϕ�
πW̃31 þ cosϕ�

πW̃32;

W11 ¼ 1

2
ððW̃11 þ W̃22Þ − sin 2ϕ�

πðW̃12 þ W̃21Þ þ cos 2ϕ�
πðW̃11 − W̃22ÞÞ;

W22 ¼ 1

2
ððW̃11 þ W̃22Þ þ sin 2ϕ�

πðW̃12 þ W̃21Þ − cos 2ϕ�
πðW̃11 − W̃22ÞÞ;

W12 ¼ 1

2
ððW̃12 − W̃21Þ þ sin 2ϕ�

πðW̃11 − W̃22Þ þ cos 2ϕ�
πðW̃12 þ W̃21ÞÞ;

W21 ¼ 1

2
ð−ðW̃12 − W̃21Þ þ sin 2ϕ�

πðW̃11 − W̃22Þ þ cos 2ϕ�
πðW̃12 þ W̃21ÞÞ: ðB1Þ

APPENDIX C: DIFFERENTIAL CROSS
SECTION AS A SUM OVER VIRTUAL

W CROSS SECTIONS

In the case of pion electroproduction, and in the zero
lepton mass limit, it is customary to write the differential
cross section in terms of the differential cross sections,
dσðγ�N → N0πÞ=dΩ�

πjϕ�
π¼0, for virtual photons of different

polarization. A similar thing can be done for the weak
process, and the differential cross sections can be written in
terms of dσðW�N → N0πÞ=dΩ�

πjϕ�
π¼0 differential cross

sections for pion production by a virtual W boson (virtual
Z in the case of NC processes) of different polarization. For
that purpose let us rewrite the Lμνðk�; k0�ÞWμνðq�; p�; k�πÞ
product in terms of the helicity components of the lepton
and hadron tensors

Lμνðk�; k0�ÞWμνðq�; p�; k�πÞ
¼ grrgssϵ�rμLμνðk�; k0�ÞϵsνϵrαWαβðq�; p�; k�πÞϵ�sβ
¼ grrgssLrsWrs ðC1Þ

where, for r ¼ t;þ1;−1; L, we have introduced the
(orthogonal to q�) polarization vectors (Q2 ¼ −q2)

ϵμt ¼
1ffiffiffiffiffiffi
Q2

p ðq�0; 0; 0; jq⃗�jÞ; ϵμ�1 ¼∓ 1ffiffiffi
2

p ð0; 1;�i; 0Þ;

ϵμL ¼ 1ffiffiffiffiffiffi
Q2

p ðjq⃗�j; 0; 0; q�0Þ; ðC2Þ

the quantities

gtt ¼ gþ1þ1 ¼ g−1−1 ¼ −1;

gLL ¼ 1; ðC3Þ

and we have used the identity grrϵ�rμϵrν ¼ gμν. The
helicity components of the lepton and hadron tensors are
defined as

Lrs ¼ ϵ�rμLμνðk�; k0�Þϵsν;
Wrs ¼ ϵrαWαβðq�; p�; k�πÞϵ�sβ: ðC4Þ

From the fact that for both Lμνðk�; k0�Þ andWαβðq�; p�; k�πÞ
their symmetric parts are real while their antisymmetric
parts are purely imaginary one derives that

Lrs ¼ L�
sr; Wrs ¼ W�

sr: ðC5Þ

The values of the different components are given by17

17For the case of the lepton tensor helicity components,
their calculation is simplified if ones uses that Lrs ¼ ϵ�rμLμνðk�;
k0�Þϵsν ¼ ϵ̃�rμLμνðRk; Rk0Þϵ̃sν, with ϵ̃r ¼ B−1ϵr the corresponding
polarization vectors associated to Rq [ϵ̃μt ¼ 1ffiffiffiffiffi

Q2
p ðq0; 0; 0; jq⃗jÞ;

ϵ̃μ�1 ¼∓ 1ffiffi
2

p ð0; 1;�i; 0Þ; ϵ̃μL ¼ 1ffiffiffiffiffi
Q2

p ðjq⃗j; 0; 0; q0Þ�.
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LLL ¼ 2

Q2
ðjq⃗jjk⃗j − q0jk⃗j cos θÞ2 −Q2 þm2

l

2
;

Ltt ¼ m2
l
Q2 þm2

l

2Q2
;

LtL ¼ LLt ¼ −
m2

l

Q2
ðjq⃗jjk⃗j − q0jk⃗j cos θÞ;

L�1�1 ¼ jk⃗j2sin2θ þQ2 þm2
l

2
∓ ðjq⃗jjk⃗j − q0jk⃗j cos θÞ;

Lþ1−1 ¼ L−1þ1 ¼ −jk⃗j2sin2θ;

L�1L ¼ LL�1 ¼
jk⃗j sin θffiffiffi
2

p ffiffiffiffiffiffi
Q2

p ½−Q2 � 2ðjq⃗jjk⃗j − q0jk⃗j cos θÞ�;

Lt�1 ¼ L�1t ¼∓ m2
l jk⃗j sin θffiffiffi
2

p ffiffiffiffiffiffi
Q2

p ; ðC6Þ

for the leptonic case and

Wtt ¼
1

Q2
½ðq�0Þ2W00 − q�0jq⃗�jðW30 þW03Þ þ jq⃗�j2W33�;

W�1�1 ¼
1

2
½W11 þW22 ∓ iðW12 −W21Þ�;

WLL ¼ 1

Q2
½jq⃗�j2W00 − q�0jq⃗�jðW30 þW03Þ þ ðq�0Þ2W33�;

Wt�1 ¼
−1ffiffiffi
2

p ffiffiffiffiffiffi
Q2

p ½∓ q�0W01 þ iq�0W02 � jq⃗�jW31 − ijq⃗�jW32�;

W�1t ¼
−1ffiffiffi
2

p ffiffiffiffiffiffi
Q2

p ½∓ q�0W10 − iq�0W20 � jq⃗�jW13 þ ijq⃗�jW23�;

WtL ¼ 1

Q2
½q�0jq⃗�jðW00 þW33Þ − ðq�0Þ2W03 − jq⃗�j2W30�;

WLt ¼
1

Q2
½q�0jq⃗�jðW00 þW33Þ − jq⃗�j2W03 − ðq�0Þ2W30�;

W�1∓1 ¼ −
1

2
½W11 −W22 � iðW12 þW21Þ�;

W�1L ¼ −1ffiffiffi
2

p ffiffiffiffiffiffi
Q2

p ½∓ jq⃗�jW10 − ijq⃗�jW20 � q�0W13 þ iq�0W23�;

WL�1 ¼
−1ffiffiffi
2

p ffiffiffiffiffiffi
Q2

p ½∓ jq⃗�jW01 þ ijq⃗�jW02 � q�0W31 − iq�0W32�; ðC7Þ

for the hadronic case.
The different contributions to the grrgssLrsWrs sum can be separated in the following way:
(1) Stt

Stt ¼ LttWtt ¼ m2
l
Q2 þm2

l

2Q2

1

Q2
½ðq�0Þ2W00 − q�0jq⃗�jðW30 þW03Þ þ jq⃗�j2W33�

¼ m2
l
Q2 þm2

l

2Q2

1

Q2
½ðq�0Þ2W̃00 − q�0jq⃗�jðW̃30 þ W̃03Þ þ jq⃗�j2W̃33�; ðC8Þ

that does not depend on ϕ�
π.
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(2) StT þ StT 0

Ltþ1Wtþ1 þ Lþ1tWþ1t þ Lt−1Wt−1 þ L−1tW−1t

¼ −
m2

l jk⃗j sin θ
Q2

½q�0ðW01 þW10Þ − jq⃗�jðW31 þW13Þ�

¼ −
m2

l jk⃗j sin θ
Q2

fcosϕ�
π½q�0ðW̃01 þ W̃10Þ − jq⃗�jðW̃13 þ W̃31Þ� − sinϕ�

π½q�0ðW̃02 þ W̃20Þ − jq⃗�jðW̃23 þ W̃32Þ�g

≡ cosϕ�
πStT þ sinϕ�

πStT 0 ðC9Þ

where T stands for transverse and tT and tT 0 refer to the contributions proportional to cosϕ�
π and sinϕ�

π respectively.
(3) StL

StL ¼ −LtLWtL − LLtWLt

¼ m2
l

ðQ2Þ2 ðjq⃗jjk⃗j − q0jk⃗j cos θÞf2q�0jq⃗�jðW00 þW33Þ − ½ðq�0Þ2 þ jq⃗�j2�ðW30 þW03Þg

¼ m2
l

ðQ2Þ2 ðjq⃗jjk⃗j − q0jk⃗j cos θÞf2q�0jq⃗�jðW̃00 þ W̃33Þ − ½ðq�0Þ2 þ jq⃗�j2�ðW̃30 þ W̃03Þg ðC10Þ

that does not depend on ϕ�
π. L stands for longitudinal.

(4) ST

ST ¼ Lþ1þ1Wþ1þ1 þ L−1−1W−1−1

¼
�
jk⃗j2sin2θ þQ2 þm2

l

2

�
ðW11 þW22Þ þ iðjq⃗jjk⃗j − q0jk⃗j cos θÞðW12 −W21Þ

¼
�
jk⃗j2sin2θ þQ2 þm2

l

2

�
ðW̃11 þ W̃22Þ þ iðjq⃗jjk⃗j − q0jk⃗j cos θÞðW̃12 − W̃21Þ ðC11Þ

which is a pure transverse term that has no ϕ�
π dependence.

(5) SL

SL ¼ LLLWLL

¼
�
2

Q2
ðjq⃗jjk⃗j − q0jk⃗j cos θÞ2 −Q2 þm2

l

2

�
1

Q2
½jq⃗�j2W00 − q�0jq⃗�jðW30 þW03Þ þ ðq�0Þ2W33�

¼
�

2

ðQ2Þ2 ðjq⃗jjk⃗j − q0jk⃗j cos θÞ2 −Q2 þm2
l

2Q2

�
½jq⃗�j2W̃00 − q�0jq⃗�jðW̃30 þ W̃03Þ þ ðq�0Þ2W̃33� ðC12Þ

which is purely longitudinal and has no ϕ�
π dependence.

(6) STT þ STT 0

Lþ1−1Wþ1−1 þ L−1þ1W−1þ1 ¼ ðjk⃗j sin θÞ2ðW11 −W22Þ
¼ ðjk⃗j sin θÞ2½cos 2ϕ�

πðW̃11 − W̃22Þ − sin 2ϕ�
πðW̃12 þ W̃21Þ�

≡ cos 2ϕ�
πSTT þ sin 2ϕ�

πSTT 0 : ðC13Þ

This is also purely transverse but it has a term in cos 2ϕ�
π (TT) and one in sin 2ϕ�

π (TT 0).
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(7) SLT þ SLT0

− Lþ1LWþ1L − LLþ1WLþ1 − L−1LW−1L − LL−1WL−1

¼ −ijk⃗j sin θ½q�0ðW23 −W32Þ − jq⃗�jðW20 −W02Þ�

þ 2jk⃗j sin θ
Q2

ðjq⃗jjk⃗j − q0jk⃗j cos θÞ½q�0ðW13 þW31Þ − jq⃗�jðW10 þW01Þ�

¼ sinϕ�
π

�
−ijk⃗j sin θ½q�0ðW̃13 − W̃31Þ − jq⃗�jðW̃10 − W̃01Þ�

−
2jk⃗j sin θ

Q2
ðjq⃗jjk⃗j − q0jk⃗j cos θÞ½q�0ðW̃23 þ W̃32Þ − jq⃗�jðW̃20 þ W̃02Þ�

�

þ cosϕ�
π

�
2jk⃗j sin θ

Q2
ðjq⃗jjk⃗j − q0jk⃗j cos θÞ½q�0ðW̃13 þ W̃31Þ − jq⃗�jðW̃10 þ W̃01Þ�

− ijk⃗j sin θ½q�0ðW̃23 − W̃32Þ − jq⃗�jðW̃20 − W̃02Þ�
�

≡ cosϕ�
πSLT þ sinϕ�

πSLT 0 ðC14Þ

which comes from longitudinal-transverse interference and has a term in cosϕ�
π (LT) and one in sinϕ�

π (LT 0).
Thus,

grrgssLrsWrs ¼ ðStt þ ST þ SL þ StLÞ þ ðStT þ SLTÞ cosϕ�
π þ ðStT 0 þ SLT 0 Þ sinϕ�

π þ STT cos 2ϕ�
π þ STT 0 sin 2ϕ�

π:

ðC15Þ

1. Zero lepton mass limit

In the zero lepton mass limit, the lepton current is conserved and thus we will have Stt ¼ StT ¼ StT 0 ¼ StL ¼ 0,
and then

grrgssLrsWrs ¼ml¼0ðST þ SLÞ þ SLT cosϕ�
π þ SLT 0 sinϕ�

π þ STT cos 2ϕ�
π þ STT 0 sin 2ϕ�

π: ðC16Þ

In that case

q0 ¼ jk⃗j − jk⃗0j ⇒ Q2 ¼ 4jk⃗jjk⃗0jsin2θ0=2; jk⃗j þ jk⃗0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ jq⃗j2tan2θ0=2

p
tan θ0=2

;

ðjq⃗jjk⃗j − q0jk⃗j cos θÞ ¼ Q2

2jq⃗j tan θ0=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ jq⃗j2tan2θ0=2

q
; ðC17Þ

and introducing the quantity

ε ¼ Q2

Q2 þ 2jq⃗j2tan2θ0=2 ⇒
ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
¼

ffiffiffi
2

p jq⃗j tan θ0=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2jq⃗j2tan2θ0=2

p ¼ jq⃗j tan θ0=2
ffiffiffiffiffi
2ε

pffiffiffiffiffiffi
Q2

p ðC18Þ

one has that

jk⃗j sin θ ¼ Q2

1 − ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1 − εÞ

p 1ffiffiffi
2

p ffiffiffiffiffiffi
Q2

p ; jk⃗j2sin2θ þQ2

2
¼ Q2

1 − ε

1

2
;

2

Q2
ðjq⃗jjk⃗j − q0jk⃗j cos θÞ2 −Q2

2
¼ Q2

1 − ε
ε;

2jk⃗j sin θ
Q2

ðjq⃗jjk⃗j − q0jk⃗j cos θÞ ¼ Q2

1 − ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1þ εÞ

p 1ffiffiffi
2

p ffiffiffiffiffiffi
Q2

p : ðC19Þ
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With the above information we can rewrite

grrgssLrsWrs ¼ml¼0 Q2

1 − ε

n�
ŜT1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
ŜT2 þ εŜL

	
þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εð1þ εÞ
p

ŜLT1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
ŜLT2

	
cosϕ�

π

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εð1 − εÞ
p

ŜLT 01 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
ŜLT 02

	
sinϕ�

π þ εŜTT cos 2ϕ�
π þ εŜTT 0 sin 2ϕ�

π

o
; ðC20Þ

where

ŜT1 ¼
1

2
ðW̃11 þ W̃22Þ ¼ 1

2
ðW̃þ1þ1 þ W̃−1−1Þ;

ŜT2 ¼
i
2
ðW̃12 − W̃21Þ ¼ −

1

2
ðW̃þ1þ1 − W̃−1−1Þ;

ŜTT ¼ 1

2
ðW̃11 − W̃22Þ ¼ −

1

2
ðW̃þ1−1 þ W̃−1þ1Þ;

ŜTT 0 ¼ −
1

2
ðW̃12 þ W̃21Þ ¼ −

i
2
ðW̃þ1−1 − W̃−1þ1Þ;

ŜL ¼ 1

Q2
½jq⃗�j2W̃00 − q�0jq⃗�jðW̃30 þ W̃03Þ þ ðq�0Þ2W̃33� ¼ W̃LL;

ŜLT1 ¼
1

2
ffiffiffiffiffiffi
Q2

p ½q�0ðW̃13 þ W̃31Þ − jq⃗�jðW̃10 þ W̃01Þ� ¼ −
1

2
ffiffiffi
2

p ðW̃þ1L þ W̃Lþ1 − W̃−1L − W̃L−1Þ;

ŜLT2 ¼ −
i

2
ffiffiffiffiffiffi
Q2

p ½q�0ðW̃23 − W̃32Þ − jq⃗�jðW̃20 − W̃02Þ� ¼ 1

2
ffiffiffi
2

p ðW̃þ1L þ W̃Lþ1 þ W̃−1L þ W̃L−1Þ;

ŜLT 01 ¼ −
i

2
ffiffiffiffiffiffi
Q2

p ½q�0ðW̃13 − W̃31Þ − jq⃗�jðW̃10 − W̃01Þ� ¼ −
i

2
ffiffiffi
2

p ðW̃−1L − W̃L−1 − W̃þ1L þ W̃Lþ1Þ;

ŜLT 02 ¼ −
1

2
ffiffiffiffiffiffi
Q2

p ½q�0ðW̃23 þ W̃32Þ − jq⃗�jðW̃20 þ W̃02Þ� ¼ −
i

2
ffiffiffi
2

p ðW̃−1L − W̃L−1 þ W̃þ1L − W̃Lþ1Þ; ðC21Þ

and in analogy to Eq. (C4), W̃rs ¼ ϵrμW̃μνϵ�sν. Finally, the differential cross section can be written as18

dσCC�
dΩ0dE0dΩ�

π
¼ Γ

�
dσT1
dΩ�

π






ϕ�
π¼0

�
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p dσT2
dΩ�

π






ϕ�
π¼0

þ ε
dσL
dΩ�

π






ϕ�
π¼0

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εð1þ εÞ
p dσLT1

dΩ�
π






ϕ�
π¼0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p dσLT2
dΩ�

π






ϕ�
π¼0

�
cosϕ�

π

þ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p dσLT 01

dΩ�
π






ϕ�
π¼0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p dσLT 02

dΩ�
π






ϕ�
π¼0

�
sinϕ�

π

þ ε
dσTT
dΩ�

π






ϕ�
π¼0

cos 2ϕ�
π þ ε

dσTT 0

dΩ�
π






ϕ�
π¼0

sin 2ϕ�
π

�
; ðC22Þ

where

Γ ¼ GF

2
ffiffiffi
2

p
π3M2

W

jk⃗0j
jk⃗j

Q2

1 − ε
kγ ðC23Þ

with MW the W boson mass and

18CC� corresponds to CC neutrino/antineutrino-induced reactions.
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kγ ¼
W2

πN −M2

2M
; ðC24Þ

and where

dσb
dΩ�

π






ϕ�
π¼0

¼ πGFM2
Wffiffiffi

2
p 1

kγ

Z jk⃗�πj2djk⃗�πj
E�
π

Ŝb;

b ¼ T1; T2; L; TT; TT 0; LT1; LT2; LT 01; LT 02;

ðC25Þ
correspond to the W�N → πN0 differential cross sections
for a virtualW boson for given polarization states evaluated
at ϕ�

π ¼ 0. We have used the factor kγ, which has been
chosen to be the same as the one that is used in the case of
pion electroproduction (see below), and which represents
the laboratory energy of a real photon that would give
rise to the sameWπN final pion-nucleon invariant mass. The
changes appropriate for the case of NC processes are
straightforward to make.
Note that Eq. (C22) can also be obtained from the

expressions given in Eqs. (30) and (31), taking advantage
of the fact that in the zero lepton mass limit, the nonzero
components of the lepton tensor Lμνðk�; k0�Þ read

L00 ¼ jq⃗�j2 ε

1 − ε
;

L11 ¼ Q2

2

1þ ε

1 − ε
;

L22 ¼ Q2

2
;

L33 ¼ ðq�0Þ2 ε

1 − ε
;

L03 ¼ q�0jq⃗�j ε

1 − ε
;

L31 ¼ q�0
ffiffiffiffiffiffi
Q2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞp
1 − ε

;

L01 ¼ jq⃗�j
ffiffiffiffiffiffi
Q2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞp
1 − ε

L12 ¼ i
Q2

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ ε

1 − ε

r
;

L32 ¼ i
q�0

ffiffiffiffiffiffi
Q2

p
2

ffiffiffiffiffiffiffiffiffiffi
2ε

1 − ε

r
;

L02 ¼ i
jq⃗�j

ffiffiffiffiffiffi
Q2

p
2

ffiffiffiffiffiffiffiffiffiffi
2ε

1 − ε

r
: ðC26Þ

APPENDIX D: PION ELECTROPRODUCTION

For the purely electromagnetic case, current conserva-
tion implies Sem

tt ¼ Sem
tT ¼ Sem

tT 0 ¼ Sem
tL ¼ 0. Also, since for

that case one has that W̃a2
em ¼ W̃2a

em ¼ 0 for a ¼ 0, 1, 3, then
also Sem

TT 0 ¼ 0 and the only possible ϕ�
π dependencies are

1; cosϕ�
π; sinϕ�

π and cos 2ϕ�
π . One would then get

grrgssLem
rs Wem

rs ¼ ðSem
T þ Sem

L Þ þ Sem
LT cosϕ

�
π

þ Sem
LT0 sinϕ�

π þ Sem
TT cos 2ϕ

�
π: ðD1Þ

Sem
LT 0 appears only in the presence of lepton polarization.

This is the reason why in this case the corresponding
term is not PV despite the presence of sinϕ�

π: spin 1=2
polarization vectors are in fact pseudovectors19 and
their transformation under parity involves an extra
minus sign that compensates the change of sign of
sinϕ�

π under parity.
If we take the case in which both electrons are ultra-

relativistic and the initial one has well-defined helicity h,
the lepton tensor is20

Lem
μν ¼ 1

4
ðkμk0ν þ kνk0μ − gμνk · k0 − ihϵμναβk0αkβÞ: ðD2Þ

The factor 1=4 appears because the helicity projector is
ð1þ hγ5Þ=2, and therefore in addition to the differences
between coupling constants that will be discussed below,
there is an extra factor 1=2 between the νll−Wþ and the
ee0γ vertexes, when the initial electron is polarized. Hence,
we find

grrgssLem
rs Wem

rs

¼ 1

4

Q2

1 − ε

n
ðŜem

T þ εŜem
L Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
Ŝem
LT cosϕ�

π

þ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
Ŝem
LT0 sinϕ�

π þ εŜem
TT cos 2ϕ�

π

o
; ðD3Þ

and the differential cross section for the polarized initial
electron reads

dσem
dΩ0dE0dΩ�

π

¼ Γem

n
σT þ εσL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
σLT cosϕ�

π

þ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
σLT 0 sinϕ�

π þ εσTT cos 2ϕ�
π

o
; ðD4Þ

where

Γem ¼ α

2π2
jk⃗0j
jk⃗j

1

Q2

1

1 − ε
kγ ðD5Þ

and

19For instance, in the case of an ultrarelativistic lepton
with well-defined helicity, the polarization vector is given
by h kμ

ml
with h the helicity that changes sign under parity.

20Note that for h ¼∓ 1, Lem
μν coincides, up to the factor 1=4,

with the leptonic tensor given in Eq. (12) for the CC neutrino/
antineutrino case.
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σb ≡ dσemb
dΩ�

π






ϕ�
π¼0

¼ 4π2α

kγ

Z jk⃗�πj2djk⃗�πj
E�
π

Ŝemb ;

b ¼ T; L; TT; LT; LT 0 ðD6Þ

is the γ�N → πN0 differential cross section for a virtual
photon evaluated at ϕ�

π ¼ 0. The above expressions are
easily obtained from Eqs. (C22)–(C25), replacing21�

GFM2
Wffiffiffi

2
p

�1
2 ¼ g

2
ffiffiffi
2

p → e ¼
ffiffiffiffiffiffiffiffi
4πα

p

M2
W → Q2; ðD7Þ

and including the factor 1=4 of Eq. (D3) in the definition
of Γem in Eq. (D5), while the Ŝemb terms are given in
Eqs. (C21), but using the electromagnetic hadron tensor
associated to the gauge invariant electromagnetic vector
current. Note that the above replacements account for the
change in the couplings and propagators between CC and
electromagnetic processes. The different contributions in
Eq. (D4) read

σT ¼ σ0
H̃11

em þ H̃22
em

2
;

σL ¼ σ0
Q2

ðq�0Þ2 H̃
33
em;

σTT ¼ σ0
H̃11

em − H̃22
em

2

σLT ¼ −σ0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q2

ðq�0Þ2

s
ReH̃13

em;

σLT 0 ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q2

ðq�0Þ2

s
ImH̃13

em; ðD8Þ

where

σ0 ¼
α

16πMkγ

jk⃗�πj0
WπN

ðD9Þ

with jk⃗�πj0 defined after Eq. (22). Further, the ϕ�
π ¼ 0

electromagnetic nucleon tensor is given by

H̃μν
em ¼ Hμν

emðp�; p0� ¼ q� þ p� − R̂−1k�π; R̂−1k�πÞ

¼ 1

2

X
s;s0

hN0ðp0�; s0ÞπðR̂−1k�πÞjjμemð0ÞjNðp�; sÞi

× hN0ðp0�; s0ÞπðR̂−1k�πÞjjνemð0ÞjNðp�; sÞi�;
ðD10Þ

with jμemð0Þ the electromagnetic current operator (note that
we have already factorized out the electron charge e in σ0)
and we have made use of current conservation, which
implies that

q�0H̃
0ν
em ¼ jq⃗�jH̃3ν

em; q�0H̃
μ0
em ¼ jq⃗�jH̃μ3

em: ðD11Þ

Extracting the Q2=ðq�0Þ2 dependence in the above
expressions and defining εL ¼ εQ2=ðq�0Þ2, it is also
common to write [47]

dσem
dΩ0dE0dΩ�

π
¼ Γem

n
σT þ εLσ̂Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εLð1þ εÞ

p
σ̂LT cosϕ�

π

þh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εLð1− εÞ

p
σ̂LT 0 sinϕ�

π þ εσTT cos2ϕ�
π

o
;

with σ̂L; σ̂LT and σ̂LT0 modified accordingly as

σ̂L ¼ σ0H̃
33
em;

σ̂LT ¼ −σ0ReH̃13
em;

σ̂LT0 ¼ σ0ImH̃13
em: ðD12Þ

In this work we have used, however, the expression in
Eq. (D4) with the definitions given in Eq. (D8).
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