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We study the holographic dynamic anti-de Sitter/QCD description of a SUðNcÞ non-Abelian gauge
theory with Nf fermions in the fundamental representation which also have Nambu–Jona-Lasinio (NJL)
interactions included using Witten’s multitrace prescription. In particular, here, we study aspects of the
dynamics in and near the conformal window of the gauge theory as described by the two-loop running of
the gauge theory. If the number of flavors is such that the IR fixed point lies with the anomalous dimension,
γ, of the quark bilinear above one, then chiral symmetry breaking occurs. Here, we display a spiral in the
quark mass/condensate plane describing a sequence of unstable excited states of the vacuum. An attractive
NJL operator enhances the vacuum condensate, but only an infinitely repulsive NJL interaction switches off
the condensation completely. When Nf changes so that the IR fixed point falls below 1 (the conformal
window region), there is a numerical discontinuity in the phase structure with condensation only occurring
with a supercritical NJL interaction. In the conformal window, the running of γ to a nontrivial IR fixed point
is similar to walking dynamics, although chiral symmetry breaking is not triggered. In the “ideal walking”
scenario, chiral symmetry is broken in that IR conformal regime by the NJL interaction, but the change in γ
enhances the UV condensate. That enhancement of the condensate is shown in an analytic model with a
sharp change in γ, and we show equivalent numerical results for the case of the two-loop running. In the
model, the σ becomes massless as the gauge theory running becomes near conformal, and we show it is
possible to realize a light Higgs-like state in ideal walking models.
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I. INTRODUCTION

Recently, a holographic [1] description of the gauged
Nambu–Jona-Lasino (NJL) model [2,3] was developed [4].
The gauge theory action is

L ¼ 1

4g2YM
FμνFμν þ iq̄=Dqþ g2

Λ2
ðq̄LqRq̄RqL þ H:c:Þ; ð1Þ

where gYM is the Yang-Mills coupling, g is the NJL coupling
at the UV scale Λ, and Nf and Nc can take any values.
Our analysis of the gauge theory is based on the dynamic

anti-de Sitter (AdS)/QCD model [5–7], which is motivated
by top down holographic descriptions of chiral symmetry
breaking [8,9]. The Dirac-Born-Infeld action, associated
with probe flavor branes in these models, essentially
describes a scalar field in AdS5 space dual to the quark
condensate. The dynamics of the gauge theory enters

through the background metric and fields but reduces to
an effective running anomalous dimension of the quark
mass/condensate, γ, which in AdS is a radially dependent
mass squared for the scalar [10,11]. The models share the
insight that chiral symmetry breaking is triggered if γ ¼ 1
when the Breitenlohner-Freedman (BF) bound is broken in
AdS5 [12]. It is irresistible to take this very simple model of
the quark dynamics and replace the running γ with a
sensible guess for another theory where a full holographic
description of the glue background does not exist (note
such a background might include backreaction of the
quarks themselves). The dynamic AdS/QCD model is such
a model with the perturbative running for an SU(Nc) gauge
theory with Nf quarks inserted. If one simply takes the
two-loop expressions for γ for Nc ¼ 3 and Nf ¼ 2 naively
extended to the scale where γ ¼ 1, a very sensible descrip-
tion of QCD is obtained (in spite of the very simplified
choice of operators involved in the dynamics and the
neglect of any stringy physics of the dual) as we shown
in Ref. [4].
The NJL four-quark interaction may be included using

Witten’s double trace prescription [13], and it was shown
how the basic NJL second order transition can be achieved
holographically in nonsupersymmetric duals in Ref. [14].
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In Ref. [4], we studied the gauged NJL model for the QCD
case Nc ¼ 3 and Nf ¼ 2—here, the gauge dynamics runs γ
to an IR pole and breaks chiral symmetry itself. We
explored the enhancement of the symmetry breaking by
the NJL interaction. We extended the analysis in Ref. [15]
to look at phenomenological models of electroweak sym-
metry breaking such as technicolor, extended technicolor,
and top condensation.
This is the holographic description of the gauge theory

we will again use here. Now, though, we will study theories
with a nontrivial IR fixed point value for γ, which exist
among the two-loop running results for different choices
of Nc and Nf [16]. Of course, if the fixed point is
nonperturbative, then the two-loop running can only be
considered as a parametrization of the running rather than a
precise computation. In this paper, we will study the
holographic description of these theories in more detail
where there is considerable interesting structure.
For Nf < 2.6Nc the two-loop running has an IR pole,

and these are the QCD-like theories we have explored in
Ref. [4]. As Nf grows above 2.6Nc, though, an IR fixed
point develops with the fixed point value of γ ¼ γ� falling
from infinity. When the fixed point value of γ� lies above 1,
there is still chiral symmetry breaking. Here, there is
interesting structure in the mass vs quark condensate
plane—a spiral structure indicating the presence of excited
states of the vacuum. These structures have previously
been observed in D3/D7 models of magnetic field induced
chiral symmetry breaking [9], the alternative dual of the
conformal window of Refs. [11,17], in the condensed
matter models of Ref. [18], and more recently in holo-
graphic superconductor models [19]. Analysis of the
effective potential shows these states are higher energy
excitations of the true vacuum and indeed the σ meson is
tachyonic in all but the lowest energy vacuum. They
correspond to condensation of radially excited states of
the σ. These excited states have also been observed to play
a role in Berezinskii-Kosterlitz-Thouless (BKT) transitions
where the instability to chiral symmetry breaking occurs
due to tuning the AdS scalar mass through the
Breitenlohner-Freedman bound, when the tachyons for
each of these vacua become degenerate so the phase
transition is not mean field [11,18]. Their appearance in
so many models, including those with symmetry breaking
but no BKT transition, suggests they are a robust prediction
of holographic models of symmetry breaking. Here, for us,
they play a small role in understanding the vacua of the
theory with a repulsive NJL term. In the presence of an
attractive NJL operator, the condensation in the true
vacuum is enhanced. We explore whether the excited states
of the theory give rise to metastable vacua in the presence of
the NJL term, although we do not find such states. A
repulsive NJL term in the true vacuum reduces
the gap, but only an infinitely repulsive term completely
switches condensation off—we discuss this physics also at

the level of the effective potential. A brief analysis of
similar ideas in the alternative holographic model of gauge
dynamics in Ref. [11] can be found in Ref. [17].
As Nf approaches ∼4Nc from below, the fixed point

value falls very close to γ� ¼ 1, and we enter the so-called
“walking” gauge theory regime [20]. As one reduces Nf

(which it is helpful to think of as a continuous parameter, as
it is at large Nc), the scale at which γ ¼ 1 is crossed falls
sharply, relative to some UV scale where the coupling is
fixed across comparator theories. Formally, there is a BKT
transition as γ� falls to precisely 1, and we see the spiral in
the mass-condensate plane contract into the origin of the
plot. Here, at the low chiral symmetry breaking scale, the
quark condensate which has dimension close to 2 goes as
hq̄qi ∼ f2π , on dimensional grounds, where we use the pion
decay constant, fπ , to set the scale of the chiral symmetry
breaking dynamics. As one runs to the UV, the dimension
of the condensate transitions at some intermediate scale,
given by approximately the one-loop pole scale Λ1, and the
condensate transforms to the dimension 3 hq̄qi ∼ f2πΛ1. By
arbitrarily tuning Nf, one can arbitrarily separate the scales
fπ and Λ1 so that in the UV hq̄qi=f3π → ∞. This behavior
was first studied because of a possible role in suppressing
flavor changing neutral currents in technicolor dynamics—
increasing the condensate moves extended technicolor
dynamics off to a higher scale. It is, though, also an
interesting behavior to study in the space of non-Abelian
gauge theories on its own.
In these walking theories, it has been argued that the

effective potential may be very flat as a result of the near
conformality of the gauge theory and thus the mass of the
Higgs-like σ particle may be parametrically light relative to
fπ . Again, there is a motivation in describing the observed
visible Higgs but also an intrinsic field theory property of
interest here. Both the growth of the quark condensate and
the light σ have been observed for the walking case in the
holographic model we will study here [5]. We will build on
this study here with the properties of a slightly different
scenario: “ideal walking” [21,22].
A problem with walking is that Nf actually takes integer

values and so, without going to the extremes of theories
with a very large number of colors, Nc, it is unlikely any
real theory is sufficiently fine-tuned to give exactly γ� ¼ 1.
Ideal walking theories have been proposed as an alternative
setup with some of the same gains. Here, one studies a
gauge theory, at larger Nf that lives in the so-called
conformal window [23] (i.e., Nf ≥ 4Nc and less than
Nf ¼ 11Nc=2 where the fixed point γ� falls to zero and
asymptotic freedom is lost) and has a true IR conformal
fixed point. It never becomes strong enough to trigger
chiral symmetry breaking itself. Instead, a strongly coupled
NJL interaction at a scale greater than Λ1 is used to trigger
chiral symmetry breaking. Here, the fine-tuning to set fπ
below Λ1 is provided by the NJL coupling rather than Nf.
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Now, if at the IR fixed point the anomalous dimension is

0 < γ� < 1, then hq̄qi ∼ f3−γ�π . In the UV, it becomes the
dimension-3 object hq̄qi ∼ f3−γ�π Λγ�

1 . Note here that as one
tunes fπ ≪ Λ1 again we have hq̄qi=f3π → ∞. This will be
the case for any theory in the conformal window no matter
the size of γ�. This is almost certainly achievable with
discrete Nf at small Nc.
We begin the study of this regime by determining the

phase structure of the model at fixed Nc in the Nf against
the NJL coupling, g2, plane. For Nf < 4Nc, there is always
chiral symmetry breaking driven by the gauge theory.
Above this value of Nf, where a BKT transition occurs
in the massless theory with changing Nf, our analysis
suggests there is a numerical discontinuity in the plane with
chiral symmetry breaking then only occurring for g2 greater
than a finite critical coupling, rather than a smooth
transition with the critical g2 value growing from zero.
There may be an exponential dependence of the condensate
against NJL coupling, but we have not seen numerical
evidence for that.
Next, we explore the enhancement of the UV condensate

(or equally the suppression of any UV mass relative to its
IR value which is also expected). First, we study an
idealized running where γ transitions from zero to a fixed
point value at a sharp scale, Λ1. We simply match the form
of the solution on the two sides of the discontinuity
analytically and show that the expected increase in the
condensate (decrease in the mass) is realized. We then
demonstrate the same phenomena occurring numerically
with the two-loop gauge theory running (where the
intermediate scale is less clearly defined)—here, it is easiest
to follow the leading term in the holographic solution (the
mass), but the behavior is clearly reproduced.
Finally, one might again wonder whether a light σ

particle could emerge in this ideal walking setting to
provide a different possibility for electroweak physics
and its light Higgs. Here, again, in our model, we can
produce an analytic result, showing that when the running
of γ is slow the mass of the σ indeed falls toward zero. If
one places the scale at which the NJL model causes
symmetry breaking in the very conformal IR regime, then
its mass can be very small (below that needed to describe
the Higgs). We show that for Nf ¼ 12 choices of the IR
symmetry breaking scale and the UV cut off scale exist for
which mσ=fπ ≃ 0.5 and hence might form the basis of an
electroweak model.
We will first introduce dynamic AdS/QCD, next give

Witten’s prescription for the four fermion operators, and
then present our computations for the model in each Nf

range. Since the two-loop runnings are not nonperturba-
tively trustworthy, we again stress that we take them as
simply parametrizations of functions for γ that run loga-
rithmically from zero in the UV to nontrivial fixed points
in the IR. The precise form is not trustable, so we will just

present results for Nc ¼ 3 as a function of (potentially
fractional) Nf since these include runnings from UV
asymptotic freedom to all values of the IR fixed point
and are thus representative of all Nc.

II. DYNAMIC ADS/QCD

The dynamic AdS/CFT model [5,6] is a variant of the
original AdS/QCD model [24] that includes some key
aspects of top down modeling such as in the D3/D7 system.
The action is

S ¼ −
Z

d4xdρTrρ3
�
1

r2
jDXj2 þ Δm2ðrÞ

ρ2
jXj2

þ 1

2κ2
ðF2

V þ F2
AÞ
�
: ð2Þ

Here, X is a field dual to the quark condensate q̄q, and the
vector and axial vector fields describe the operators q̄γμq
and q̄γμγ5q. The theory lives in a geometry,

ds2 ¼ r2dx23þ1 þ
1

r2
dρ2; r2 ¼ ρ2 þ jXj2: ð3Þ

Δm2 is a renormalization group scale/radially dependent
mass term. X, the field that describes the quark mass and
condensate, is included in the definition of r in the metric. If
we simply write Δm2ðρÞ, then if this term trips us through
the BF bound in some range of small ρ, then the instability
would exist however large jXj ¼ L were to grow. If we
instead promote ρ in this term to r, then at sufficiently large
L, the instability is no longer present, and a full solution for
L is possible. In addition, when one looks at fluctuations
about the background embedding, those states only know
about the nontrivial embedding through the factors of L in
the metric—these terms communicate the existence of a gap
to the bound states. We are being inconsistent about higher
order terms in X, but the key point is to keep the X2 term that
triggers the BF bound violation, and the brutality of our other
assumptions should be judged by the success of the model.
We will fix the form of Δm2 using the two-loop running

of the gauge coupling in QCDwithNf flavors transforming
in the fundamental representation. This takes the form

μ
dα
dμ

¼ −b0α2 − b1α3; ð4Þ

where

b0 ¼
1

6π
ð11Nc − 2NFÞ; ð5Þ

and
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b1 ¼
1

24π2

�
34N2

c − 10NcNf − 3
N2

c − 1

Nc
NF

�
: ð6Þ

Asymptotic freedom is present, provided Nf < 11=2Nc.
There is an IR fixed point with value

α� ¼ −b0=b1; ð7Þ

which rises to infinity at Nf ∼ 2.6Nc. Between this lower
value and the higher value where asymptotic freedom is
lost, the theory has a smoothly decreasing IR fixed point.
An example running is shown in Fig. 1.
We will identify the renormalization group scale μ

with the AdS radial parameter r in our model. Working
perturbatively from the AdS result m2 ¼ ΔðΔ − 4Þ [1], we
have

Δm2 ¼ −2γ ¼ −
3ðN2

c − 1Þ
2Ncπ

α: ð8Þ

The BF bound is violated when Nf ≃ 4Nc and theories at
lower Nf break chiral symmetry. The conformal window is
the region between this transition and the loss of asymptotic
freedom where the IR is an interacting fixed point.
The vacuum structure of the theory is found by setting all

fields except jXj ¼ L to zero. The Euler-Lagrange equation
for the determination of L, in the case of a constant Δm2, is

∂ρ½ρ3∂ρL� − ρΔm2L ¼ 0: ð9Þ

We can now ansatz the r-dependent Δm2 above to describe
the running of the dimension of q̄q (we do this at the level
of the equation of motion). To find numerical solutions,
we need an IR boundary condition. In top down models,
L0ð0Þ ¼ 0 is the condition for a regular solution. Since we
do not wish to describe IR physics below the quark mass
(where the quark contribution to the running coupling will
decouple), we use a very similar on-shell condition—we

shoot from points Lðρ ¼ mIRÞ ¼ mIR with L0ðmIRÞ ¼ 0. In
the UV, the solution (neglecting Δm2 which falls close to
zero) takes the form

L ¼ mUV þ cUV
ρ2

; ð10Þ

where mUV is interpreted as the UV quark mass and cUV is
interpreted as the quark condensate. Formally, to find the
expectation value of the condensate, one must substitute the
solutions back into the action and differentiate with respect
to mUV [7]. There is a divergent piece, but cUV controls
the dynamically determined condensate. Note that away
from the very far UV locally the solution takes the
form L ¼ m=ργðρÞ þ c=ρ2−γðρÞ.
The spectrum of the theory is found by looking at

linearized fluctuations of the fields about the vacuum where
fields generically take the form fðρÞeip:x, p2 ¼ −M2.
A Sturm-Louville equation results for fðρÞ leading to a
discrete spectrum. By substituting the wave functions back
into the action and integrating over ρ, the decay constants
can also be determined. The normalizations of the fluctua-
tions are determined by matching to the gauge theory
expectations for the VV, AA, and SS correlators in the UV
of the theory. This full procedure is described in detail in
Ref. [5]. In particular, the scalar mode obeys

∂ρðρ3S0Þ − Δm2ρS − ρL0S
∂Δm2

∂L þM2
ρ3

ðL2
0 þ ρ2Þ2 S ¼ 0;

ð11Þ

with S the scalar field, L0 the base background solution,
and M the mass of the scalar mode. We now look for
solutions with the boundary conditions SðΛUVÞ ¼ 1=ρ2 and
S0ðmIRÞ ¼ 0. We find that these solutions only exist for a
discrete set of values for M, corresponding to the spectrum
of scalar mesons—the σ; σ�; σ��….
The vector mass is calculated in a very similar way using

the equation of motion

∂ρðρ3V 0Þ þM2
ρ3

ðL2
0 þ ρ2Þ2 V ¼ 0 ð12Þ

with M the vector mass now and V the vector field. The
mass is then obtained by looking for solutions with the
same boundary conditions as the scalar.
The pion decay constant fπ that we will use to normalize

our results is given by the formula

f2π ¼
1

κ2

Z
d∂ρ½ρ3∂ρKAðq2 ¼ 0Þ�KAðq2 ¼ 0Þ; ð13Þ

where KAðq2 ¼ 0Þ is an externally sourced, massless axial
field on the branes.

0 50 100 150 200
0.00

0.05

0.10

0.15

0.20

0.25

0.30

log( )

FIG. 1. An example plot of the running of γ, calculated from
two loops, from the IR fixed point to the asymptotically free UV.
γ� is the value in the IR. Here, we have Nc ¼ 3 and Nf ¼ 13.
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With Nc and Nf fixed, the free parameters in the theory
are the overall scale Λ1, the UV quark mass, and the five-
dimensional coupling κ. For example, if one wishes to fit to
Nc ¼ 3, Nf ¼ 2QCD, one can fixΛ1 by scaling to give the
correct mρ; the remaining parameter κ can then be fitted to
the data. In Ref. [4], we found a best fit to QCD data with
κ ¼ 8.7 but it would be expected to vary with Nf. Here, we
will work with κ ¼ 1 as a reference value—fπ grows as κ
grows, but the phenomena we report on are qualitatively
the same.

III. NJL INTERACTIONS

Consider a free fermion with a four fermion interaction
g2=Λ2q̄LqRq̄RqL. In the standard NJL approximation, there
are two contributions to the effective potential [3]. First,
there is the one-loop Coleman-Weinberg potential [25] for
the free quarks

Veff ¼ −
Z

Λ

0

d4k
ð2πÞ4 Tr logðk

2 þm2Þ: ð14Þ

This falls with growing m and is unbounded, although
normally one treatsm as a fixed parameter so one would not
seek to minimize this potential. When we add the four
fermion term, we allow m to become dynamically deter-
mined, but there is the second term from the four fermion
interaction evaluated on m ¼ ðg2=Λ2Þhq̄qi:

ΔVeff ¼
Λ2m2

g2
: ð15Þ

This makes the effective potential bounded and ensures
a minimum. For small g, the extra term is large, and the
minimum is at m ¼ 0. When g rises above 2π, the
minimum lies away from m ¼ 0. The phase transition is
second order.
In Witten’s prescription for “multitrace” operators [13],

we add the equivalent of the extra potential term (15) as a
boundary term at the UV cutoff Λ. For large Λ, where
L ≃m, the term we add is

ΔSUV ¼ L2Λ2

g2
: ð16Þ

The effective potential from the background model is
computed by evaluating minus the action (2) evaluated
on the vacuum solution as a function of the UV mass term.
We extract the values of m and c in the UV by fitting to the
form (10) near the cutoff.
We can also understand Witten’s prescription in terms of

a change to the UV boundary condition on the solution of
the embedding equation. Varying the action gives

δS¼0¼−
Z

dρ

�
∂ρ

∂L
∂L0−

∂L
∂L

�
δLþ ∂L

∂L0δL
���
UV;IR

: ð17Þ

Normally, in the UV, one would require the mass to be fixed
and δL ¼ 0 to satisfy the boundary condition, but now we
allow L to change and instead impose

0 ¼ ∂L
∂L0 þ

2LΛ2
UV

g2
; ð18Þ

where we have included the variation of the surface term.
For our action, ∂L

∂L0 ¼ ρ3∂ρL. Assuming (10), we find that
we need

m ≃
g2

Λ2
c: ð19Þ

This condition is simpler to apply to the solutions of the
Euler-Lagrange equation than constructing and minimizing
the effective potential but equivalent. Although we note
that in the presence of a repulsive NJL interaction, which
places a minus sign in the potential term in (16),
the condition finds a local maximum of the effective
potential—we discuss this below in more detail.

IV. CHIRALLY BROKEN PHASE:
2.6Nc < Nf < 4Nc

In this range ofNf, the IR fixed point value of γ is greater
than 1, and the gauge theory generates chiral symmetry
breaking on its own. To study this, we seek solutions of (9)
with the IR boundary conditions described. All the
dynamical scales are set in terms of the scale at which
γ ¼ 1 (which here we set to be at r ¼ 11) and the UV value
of L, which is the quark mass. From the UV form of the
solution (10), we extract mUV and cUV. In Fig. 2, we plot
the solutions for Nf ¼ 9 with mUV ¼ 0 in the UV.
Note there is an infinite set of such solutions—as the IR

boundary value of L shrinks, solutions with more oscil-
lations can be found. The solutions with more oscillations

0 5 10 15 20

–1

0

1

2

3

4

5

L

mIR=0.5

mIR=1.5

mIR=4

FIG. 2. The functions LðρÞ with m ¼ 0 in the far UV for
Nf ¼ 9. In the IR, we cut off scales below which the quarks
become on mass shell when Lðρ ¼ mIRÞ ¼ mIR. Here, the BF
bound is violated at r ¼ 11.
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are excited states of the vacuum—these are states where
radially excited states of the σ meson are condensed, which,
since they are all described by a single holographic field,
are mixed together. In Fig. 3, we plot the position of the
solutions in the mUV − cUV plane for two representative
values of Nf—to compare theories, we have chosen to
fix the UV scale in both where γ ¼ 0.3. As can be seen at
Nf ¼ 9 (the top plot), there is a spiral structure. The spiral
makes an infinite number of loops before ending at the
origin. This structure has been previously observed in the
D3/probe-D7 model with a magnetic field [9], the alternative
dual of the conformal window of Refs. [11,17], in the
condensed matter models of Ref. [18], and more recently in
holographic superconductors [19], so it appears very generic
to holographic symmetry breaking descriptions.
The solutions of the Euler-Lagrange equation represent

turning points of the action and hence the effective
potential (Veff ¼ −S evaluated on the vacuum solutions).
It is a simple matter to evaluate the vacuum energy on the
solutions and show that they monotonically increase in
energy with the number of axis crossings. The flat
embedding L ¼ 0 has the highest energy. This means these

turning points must be points of inflection of the effective
potential since there are no interchanging maxima and
minima. The interpretation is that the chirally symmetric
phase L ¼ 0 is unstable to condensation of the σ excitation
but also all its radially excited states σ�; σ��…We envisage
a four-dimensional low energy potential for these states of
the form

Veff ¼ −m2
1jσj2 −m2

2jσ�j2 þ λðjσj2 þ jσ�j2Þ2 þ � � � ð20Þ

This has minima of different depths on the σ and σ� axes,
but the minima are smoothly connected in the full space
with only one true local minimum where σ alone has a
vacuum expectation value (vev) (see the top part in Fig. 4
for a sketch of this form).
A simple way to test this hypothesis is to compute the σ

meson mass in each of the vacua. In the lower part of Fig. 4,
we plot the σ’s mass against the UV quark mass as we move
along the spiral of Fig. 3, and it is worth considering the
physics here in detail. First, note that atmUV ¼ 0 only the L
profile that does not cross the ρ axis (the top curve in Fig. 2)

–0.0005 0.0005
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–4.×10–12 –2.×10–12 2.×10–12 4.×10–12 muv

–4.×10–8

–2.×10–8

2.×10–8

4.×10–8
c

FIG. 3. The regular embeddings LðρÞ plotted in the mUV − cUV
plane for (from top to bottom) Nf ¼ 9, 11 showing the spiral
structure and how the scale of chiral symmetry breaking shrinks
as one approaches the BKT transition at Nf ≃ 12. Here, both
theories have γ ¼ 0.3 at the same UV scale.
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–200

–150
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m 2
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FIG. 4. Above: a sketch of the low energy potential against the
σ and σ� fields showing mimina on each axis but only a single
true minima on the σ axis. Below: the σ’s mass against the UV
quark mass as we move along the spiral of Fig. 3 with Nf ¼ 9
showing the instability of the excited states at mUV ¼ 0.

FADAFAN, CLEMENS, and EVANS PHYS. REV. D 98, 066015 (2018)

066015-6



has a stable σ. This is the true vacuum of the theory. There
is another Uð1ÞA rotated equivalent version of the vacua
where the curve lies entirely below the axis (this is the
opposite side of the wine bottle–shaped potential one
expects). Now, as we switch on a positivemUV as expected,
the σ mass rises. When we add in a negative mass, there is a
period when the σ mass remains positive—here, we are
describing the fate of the Uð1ÞA rotated vacua in the
presence of a mass. The vacuum manifold is tilted, and
this state is the unstable side of the potential (the pion is
tachyonic). For sufficiently large negative mass, the wine
bottle–shaped form of the effective potential is lost, and the
nontrue vacuum side of that potential becomes unstable for
the σ also. Beyond this point, though, the solution remains
as a turning point of the potential—to understand its
evolution, we can follow it back to the mUV ¼ 0 point
where it is the second curve down in Fig. 2. This is the
vacuum where the σ� has condensed (although it is unstable
to a roll to the true vacuum since the σ is tachyonic).
Tracking back along negative mUV tells us we are seeing
this state in the presence of the negative mass. Continuing
on, one moves smoothly to the even less stable vacua with
condensation of higher excitations of the σ.
These spirals have also been previously seen in the

alternative model of the Nf dependence of gauge theories
in Refs. [11,17] and in the condensed matter models of
Ref. [18]. There, the authors stressed the role of these extra
vacua as one approaches a BKT phase transition. If the AdS
scalar mass can be tuned to the BF bound (as here by tuning
Nf), then a non-mean field transition occurs because a
set of Efimov states emerges—these correspond to an
infinite number of tachyonic states of which the masses
pile up at zero and play a role in the transition. Here, as Nf

approaches the chiral transition, it is these tachyons, for
rolls to each of the vacua for the excited states of the σ, that
are these Efimov states. Here, the existence of these states
will play a role in understanding the response of the theory
to NJL interactions. A brief similar analysis in the alter-
native model of the conformal window of Ref. [11] can be
found in Ref. [17].

We can now consider what happens when we switch on
an NJL term in this theory. The easiest method is to use the
boundary condition in (19) and convert the mUV − cUV
spiral to results in the cUV − g2 plane, which we have done
for Nf ¼ 9 in Fig. 5. The upper branch of the plot is the
most important since these are the stable vacua. Positive g2

enhances cUV from the bare gauge theory values at g2 ¼ 0.
To understand the role of the other “arms” of the spiral, it

is helpful to plot the effective potential against mUV and
cUV, which we do in Fig. 6. We use the same shading as in
the mUV − cUV spiral for Nf ¼ 9 in Fig. 3. We plot the
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FIG. 5. Plot of cUV against g2 for the Nf ¼ 9 theory.
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FIG. 6. The top two plots show the effective action (−S
evaluated on the vacuum solutions) for the solutions from Fig. 3
for the Nf ¼ 9 theory as a function of each of mUV and cUV. The
lower plot shows the same potential against mUV but including
the NJL interaction term. The solid lines are for attractive NJL
interactions, and dashed lines are for repulsive NJL interactions.
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effective potential against mUV and cUV in the absence of
an NJL interaction. Now, adding an attractive NJL term
corresponds to adding a positive term to the potential
m2

UVΛ2=g2, which we show in the lower plot of Fig. 6. The
solid curves show the potential with an attractive NJL
coupling, and the extra term produces a minimum that
grows to larger mUVðcUVÞ as g2 grows.
The case of repulsive NJL interactions is also interesting.

The cUV − g2 plot in Fig. 5 shows that a negative g2

decreases the size of the quark condensate as one might
expect, although surprisingly the condensation only fully
switches off at infinite repulsive g2. There is a more
involved story if we look at these solutions at the level
of the effective potential—see the dashed curves in the
lower plot of Fig. 6. As one begins to add a −m2Λ2=g2 term
to the potential at small g2, the potential is highly
unbounded with a single local maximum at m ¼ 0. The
theory has an instability which could presumably be cured
by higher-dimension operators near the cutoff. If we ignore
that instability (since an infinitesimal repulsion at a very high
scale presumably should not totally change the theory), the
local maximum matches to the g2 ¼ 0 vacua of the gauge
theory, and this presumably represents the impact of the NJL
repulsion on the physics of that vacua. As g2 grows, the
maximum tracks along the curve following the behavior in
the cUV − g2 plot until we arrive at cUV ¼ 0, but note here
that mUV ≠ 0 and so g2 has diverged. This is related to the
existence of the spiral—if the cUV −mUV curve in Fig. 3 at
negative mUV simply returned to mUV ¼ cUV ¼ 0 directly,
then a finite g2 would switch off the condensate. The
conclusion is that the more complicated dynamics of the
gauge theory (which one could think of as a tower of higher-
dimension operators) is sufficient to oppose even a very
strong repulsive four fermion interaction.
The remaining lower structure in Fig. 5 reflects the effect

of the NJL term on the unstable vacuum states of the theory.
One is tempted to see in Fig. 6 metastable vacua, but in all
cases, these states, with higher states of the σ condensed,
are unstable (the true potential is higher dimensional in the
spirit of Fig. 4)—they have a tachyonic σ or π and are
smoothly connected to the fully unstable vacuum at infinite
positive m.
As one increases Nf, keeping γ fixed at some UV scale

across all theories, the spiral rapidly contracts into the
origin of the mUV − cUV plane as can be seen from the
rapidly sinking axes range in the plots of Fig. 3—this
represents the expected reduction in the scale of chiral
symmetry breaking as one approaches the BKT transition
[5,11] at the edge of the conformal window.

V. Nf − g2 PHASE DIAGRAM

Let us next study the phase structure of the Nc ¼ 3
theory with Nf. Here, as we vary Nf, we set γðeÞ ¼ 2=3γ�
so that the step scale Λ1 is somewhat comparable in each

theory and use a very high UV cutoff Λ ¼ e20 so that all
theories have γ ≃ 0 there. For Nf < 12, there is always
chiral symmetry breaking triggered by the gauge theory
alone. For larger Nf, in each case, we look at embeddings
LðρÞ that correspond to small IR masses (remember we call
the IR value of L mIR). We extract the UV values of mUV
and cUV from (10) and then find the NJL coupling by using
(19). Varying the IR mass allows us to plot mIR vs g and
extrapolate to the point of the second order transition to find
gc where mIR falls to zero. In this way, we can plot the
transition in the g2 − Nf plane between theories with
conformal IRs and those with a finite mass gap. We show
this phase boundary in Fig. 7.
The form of the phase diagram is straightforward—

below Nf ¼ 12, the gauge theory running (in the approx-
imations we use) violates the BF bound and chiral
symmetry breaking results. Above Nf ¼ 12, the gauge
theory alone lies in the conformal window and is ungapped.
An NJL term is needed to generate chiral symmetry
breaking. Naively, one might think the NJL critical cou-
pling would grow from zero as one moves upward from
Nf ¼ 12, but in fact, our numerical investigations suggest
there is a finite critical coupling immediately above the
transition leading to a discontinuity in the plane. It is
possible there is an exponential approach to the BKT point
at g2 ¼ 0, but we have not found numerical evidence for it.
Note this phase diagram can be compared to the sketch of
the similar physics described in Ref. [17] where the NJL-
like behavior we have found when Nf > 4Nc is not shown.

VI. Nf > 4Nc AND IDEAL WALKING BEHAVIOR

In the range 4Nc < Nf < 11Nc=2, the pure gauge theory
lives in the conformal window with an IR interacting fixed
point but no chiral symmetry breaking. Here, we can trigger
chiral symmetry breaking by an NJL interaction term. If the
interaction term is tuned so that the mass gap occurs in
the IR where there is a large value for γ�, then in the UV, the
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FIG. 7. The Nf − g2 phase diagram—the left-hand region has
chiral symmetry breaking, and the right-hand region has restored
chiral symmetry.
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condensate is expected to be enhanced by walking-like
dynamics as explained in the Introduction. We will explore
these models in this section.

A. Simplified analysis

Let us first understand how the holographic model rather
simply encodes the idea of ideal walking. Consider an
idealized model with two regimes divided by a sharp
scale Λ1. At low energies below Λ1, the theory has an
anomalous dimension γ, while above Λ1, γ ¼ 0. The
dynamic AdS/QCD description has Δm2 ¼ 0 in the high
energy regime and the constant value Δm2 ¼ γðγ − 2Þ in
the low energy regime. Now, assume a UV NJL interaction
triggers chiral symmetry breaking at an energy scale mIR
(this in the full model would be the choice of IR boundary
condition on the field L). If mIR lies above Λ1, then the
solution for the holographic field L is

L ¼ mþ c
ρ2

; m ∼mIR; c ∼m3
IR; ð21Þ

where m, c are just fixed by dimensional grounds in terms
of the only scale mIR—this a normal “natural”’ theory.
Now, imagine moving mIR into the IR regime below Λ1.

Here, the solution looks like

LIR ¼ m̂
ργ

þ ĉ
ρ2−γ

; m̂ ∼m1þγ
IR ; ĉ ∼m3−γ

IR ð22Þ

with dimensional analysis again being used to fix the
parameters. Now, one should evolve this solution to Λ1 and
match to the UV form of the solutions. In the UV, we
will have

LUV¼mUVþ
cUV
ρ2

; mUV∼
m1þγ

IR

Λγ
1

; cUV∼m3−γ
IR Λγ

1: ð23Þ

IR quantities such as fπ will be determined simply by
dimensional analysis in terms of the IR scale mIR, and the
UV condensate is relatively enhanced by the presence ofΛ1

(while the UV mass is suppressed).
This is the origin of the effect in the full model we will

discuss. A more complete setting is needed to set the UV
and IR boundary conditions on the solution and ensure the
effective potential from the bulk flows allows the NJL
mechanism to operate. However, if one naively computes
the NJL coupling in this approximation, one finds
g2=Λ2

UV ¼ mUV=cUV ¼ m−2
IR ðmIR=ΛÞ2γ , which is a constant

at γ ¼ 1 and then for fixed mIR rises as γ falls. This gives
some support to the form of the phase diagram in Fig. 7.

B. Two-loop runnings

We can now numerically study the more complete theory
with the two-loop runnings for the 4Nc < Nf < 11Nc=2
theories. For Nc ¼ 3, the conformal window lives in the

range 12 ≤ Nf ≤ 15.5which corresponds to the fixed point
value of γ� changing from 1 to 0 as one increases Nf. In a
previous paper, some of the authors [7] studied the hyper-
scaling relations in the holographic model in the absence of
NJL terms. Essentially, that paper confirmed that the form
of the solutions and naive dimensional analysis used in the
previous section apply at the level of a percent or better
along the flows (because the flows are rather slow and
locally taking γ to be a constant is a good approximation).
Here, we provide a further piece of evidence of the

scaling behavior we expect. Consider the Nf ¼ 13 theory
for which the running of γ is plotted in Fig. 1. We fix a UV
cutoff at the scale where γðΛUVÞ ¼ 0.05 and then choose a
variety of IR initial condition values of L ¼ mIR. Solving
for LðρÞ, we can then extract mUV at the cutoff scale from
the value of LðΛUVÞ. In Fig. 8, we plot LogðmUV=mIRÞ
against Log L0=ΛUV. If the scaling were the canonical UV
scaling, then mUV ≃mIR, and the line would be flat at zero.
However, we see that as mIR is reduced mUV decreases
relative to the canonical scaling expectation and eventually
after moving through the running regime of Fig. 1 enters a
regime where mUV is decreasing with a fixed power as the
naive analysis above predicts.
In principle, one could perform the same analysis for

the condensate, but since it is the subleading term in the
behavior of L, it is quite hard to precisely numerically
follow it over decades of evolution, so we have not
produced such clean figures. The naive analysis of the
previous section, though, is clearly appropriate, confirmed
for m, and the expected growth in the condensate is
certainly described in the model.

C. Light σ

The ideal walking systems become an interesting pos-
sibility for replacements for a normal technicolor descrip-
tion of electroweak symmetry breaking since they enhance
the UV condensate which would help to push flavor
physics to high scales. A key question, though, is whether
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FIG. 8. Plot of Log mUV=mIR against Log mIR=λUV for
Nf ¼ 13, γðΛUVÞ ¼ 0.05.
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they can describe a light Higgs-like state (one would
need mσ ≃ fπ=2).
Here, again, we can provide an analytic answer before

we proceed to numerics. The σ meson spectrum is found by
solving (11), although we must be careful with boundary
conditions in the presence of a NJL term. When we find
the vacuum form of LðρÞ, we interpret the UV boundary
constants of the solution as mUV=cUV ¼ g2=Λ2. When we
vary by the field S about that background, we must
maintain the same value of g2=Λ2 rather than the usual
S → 0 UV boundary behavior of the NJL free theory.
Numerically, this is straightforward.
Now, consider (11) in the near conformal limit where

Δm2 varies only very slowly—we may neglect the third
term in the equation. Now, is there an M2 ¼ 0 solution?
We set the final term to zero also. Equation (11) is now
precisely (9), which we solved for the background L0. We
already know a solution, the background L0 itself, that
satisfies the relevant NJL boundary condition. So, such a
massless state is present. This argument shows that if we
place the IR mass scale and the UV cutoff, separated, but
both deep in the IR fixed point regime of the gauge theory,
we would expect to get an arbitrarily small σ mass.
The setup with both the dynamical scale and the cutoff in

the deep IR regime generates too small a σ mass for an
electroweak theory Higgs and would also not generate an
enhanced condensate because the running does not see a
transition in γ. In fact, the runnings in the conformal
window are rather slow generically, as can be seen in Fig. 1,
so Δm2 is generically quite flat, and the challenge is to
make the σ as heavy as fπ=2.
We show some numerical results with the two-loop

runnings in Figs. 9 and 10. In Fig. 9, for Nf ¼ 13, we have
fixed the IR mass scale (mIR) at a scale in the IR fixed point
regime and then varied Λ to compute the σ mass. The result
is small because the coupling is running so slowly.

In Fig. 10, we show an example of a theory that achieves a
large enough mσ for an electroweak model. Here, Nf ¼ 12,
where the IR fixed point is γIR ¼ 0.48. We have a separation
of 7.5 between the scales mIR and Λ. We vary mIR to scales
with different values of γIR and compute the σ mass in units
of fπ . To achieve a larger mσ, one needs to sandwich the
strongest running between the IR and UV scales.
We conclude that ideal walking could, dependent on the

precise running at intermediate strength couplings beyond
perturbation theory, generate a light σ as well as play the
role of enhancing the quark condensate. In this sense, it
looks like an attractive setup although it relies on NJL terms
of which the origin is unspecified.

VII. SUMMARY

We have used a holographic model to study the gauged
NJL model with different runnings for the gauge theory
in or near the conformal window. We have used the two-
loop computations of the running of the gauge coupling at
Nc ¼ 3 and varying Nf to represent these runnings from
asymptotic freedom to different IR fixed points.
For theories in whichNf lies below 4Nc, the runnings for

the anomalous dimension of the quark bilinear pass through
γ ¼ 1, and chiral symmetry is triggered when the NJL
coupling g2 is zero. Adding an attractive NJL interaction
reinforces condensation, leading to a bigger mass gap. The
basic gauge theories display a spiral pattern in the mass vs
condensate plane—at zero quark mass, there are vacuum
states in which the σ; σ�, etc., condense, although we show
only the one with the σ alone condensed is stable. This
structure is now clearly a prediction of holographic models
with symmetry breaking because it has been seen in many
models [9,11,17–19]. Here, this structure in the mass-
condensate plane plays an important role when a repulsive
NJL term is added, with the surprising result that con-
densation is only switched off by an infinite NJL coupling.
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FIG. 9. The Nf ¼ 13 theory with mIR lying in the fixed point
regime. The σ’s mass is plotted against Log Λ=mIR for different
separations between the IR and UV cutoffs.
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FIG. 10. This is a plot in the Nf ¼ 12 theory where the IR fixed
point is γIR ¼ 0.48. Here, we have a separation of 7.5 between the
mIR and Λ. We vary mIR to scales with different values of γIR and
compute the σ mass in units of fπ .
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For 4Nc < Nf < 11Nc=2, the pure gauge theory lies in
an IR conformal regime with nonzero γ. An additional
attractive NJL term generates chiral symmetry breaking
above a critical NJl coupling value—we have displayed the
phase structure. These theories have an intermediate run-
ning regime between the γ ¼ 0 UVand the IR fixed point.
The values of the UV quark mass and condensate are
decreased and increased respectively as the theory runs
through this regime. This is the mechanism of ideal walking
models in which hq̄qi=f3π can be very much enhanced
relative to that in theories with fast running and no IR fixed
point. We have also shown that our model predicts a light σ
particle when the running in these theories is slow, which
might be helpful in constructing a dynamical model of the
electroweak scale.
Our work highlights a number of new avenues for

exploration. It would be interesting to further understand
the appearance of the spirals of Fig. 3 in a wider space of
dynamical symmetry breaking theories. For example, if the
unstable vacua with condensed excited states could be
made metastable in some theory, it would be very

interesting with potential applications to quenches in
condensed matter systems or in heavy ion collisions. It
would also be interesting to look for signatures of these
states in lattice simulations. Our work on ideal walking is
suggestive of possible models of the electroweak symmetry
breaking mechanism, and in the future, we hope to
construct a full model of an ideal walking theory that
can be compared to precision electroweak data and LHC
searches for resonances. Recently, gauge theories with
asymptotically safe UVs have also been identified [26],
and holographic models of the type used here could explore
the effect of the change in UV behavior on the spectrum of
such theories.
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