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Using the volume of the space enclosed by the Ryu-Takayanagi (RT) surface, we study the complexity of
the disk-shape subregion (with radius R) in various (2þ 1)-dimensional gapped systems with gravity dual.
These systems include a class of toy models with singular IR and the bottom-up models for quantum
chromodynamics and fractional quantum Hall effects. Two main results are: (i) in the large-R expansion of
the complexity, the R-linear term is always absent, similar to the absence of topological entanglement
entropy, and (ii) when the entanglement entropy exhibits the classic “swallowtail” phase transition, the
complexity is sensitive but reacts differently.
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I. INTRODUCTION

The holographic principle suggests that spacetime
could be an emergent phenomenon. Entanglement, which
characterizes how the joint of different parts of a system
distinguishes its classical whole, is believed to play an
essential role [1,2]. This insight is due in large part
to the holographic prescription for the entanglement
entropy—the area of the codimension-two minimal
surface in the bulk with its UV boundary coincident with
the entangling surface in the dual field theory [3]. The
mentioned minimal surface has been referred as the Ryu-
Takayanagi (RT) surface.
Complexity is another quantum information quantity that

might be important in understanding the quantum structure
of spacetimes [4]. It is relevant to the number of unitary
operators which converts one quantum state to another.
There are two holographic dualities which have been
proposed to describe the complexity. Popularly, they are
known as the “complexity ¼ volume” (CV) conjecture [5]
and “complexity ¼ action” (CA) conjecture [6]. Starting
from the study of the linear growth of the black hole
formation and the size of the Einstein-Rosen bridge, the

former conjecture states that the complexity in the boun-
dary field theory is related to the volume of a codimension-
one maximal bulk space, which is anchored on a given
boundary time slice. The CV conjecture needs to introduce
a length scale which depends on the concrete systems.
Without such arbitrariness, the latter conjecture states that
the complexity is described by the bulk action on the
Wheeler-DeWitt patch [6], which is the domain of depend-
ence of any Cauchy surfaces in the bulk that approaches the
boundary time slice.
In this paper, we will be concerned with the RT volume

that is associated with the bulk space enclosed by the RT
surface. Intuitively, the RT volume is interesting since it
is intrinsically related to the holographic entanglement
entropy (HEE). The lesson learned from the RT volume
would suggest new holographic duals to the quantum
information. In fact, motivated by the connection between
the volume of the maximal time slice in an anti–de Sitter
(AdS) spacetime and the fidelity susceptibility of pure
states [7], the RT volume was proposed as the holographic
subregion complexity (HSC), corresponding to the reduced
fidelity susceptibility of mixed states in the boundary [8,9].
Furthermore, the quantitative evidence of this correspon-
dence has been presented by studying the marginal per-
turbation in the (1þ 1)-dimensional conformal field theory
(CFT) [10]. Moreover, for a spherical subregion in the
boundary, it was also argued that the regularized RT
volume is related to the Fisher information metric [11].
On the other hand, the HSC has a deep relationship to
the HEE indeed. For example, similar to the HEE, the HSC
can signal different phase transitions [12–14]. Besides the
aforementioned work, the RT volume has attracted much
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attention, e.g., see [15–19]. Among others, we only note
that the scale arbitrariness in the CV conjecture could be
eliminated by introducing some variant of the RT volume: it
was proposed recently within the AdS3=CFT2 duality that
the curvature integral in the space enclosed by the RT
surface provides a dimensionless quantity which could be
dual to the complexity of the reduced density matrix [20].
For condensed matter theories (CMT), the quantum

entanglement provides important insight into the structure
of many-body states. One famous example is the notion of
topological entanglement entropy (TEE) [21–23], which is
one of the most proximate representations of the topologi-
cal order in (2þ 1)-dimensional topological field theories.
The TEE can be extracted by the asymptotic behavior of the
entanglement entropy between a disk (with radius R) and
the rest of the system: S ¼ αR − Stop þOðR−1Þ. Here the
first term denotes the well-known area law and the second
term is the TEE. When the theory has a mass gap, the TEE
is invariant under a continuous deformation of the disk.
In [24], the TEE is studied based on the RT prescription.

It is found that the TEE is vanishing for the AdS soliton, as
expected for a theory like quantum chromodynamics
(QCD). The vanishing of the holographic TEE is not
accidental, which also can be seen in a class of (2þ 1)-
dimensional gapped geometries with singular IR [25,26].
The nonvanishing TEE can be produced by introducing the
Chern-Simons interaction in the D3-D7 systems [27] or the
Gauss-Bonnet (GB) curvature in the gravity theory when
the RT surface has the disk topology [28]. Moreover, the
TEE can be interpreted as the black hole entropy in the
AdS3 [29,30].
A natural question is whether there is a quantity in the

HSC, which corresponds to the TEE in the HEE. As a first
step to address this question, we will study the large-R
expansion of the HSC (with a disk-shape subregion) in
various (2þ 1)-dimensional holographic gapped systems
without the TEE. On the other hand, in some of these
systems, the HEE can exhibit a classic “swallowtail” phase
transition when the topology of the RT surface changes
from the disk shape to the cylinder shape. This typical
phenomenon has been taken as a probe of the confinement/
deconfinement transition [24,31,32]. We will study the
HSC in the intermediate-R region and focus on whether the
HSC is sensitive to the topology change of the RT surface.
The rest of this paper is organized as follows. In Sec. II,

we will study a class of gapped geometries

ds2 ¼ L2

z2

�
−hðzÞdt2 þ dρ2 þ ρ2dθ2 þ dz2

fðzÞ
�
; ð1Þ

where L is the AdS radius and the IR behavior ðz → ∞Þ is
required to be

fðzÞ ¼ azn þ � � � ; a > 0; n ≥ 2: ð2Þ

Then the spacetime becomes singular in the IR. We will
prove analytically that in the large-R expansion, the
R-linear term is absent in the HSC. Moreover, we will
calculate numerically the HSC as a function of R in several
toy models. It will be shown that the HSC can probe the
topology change of the RT surface. From Sec. III to Sec. V,
we will study three kinds of (2þ 1)-dimensional phenome-
non models with the mass gap, including the AdS soliton,
soft-wall model and holographic fractional quantum Hall
(FQH) model. For all the models, the R-linear term in the
HSC is vanishing. For the AdS soliton, the HSC is sensitive
to the topology change. In Sec. VI, we will discuss whether
the R-linear term can be produced in the soft-wall model
by involving the GB correction to the gravity theory. In
Sec. VII, the conclusion will be given. In Appendix A, we
will review briefly the numerical solution of the holo-
graphic FQH model. In Appendix B, we attempt to explore
further the HSC in the GB gravity.

II. GEOMETRIES WITH SINGULAR IR

Suppose that a spacetime is described by the metric (1)
with the IR behavior (2). When n > 0, the singularity lies at
a finite proper distance away. From the UV/IR connection,
it might be excepted that the corresponding IR phase is
gapped. Actually, by analyzing the spectrum of a probed
scalar field in the spacetime, it has been found [25,26] that
the system with n > 2 has a discrete spectrum and for
n ¼ 2, it has a continuous spectrum above the gap. For
0 < n < 2, the geometry is singular but is not dual to a
gapped phase.

A. RT surface

We will study the RT surfaces in those gapped geom-
etries. Consider a circle with radius R in the UV boundary,
which divides the system into two parts. The HEE between
them can be determined by

S ¼ Area ðΣÞ
4GN

; ð3Þ

where GN is the four-dimensional Newton constant and Σ
denotes the minimal surface that extends from the boundary
circle to the bulk. Using Eq. (1), one can read the induced
metric of the RT surface,

ds2ind ¼
L2

z2

��
1

f
þ ρ02

�
dz2 þ ρ2dθ2

�
; ð4Þ

where the prime denotes the derivative with respect to z that
is taken as one of surface coordinates. By the induced
metric, one can obtain the entropy functional of ρðzÞ:

S ¼ πL2

2GN

Z
∞

0

dz
ρ

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f
þ ρ02

s
: ð5Þ
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Taking the variation with respect to ρðzÞ, one can derive the
equation of motion (EOM) that determines the extremal
surface:

ρ00 −
2fρ03

z
−
ρ02

ρ
−
�
2

z
−

f0

2f

�
ρ0 −

1

ρf
¼ 0: ð6Þ

If there are several extremal surfaces, the entropy functional
is multi-valued and the HEE is given by the minimal value.

B. HEE and HSC

1. Large R expansion

In Ref. [25], it has been pointed out that for n ¼ 2, the
RT surface only can be disklike. While for n > 2, the
topology can be changed from disk to cylinder as R
increases; see Fig. 6 in [25] for a schematic. In particular,
we stress that for n > 2 only a cylinderlike RT surface can
appear at large R.
Usually, it is not possible to solve the EOM for RT

surfaces analytically. But when R is large, the analytical
solutions have been found in [26] by a matching procedure.
Let’s briefly review the strategy. In the UV, one can find
that ρðzÞ can be expanded in 1=R as

ρðzÞ ¼ R −
ρ1ðzÞ
R

−
ρ3ðzÞ
R3

þ � � � − ρ̂ðzÞ
Rv þ � � � ; ð7Þ

where the last term denotes the leading term of those that
are not odd powers of 1=R. We will focus on n > 2 at first.
For our aim, it is enough to keep only the pending function
ρ1ðzÞ. In terms of the EOM (6), ρ1ðzÞ should satisfy

z2ffiffiffi
f

p
� ffiffiffi

f
p
z2

ρ01

�0
¼ s1; ð8Þ

where the source is s1 ¼ −1=f. Equation (8) has the
solution

ρ1ðzÞ ¼
Z

z

0

du
u2ffiffiffiffiffiffiffiffiffi
fðuÞp �

b1 þ
Z

∞

u
dv

1

v2
ffiffiffiffiffiffiffiffiffi
fðvÞp �

; ð9Þ

where b1 is an integration constant. In the IR, the EOM (6)
implies that ρðzÞ has the large z expansion

ρðzÞ ¼ ρ0 þ
2z2−n

ρ0aðn − 2Þðnþ 2Þ þ � � � ; n > 2: ð10Þ

This is a cylinderlike solution. The constant ρ0 means the
radius of the cylinder in the IR. To match the UVand IR, the
solution (9) is pulled to a sufficiently large z so that Eq. (2)
holds. Then one has

ρ1ðzÞ ¼
b1ffiffiffi
a

p z3−n=2

3− n=2
ð1þ � � �Þ þ 2z2−n

ð2− nÞð2þ nÞa ð1þ � � �Þ:

ð11Þ

After inserting Eq. (11) into the UVexpansion (7), it can be
matched to the IR expansion (10), which leads to

b1 ¼ 0; ρ0 ¼ R: ð12Þ

Now one has a large-R solution applied to the total region
of z. Calculating Eq. (5) with this solution, one can obtain

S∼R
Z

∞

0

dz
1

z2
ffiffiffiffiffiffiffiffiffi
fðzÞp −

1

R

Z
∞

0

dz

ffiffiffiffiffiffiffiffiffi
fðzÞp
2z2

ρ01ðzÞ2þO
�

1

R3

�
;

ð13Þ

where ρ1ðzÞ is given by Eqs. (11) and (12). One can see that
the TEE is zero.
The matching procedure for n ¼ 2 is similar. The final

solution can be written as1

ρðzÞ ¼ R −
1

2
ffiffiffi
a

p
�
b1
R

þ � � �
�
z2 −

1

2aR
log zþ � � � ; ð14Þ

where b1 ¼ 0. Plugging Eq. (14) into the entropy func-
tional (5) leads to

S ∼ R
Z

∞

0

dz
1

z2
ffiffiffiffiffiffiffiffiffi
fðzÞp þ 1

R

Z
∞

0

dz
fðzÞ − 4az2 log z

8a2z4
ffiffiffiffiffiffiffiffiffi
fðzÞp

þO
�

1

R3

�
; ð15Þ

where the TEE is still zero.
Now we will calculate the HSC. Consider the volume

of the space enclosed by the RT surface. The HSC can be
defined by [8]

C ¼ Volume ðΣÞ
8πLGN

; ð16Þ

where L is supposed to be the AdS radius. It should be
noted that the suitable length scale for a gapped phase
might not be determined by the AdS radius alone. In this
paper, we will not explore this issue since we focus on
comparing the area of RT surfaces and the RT volume.
Moreover, for a similar reason, we don’t care about other
proposals for the holographic complexity.
From the metric (1) with the constant time, one can

obtain the complexity functional:

C ¼ L2

4GN

Z
∞

0

dz
1

z3
ffiffiffiffiffiffiffiffiffi
fðzÞp Z

ρðzÞ

0

dρρ: ð17Þ

Using the large-R expansion of ρðzÞ, we can expand
Eq. (17) to

1In the parentheses, we have neglected an exponential
term ∼ expð−2aR2Þ. Such nonanalytic term would be interesting
in itself but it is not important for us.
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C∼

8>><
>>:

R2
R
∞
0 dz 1

z3
ffiffiffiffiffiffi
fðzÞ

p −
R
∞
0 dz 2ρ1ðzÞ

z3
ffiffiffiffiffiffi
fðzÞ

p þOð 1
R2Þ; n > 2;

R2
R∞
0 dz 1

z3
ffiffiffiffiffiffi
fðzÞ

p −
R∞
0 dz logðzÞ

az3
ffiffiffiffiffiffi
fðzÞ

p þOð 1
R2Þ; n¼ 2:

ð18Þ

One can see that the R-linear term is vanishing in
the HSC.

2. Topology change

We will study some toy models with n > 2. Following
[25], we will set the geometries (1) with a simple form
fðzÞ ¼ 1þ zn. We will focus on the topology change of RT
surfaces. Since it happens at finite R, we will resort to the
numerical method. Usually, the EOM for RT surfaces is
integrated from IR to UV. So we need the IR boundary
condition. For the cylinder topology, it is nothing but
Eq. (10). For the disk topology, it is convenient to replace z
with ρ as one of the surface coordinates. Accordingly, the
EOM and IR boundary condition can be written by

z00 þ z03

ρf
þ
�
2

z
−

f0

2f

�
z02 þ z0

ρ
þ 2f

z
¼ 0; ð19Þ

zðρÞ ¼ z� −
fðz�Þ
2z�

ρ2 þ � � � ; ð20Þ

where z� is the radial location at the top of the disk. Using
the IR boundary conditions, we can numerically depict the
RT surface and in turn obtain the HEE and HSC. To exhibit
the features of HEE and HSC clearly, it is convenient to
subtract the divergent terms that depend on the UV cutoff ϵ
of z. Inserting the RT surface for the pure AdS spacetime
ρðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
into Eqs. (5) and (17), one can isolate the

divergent terms of the HEE and HSC

Sdiv ¼
πL2

2GN

R
ϵ
; Cdiv ¼

L2

8GN

�
R2

2ϵ2
þ log ϵ

�
: ð21Þ

Then we define the regularized quantities

S ¼ S − Sdiv; C ¼ C − Cdiv: ð22Þ

For convenience, we further rescale them by

S̄ ¼ S=jS0j; C̄ ¼ C=jC0j: ð23Þ

where S0 and C0 are certain constants. Their concrete
values are not important for the relevant physics. To be
clear, we define them as follows: S0 is the critical value of S
when the RT surface changes the topology and C0 is the
value of C when the branch with disk topology meets the
branch with cylinder topology.
We plot S̄ and C̄ in Fig. 1. Some remarks are in order.

First, both entropy and complexity functionals are the
multi-valued functions of R near the critical radius at which
the RT surface changes the topology. Second, as n
decreases, their multi-valued regions gradually shrink.
For the small n, the complexity functional is still obviously
multi-valued but the entropy functional becomes approx-
imately single-valued.2 Third, the shapes of two multi-
valued regions are different: one is the classic ‘swallowtail’
and the other is not. Accordingly, the HEE (the minimal
value of the entropy functional) is continuous but its first
derivative is not. On the contrary, the HSC is discontinuous.
In particular, the complexity functional at large n exhibits a
novel “double-S” behavior, while the entropy functional
does not have an obvious counterpart to the small “S.” Note
that the existence of small ‘S’ region can be evidenced in
the functions z�ðRÞ and ρ0ðRÞ; see Fig. 2. These results
indicate that the HSC can perceive the topology change of
the RT surface. Compared to the HEE, it reacts differently
and can be more sensitive.

0.85 0.90 0.95 1.00 1.05 1.10
R

–1.04

–1.02

–1.00

–0.98

–0.96

S

0.90 0.95 1.00 1.05 1.10
R

–1.5

–1.0

–0.5

0.0
C

FIG. 1. S̄ (left) and C̄ (right) as the functions of R for the gapped geometries with singular IR. In each pannel, there are three curves,
which correspond to the different parameters n ¼ 3.5, 4.5, 5.5. As n decreases, the multi-valued regions gradually shrink. Each curve
includes two branches which have the disk topology (blue) and cylinder topology (orange), respectively. This color scheme is used in all
the figures of the main text.

2When n is close to 2, we find that the multi-valued regions of
S̄ and C̄ are difficult to be identified numerically. However, we
suspect that they would not disappear completely until n is equal
to 2, at which the RT surface only has the disk topology.
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III. ADS SOLITON

Consider the N ¼ 4 super Yang-Mills theory in four
dimensions, with one compactified spatial direction ϕ.
Suppose that ϕ is anti-periodic, which indicates massive
fermions. At low energies, this theory is reduced to the
three-dimensional gauge theory, associated with the con-
finement, mass gap and finite correlation length. By
holography, it is dual to the AdS5 soliton in IIB string
theory [33]. The AdS soliton is a gapped geometry since its
compact dimension shrinks to zero at some finite value of
AdS radius, indicating an IR fixed point of the field theory
at finite energy scale.

A. RT surface

We will study the soliton geometry,

ds2¼L2

z2

�
dz2

hðzÞ−dt2þdρ2þρ2dθ2þhðzÞdϕ2

�
þL2dΩ2

5;

ð24Þ

where

hðzÞ ¼ 1 −
�
z
z0

�
4

; ð25Þ

and z0 is relevant to the period of ϕ. Using the induced
metric for the RT surface,

ds2ind ¼
L2

z2

��
1

h
þ ρ02

�
dz2 þ ρ2dθ2 þ hdϕ2

�
þ L2dΩ2

5;

ð26Þ

the entropy functional can be expressed as

S ¼ πΩ5LϕL8

2GN

Z
z0

0

dz
ρ

z3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hρ02

q
; ð27Þ

whereΩ5 is the unit volume of five-dimensional sphere, Lϕ

is the period of ϕ, and GN is the ten-dimensional Newton

constant. Variation of the entropy functional (27) with
respect to ρðzÞ generates the EOM for the RT surface

d
dz

�
hρρ0

z3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hρ02

p �
¼ 1

z3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hρ02

q
: ð28Þ

B. HEE and HSC

1. Large R expansion

In [24], it has been found that the RT surface is
cylinderlike as R is large. Also, it has been noticed that
the solution of the EOM (28) at large ρ0 has the form

ρðzÞ ¼ ρ0 þ
1

ρ0
ρ1ðzÞ þ � � � ; ð29Þ

where ρ1ðzÞ should be vanishing in the IR (z → z0).
Substituting this ansatz into (28), one can derive

ρ1ðzÞ ¼ c2 þ
1 − 2c1

8
logð1 − z2Þ − 1þ 2c1

8
logð1þ z2Þ;

ð30Þ

where we have set z0 ¼ 1 for convenience. Noticing that
the EOM (28) near z ¼ 1 has a solution,

ρ ¼ ρ0 þ
1 − z
4ρ0

þ � � � ; ð31Þ

the integral constants in (30) can be determined:

c1 ¼
1

2
; c2 ¼

log 2
4

: ð32Þ

Furthermore, we know ρð0Þ ¼ R, which imposes

ρ0 þ
1

4ρ0
logð2Þ ¼ R: ð33Þ

At large ρ0, we have ρ0 ≃ R. Collecting all these results
together, one can recast Eq. (29) as the solution at large R:

0.91 0.92 0.93 0.94 0.95
R

2

4

6

8

10

12

14

z

0.88 0.89 0.90 0.91
R

0.1

0.2

0.3

0.4

0.5
ρ0

FIG. 2. z� (left) and ρ0 (right) as the functions of R for the gapped geometries with singular IR and n ¼ 5.5.
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ρðzÞ ¼ Rþ 1

4R
log

�
1

1þ z2

�
þ � � � : ð34Þ

Then Eq. (27) can be expanded as

S ∼ R
Z

1

0

dz
1

z3
þ 1

R

Z
1

0

dz
1

8z3

×
�

z2h
ð1þ z2Þ2 þ 2 log

�
1

1þ z2

��
þO

�
1

R3

�
; ð35Þ

where the TEE is vanishing. This is the essential result in
[24]. Since one does not expect any long-range order in
the ground state of (2þ 1) dimensional QCD, this result
has been viewed as a consistency check on the HEE at
that time.
Now we turn to study the HSC, which can be deter-

mined by

C ¼ Ω5LϕL8

4GN

Z
1

0

dz
1

z4

Z
ρðzÞ

0

dρρ: ð36Þ

Using the large-R expansion (34), we obtain

C ∼ R2

Z
1

0

dz
1

z4
þ
Z

1

0

dz
1

2z4
log

�
1

1þ z2

�
þO

�
1

R2

�
:

ð37Þ

There is no R-linear term.

2. Topology change

The IR boundary condition (31) can be used to solve
numerically the RT surface with cylinder topology. For disk
topology, we will look for the profile zðρÞ of the RT
surface, instead of ρðzÞ. Rewrite the EOM (28) by zðρÞ,
from which the IR boundary condition can be read:

zðρÞ ¼ z� þ
z�h0ðz�Þ − 6hðz�Þ

8z�
ρ2 þ � � � : ð38Þ

We also need the UV divergent terms of the HEE and HSC.
In the UV (z → 0), the bulk geometry approaches
AdS5 × S5. The EOM (28) has the solution

ρðzÞ ¼ R −
z2

4R
þ z4 log z

32R3
þ � � � : ð39Þ

Substituting it into Eqs. (27) and (36), the divergent terms
can be extracted:

Sdiv ¼
πΩ5LϕL8

4GN

�
R
ϵ2

þ log ϵ
4R

�
;

Cdiv ¼
Ω5LϕL8

4GN

�
R2

3ϵ3
−

1

2ϵ

�
: ð40Þ

In the study of HEE [24], it has been shown that there is a
‘swallowtail’ phase transition associated with the topology
change of the RT surface. In the left panel of Fig. 3, we

0.69 0.70 0.71 0.72 0.73
R

–1.015

–1.010

–1.005

–1.000

–0.995

–0.990

S

0.69 0.70 0.71 0.72 0.73
R

0.7

0.8

0.9

1.0

1.1

1.2

1.3

C

FIG. 3. S̄ (left) and C̄ (right) as the functions of R for the AdS soliton.

0.703 0.705
R0.998

0.999

1.
z

0.70 0.71 0.72 0.73
R

0.92

0.94

0.96

0.98

1.00
z

0.69 0.70 0.71 0.72 0.73
R
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FIG. 4. z� (left) and ρ0 (right) as the functions of R for the AdS soliton.

LIN-PENG DU, SHAO-FENG WU, and HUA-BI ZENG PHYS. REV. D 98, 066005 (2018)

066005-6



recover such a behavior. From the right panel in Fig. 3,
we have found that the HSC can probe the topology change
in a different way: the complexity functional behaves as the
‘double-S’ instead of the “swallowtail.” The existence
of the “double-S” can be understood by the double and
triple valued regions of the functions z�ðRÞ and ρ0ðRÞ;
see Fig. 4.
It should be noted that our figure for the HEE is not

exactly same as Fig. 6 in [24]. This is because their HEE
subtracts a term ∼ðlogRÞ=R besides the divergent terms.
Moreover, the two functions z�ðRÞ and ρ0ðRÞ have been
plotted in Figs. 4 and 5 of [24], respectively. Although the
triple-valued region has not been noticed in their Fig. 4, it is
barely visible in their Fig. 5.

IV. SOFT-WALL MODEL

The hard-wall and soft-wall models are both the bottom-
up approaches to the AdS/QCD duality. A basic feature of
hard-wall models is the existence of an IR brane at which
the warped dimension abruptly ends. The hard IR wall
breaks the conformal symmetry and provides the simplest
realization of the confinement [34]. In the soft-wall model,
there is a smoothing of the IR wall by invoking a dilaton
field, which correctly produces the Regge behavior of
highly excited mesons [35]. Consider the power-law
behavior of the dilaton ϕðzÞ ¼ ðμzÞν, where μ is the energy
scale and z is the conformal coordinate. By analyzing the
eigenfunctions of bulk fields with such power-law dilaton,
the Kaluza-Klein mass spectrum with large n can be given
by m2

n ∼ μ2n2−2=ν [36]. For ν < 1, the spectrum is gapless.
For ν ¼ 1, the spectrum becomes gapped but is continuous
above the gap. For ν > 1, the spectrum is gapped and
discrete.

A. RT surface

Suppose that the soft-wall geometry is described by

ds2 ¼ L2aðzÞ
z2

ðdz2 − dt2 þ dρ2 þ ρ2dθ2Þ: ð41Þ

In the IR ðμz ≫ 1Þ and UV ðμz ≪ 1Þ, the warp factor are

aIRðzÞ ¼ e−ðμzÞν ; aUVðzÞ ¼ 1: ð42Þ

Following [28], we will be interested in an explicit example

aðzÞ ¼ 1

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμzÞ2ν þ 1

p
− 1

; ð43Þ

which satisfies both boundary conditions. In Ref. [37], the
dynamical soft-wall model with the warp factor aðzÞ ¼
e−ðμzÞν has been constructed. Now we are expecting that the
warp factor (43) could be produced dynamically by a
similar method. Note that the function (43) is flatter than
e−ðμzÞν in the UV. This is helpful to distinguish two space
regions, namely Part (I) and Part (II), which will be
introduced below. Hereafter, we set μ ¼ 1 for convenience.
From Eq. (41), we write down the induced metric for the

RT surface

ds2ind ¼
L2aðzÞ
z2

½ð1þ ρ02Þdz2 þ ρ2dθ2�; ð44Þ

which in turn gives the entropy functional

S ¼ πL2

2GN

Z
∞

0

dz
aρ
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ02

q
: ð45Þ

Taking the variation with respect to ρðzÞ derives the EOM
for the RT surface

d
dz

�
aρ
z2

ρ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ02

p �
¼ a

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ02

q
: ð46Þ

B. HEE and HSC

In [28], it has been shown that the RT surface only has
the disk topology for ν < 2. Thus, the range 1 ≤ ν < 2 is
desired for the gapped geometry with a disklike RT surface.
Meanwhile, they proved that the TEE is vanishing by an
analytical method. The basic strategy is to split the RT
surface into three parts; see a schematic in Fig. 1 of [28].

Part (I) is the deep UV region with ϵ < z < zð1Þc , where zð1Þc
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R
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3 4 5 6 7 8 9
R

–0.04

–0.03

–0.02

–0.01

C–aR2–b

FIG. 5. The large-R behavior of HEE (left) and HSC (right) in the soft-wall model. Here b1 and b2 are the best fitting parameters.
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denotes the crossover scale at which the warp factor
changes from aUVðzÞ to aIRðzÞ. Part (II) is the intermediate

region with zð1Þc < z < zð2Þc , and part (III) is the deep IR

region with z > zð2Þc . Here zð2Þc is chosen such that the
surface area in part (II) is not exponentially suppressed by
the warp factor aIRðzÞ but will be in part (III). In part (I), the
profile of the RT surface is known:

ρðzÞ ¼ R −
z2

2R
þO

�
1

R2

�
: ð47Þ

In part (II), it was found that

ρðzÞ ¼
ffiffiffiffiffiffiffi
2d1

p
z
1−ν

2

0 −
1ffiffiffiffiffiffiffi

2d1
p

z
1−ν

2

0

z2−ν

νð2 − νÞ þO

 
1

z
3−3ν

2

0

!
;

ð48Þ

where d1 is an integration constant. The parameter z0 is

required to obey z ≪ z0. By identifying R ¼ ffiffiffiffiffiffiffi
2d1

p
z
1−ν

2

0 ,
Eq. (48) is changed to

ρðzÞ ¼ R −
1

R
ρIIðzÞ þO

�
1

R3

�
; ð49Þ

where

ρIIðzÞ ¼
z2−ν

νð2 − νÞ : ð50Þ

Thus, the RT surface in parts (I) and (II) can be taken
together as

ρðzÞ ¼ R −
ρintðzÞ
R

þO
�

1

R2

�
; ð51Þ

where ρintðzÞ is an interpolating function.
Inserting Eq. (51) into Eq. (45), one can obtain

S ¼ SI þ SII þ SIII; ð52Þ

where

SI ∼ R
Z

zð1Þc

ϵ
dz

1

z2
; ð53Þ

hence leading to a typical UV divergence, the interesting
part is

SII ∼ R
Z

zð2Þc

zð1Þc

dz
aIR
z2

þ 1

R

Z
zð2Þc

zð1Þc

dz
aIR
z2

�
ρ02II
2

− ρII

�

þO
�

1

R2

�
; ð54Þ

and SIII is exponentially suppressed by construction. Thus,
the TEE is equal to zero.3

We can study the HSC in a similar way. The only thing to
be careful is that zð2Þc should be large enough to exponen-
tially suppress the RT volume inside part (III) and z0
(thereby R) should be so large that one has z ≪ z0 in part
(II). Let’s consider the complexity functional

C ¼ L2

4GN

Z
∞

0

dz
a3=2

z3

Z
ρðzÞ

0

dρρ: ð55Þ

Using the large-R expansion (51), we read

C ¼ CI þ CII þ CIII; ð56Þ

where the UV divergence comes from

CI ∼
Z

zð1Þc

ϵ
dz

R2 − z2

z3
; ð57Þ

the interesting part is

CII ∼ R2

Z
zð2Þc

zð1Þc

dz
a3=2IR

z3
− 2

Z
zð2Þc

zð1Þc

dz
a3=2IR

z3
ρII þO

�
1

R

�
;

ð58Þ

and CIII is exponentially suppressed. One can see that the
R-linear term disappears.
In this paper, the absence of the R-linear term is mainly

exhibited by analytical methods. However, we have
checked by numerical methods that this is true for all
the models. As an example, we will numerically calculate
the large-R behavior of HEE and HSC in the soft-wall
model. Rewrite the EOM (46) by the profile zðρÞ, which
can be solved using the IR boundary condition

zðρÞ ¼ z� þ
z�a0ðz�Þ − 2aðz�Þ

4z�aðz�Þ
ρ2 þ � � � : ð59Þ

Then we use the functions b1Rþ b2=R and b1R2 þ b2
to fit the large-R regions of S̄ and C̄, respectively.4 The
result is shown in Fig. 5.

3In the previous models, the absence of TEE can be attributed
to the vanishing constant term in the profile ρðzÞ. In the current
model, we emphasize that the expansion (51) is not applicable to
Part (III). This is because the RT surface has the disk topology
and its profile in the IR satisfies ρðz�Þ ¼ 0 for any R. However,
the TEE is still vanishing since the entropy functional in Part (III)
is exponentially suppressed.

4In the present model, the resealed factor S0 and C0 are defined
by the HEE and HSC at R ¼ 2. The index ν is fixed as 3=2. We
have checked that other values in the range 1 ≤ ν < 2 do not
change the result qualitatively.
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One might wonder whether the numerical parameters b1
and b2 match their analytical expressions. For the previous
two models, we find that they match perfectly. Take the
HEE of AdS soliton as an example. The error is less than
0.01% for R ≃ 20. For the soft-wall model, however, the

accuracy is limited since zð1Þc cannot be fixed accurately by
its definition and aðzÞ and ρðzÞ are discontinuous between
(I) and (II). In fact, that is why we select to display the
numerical result of the soft-wall model. To be clear, let’s
compare the analytical expression of HEE to the numerical
result. The behavior of HSC is similar. From Eqs. (53) and
(54), we have

SI þ SII ∼ R
Z

zð1Þc

ϵ
dz

1

z2
þ R

Z
zð2Þc

zð1Þc

dz
aIR
z2

þ 1

R

Z
zð2Þc

zð1Þc

dz
aIR
z2

�
ρ02II
2

− ρII

�
þO

�
1

R2

�

¼ R
�
1

ϵ
þ B1

�
þ 1

R
B2 þO

�
1

R2

�
; ð60Þ

where

B1 ¼ −
1

zð1Þc

þ
Z

zð2Þc

zð1Þc

dz
aIR
z2

;

B2 ¼
Z

zð2Þc

zð1Þc

dz
aIR
z2

�
ρ02II
2

− ρII

�
: ð61Þ

We denote b̄1 and b̄2 as the rescaled parameters of B1 and

B2, respectively. Following [28], we set zð1Þc ¼ 1 and

zð2Þc ¼∞. At R ≃ 20, we find b̄1≃1.4b1 and b̄2 ≃ 0.55b2.
Thus, although the analytical expression of HEE does not
match the numerical result very well, it does correctly
reflect the fact that the TEE disappears.

V. HOLOGRAPHIC FQH EFFECT

The FQH effect is associated with a state of quantum
fluids that is dominated by strongly correlated electrons in
high magnetic field. Due to the strong interaction and
unusual symmetry in essence that can be implemented
relatively easy in the holographic framework, it has been
argued that the FQH system is likely to be a profitable place
to apply the AdS/CFT correspondence [38]. Of particular
interest to us, the FQH system is the prototype of
topologically ordered medium that can be experimentally
realized [39]. It has been found that the TEE in the
fermionic Laughlin states is related to the filling fraction
[40]. Thus, it would be interesting to study the HEE and
HSC in holographic FQH states. Early holographic
researches based on either bottom-up phenomenological
approaches or top-down string/brane settings are very
fruitful, e.g., see [41–51].

Here we will focus on a recent bottom-up model [52].
It is an Einstein-Maxwell-axion-dilaton theory with the
SL(2,Z) symmetry, which not only captures the modular
duality among various FQH states5 but also has the solution
with the hard mass gap and correct Hall conductivity
related to the filling fraction. Apparently, the solution to
model FQH states should have both electric and magnetic
charges. But ascribed to the SL(2,Z) transformation, it can
be generated from a solution with purely electric charge.
In Appendix A, we will review briefly how to numerically
construct the electric solution that is a RG flow from the
UV fixed point to the dilatonic scaling IR.

A. RT surface

Consider the solution in terms of the metric ansatz,

ds2 ¼ e2AðrÞ½−fðrÞdt2 þ dρ2 þ ρ2dθ2� þ dr2

fðrÞ : ð62Þ

The numerical functions of fðrÞ and AðrÞ are plotted in
Appendix A; see Fig. 7. The induced metric for the RT
surface is

ds2ind ¼
�
e2Aρ02 þ 1

f

�
dr2 þ e2Aρ2dθ2; ð63Þ

from which the entropy functional can be expressed as

S ¼ π

2GN

Z
∞

0

dreAρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Aρ02 þ 1

f

s
: ð64Þ

Taking the variation with respect to ρðrÞ, one can derive the
EOM for the RT surface

d
dr

e3Aρρ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Aρ02 þ 1

f

q ¼ eA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Aρ02 þ 1

f

s
: ð65Þ

B. HEE and HSC

1. Large R expansion

The IR metric is characterized by Eqs. (A12) and (A13),
with some parameters. By coordinate transformations, it
can be rewritten as

ds2 ¼ L2

z2

�
1

azn
dz2 − dt2 þ dρ2 þ ρ2dθ2

�
; ð66Þ

5Note that some well-known experimental results, such as the
duality relation and the semi-circle law in the plateaux transitions,
can be attributed to the existence of the modular symmetry group
which commutes with the renormalization group flow [53–55].
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where

n ¼ 4s
sþ 1

; ð67Þ

a ¼ −
256γ4ΛL2−n

c2ðn − 4Þ4uω exp
�
nAIR −

n
n − 4

γϕIR

�
: ð68Þ

Note that the singular behavior of Eq. (68) at n ¼ 4 is
forbidden due to the definition (67).
From Eq. (66), the holographic FQHmodel can be viewed

as a concrete realization of the general geometries that
studied in Sec. II. To go ahead, we need to specify the
parameter n. Consider the allowed region of parameters s
and γ. It is tiny since a sensible theory is required to satisfy
five constraints, such as the absence of naked singularities
at finite temperatures and the presence of mass gap, see
Sec. IIIB and Fig. 2 in [52]. Then one can read that the
minimum value of n is 2 when s ¼ 1 [28]. In terms of
Sec. II, we infer that the TEE is vanishing and the HSC does
not have the R-linear term. In other words, the absence of the
constant term in the HEE and the R-linear term in the HSC
depends on the geometry in the IR. Nevertheless, we have
made double check of the large-R behavior by numerical
methods, for which the complete background is needed.

2. Topology change

Following [52], we choose the parameters

γ ¼ −0.85; s ¼ 1.2 ð69Þ

which indicates the IR index n ¼ 24=11 > 2. Thus, the
topology of the RT surface should change from disk to
cylinder as R increases. Using the IR solutions (A12)–
(A16), two kinds of the IR boundary conditions of the RT
surface can be derived from the EOM (65) and its variant.
They are

rðρÞ ¼ r� þ
1

2
e2Aðr�Þfðr�ÞA0ðr�Þρ2 þ � � � ; disk; ð70Þ

ρðrÞ ¼ ρ0 þ
v1
ρ0

½pðr − r0Þ�v2 þ � � � ; cylinder; ð71Þ

where

v1 ¼ −
c2uωðn − 4Þ2
128ðn2 − 4Þγ4Λ exp

�
−2AIR þ n

n − 4
γϕIR

�
;

v2 ¼ 4γ2
n − 2

ðn − 4Þ2 : ð72Þ

We need to write down the HSC,

C ¼ 1

4GNL

Z
∞

0

dr
e2Affiffiffi
f

p
Z

ρðrÞ

0

dρρ: ð73Þ

Using the solution in the UV,

rðρÞ ¼ −
L
2
log

R2 − ρ2

L2
; ð74Þ

we isolate the UV divergences in the HEE and HSC,
which is

Sdiv ¼
πL2

2GN

�
R
L
e
rinf
L

�
; Cdiv ¼

L2

8GN

�
1

2

�
R
L
e
rinf
L

�
2

−
rinf
L

�
;

ð75Þ

where rinf is the UV cutoff. Note that the UV divergences
(75) are the same as those in pure AdS. In fact, Eq. (75) can
be derived from Eq. (21) by a coordinate transforma-
tion r ¼ −L log z

L.
Collecting these results together and using the metric

constructed in Appendix A, we can numerically calculate
the HEE and HSC; see Fig. 6. One can find that there
is no obvious signal indicating the topology change
of the RT surface. This might be relevant to the fact that
the IR index n is close to 2, at which only the disk topology
exists.

VI. GAUSS-BONNET CURVATURE

TEE is the logarithm of the total quantum dimension. For
FQH states, it can be calculated by the Chern-Simons
theory [56]. For theories compactified on a higher genus
surface, the TEE is related to the degeneracy of the ground
state. In [28], a similar relation has been exhibited in
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FIG. 6. S̄ (left) and C̄ (right) as the functions of R for the FQH model.
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holography, for which both the TEE and ground state
degeneracy are produced by the GB curvature in the bulk.
This holographic mechanism requires two conditions:
(i) the RT surface is disklike, and (ii) the TEE is suppressed,
except the GB contribution. Both of them have been
realized in the soft-wall model that we studied in
Sec. IV. Here we will study the GB contribution to the
HSC in the same model.
It is implicitly assumed that the previous definition

of the HSC (16) is applicable only to the Einstein gravity.
Motivated by the Wald entropy [57], the HSC of a higher-
derivative gravity theory was proposed [8]:

C ¼ 1

L

Z
B

ffiffiffi
σ

p
d3xEμνλρϵμνϵλρ; Eμνλρ ¼ ∂L

∂Rμνλρ
: ð76Þ

Here L is Lagrangian, B is the bulk space enclosed by the
RT surface, σ is the determinant of the space, and ϵμν should
be certain binormal. As pointed out in [58], however, such
definition suffers from the arbitrariness of the foliation in B.
Nevertheless, it was speculated that the complexity func-
tional in high-derivative theories should involve contrac-
tions of the 4-rank tensor Eμνλρ and the geometric quantities
characterizing B. As a result, a general complexity func-
tional involving Eμνλρ at most once was presented:

C¼ 1

L

Z
B

ffiffiffi
σ

p
d3xEμνλρ½ðβ1nμhνλnρ þ β2hμρhνλÞ þ β3�;

ð77Þ
where hμν and nμ are the induced metric and the normal
vector of the space B, respectively. The constants (β1, β2,
β3) are constrained so that the total functional is reduced to
the volume functional for the Einstein gravity. Note that the
complexity of higher-derivative gravity theories based on
both CA and CV conjectures has been discussed in [59].
In the following, we will study Eq. (77).
For our aim, we split Eq. (77) into

C¼ CE þ CGB; ð78Þ
where CE depends only on the Einstein gravity and CGB
denotes the GB correction. Importantly, in the 4-dimensional
theory of gravity that we are concerning, the GB curvature
contributes only a topological term to the gravity action and
HEE [28]. Therefore, neither the spacetime metric nor the
RT surface would be changed. Since we have shown in
Sec. IV that there is no R-linear term in CE, we only need to
focus on CGB.
Let’s write down the GB part of the Lagrangian

LGB ¼ α

16πGN
ðRμνλρRμνλρ þ R2 − 4RμνRμνÞ; ð79Þ

where α is the GB coupling. Accordingly, the 4-rank
tensor is

Eμνλρ
GB ¼ α

16πGN
½2Rμνλρ þ ðgμλgνρ − gμρgνλÞR

þ 2ðgνλRμρ − gμλRνρ þ gμρRνλ − gνρRμλÞ�: ð80Þ

Then CGB can be written as

CGB ¼ C1 þ C2; ð81Þ

C1 ¼
β1
L

Z
B

ffiffiffi
σ

p
d3xEμνλρ

GB nμhνλnρ; ð82Þ

C2 ¼
β2
L

Z
B

ffiffiffi
σ

p
d3xEμνλρ

GB hμρhνλ: ð83Þ

Using the metric (41) for the soft-wall model and the 4-rank
tensor (80), one can calculate Eqs. (82) and (83):

C1 ¼
αβ1
8GN

Z
∞

0

dzχ1
a3=2

z3

Z
ρðzÞ

0

dρρ; ð84Þ

C2 ¼
αβ2
8GN

Z
∞

0

dzχ2
a3=2

z3

Z
ρðzÞ

0

dρρ; ð85Þ

where

χ1 ¼ −
6

a
þ 2za0

a2
þ 3z2a02

2a3
−
2z2a00

a2
; ð86Þ

χ2 ¼
12

a
−
8za0

a2
þ 2z2a00

a2
: ð87Þ

To carry these integrals, the profile ρðzÞ obtained in Sec. IV
can be used. So let’s use the large-R expansion (51) and
rewrite Eqs. (84) and (85) as

Ci ¼ Ci;I þ Ci;II þ Ci;III; i ¼ 1; 2; ð88Þ

where

Ci;I ∼
Z

zð1Þc

ϵ
dz

R2 − z2

z3
; ð89Þ

Ci;II ∼ R2

Z
zð2Þc

zð1Þc

dzχi
a3=2

z3
− 2

Z
zð2Þc

zð1Þc

dzχi
a3=2

z3
ρ1 þO

�
1

R

�
;

ð90Þ

and Ci;III is exponentially suppressed by a suitable selection

of zð2Þc . One can see that there is no R-linear term in CGB.

VII. CONCLUSION

Using the gauge/gravity duality, we studied the complex-
ity of the disk subregion in various (2þ 1)-dimensional
gapped systems. We compared the HSC and the HEE from
two aspects.

HOLOGRAPHIC COMPLEXITY OF THE DISK SUBREGION … PHYS. REV. D 98, 066005 (2018)

066005-11



Firstly, we found that the R-linear term in the HSC is
absent in the large-R expansion. In particular, it disappears
for the similar reason that the TEE disappears in the HEE.6

This simple but interesting result suggests that there might
be an underlying relation between the HSC and the
topological order. However, we further showed that the
GB curvature in the soft-wall model cannot produce
the R-linear term in the HSC. If the R-linear term in the
HSC is really correlated to the TEE, it would be needed to
refine the present conjecture for the HSC in the GB gravity.
In Appendix B, we will make some speculations on what
the expected expression would look like.
Secondly, when the entanglement entropy probes the

classic ‘swallowtail’ phase transition, the complexity is
associated with a novel ‘double-S’ behavior. Our result
supports to take the HSC as a good order parameter for
some phase transitions [12–14]. However, neither the HEE
nor the HSC can obviously exhibit the topology change of
the RT surface in the holographic FQH model [52]. More
sensitive order parameter might be required.7 Moreover, we
have shown that the complexity can be more sensitive than
the entanglement entropy to probe the topology change of
the RT surface.8 Interestingly, a similar result also appeared
in a recent work: by quantifying the complexity of sub-
regions via their purification, it was demonstrated that the
complexity can perceive some features insensitive to the
entanglement entropy [60].
In the future, it may be worth studying the HSC through

the tensor network. Among others [61–65], this direction is
motivated by the following work. In [66], by comparing the
minimal surfaces in the AdS soliton and the MERA (multi-
scale entanglement renormalization ansatz) network [67], it
was argued that the IR fixed-point state is the product state,
which is consistent with the vanishing TEE. In [20], using
the AdS3=CFT2 duality, it was found that the subregion
complexity exhibits a topological discontinuity as the RT
surface changes the configuration. Similar results have
also been obtained using the CFT and the random tensor

network [68]. It would be interesting to explore whether the
vanishing R-linear term in the HSC could be reinterpreted
by the tensor network. Moreover, by using the kinematic
space as a bridge, it was pointed out recently that the HSC
of a pure state can be represented by the HEE alone. Even
for the excited states they considered, a part of the HSC can
be determined by the HEE [69]. This paves a way to clarify
the relation between the HEE and the HSC in the field
theory. In particular, along this line, it would be promising
to identify what are the counterparts of the TEE and the
‘swallowtail’ in the HSC. Our results should be useful in
this regard.
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APPENDIX A: NUMERICAL SOLUTION
OF THE FQH MODEL

We will study the Einstein-Maxwell-axion-dilaton
theory with the SL(2,Z) invariance,

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ðLg þ LF þ VÞ; ðA1Þ

Lg ¼ R −
1

2
ð∂ϕÞ2 − 1

2

e−2γϕ

γ2
ð∂τ1Þ2; ðA2Þ

LF ¼ −
1

4

�
eγϕF2 þ τ1

2
ϵμνρσFμνFρσ

�
; ðA3Þ

V ¼
X0
m;n∈Z

�jmþ nτj2
τ2

�−s
; ðA4Þ

where τ ¼ τ1 þ iτ2 and τ2 ¼ eγϕ. The prime above
P

stands for m, n ≠ 0. With the ansatz for the metric

ds2 ¼ e2AðrÞ½−fðrÞdt2 þ dx2 þ dy2� þ dr2

fðrÞ ðA5Þ

and the nonvanishing component of the gauge potential
AtðrÞ, one can derive five field equations

τ022 þ 4γ2τ22A
00 þ τ021 ¼ 0; ðA6Þ

f00 þ 3A0f0 − e−4A
q2

τ2
¼ 0; ðA7Þ

τ001 þ
�
3A0 þ f0

f
− 2

τ02
τ2

�
τ01 þ

γ2τ22
f

∂V
∂τ1 ¼ 0; ðA8Þ

6For most models in this paper, their disappearance is
originated from the absence of the constant term in the large-
R expansion of the profile ρðzÞ. For the soft-wall model, the
origins not only include the absence of the constant term of ρðzÞ
in parts (I) and (II) but also the exponential suppression of the
HEE or the HSC in part (III).

7We have checked that the derivatives of the HEE and the HSC
with respect to R are still continuous in the FQH model. Thus,
from the perspective of the HEE or the HSC, the topology change
is not simply a “first-order” nor “second-order” phase transition.
Moreover, the renormalized entanglement entropy that is made of
the HEE and its derivative [25,26] is not sensitive to the topology
change, either.

8It means that (i) sometimes the multi-valued region of S̄ is not
as obvious as that of C̄ (see Fig. 1), (ii) the small ‘S’ region of C̄
exhibits the details of the extremal surfaces near the transition
point, which has not the obvious counterpart in S̄ (see Figs. 1–4),
and (iii) the HEE has a discontinuous first derivative along R,
while the HSC itself is discontinuous (see Figs. 1 and 3).
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ðlog τ2Þ00 þ
�
3A0 þ f0

f

�
ðlog τ2Þ0 þ

τ021
τ22

þ γ2τ2
f

�∂V
∂τ2 þ

1

2
e−4A

q2

τ22

�
¼ 0; ðA9Þ

−
1

2

�
τ22
γτ2

�
2

þ 6A02 þ 2A0 f
0

f
−
V
f
þ 1

2f
e−4A

q2

τ22
¼ 0:

ðA10Þ

The potential can be expanded for large τ2 as

V ¼ 2ζð2sÞτs2 þ 2
ffiffiffi
π

p
τ1−s2

Γðs − 1=2Þ
ΓðsÞ ζð2s − 1Þ

þ 2πs
ffiffiffiffi
τ2

p
ΓðsÞ

X0
m;n∈Z

jm
n
js−1=2Ks−1=2ð2πτ2jmnjÞe2iπmnτ1 ;

ðA11Þ

where K denotes the modified Bessel function of the
second kind. In the IR, it has the form V ¼ −2Λτs2, where
Λ ¼ −ζð2sÞ and s is a real parameter. It is found that there
is an extremal scaling solution in the IR [52,70]

AðrÞ ¼ AIR þ ðγ − δÞ2
4

logðpðr − r0ÞÞ; ðA12Þ

fðrÞ ¼ −16Λ
ωuc2

e−δϕIRðpðr − r0ÞÞv; ðA13Þ

ϕðrÞ ¼ ϕIR þ ðδ − γÞ logðpðr − r0ÞÞ; ðA14Þ

τ1ðrÞ ¼ a0; ðA15Þ

AtðrÞ ¼
8

ω

ffiffiffiffiffiffi
vΛ
u

r
e−

γþδ
2
ϕIRðpðr − r0ÞÞω4 ; ðA16Þ

where ω¼3γ2−δ2−2γδþ4, u ¼ γ2 − γδþ 2, v ¼ −δ2þ
γδþ 2, δ ¼ −γs, and

q2 ¼ e−4AIR
−4Λeðγ−δÞϕIRð2þ γδ − δ2Þ

ð2þ γ2 − γδÞ
p2

c2
: ðA17Þ

Following [52], we will explain how to construct a
numerical solution of field equations. First, we will reduce
two independent parameters: the parameter ϕIR can be
determined by Eq. (A17) and one can infer c ¼ p from
Eq. (A9). Second, given six parameters ðγ; s; a0; p; q; r0Þ,
we can use Eqs. (A12)–(A16) as the IR boundary con-
ditions to obtain a trial solution, where the remained
parameter AIR is turned to respect 6A02f ¼ 6=L2 in the
UV. This is required by Eq. (A10). Here L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=Vðτ�; τ̄�Þ
p

is the AdS radius and τ� denotes certain UV fixed
point. Third, the field equations are invariant under two
transformations,

r → λ1r; f → λ21f; ðA18Þ
eA → λ2eA; q → λ22q; ðA19Þ

which have the parameters λi, i ¼ 1, 2. In terms of these
symmetries, one can rescale the trial solution to meet the
UV boundary condition f ¼ 1 and A ¼ r=L.
As an example, we will construct the trial solution by

setting τ� ¼ e
πi
3 and selecting the parameters

γ ¼ −0.85; s ¼ 1.2; a0 ¼ 0.2; p ¼ 1;

q ¼ 1; r0 ¼ 0: ðA20Þ
The final metric functions are plotted in Fig. 7.

APPENDIX B: GAUSS-BONNET FORMULA ON
THREE-DIMENSIONAL MANIFOLDS

We further explore the HSC in the GB gravity. Since we
suspect that Eq. (77) might need to be improved, a natural
question is what the expected expression looks like.
Let’s write down the HEE in the GB gravity [71–73]

S¼ 1

4GN

�Z
Σ
d2x

ffiffiffi
h

p
þα

�Z
Σ
d2x

ffiffiffi
h

p ð2ÞRþ2

Z
∂Σ
dx

ffiffiffiffiffi
h∂

p
K

��
;

ðA21Þ
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r
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FIG. 7. The metric functions fðrÞ (left) and AðrÞ (right) in the FQHmodel. They are dotted lines and coloured in blue. The orange line
and the green line denote the IR and UV asymptotics, respectively.
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where h is the determinant of the metric on the RT
surface Σ, ð2ÞR is the intrinsic Ricci scalar defined on Σ,
h∂ is the determinant of the induced metric on the
boundary ∂Σ, and K is the extrinsic curvature of the
boundary. The terms in the parentheses are proportional
to the Euler characteristic χ of the RT surface due to the
GB theorem.
We turn to observe the proposals for the HSC in the

GB gravity; see Eqs. (76) and (77). They are mainly
motivated by the expression of the HEE (or Wald
entropy) in the higher-derivative theory. However, com-
paring them with Eq. (A21), one can find an obvious
difference: there are no topological features in Eqs. (76)
and (77). In view of this, a natural proposal for the HSC
in the GB gravity would be to involve a topological
invariant like the integral of the Euler density, but it
should be defined on the three-dimensional space inside
the RT surface. It is well known that the even dimen-
sionality is essential for the GB theorem. If the manifold
is odd-dimensional, the Euler characteristic is zero.
Interestingly, we notice that there is a formula in the

odd-dimensional manifold which is actually related to the
GB theorem [74]:

1

lðξÞ
1

2π

�Z
M
KdM þ 3VolðMÞ

�
¼ 2β0ðMÞ − β1ðMÞ;

ðA22Þ

where M is a three-dimensional Sasakian manifold, ξ is
the regular unit Killing vector, K is the sectional curvature
of the surface orthogonal to ξ, lðξÞ is the length of its
trajectory, and βiðMÞ denotes the i-th Betti number of M.
In particular, the length scale seems to appear in a suitable
place. However, the space inside the RT surface is not the
Sasakian manifold in general. In the future, it would be
interesting to investigate whether the restriction on the
manifold could be sufficiently relaxed9 and lðξÞ could be
related to the size of entangling surface. We emphasize
that this direction is presently quite speculative.
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