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Spin raising and lowering operators for massless field equations constructed from twistor spinors are
considered. Solutions of the spin-3

2
massless Rarita-Schwinger equation from source-free Maxwell fields

and twistor spinors are constructed. It is shown that this construction requires Ricci-flat backgrounds due to
the gauge invariance of the massless Rarita-Schwinger equation. Constraints to construct spin raising and
lowering operators for Rarita-Schwinger fields are found. Symmetry operators for Rarita-Schwinger fields
via twistor spinors are obtained.
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I. INTRODUCTION

In four dimensional conformally flat spacetimes, the
solutions of the massless field equations for different spins
can be mapped to each other by spin raising and lowering
procedures [1]. A spin raising operator is an operator
constructed from a twistor spinor and gives a solution of the
spin-(sþ 1

2
) massless field equation from a solution of the

spin-s massless field equation. Similarly, a spin lowering
operator maps a solution of the spin-s massless field
equation to a solution of the spin-(s − 1

2
) massless field

equation by using twistor spinors. Twistor spinors are
special spinors defined as the solutions of the twistor
equation on a spin manifold. They appear in various
problems of mathematical physics. Supersymmetry gen-
erators of both superconformal field theories in curved
backgrounds and conformal supergravity theories corre-
spond to twistor spinors [2–5]. They are also used in the
construction of extended conformal superalgebras and are
related to the conformal hidden symmetries of a back-
ground that are conformal Killing-Yano forms [6–9].
Twistor spinors contain Killing spinors and parallel spinors
as special cases which are supersymmetry generators of
supersymmetric field theories and supergravity theories. The
classification of manifolds admitting twistor spinors in
Riemannian and Lorentzian signatures has been investigated

in [10,11]. Especially, they exist on conformally flat mani-
folds in maximal number.
Starting with a twistor spinor, the spin raising and

lowering operators can be constructed for massless spin-
0 fields which satisfy the conformally covariant Laplace
equation, massless spin-1

2
fields which satisfy the massless

Dirac equation, and massless spin-1 fields which satisfy the
source-free Maxwell equations [12–14]. However, for the
case of higher spins, the construction is not straightforward
and some constraints may arise in the procedure. Massless
spin-3

2
fields are solutions of the massless Rarita-Schwinger

equation which determines the motion of gravitino particles
in supergravity [15,16]. Rarita-Schwinger fields appear as
sources of torsion and curvature in supergravity field
equations. They correspond to spinor-valued 1-forms that
are in the kernel of the Rarita-Schwinger operator which
can be seen as the generalization of the Dirac operator to
spin-3

2
fields. Spin raising and lowering procedures can

allow us to find the solutions of the massless Rarita-
Schwinger equation by using spin-1 source-free Maxwell
solutions and twistor spinors.
In this paper, we focus on the construction of spin raising,

spin lowering, and symmetry operators for massless Rarita-
Schwinger fields.We start bywritingRarita-Schwinger field
equations in a modern geometrical language [17–19]. Spin
raising and lowering operators between the massless spin-1
and spin-3

2
fields are found by using twistor spinors and the

constraints for the construction of them are obtained. Spin
raising operators are constructed for middle-form Maxwell
fields in all even dimensions besides dimension four and it is
found that the twistor spinor used in the construction of the
spin raising operator must be in the kernel of the spin-1
Maxwell field. However, since the gauge invariance of the
massless Rarita-Schwinger equation requires Ricci-flat
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backgrounds, it is shown that the spin raising operators
automatically solve themassless Rarita-Schwinger equation
in those backgrounds. Spin lowering operators are con-
structed for four dimensional fields and a constraint relating
the Rarita-Schwinger field with the curvature characteristics
of the background is found. We also construct a symmetry
operator for Rarita-Schwinger fields by using spin raising
and lowering operators whichmap a solution of themassless
Rarita-Schwinger equation to another solution.
The paper is organized as follows. We define the spin

raising and lowering operators for lower spin massless
fields in Sec. II. In Sec. III, we construct the spin raising
and lowering operators for massless spin-3

2
fields. A

symmetry operator of massless Rarita-Schwinger fields
is proposed in Sec. IV. Section V concludes the paper. In an
appendix, we give the transformation rules between the
languages of Clifford calculus and gamma matrices to write
the equalities in the paper in an alternative notation.

II. SPIN CHANGING OPERATORS FOR
MASSLESS FIELD EQUATIONS

We consider massless and source-free field equations in
curved backgrounds written for particles with different
spins. For example, massless spin-0 particles satisfy the
following conformally generalized Laplace equation in n
dimensions:

Δφ −
ðn − 2Þ
4ðn − 1ÞRφ ¼ 0 ð1Þ

where φ is a function, R is the scalar curvature of the
background spacetime, and the Laplace-Beltrami operator
Δ is defined as the square of the Hodge-de Rham operator
=d, which contains the exterior derivative operator d and
coderivative operator δ as

Δ ¼ =d2 ¼ ðd − δÞ2 ¼ −dδ − δd:

The operator given in (1) acting on the scalar field φ is
called the conformally invariant Yamabe operator. For
massless spin-1

2
particles, the field equation corresponds

to the following massless Dirac equation:

Dψ ¼ 0 ð2Þ

where ψ is a spinor field and the Dirac operator D is
defined as

D ¼ ea:∇Xa

for the frame basis fXag and coframe basis feag that are
related by the duality property eaðXbÞ ¼ δab. Here δ

a
b is the

Kronecker delta, ∇X is the spinor covariant derivative
with respect to the vector field X and : denotes the
Clifford multiplication. On the other hand, we also consider

source-free Maxwell equations for spin-1 particles which
are written in terms of the Hodge-de Rham operator =d ¼
d − δ as follows:

=dF ¼ 0 ð3Þ

where F is the Maxwell 2-form field [17].
One can use twistor spinors to obtain solutions of the

massless and source-free field equations written in (1), (2),
and (3) from the solutions of each other. A twistor spinor u
is a solution of the following differential equation in n
dimensions:

∇Xu ¼ 1

n
X̃:Du ð4Þ

for any vector field X and its metric dual X̃. By taking the
second covariant derivative of (4), one obtains the follow-
ing integrability conditions of the twistor equation [10,14]:

∇Xa
Du ¼ n

2
Ka:u ð5Þ

D2u ¼ −
n

4ðn − 1ÞRu ð6Þ

Cab:u ¼ 0 ð7Þ

where the 1-form Ka is defined in terms of the Ricci
1-forms Pa and curvature scalar R as

Ka ¼
1

n − 2

�
R

2ðn − 1Þ ea − Pa

�
ð8Þ

and its components correspond to the Schouten tensor. Cab
are conformal 2-forms which are written in terms of the
curvature characteristics and defined for n > 2 as

Cab ¼ Rab −
1

n − 2
ðPa ∧ eb − Pb ∧ eaÞ

þ 1

ðn − 1Þðn − 2ÞRea ∧ eb ð9Þ

where Rab are curvature 2-forms and ∧ denotes the wedge
product. The components of the 2-form Cab correspond to
the conformal (Weyl) tensor. The second integrability
condition given in (6) is the standard Weitzenbock identity.
One can see from the third integrability condition in (7) that
all conformally flat manifolds can have solutions of the
twistor equation (4).
In four dimensions, a solution ψ of the massless Dirac

equation given in (2) can be constructed from a solution φ
of the massless spin-0 particle equation in (1) and a twistor
spinor u that satisfies (4) [12,14]. The so-called “spin
raising” operator from spin-0 to spin-1

2
is given as follows:
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ψ ¼ dφ:uþ 1

2
φ:Du: ð10Þ

It can easily be seen that by using the defining equations of
φ and u given by (1) and (4) and the integrability conditions
(5)–(7), one can find the result Dψ ¼ 0. A reverse
procedure of obtaining a solution φ of massless spin-0
equation from a solution ψ of the massless Dirac equation
and a twistor spinor u can also be constructed [13,14]. To
do this, we consider the spin-invariant inner product (,)
defined on spinor fields [17]. For any two spinor fields u
and v, it has the property ðu; vÞ ¼ −ðv; uÞ and for any
differential form α, we have

ðu; α:vÞ ¼ ðαξ:u; vÞ

where αξ ¼ ð−1Þbp=2cα with bc denoting the floor function
that takes the integer part of its argument. By using this
inner product, the so-called “spin lowering” operator from
spin-1

2
to spin-0 is given in the following form:

φ ¼ ðu;ψÞ: ð11Þ

One can check by using the defining equations (2) and (4)
and the integrability conditions (5)–(7) that this function φ
satisfies the massless spin-0 field equation given in (1). By
combining the spin lowering and spin raising operations,
one can also construct symmetry operators for massless
Dirac fields. A symmetry operator takes a solution of an
equation and gives another solution. So, by considering two
twistor spinors u1 and u2 and a solution ψ of the massless
Dirac equation, the following symmetry operator for
massless Dirac fields can be written from the spin lowering
and spin raising operations

Lu1u2ψ ¼ dðu1;ψÞ:u2 þ
1

2
ðu1;ψÞ:Du2: ð12Þ

Since the antisymmetric generalizations of conformal
Killing vector fields that are called conformal Killing-
Yano forms can be constructed from two twistor spinors
[9], it can be shown that the symmetry operator (12) is
equivalent to the symmetry operators of massless Dirac
equation written in terms of conformal Killing-Yano
forms [12,20].
Spin raising and spin lowering operators can also be

defined for obtaining solutions of spin-1 source-free
Maxwell equations from the solutions of the massless
Dirac equation and vice versa. To do this, we consider
the dual spinor ū of a spinor u. The dual spinor ū is defined
by the action of it on a spinor v in terms of the spinor inner
product as follows:

ūðvÞ ¼ ðu; vÞ:
We can consider tensor products of spinors and dual spinors
which correspond to the linear transformations on spinors

ðu ⊗ v̄Þw ¼ uðv; wÞ

and

ðu ⊗ v̄Þw̄ ¼ ðw; uÞv̄

for any spinor w [13]. Since the inner products ðv; wÞ and
ðw; vÞ give scalar quantities and u and v̄ are a spinor and a
dual spinor, respectively, the quantities uðv; wÞ and ðw; uÞv̄
correspond to a spinor and a dual spinor, respectively. This
means that tensor products of spinors and dual spinors are
elements of the Clifford algebra and they can be Clifford
multiplied by inhomogeneous differential forms. For any
differential form α, we have the following relations for the
tensor product of spinors and dual spinors:

α:ðu ⊗ v̄Þ ¼ α:u ⊗ v̄

ðu ⊗ v̄Þ:α ¼ u ⊗ αξ:v

ðu ⊗ v̄Þξ ¼ −v ⊗ ū:

So, from a solution ψ of the massless Dirac equation and a
twistor spinor u, one can write the following spin raising
operator from spin-1

2
to spin-1 as follows [12,13]:

F ¼ ea:u ⊗ ∇Xa
ψ þ 1

2
Du ⊗ ψ̄ þ ψ ⊗ Du: ð13Þ

It can be seen that from the properties of the tensor product
given above, the differential form F in (13) is a 2-form in
four dimensions and from the defining equations of (2)
and (4) and the integrability conditions (5)–(7), it satisfies
the source-free Maxwell equation (3) [12,13]. Similarly, we
can also construct a spin lowering operator from a solution
F of the source-free Maxwell equations and a twistor spinor
u to obtain a solution of the massless Dirac equation. The
spin lowering operator from spin-1 to spin-1

2
is given as

ψ ¼ F:u: ð14Þ

It can be checked that ψ in (14) is a harmonic spinor,
namely, a solution of the massless Dirac equation. From the
spin lowering and spin raising operations between the
solutions of spin-1 and spin-1

2
field equations, the symmetry

operators of source-free Maxwell equations can be con-
structed in the following form:

Lu1u2F ¼ ea:u2 ⊗ ∇Xa
ðF:u1Þ þ

1

2
Du2 ⊗ F:u1

þ F:u1 ⊗ Du2 ð15Þ

where u1 and u2 are two twistor spinors and F is a source-
free Maxwell solution.
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III. SPIN RAISING AND SPIN LOWERING
FOR RARITA-SCHWINGER FIELDS

In this section, we construct spin raising and spin
lowering operators for spin-3

2
fields that satisfy the massless

Rarita-Schwinger field equations. These operators will be
used to make connections between the solutions of the
source-free Maxwell equations and the massless Rarita-
Schwinger equations via twistor spinors in all even dimen-
sions besides the special case of dimension four.
Let us first consider spinor-valued p-forms which are

constructed out of tensor products of spinor fields and
differential p-forms and describe spin-(pþ 1

2
) particles. For

a spinor with indices ψ I and a p-form eI, the spinor-valued
p-form is defined by

Ψp ¼ ψ I ⊗ eI

where I is a multi-index. Note that, the tensor product of
spinor fields and p-forms defined above is different from
the tensor product of spinors and dual spinors defined in
Sec. II although we denote them with the same symbol. In a
similar way, we can also define a Clifford form-valued p-
form Np ¼ nA ⊗ eA as a tensor product of a differential
form nA on the Clifford bundle and a differential p-form eA

on the exterior bundle. The action of a Clifford form-valued
p-form Np to the spinor-valued q-form Ψq is defined by

Np:Ψq ¼ nA:ψ I ⊗ eA ∧ eI ð16Þ

in terms of Clifford and wedge products, the result of which
is a spinor-valued (pþ q)-form. As a special case, we
consider spinor-valued 1-forms representing spin-3

2
par-

ticles. In that case, we have a spinor field ψa and the
coframe basis ea of 1-forms to construct the spin-3

2
quantity

Ψ ¼ ψa ⊗ ea:

The action of a Clifford form α on Ψ is defined by

α:Ψ ¼ α:ψa ⊗ ea: ð17Þ

Moreover, the inner product of a spinor-valued 1-form Ψ
and a spinor u in terms of the spinor inner product (,) is
given as follows

ðu;ΨÞ ¼ ðu;ψaÞea ð18Þ

which takes a spinor and a spinor-valued 1-form and gives a
1-form.
The Levi-Civita connection defined on differential forms

and spinor fields can also be induced on spinor-valued
1-forms with the following property:

∇XΨ ¼ ∇Xψa ⊗ ea þ ψa ⊗ ∇Xea ð19Þ

for any vector field X. In a similar way to the definition of
the Dirac operator on spinor fields, we can also define a
Rarita-Schwinger operator

D ¼ ea:∇Xa
ð20Þ

which acts on spinor-valued 1-forms. From the definitions
given above, the massless Rarita-Schwinger field equations
of spin-3

2
fields in supergravity can be written for a spin-3

2

field Ψ ¼ ψa ⊗ ea as follows:

DΨ ¼ 0 ð21Þ

ea:ψa ¼ 0: ð22Þ

Equation (21) can be seen as a generalization of the
massless Dirac equation to spin-3

2
fields and Eq. (22) is

the tracelessness condition. Moreover, these equations
imply a Lorentz-type condition ∇Xaψa ¼ 0. This can be
seen as follows. By taking the covariant derivative of the
Rarita-Schwinger field Ψ ¼ ψa ⊗ ea

∇Xb
Ψ ¼ ∇Xb

ψa ⊗ ea þ ψa ⊗ ∇Xb
ea:

We will use ∇Xb
ea ¼ 0 for normal coordinates in the

following calculations. By Clifford multiplying with eb

from the left and using (21), we find

Dψa ⊗ ea ¼ 0:

Then, we have Dψa ¼ 0 for every a. Again, by Clifford
multiplying with ea from the left and using the Clifford
algebra identity ea:eb þ eb:ea ¼ 2gab for the components
of the (dual) metric gab, we obtain

ea:eb:∇Xb
ψa ¼ 2∇Xaψa − eb:ea:∇Xb

ψa

¼ 2∇Xaψa − eb:∇Xb
ðea:ψaÞ ¼ 0

where we have used ∇Xb
ea ¼ 0 in normal coordinates and

from (22) we obtain the following Lorentz-type condition:

∇Xaψa ¼ 0: ð23Þ

A. Spin raising

Let us consider a twistor spinor u which satisfies Eq. (4)
and a middle-form Maxwell field F which satisfies Eq. (3).
For even dimensions n ¼ 2p, the p-form Maxwell field F
is the generalization of the 2-form Maxwell field in four
dimensions to all even dimensions. We propose the
following spinor-valued 1-form that is the spin-3

2
field as

the spin raising operator from the spin-1 Maxwell field F to
the spin-3

2
Rarita-Schwinger field Ψ ¼ ψa ⊗ ea via the

twistor spinor u
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Ψ ¼
�
∇Xa

F:u −
1

n
F:ea:Du

�
⊗ ea: ð24Þ

Here it is clear that ψa ¼ ð∇Xa
F:u − 1

n F:ea:DuÞ. Now, we
have to prove that the spin-3

2
field defined in (24) satisfies

both of the Rarita-Schwinger field equations in (21)
and (22).
Using this ψa in (22) we obtain

ea:ψa ¼ ea:∇Xa
F:u −

1

n
ea:F:ea:Du:

For a p-form α, we have the relation ea:α:ea ¼
ð−1Þpðn − 2pÞα. From this identity and the definition of
the Hodge-de Rham operator =d acting on any differential
form α as =dα ¼ ea:∇Xa

α, we find

ea:ψa ¼ =dF:u − ð−1Þp n − 2p
n

F:Du: ð25Þ

Since F satisfies =dF ¼ 0 and we have n ¼ 2p, one
concludes

ea:ψa ¼ 0:

As a consequence, Ψ defined in (24) satisfies the trace-
lessness condition of a Rarita-Schwinger field.
To see if Eq. (21) is satisfied by Ψ in (24), we apply the

Rarita-Schwinger operator defined in (20) to Ψ

DΨ ¼ eb:∇Xb

��
∇Xa

F:u −
1

n
F:ea:Du

�
⊗ ea

�

¼ eb:

�
∇Xb

∇Xa
F:uþ∇Xa

F:∇Xb
u

−
1

n
∇Xb

F:ea:Du −
1

n
F:ea:∇Xb

Du

�
⊗ ea ð26Þ

where we have used (19) and ∇Xb
ea ¼ 0 in normal

coordinates. From the property (17) and the definition of
=d, we obtain

DΨ ¼
�
=d∇Xa

F:uþ eb:∇Xa
F:∇Xb

u −
1

n
=dF:ea:Du

−
1

n
eb:F:ea:∇Xb

Du

�
⊗ ea: ð27Þ

We know that F satisfies (3) and u is a twistor spinor which
satisfies (4) and (5). Then, we have

DΨ ¼
�
=d∇Xa

F:uþ 1

n
eb:∇Xa

F:eb:Du

−
1

2
eb:F:ea:Kb:u

�
⊗ ea

¼
�
=d∇Xa

F:u −
1

2
eb:F:ea:Kb:u

�
⊗ ea ð28Þ

wherewe have used eb:∇Xa
F:eb¼ð−1Þpðn−2pÞ∇Xa

F¼ 0

since ∇Xa
F is a n

2
-form. By direct computation, one can see

that the action of the commutator of the Hodge-de Rham
operator and the covariant derivative on a differential p-form
α can be written in terms of the curvature operator as

½=d;∇Xa
�α ¼ −eb:RðXa; XbÞα: ð29Þ

By using this identity, (28) transforms into the following
form:

DΨ ¼
�
−eb:RðXa; XbÞF:uþ∇Xa

=dF:u

−
1

2
eb:F:ea:Kb:u

�
⊗ ea

¼
�
−eb:RðXa; XbÞF:u −

1

2
eb:F:ea:Kb:u

�
⊗ ea

¼
�
−eb:

�
RðXa; XbÞF þ 1

2
F:ea:Kb

�
:u

�
⊗ ea ð30Þ

where we have used (3) in the second line.
The action of the curvature operator on a generally

inhomogeneous differential form αwhich is a section of the
Clifford bundle can be written in terms of the curvature
2-forms and Clifford bracket as [17]

RðXa; XbÞα ¼ 1

2
½Rab; α�Cl ð31Þ

where ½; �Cl is defined as ½Rab; α�Cl ¼ Rab:α − α:Rab.
Moreover, from the definition of conformal 2-forms Cab
in (9), we can write the curvature 2-forms as follows:

Rab ¼ Cab þ
1

n − 2
ðPa ∧ eb − Pb ∧ eaÞ

−
1

ðn − 1Þðn − 2ÞRea ∧ eb

¼ Cab þ Kb ∧ ea − Ka ∧ eb

¼ Cab þ eb:Ka − ea:Kb ð32Þ
where we have used the definition of Ka in (8) and the
expansion of the Clifford product in terms of the
wedge product and contraction iX with respect to a vector
field X as ea:Kb ¼ ea ∧ Kb þ iXa

Kb with the property
iXa

Kb ¼ iXb
Ka for zero torsion. So, by substituting (31)

and (32) in (30), we find

SPIN RAISING AND LOWERING OPERATORS FOR … PHYS. REV. D 98, 066004 (2018)

066004-5



DΨ ¼
�
−
1

2
eb:½Rab; F�Cl:u −

1

2
eb:F:ea:Kb:u

�
⊗ ea

¼
�
−
1

2
eb:Rab:F:uþ 1

2
eb:F:Rab:u

−
1

2
eb:F:ea:Kb:u

�
⊗ ea

¼
�
1

2
Pa:F:uþ 1

2
eb:F:Cab:uþ 1

2
eb:F:eb:Ka:u

− eb:F:ea:Kb:u

�
⊗ ea

¼
�
1

2
Pa:F:u − eb:F:ea:Kb:u

�
⊗ ea ð33Þ

where we have used the identity eb:Rab ¼ −Pa for zero
torsion, eb:F:eb ¼ 0 and the integrability condition (7).
Then, for Ψ to satisfy (21), we obtain the condition

Pa:F:u ¼ 2eb:F:ea:Kb:u ð34Þ

or from the definition (8) of Ka, it can also be written as

Pa:F:u ¼ 2R
ðn − 1Þðn − 2Þ ea:F:u −

2

n − 2
eb:F:ea:Pb:u:

ð35Þ

By Clifford multiplying (35) with ea from the left and using
the identities ea:Pa¼R, ea:ea ¼ n, ea:eb ¼ −eb:ea þ 2gab

and the property ea:F:ea ¼ 0, one obtains the following
equality:

�
nðn − 1Þ − 2

ðn − 1Þðn − 2Þ
�
RF:u ¼ 0: ð36Þ

So, the condition (35) for Ψ to be a massless Rarita-
Schwinger field transforms into the following condition:

F:u ¼ 0: ð37Þ

This resembles a condition onKilling-Yano forms that can be
used in the construction of symmetry operators of a massive
Dirac equation with an electromagnetic minimal coupling
term [21]. Those symmetry operators are constructed from
the Killing-Yano forms ω that satisfy the condition

½F;ω�Cl ¼ 0

where ½; �Cl is the Clifford bracket. Since a Killing spinor u,
which is a special twistor spinor that satisfies the massive
Dirac equation at the same time, can be used in the
construction of the Killing-Yano form ω as ω ¼ u ⊗ ū
[9], the above condition on ω reduces to the condition on
u written in (37).

On the other hand, the gauge invariance of the massless
Rarita-Schwinger equation in a curved background requires
the background to be Ricci flat, that is Pa ¼ 0. This can be
seen as follows. The Rarita-Schwinger equation given
in (21) and (22) can be written in a more compact form.
Let us consider a Clifford-valued 1-form e ¼ ea ⊗ ea and
define the action of the covariant exterior derivative D on
Ψ ¼ ψa ⊗ ea as

DΨ ¼ ea ∧ ∇Xa
ðψb ⊗ ebÞ

¼ ∇Xa
ψb ⊗ eab

where we have used ∇Xa
eb ¼ 0 in normal coordinates and

eab ¼ ea ∧ eb. The action of the Hodge star � on DΨ is
given by �DΨ ¼ ∇Xa

ψb ⊗ �eab. From the action of
Clifford-valued forms on spinor-valued forms defined in
(16), we can write

e: �DΨ ¼ ec:∇Xa
ψb ⊗ ec ∧ �eab

¼ ðea:∇Xb
ψa −DψbÞ ⊗ �eb

¼ ∇Xb
ðea:ψaÞ ⊗ �eb −Dψb ⊗ �eb

¼ ∇Xb
ðea:ψaÞ ⊗ �eb − �DΨ

where we have used the identity ec ∧ �eab ¼ gca � eb −
gcb � ea in the second line and the action of the Hodge
star in the last line. So, from (21) and (22), the Rarita-
Schwinger equation is equivalent to

e: �DΨ ¼ 0:

This equation has to be gauge invariant under the trans-
formation Ψ → ΨþDϕ for a spinor ϕ. We can write the
spinor ϕ as ϕ ¼ ϕ ⊗ 1 and

Dϕ ¼ ea ∧ ∇Xa
ðϕ ⊗ 1Þ

¼ ∇Xa
ϕ ⊗ ea:

By applying D once more, we have

D2ϕ ¼ eb ∧ ∇Xb
ð∇Xa

ϕ ⊗ eaÞ
¼ ∇Xb

∇Xa
ϕ ⊗ eba

¼ 1

2
ð∇Xb

∇Xa
−∇Xa

∇Xb
Þϕ ⊗ eba

¼ 1

2
RðXb; XaÞϕ ⊗ eba

where we have used the antisymmetry of the indices in the
third line and the definition of the curvature operator in the
fourth line. Then, if we choose Ψ as a pure gauge term
Ψ ¼ Dϕ, we obtain
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e: �D2ϕ ¼ 1

2
ec:RðXb; XaÞϕ ⊗ ec ∧ �eba

¼ −eb:RðXb; XaÞϕ ⊗ �ea

¼ −
1

2
eb:Rba:ϕ ⊗ �ea

¼ −
1

2
Pa:ϕ ⊗ �ea

where we have used the identity ec ∧ �eab ¼ gca � eb −
gcb � ea in the second line, RðXb; XaÞϕ ¼ 1

2
Rba:ϕ in the

third line, and eb:Rba ¼ Pa in the last line. The gauge
invariance implies the vanishing of the pure gauge term,
namely, e: �D2ϕ ¼ 0. So, to obtain a gauge invariant
massless Rarita-Schwinger equation we must have a
Ricci-flat background, Pa ¼ 0. In that case, the right-hand
side of (33) automatically vanishes and we obtain a Rarita-
Schwinger field Ψ from a source-free Maxwell field F and
a twistor spinor u as constructed in (24).

B. Spin lowering

By using a twistor spinor u, we can also construct a spin
lowering procedure to obtain a spin-1 Maxwell field F
from a spin-3

2
Rarita-Schwinger field Ψ ¼ ψa ⊗ ea in four

dimensions. From the inner product definition (18) for
spinor-valued 1-forms, let us consider the following 1-form
A constructed out of a twistor spinor u and a Rarita-
Schwinger field Ψ ¼ ψa ⊗ ea satisfying (21) and (22):

A ¼ ðu;ΨÞ ¼ ðu;ψaÞea: ð38Þ

We consider the 1-form A as the potential 1-form of the
2-form Maxwell field F ¼ dA. So, we have

F ¼ dðu;ΨÞ
¼ eb ∧ ∇Xb

½ðu;ψaÞea�
¼ ½ð∇Xb

u;ψaÞ þ ðu;∇Xb
ψaÞ�eb ∧ ea

¼
�
1

n
ðeb:Du;ψaÞ þ ðu;∇Xb

ψaÞ
�
eb ∧ ea ð39Þ

where we have used normal coordinates, the definition d ¼
eb ∧ ∇Xb

and the twistor equation (4). By definition, F is
an exact form and it automatically satisfies dF ¼ 0. So the
action of Hodge-de Rham operator =d ¼ d − δ on F gives

=dF ¼ dF − δF

¼ iXc∇Xc
F

from the definition δ ¼ −iXc∇Xc
. By taking the covariant

derivative of F, we find from (39)

∇Xc
F ¼

�
1

n
∇Xc

ðeb:Du;ψaÞ þ∇Xc
ðu;∇Xb

ψaÞ
�
eb ∧ ea

¼
�
1

2n
∇Xc

ðDu; eb:ψa − ea:ψbÞ

þ 1

2
∇Xc

ðu;∇Xb
ψa −∇Xa

ψbÞ
�
eb ∧ ea ð40Þ

where we have used the identity ðeb:Du;ψaÞ ¼
ðDu; eb:ψaÞ and antisymmetrized the corresponding indi-
ces. So, we have

∇Xc
F ¼

�
1

2n
ð∇Xc

Du; eb:ψa − ea:ψbÞ

þ 1

2n
ðDu; eb:∇Xc

ψa − ea:∇Xc
ψbÞ

þ 1

2
ð∇Xc

u;∇Xb
ψa −∇Xa

ψbÞ

þ 1

2
ðu;∇Xc

∇Xb
ψa −∇Xc

∇Xa
ψbÞ

�
eb ∧ ea: ð41Þ

From the identity iXcðeb ∧ eaÞ ¼ gcbea − gcaeb, we obtain
the action of =d on F as

=dF ¼ iXc∇Xc
F

¼
�
1

2n
ð∇Xc

Du; ec:ψa − ea:ψcÞ þ 1

2n
ðDu; ec:∇Xc

ψa − ea:∇Xc
ψcÞ þ 1

2
ð∇Xc

u;∇Xcψa −∇Xa
ψcÞ

þ 1

2
ðu;∇Xc

∇Xcψa −∇Xc
∇Xa

ψcÞ − 1

2n
ð∇Xc

Du; ea:ψc − ec:ψaÞ −
1

2n
ðDu; ea:∇Xc

ψc − ec:∇Xc
ψaÞ

−
1

2
ð∇Xc

u;∇Xa
ψc −∇XcψaÞ −

1

2
ðu;∇Xc

∇Xa
ψc −∇Xc

∇XcψaÞ
�
ea: ð42Þ

Since Ψ is a Rarita-Schwinger field, we have ec:∇Xc
ψa ¼ Dψa ¼ 0 and ∇Xa

ψa ¼ 0. From the twistor equation (4), we can
write
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ð∇Xc
u;∇Xcψa −∇Xa

ψcÞ ¼ 1

n
ðec:Du;∇Xcψa −∇Xa

ψcÞ

¼ 1

n
ðDu;Dψa − ec:∇Xa

ψcÞ
¼ 0

where we have used ec:∇Xa
ψc ¼ ∇Xa

ðec:ψcÞ ¼ 0 from
ec:ψc ¼ 0. Then, (42) transforms into

=dF ¼
�
1

n
ð∇Xc

Du; ec:ψaÞ −
1

n
ð∇Xc

Du; ea:ψcÞ

þ ðu;∇Xc
∇XcψaÞ − ðu;∇Xc

∇Xa
ψcÞ

�
ea: ð43Þ

By defining the spinor Laplacian ∇2 ¼ ∇Xc
∇Xc and using

the Schrödinger-Lichnerowicz-Weitzenböck formula for
spinor fields which is

D2 ¼ ∇2 −
1

4
R ð44Þ

and the integrability condition (5) of twistor spinors with
Dψa ¼ 0, we obtain

=dF ¼
�
1

2
ðKc:u; ec:ψaÞ −

1

2
ðKc:u; ea:ψcÞ

þR
4
ðu;ψaÞ − ðu;∇Xc

∇Xa
ψcÞ

�
ea

¼
�
1

2
ðec:Kc:u;ψaÞ −

1

2
ðea:Kc:u;ψcÞ

þR
4
ðu;ψaÞ − ðu;∇Xc

∇Xa
ψcÞ

�
ea: ð45Þ

We can use the equality ðea:Kc:u;ψcÞ ¼ ðu;Kc:ea:ψcÞ and
calculate the term ec:Kc as

ec:Kc ¼
1

n − 2

�
R

2ðn − 1Þ e
c:ec − ec:Pc

�

¼ −
R

2ðn − 1Þ

where we have used ec:ec ¼ n and ec:Pc ¼ R. Finally, the
quantity =dF is found as follows:

=dF ¼
��

u;
n − 3

4ðn − 1ÞRψa −
1

2
Kc:ea:ψc −∇Xc

∇Xa
ψc

��
ea:

ð46Þ

This means that, to obtain a Maxwell field defined as in
(39), ψa of the Rarita-Schwinger field has to satisfy the
following condition:

∇Xc
∇Xa

ψc ¼ −
1

2
Kc:ea:ψc þ n − 3

4ðn − 1ÞRψa: ð47Þ

On the other hand, from the definition of the curvature
operator, we have∇Xc

∇Xa
ψc ¼ ∇Xa

∇Xc
ψc þ RðXc; XaÞψc.

By using the action of the curvature operator on a spinor as
RðXc; XaÞψc ¼ 1

2
Rca:ψc and the property (23), one canwrite

the condition as follows:

ðRba þ Kb:eaÞ:ψb ¼ n − 3

2ðn − 1ÞRψa ð48Þ

which is automatically satisfied in a flat background. The
constant coefficient on the right-hand side turns out to be 1

6
in

four dimensions.

IV. SYMMETRY OPERATORS

Construction of spin raising and spin lowering operators
gives way to write down symmetry operators for massless
Rarita-Schwinger fields. A symmetry operator is an oper-
ator that acts on a solution of an equation and gives another
solution of it. By starting with a Rarita-Schwinger field Ψ
and applying spin lowering and spin raising operators one
after the other, one can find another Rarita-Schwinger field
Ψ0 via a twistor spinor u. So, one can construct the
symmetry operators of massless Rarita-Schwinger fields
in terms of twistor spinors. However, this construction
subjects to some constraints which arise in the procedures
of spin raising and lowering.
Let us consider a massless Rarita-Schwinger field Ψ ¼

ψa ⊗ ea in four dimensions which satisfies (21) and (22)
with an extra condition

ðRba þ Kb:eaÞ:ψb ¼ 1

6
Rψa: ð49Þ

By using a twistor spinor u that satisfies (4) with an extra
condition

d½ðu;ψaÞea�:u ¼ 0; ð50Þ

we can construct the symmetry operators in the following
way. Since Ψ satisfies (49), we have a well-defined spin
lowering procedure from spin-3

2
to spin-1 as in Sec. III B

and can construct a source-free Maxwell field as follows:

F ¼ d½ðu;ψaÞea�

¼
�
1

n
ðea:Du;ψbÞ þ ðu;∇Xa

ψbÞ
�
ea ∧ eb: ð51Þ

We can use this source-free Maxwell field for spin raising
to another spin-3

2
massless Rarita-Schwinger field. So, we

can write the new spin-3
2
field from F in (51) by the

procedure in Sec. III A as
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Ψ0 ¼
�
∇Xa

F:u −
1

n
F:ea:Du

�
⊗ ea

¼
��

1

n
∇Xa

ðeb:Du;ψcÞ þ∇Xa
ðu;∇Xb

ψcÞ
�

ðeb ∧ ecÞ:u
�
⊗ ea

−
�
1

n

�
1

n
ðeb:Du;ψcÞ þ ðu;∇Xb

ψcÞ
�

ðeb ∧ ecÞ:ea:Du

�
⊗ ea ð52Þ

and by using the twistor equation (4) and the integrability
condition (5), we obtain

Ψ0 ¼ ½f
�
u;∇Xa

∇Xb
ψc þ

1

2
Ka:eb:ψc

�

þ 1

n
ðDu; ea:∇Xb

ψc þ eb:∇Xa
ψcÞgðeb ∧ ecÞ:u� ⊗ ea

−
1

n
½fðu;∇Xb

ψcÞ þ
1

n
ðDu; eb:ψcÞg

ðeb ∧ ecÞ:ea:Du� ⊗ ea: ð53Þ

Since u satisfies (50), Ψ0 is a massless Rarita-Schwinger
field. So, we construct a symmetry operator between
massless Rarita-Schwinger fields Ψ → LuΨ ¼ Ψ0 subject
to some extra constraints. The symmetry operator Lu
constructed from a twistor spinor u can be deduced from
(53). It can also be deduced from (53) that the eigen-tensor
spinors of the operator Lu which are satisfying the con-
dition LuΨ ¼ kΨ for a constant k and a Rarita-Schwinger
field Ψ ¼ ψa ⊗ ea correspond to the solutions of the
following equality:

½f
�
u;∇Xa

∇Xb
ψcþ

1

2
Ka:eb:ψc

�

þ1

n
ðDu;ea:∇Xb

ψcþeb:∇Xa
ψcÞgðeb∧ecÞ:u�⊗ea

−
1

n
½fðu;∇Xb

ψcÞþ
1

n
ðDu;eb:ψcÞgðeb∧ecÞ:ea:Du�¼kψa

ð54Þ

which is not a trivial equation to solve.

V. CONCLUSION

We construct a solution generating technique for mass-
less spin-3

2
Rarita-Schwinger fields by using source-free

Maxwell fields and twistor spinors. A spin raising operator
that maps a solution of the source-free Maxwell equations
to a solution of the massless Rarita-Schwinger equation in
terms of a twistor spinor is found for all even dimensional
Ricci-flat backgrounds which is the requirement for the

gauge invariance of the massless Rarita-Schwinger equa-
tion. A spin lowering operator that maps a solution of the
massless Rarita-Schwinger equation to the solution of the
source-free Maxwell field is also obtained in four dimen-
sions with an extra constraint depending on the curvature
characteristics of the background. From these spin raising
and lowering procedures, a symmetry operator between
massless Rarita-Schwinger fields is also constructed.
One can also investigate the construction of spin raising

and lowering operators for spin-3
2
fields in more general

spacetimes. For example, one can search the possibilities to
construct spin changing operators via gauged twistor
spinors which are generalizations of twistor spinors to
Spinc spinors and can exist on more general backgrounds.
This can extend the solution generating concept discussed
in this paper to general cases. Moreover, the construction of
spin raising and lowering operators for spin-2 and higher
spin fields may also be investigated by similar procedures.
Because of the consistency problems in the interactions of
massless higher spin fields with nontrivial gravitational
backgrounds, some restrictions may appear in the con-
struction of spin raising and lowering operators for higher
spin fields. These restrictions may reduce the backgrounds
to the constant curvature spacetimes such as anti–de Sitter
and flat backgrounds.
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APPENDIX

Clifford algebra and spinor identities in physics literature
are extensively written in terms of gamma matrices and
abstract indices. Since the Clifford and exterior calculus
notations are used in the papers that include previous
calculations about the topic of the paper, we prefer to use
this notation in our paper to have a direct connection with
the previous results. The calculations are easier in this
notation which is also more economic and elegant.
However, it can easily be transformed into the language
of gamma matrices and abstract indices. In this appendix,
we give a summary of transformation rules between two
notations and give the basic formulas in the paper in terms
of gamma matrices.
In a flat Lorentzian spacetime, the gamma matrices

satisfy the following Clifford algebra identity:

γμγν þ γνγμ ¼ 2ημν ðA1Þ

where ημν is the flat Lorentzian metric and μ, ν are flat space
indices. In a curved spacetime, the coframe basis 1-forms
ea can be written in terms of coordinate components as
ea ¼ eaμdxμ where eaμ are called tetrad components and eμa

SPIN RAISING AND LOWERING OPERATORS FOR … PHYS. REV. D 98, 066004 (2018)

066004-9



are the inverse tetrad. However, for the Clifford bundle, ea

corresponds to the basis of the Clifford algebra and can
be written in terms of gamma matrices as ea ¼ eaμγμ. The
curved space gamma matrices are defined in terms of tetrad
components as follows:

γa ¼ eaμγμ

and they satisfy the following Clifford algebra identity:

γaγb þ γbγa ¼ 2gab ðA2Þ

where gab is the inverse metric and a, b are curved space
indices. So, the Clifford algebra basis ea and the curved
space gamma matrices γa are identical to each other.
The Dirac operator defined in (2) can be written in terms

of gamma matrices as

D ¼ ea:∇Xa
¼ eaμγμ∇a ¼ γa∇a

where we have used ∇Xa
¼ ∇a in terms of abstract indices

and omit the Clifford product notation. In this way, the
twistor equation in (4) corresponds to

∇au ¼ 1

n
γaDu: ðA3Þ

A p-form α as an element of the Clifford bundle can be
written in terms of the Clifford algebra basis as follows:

α ¼ 1

p!
αa1a2…apγ

a1a2…ap

where γa1a2…ap corresponds to the antisymmetric combi-
nation of γa1γa2…γap . For example, we have γab ¼
1
2
ðγaγb − γbγaÞ. So, the action of a p-form α on a spinor

ψ via the Clifford product : is given in the following form:

α:ψ ¼ 1

p!
αa1a2…apγ

a1a2…apψ : ðA4Þ

Then, the integrability conditions of the twistor equation
given in (5) and (7) are written as

∇aDu ¼ n
2
Kabγ

bu ðA5Þ

Cabcdγ
cdu ¼ 0 ðA6Þ

while (6) remains unchanged. HereKab are the components
of the Schouten tensor and Cabcd are the components of the
conformal (Weyl) tensor.
For any two spinor fields u and v and a p-form α, the

spinor inner product (,) has the following property given in
the equation above (11):

ðu; αa1a2…apγ
a1a2…apvÞ ¼ ð−1Þbp=2cðαa1a2…apγ

a1a2…apu; vÞ:

So, for a massless spin-0 field ϕ, we can obtain a massless
spin-1

2
field via the spin raising operator given in (10)

ψ ¼ ð∂aϕÞγauþ 1

2
ϕDu ðA7Þ

and from a massless spin-1
2
field ψ , we can obtain a

massless spin-0 field via the spin lowering ϕ ¼ ðu;ψÞ.
The symmetry operators given in (12) are

Lu1u2ψ ¼ ∂aðu1;ψÞγau2 þ
1

2
ðu1;ψÞDu2: ðA8Þ

For the case of spin raising and lowering operators between
massless spin-1

2
and spin-1 fields, we can write (13)

and (14) as

F ¼ γau ⊗ ∇aψ þ 1

2
Du ⊗ ψ̄ þ ψ ⊗ Du ðA9Þ

ψ ¼ 1

p!
Fa1a2…apγ

a1a2…apu ðA10Þ

and the symmetry operators in (15) corresponds to

Lu1u2F ¼ 1

p!
γau2 ⊗ ∇aðFa1a2…apγ

a1a2…apu1Þ

þ 1

2p!
Du2 ⊗ Fa1a2…apγ

a1a2…apu1

þ 1

p!
Fa1a2…apγ

a1a2…apu1 ⊗ Du2: ðA11Þ

A spin-3
2

field Ψ ¼ ψa ⊗ γa is a massless Rarita-
Schwinger field, if it satisfies the following equations:

DΨ ¼ 0 ðA12Þ

γaψa ¼ 0 ðA13Þ

where =D ¼ γa∇a is the Rarita-Schwinger operator defined
in (20). The Lorentz-type condition (23) corresponds to
∇aψa ¼ 0. The spin raising operator from a spin-1
Maxwell field F to obtain a massless spin-3

2
Rarita-

Schwinger field via a twistor spinor u given in (24) is
written as

Ψ ¼
�
1

p!
∇aFa1a2…apγ

a1a2…apu

−
1

np!
Fa1a2…apγ

a1a2…apγaDu
�

⊗ γa: ðA14Þ

The condition (37) on the twistor spinor u corresponds to
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Fa1a2…apγ
a1a2…apu ¼ 0: ðA15Þ

The manipulations between (24) and (37) can be done in
terms of gamma matrices in a similar manner to the
calculations done in Sec. III A. For the spin lowering from
spin-3

2
to spin-1, we have A ¼ ðu;ΨÞ given in (38) and the

condition to obtain the Maxwell solution in (48) corre-
sponds to

�
1

2
Rbacdγ

cd þ Kbcγ
cγa

�
ψb ¼ n − 3

2ðn − 1ÞRψa ðA16Þ

where Rbacd are the components of the Riemann tensor.
The transformation rule between two massless Rarita-
Schwinger fields given in (53) can be written as follows:

Ψ0 ¼
���

u;∇a∇bψc þ
1

2
Kadγ

dγbψc

�

þ 1

n
ðDu; γa∇bψc þ γb∇aψc þ γb∇aψcÞ

�
γbcu

�

−
1

n

��
ðu;∇bψcÞ þ

1

n
ðDu; γbψcÞ

�
γbcγaDu

�
⊗ γa:

ðA17Þ

With the conventions defined in this appendix, all the
derivations in the paper can be done by using gamma
matrices in an equivalent manner to the Clifford and
exterior calculus methods used in the paper.
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