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The tunneling wave function of the universe is investigated in a minisuperspace framework of a de Sitter
universe with a quantum scalar field, treated as a perturbation. We consider three different approaches to
defining the tunneling wave function: (1) tunneling boundary conditions in superspace, (2) Lorentzian path
integral, and (3) quantum tunneling from initial universe of a vanishing size. We show that the superspace
approach requires Robin boundary conditions for the scalar field modes, the path integral approach requires
adding an appropriate boundary term to the scalar field action, and the initial universe approach requires the
initial quantum state of the scalar field to be Euclidean vacuum. We find that all three approaches yield
identical wave functions and that scalar field fluctuations are well behaved, contrary to earlier claims in the
literature.
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I. INTRODUCTION

Inflationary spacetimes are known to be past-incomplete
[1]. This indicates that such spacetimes must have a past
boundary and raises the question of what determined the
initial conditions at that boundary. Even though it may not
be essential for observational predictions of inflationary
models, this is an important question of principle, and
without resolving it the inflationary cosmology remains
incomplete. Perhaps the most promising approach to this
problem is based on quantum cosmology, which suggests
that a spatially compact universe can spontaneously nucle-
ate out of “nothing,” where “nothing” refers to a state with
no classical space, time, and matter [2–7].
In quantum cosmology the universe is described by a

wave function Ψðg;ϕÞ, which is defined on the space of all
possible 3-geometries (g) and all matter field configurations
ðϕÞ, called superspace. The role of the Schrödinger equation
for Ψ is played by the Wheeler-DeWitt equation [8]

HΨ ¼ 0; ð1Þ

where H is the Hamiltonian operator. This is a functional
differential equation in superspace.
In ordinary quantum mechanics, the wave function of a

system is found by solving the Schrödinger equation with
boundary conditions determined by the physical setup
external to the system. But since there is nothing external
to the universe, it appears that the boundary conditions for
the Wheeler-DeWitt equation should be postulated as an
independent physical law. Several possible forms of
this law have been discussed in the literature; the most

developed proposals are the Hartle-Hawking and the
tunneling boundary conditions.1

The tunneling boundary condition has been discussed in
detail in Refs. [9–11]. Roughly, it requires that ψ should
include only outgoing waves at the boundary of super-
space, except for the part of the boundary corresponding to
vanishing 3-geometries. This is supplemented by the
regularity condition, requiring that ψ remains finite every-
where, including the boundaries of superspace,

jΨðg;ϕÞj < ∞: ð2Þ

Thus, the probability flux enters superspace through
3-geometries of vanishing size and leaves it through the
rest of the boundary, corresponding to singular or infinitely
large universes. The resulting wave function can be
interpreted as describing a universe originating at zero
size, that is, from nothing. It was conjectured in [6] that the
samewave function can be expressed as a path integral over
Lorentzian histories interpolating between a vanishing
3-geometry and a given configuration in superspace,

ΨT ¼
Z ðg;ϕÞ

∅
DgDϕeiS; ð3Þ

where S is the action. However, the equivalence of the two
definitions has not yet been generally demonstrated.

1Alternative boundary conditions have been introduced by
DeWitt’s [8] and Linde [4]. These proposals, however, have been
discussed only in the context of one-dimensional minisuperspace
models, and no attempt has been made so far to extend them to
full superspace.
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The Hartle-Hawking (HH) wave function [3] is defined as
a path integral over compact Euclidean “histories” bounded
by given 3-geometry and matter field configuration,

ΨHH ¼
Z ðg;ϕÞ

DgDϕe−SE ; ð4Þ

where SE is the Euclidean action obtained by the standard
Wick rotation t → −iτ. This wave function has also been
interpreted as describing quantum nucleation from nothing.
The gravitational part of the Euclidean action SE is
unbounded from below, and as it stands the integral (4)
is divergent. One can attempt to fix the problem by
additional contour rotations, extending the path integral
to complex metrics [12,13]. However, the space of complex
metrics is very large, and no obvious choice of integration
contour suggests itself as the preferred one.
This is where things stood until the last year, when

Feldbrugge, Lehners, and Turok (FLT) reinvigorated the
field with a new approach to Lorentzian quantum cosmol-
ogy [14]. Working in minisuperspace framework, they
showed that the path integrals (3), (4) can be rigorously
defined with the aid of the Picard-Lefschetz theory. They
first applied this method to de Sitter minisuperspace model
and found that in this case the Euclidean path integral
cannot be made convergent by any deformation of the lapse
integration contour, while the Lorentzian path integral is
well defined and gives the tunneling wave function, as it
was claimed in [6,11]. (See Refs. [12,13,15] for related
earlier work.) In the following papers [16,17] FLT consid-
ered perturbative minisuperspace, with the gravitational
wave field ϕ added as a small perturbation. Here, their
results for the tunneling wave function were far less
reassuring. They found that this wave function predicts a
runaway instability, where the probability of quantum
fluctuations of the field ϕ grows with their amplitude.
Similar claims about instability of the tunneling proposal
have also been made in the earlier literature [13].
FLT work has led Diaz Dorronsoro et al. [18,19] to

further develop the HH proposal. They studied de Sitter
plus scalar field and Bianchi-IX models and showed that for
specific choices of the lapse integration contour in the
complex plane the wave function is well defined and
exhibits the qualitative behavior expected of ΨHH.

2 In
our view, however, the basic criticism against this approach
still remains: the HH proposal is incomplete without a
choice of a complex integration contour in the path integral
(4). Some general requirements to this contour have been
given in Ref. [13], but it is not clear that they can always be
satisfied or what contour should be used in models
admitting a number of choices that satisfy the requirements.

In the present paper we focus mostly on the path integral
formulation of the tunneling proposal.We show that the field
fluctuations in the wave function (3) are well behaved if the
action S is supplemented with a suitable boundary term. In
the next section we review the calculation of ΨT using the
tunneling boundary conditions in perturbative superspace
and give an alternative formulation of the boundary con-
ditions, which is more suitable for our purposes here. In
Sec. III we introduce into the action a boundary term, which
is appropriate for these boundary conditions, and show that
the resulting path integral coincides with the wave function
obtained using the tunneling boundary conditions. We also
propose a physical interpretation of the boundary term in
terms of the initial scalar field wave function in a tunneling
universe. Our conclusions are summarized in Sec. IV.
In the main text of the paper we consider a massive

conformally coupled scalar field. The case of a minimally
coupled field,which in themassless case is equivalent to that of
gravitational waves, is discussed in theAppendix. Throughout
this paper, we use the reduced Planck units: 8πG ¼ 1.

II. TUNNELING BOUNDARY CONDITIONS

A. The model

We consider a de Sitter minisuperspace model with a
conformally coupled massive scalar field, where the metric
is assumed to be homogeneous, isotropic, and closed:

ds2 ¼ aðηÞ2ð−N2dη2 þ dΩ2
3Þ: ð5Þ

Here, N is the lapse function, a is the scale factor, η is the
conformal time, and dΩ2

3 is the metric on a unit 3-sphere. In
this section the lapse function is irrelevant and is set to
be unity.
The action for this model is given by

S ¼
Z ffiffiffiffiffiffiffiffiffiffi

−gð4Þ
q

d4x

�
R
2
− 3H2

�
þ Sm þ SB; ð6Þ

Sm ¼
Z ffiffiffiffiffiffiffiffiffiffi

−gð4Þ
q

d4x

�
−
1

2
ð∇ϕÞ2 − 1

2
m2ϕ2 −

ξ

2
Rϕ2

�
; ð7Þ

where gð4Þ is the determinant of the metric,H ¼ const is the
de Sitter expansion rate, ξ ¼ 1=6 is the conformal coupling,
Sm is the matter part of the action, and SB is the boundary
term. The boundary term is not relevant in this section and
will be specified in Sec. III. The case of a minimally
coupled field (i.e., ξ ¼ 0) is discussed in the Appendix.
We expand the field ϕ as

ϕðx; tÞ ¼ 1

aðtÞ
X

χnðtÞQnðxÞ; ð8Þ
Z

QnQn0dΩ3 ¼ δnn0 ; ð9Þ
2Dispute about the behavior of these wave functions beyond

perturbation theory is still ongoing [17,19,20], but here we focus
exclusively on perturbative superspace.
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whereQnlmðxÞ are suitably normalized spherical harmonics
and we have suppressed the indices l, m for brevity. The
superspace of this model is an infinite-dimensional space
fa; χng. The wave function of the Universe obeys the
Wheeler-DeWitt (WDW) equation:

�
ℏ2

24π2
∂2

∂a2 − 6π2VðaÞ −
X
n

Hn

�
Ψða; χnÞ ¼ 0; ð10Þ

where

VðaÞ ¼ a2 −H2a4 ð11Þ

Hn ≡ ℏ2

2

∂2

∂χ2n −
1

2
ω2
nðaÞχ2n ð12Þ

ω2
nðaÞ ¼ n2 þm2a2 ð13Þ

with n ¼ 1; 2;…. In this paper we disregard the ambiguity
of factor ordering.
With the modes χn treated as small perturbations, a

solution of Eq. (10) can be expressed as a superposition of
terms of the form [21–23]

Ψða; χnÞ ¼ A exp

�
−
12π2

ℏ
SðaÞ − 1

2ℏ

X
n

RnðaÞχ2n
�
; ð14Þ

where A is a normalization constant. Substituting this in
(10), we neglect terms Oðχ4nÞ. We also use the Wentzel-
Kramers-Brillouin (WKB) approximation for SðaÞ and
neglect terms OðℏÞ. Then the WDW equation is rewritten
as

�
dS
da

�
2

− VðaÞ ¼ 0; ð15Þ
�
dS
da

��
dRn

da

�
− R2

n þ ω2
nðaÞ ¼ 0: ð16Þ

B. Tunneling boundary conditions

The wave function has different behavior in the
classically allowed (VðaÞ < 0) and classically forbidden
(VðaÞ > 0) regions. For the tunneling wave function, we
require that Ψ includes only an outgoing wave in a at large
a. Thus, for VðaÞ < 0 the wave function should be given by
Eq. (14) with

SðaÞ ¼ i
Z

a

a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Vða0Þ

p
da0 þ C; ð17Þ

where a� ¼ H−1 is the classical turning point defined by
Vða�Þ ¼ 0 and C ¼ const.
In the underbarrier region VðaÞ > 0, the wave function

can be expressed as

Ψða;χnÞ¼Aþ exp
�
−12π2SþðaÞ−1

2

X
n

Rþ
n ðaÞχ2n

�

þA− exp

�
−12π2S−ðaÞ−1

2

X
n

R−
n ðaÞχ2n

�
; ð18Þ

where

S�ðaÞ ¼ ∓
Z

a�

a

ffiffiffiffiffiffiffiffiffiffiffi
Vða0Þ

p
da0 þ C: ð19Þ

The Aþ and A− terms correspond respectively to decreasing
and growing wave functions. We have chosen the integra-
tion constant C in Eqs. (17), (19) to be the same, so that
Sða�Þ ¼ S�ða�Þ. With this choice the coefficients A and
A�, which can be determined by the WKB connection
formulas, have comparable magnitude, Aþ ∼ A− ∼ A. Their
precise form, which was found in Ref. [6], will not be
important for our discussion here.
For a < a� it will be convenient to introduce a Euclidean

conformal time variable τ via

da
dτ

≡
� ffiffiffiffiffiffiffiffiffiffi

VðaÞp
for τ < τ�

−
ffiffiffiffiffiffiffiffiffiffi
VðaÞp

for τ� < τ
; ð20Þ

where the threshold τ� is defined by aðτ�Þ ¼ a�. This can
be solved as

aðτÞ ¼ ðH cosh τÞ−1; ð21Þ

where the turning point a� corresponds to τ� ¼ 0, and
a ¼ 0 corresponds to τ → �∞. This scale factor describes
a Euclidean 4-sphere, which is an analytic continuation of
de Sitter spacetime. aðτÞ in Eq. (21) is an even function of
τ, so each value of a < a� corresponds to two values τ�
with τþðaÞ ¼ −τ−ðaÞ. We shall set τþðaÞ < 0.
It follows from Eqs. (19) and (20) that

dS�

dτ
¼ VðτÞ: ð22Þ

Then we can set

S� ¼
Z

τ�

−∞
VðτÞdτ: ð23Þ

This corresponds to setting the integration constant C in
(19) to

C ¼
Z

τ�

−∞
VðτÞdτ ¼

Z
a�

0

ffiffiffiffiffiffiffiffiffiffiffi
Vða0Þ

p
da0: ð24Þ

The actions S− ðSþÞ then correspond to histories that do (do
not) traverse the midsection a� of the Euclidean 4-sphere as
they go from a ¼ 0 to a given value a.
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We now turn to Eq. (16) for the functions R�
n ðaÞ:

�
dS�

da

��
dR�

n

da

�
¼ ðR�

n Þ2 − ω2
n; ð25Þ

or

dR�
n

dτ
¼ ðR�

n Þ2 − ω2
nðτÞ: ð26Þ

The matching conditions at a ¼ a� require that Rþ
n ðτ�Þ ¼

R−
n ðτ�Þ [23,24]. Since the functions R�

n satisfy a first-order
differential equation of the same form and have the same
value at τ ¼ τ�, they can be represented by a single function
RnðτÞ with τ taken to be τþðaÞ ðτ−ðaÞÞ for Rþ

n ðR−
n Þ.

Equation (26) is a Riccati equation. It can be reduced to a
linear equation by the substitution

RnðτÞ ¼ −
1

νn

dνn
dτ

; ð27Þ

where the mode functions νnðτÞ satisfy

d2νn
dτ2

− ω2
nνn ¼ 0: ð28Þ

To impose the regularity condition (2), we require that

ReR�
n ðaÞ > 0: ð29Þ

This ensures that jΨj decreases as the amplitudes χn are
increased, so that scalar field fluctuations are suppressed.
Strictly speaking, (2) does not follow from (29), since our
approximation breaks down at large values of χn, but this
seems the best one can do in a perturbative superspace
model. The condition (29) is nonlocal, in the sense that the
functions R�

n ðaÞ depend on the form of the potential VðaÞ
everywhere under the barrier. We will now show that it can
be replaced by equivalent local boundary conditions for νn
at τ → −∞.
It has been shown in [24] that the condition (29) is

satisfied for Rþ
n ðaÞ at a < a� and for RnðaÞ in the

classically allowed range a > a�, provided that it is
satisfied at the turning point a ¼ a�. However, this is
not automatic for R−

n ðaÞ under the barrier, and the regularity
condition gets violated at small a, unless we adopt a special
choice of boundary conditions at a → 0. Specifically, it was
shown in [24] that the regularity condition is satisfied by R−

n
everywhere under the barrier if it is satisfied at a → 0, or
τ → ∞. [Here we choose the branch τ−ðaÞ > 0 appropriate
for the functions R−

n ðτÞ.]
To explore the behavior of the mode functions νnðτÞ at

a → 0 (or τ → �∞), we can replace ω2
n ≈ n2 in Eq. (A6).

Then the solution is

νnðτÞ ≈ Ane−nτ þ Bnenτ; ð30Þ

and

RnðτÞ ≈ n
An − Bne2nτ

An þ Bne2nτ
: ð31Þ

It is now easy to see that Rnðτ → ∞Þ ¼ −n < 0, unless we
set Bn ¼ 0, or νnðτ → ∞Þ ∝ expð−nτÞ. This corresponds to
the boundary condition

dνn
dτ

¼ −nνn ðτ → ∞Þ: ð32Þ

Note that for a massless field the solutions (30) are exact in
the entire range −∞ < τ < ∞. In this case R�

n ðaÞ ¼
RnðaÞ ¼ n and the χn- and a-dependent parts of the wave
function factorize—as they should for a conformally
invariant field.
To find the boundary conditions for νn at τ → −∞, we

note that since Eq. (A6) is symmetric with respect to the
replacement τ → −τ, the mode function νnðτÞ can be
expressed in terms of a symmetric function gsnðτÞ and
an antisymmetric function ganðτÞ as

νnðτÞ ¼ An½gsnðτÞ − ganðτÞ� þ Bn½gsnðτÞ þ ganðτÞ�; ð33Þ

where gsnð−τÞ¼gsnðτÞ,ganð−τÞ¼−ganðτÞ, andgsnðτ→∞Þ≈
coshðnτÞ, ganðτ → ∞Þ ≈ sinhðnτÞ. It then follows from (33)
that for τ → −∞

νnðτÞ ≈ Anðgsnð−τÞ þ ganð−τÞÞ ð34Þ

≈ Ane−nτ; ð35Þ

and the boundary condition is the same as (32),

dνn
dτ

¼ −nνn ðτ → −∞Þ: ð36Þ

After imposing the matching conditions at a ¼ a� to deter-
mine the mode function in the classically allowed range, one
finds that this choice of the mode functions corresponds to the
Bunch-Davies vacuum state [24].
If the boundary condition (36) is enforced at τ → −∞,

then, according to the results of [24], R−
n ðaÞ satisfy the

regularity condition in the range 0 < a ≤ a�. On the other
hand, the matching conditions at a ¼ a� require that [23]
Rnða�Þ ¼ Rþ

n ða�Þ ¼ R−
n ða�Þ, and it follows from the analy-

sis in [24] that the regularity condition is satisfied by Rþ
n ðaÞ

and RnðaÞ as well. Thus we conclude that the boundary
conditions (36) are sufficient to ensure that the regularity
condition is satisfied in the entire range 0 < a < ∞.
Combined with the outgoing wave condition, these boun-
dary conditions uniquely determine the tunneling wave
function in our model. We show in the Appendix that the
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same conclusions apply to the de Sitter model with a
minimally coupled scalar field.
The mode functions νnðτÞ selected by the boundary

condition (36) diverge at τ → −∞. This may look worri-
some, but we note that R�

n and the wave function (18) are
well behaved at a → 0. We therefore see no reason to
require finiteness of νnðτ → −∞Þ in the tunneling
approach. We shall return to this issue in Sec. III.

III. PATH-INTEGRAL FORMULATION

A. de Sitter minisuperspace

In the path integral formalism, the transition amplitude
from an initial state ðg0;ϕ0Þ to a final state ðg1;ϕ1Þ can be
symbolically written as

Gðg0;ϕ0; g1;ϕ1Þ ¼
Z ðg1;ϕ1Þ

ðg0;ϕ0Þ
DgDϕeiS: ð37Þ

Wewill be interested in the limit where the initial geometry
shrinks to a point.
We first consider the leading-order homogeneous de

Sitter minisuperspace model. In the gauge where the lapse
function is N ¼ const, the path integral in (37) reduces to

Gð0Þð0; a1Þ ¼
Z

∞

0

dN
Z

DaeiS
ð0Þ½a;N�; ð38Þ

where

Sð0Þ½a;N� ¼ 6π2
Z

η1

−∞

�
−
_a2

N
þ NVðaÞ

�
dη ð39Þ

is the action for the de Sitter model with metric (5). Note
that our starting point is a purely Lorentzian path integral
and the lapse integration is performed over a semi-infinite
range N > 0. The latter condition ensures that we include
only histories where η1 occurs later than η ¼ −∞ and not
the geometrically identical histories related to them by
η → −η. This is the choice adopted in Refs. [11,14,25].
With this choice, Gða0; a1Þ is a Green’s function of the
Wheeler-DeWitt operator satisfying

HGða0; a1Þ ¼ −iδða1 − a0Þ: ð40Þ

However, in the limit of a0 → 0, Gð0; a1Þ is a solution of
the WDW equation in the entire range 0 < a1 < ∞.
The path integral over a in (38) was first evaluated by

Halliwell and Louko [12]. They noticed that the analysis
can be greatly simplified by introducing a new time
coordinate t, which is related to η by dη ¼ a−2ðtÞdt and
which can be chosen to vary between 0 and 1. Then the
metric takes the form

ds2 ¼ −
N2

qðtÞ dt
2 þ qðtÞdΩ2

3; ð41Þ

where q ¼ a2, and the action (39) becomes

Sð0Þ½q;N� ¼ 6π2
Z

1

0

�
−

_q2

4N
þ Nð1 −H2qÞ

�
dt: ð42Þ

This action is quadratic in q, so the path integral can be
evaluated exactly.
The classical equation of motion for qðtÞ obtained by

minimizing the action (42) is

q̈ ¼ 2N2H2; ð43Þ

its solution satisfying the boundary conditions qð0Þ ¼ 0

and qð1Þ ¼ a21 is

qðtÞ ¼ H2N2t2 þ ða21 −H2N2Þt; ð44Þ

and the action (42) for this solution is given by

Sð0Þða1;NÞ¼6π2
�
N3

H4

12
þN

�
1−

1

2
H2a21

�
−
a41
4N

�
: ð45Þ

The propagator (38) can now be expressed as [12]

Gð0Þð0; a1Þ ¼
Z

∞

0þ

dN

N1=2 e
iSð0Þða1;NÞ; ð46Þ

where we have omitted an overall numerical factor.
The remaining integration over N can be performed

using the saddle point approximation. The relevant saddle
points and the steepest descent contours in the complex N-
plane can be found using Picard-Lefschetz theory. The
action (45) generally has four saddle points, which can be
found from ∂Sð0Þ=∂N ¼ 0. In the underbarrier region
a1 < a�, the corresponding values of N are purely imagi-
nary and the relevant saddle points are located at [12,14]

N� ¼ i
H2

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2a21

q 	
: ð47Þ

The corresponding actions are

Sð0Þða1; N�Þ ¼ 12π2iS�ða1Þ; ð48Þ

where SþðaÞ and S−ðaÞ are given by Eqs. (19), (24) and
correspond respectively to Euclidean paths that do and do
not traverse the mid-section of the 4-sphere. The pre-factors
of the expðiSð0Þða1; N�ÞÞ terms have comparable magni-
tudes at a ∼ a�. In fact, it can be verified [15] that they
differ by a factor i=2, as they should for the tunneling wave
function.
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At this point it will be convenient to switch back to the
time variable η, which is related to t as

t ¼ 2i
H2N

1

e2iNη þ 1
: ð49Þ

It can be verified that the classical solution (44) is then
given by aðηÞ ¼ 1=H coshð−iNηÞ, which is the same as
(21), up to the normalization of η. (Note that the Euclidean
time τ that we used in the Sec. II is related to η via
iτ ¼ Nη.) The values t ¼ 0 (where a ¼ 0) and t ¼ 1
(where a ¼ a1) correspond respectively to η → −∞ and

η�1 ¼ i
2N� ln

�
−H2ðN�Þ2

a21

�
: ð50Þ

One can check that ηþ1 < 0 and η−1 > 0. The actions (48)
can now be expressed as

Sð0Þ;N� ¼ 12π2
Z

η�
1

−∞
VðaÞN�dη; ð51Þ

which is equivalent to (23).
In the classically allowed range Vða1Þ < 0 one finds that

only one saddle point contributes [12,14],

N ¼ 1

H2
ðiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2a21 − 1

q
Þ; ð52Þ

and the transition amplitude (46) is

Gð0Þð0; a1Þ ∝ exp ð−12π2Sða1ÞÞ ð53Þ

with SðaÞ given by Eqs. (17), (24). This describes a wave
traveling in the positive a1-direction, as expected for the
tunneling wave function. Thus, we can identify

Gð0Þð0; aÞ ¼ ΨTðaÞ: ð54Þ

B. The problem with perturbations

We now consider the wave function for scalar field
fluctuations χn. Assuming that the backreaction of fluctua-
tions on the metric is negligible, the scale factor and the
lapse parameter can be treated as background variables. For
definiteness we shall consider the under-barrier wave
function with a1 < a�. Then the path integral in Eq. (3)
reduces to

ΨTða1;ϕn1Þ ¼
X
r¼�

AreiS
ð0Þða1;NrÞY

n

Z
DϕneiSn½ϕn;Nr� ð55Þ

where

Sn½ϕn;N� ¼ 1

2

Z
η1

η0

dη

�
a2

N
_ϕ2
n − Na2ðn2 − 1Þϕ2

n

−Na4
�
m2 þ 1

6
R

�
ϕ2
n

�
þ SBn ð56Þ

with η0 → −∞. The integration is taken over histories
where ϕnðηÞ≡ χnðηÞ=aðηÞ have specified values ϕn1 at
η ¼ η1, with suitable boundary conditions for ϕn at
η → −∞. The boundary term in (56) is usually not
included; we shall discuss it in the next subsection.
From now on we omit the superscript r ¼ � for notational
simplicity.
The path integral in (55) is again determined by the

history ϕnðηÞ satisfying the classical equation of motion:

1

N2

�
ϕ̈n þ 2

_a
a
_ϕn

�
þ ðn2 − 1Þϕn þ ðm2 þ 2H2Þa2ϕn ¼ 0:

ð57Þ

Disregarding the boundary term for the moment, the action
is then given by

Sn ¼
a21
2N

ϕnðη1Þ _ϕnðη1Þ −
a20
2N

ϕnðη0Þ _ϕnðη0Þ: ð58Þ

In the limit of η → −∞, aðηÞ ≈ 2H−1e−iNη and the
solution to the equation of motion is approximated to be

ϕnðηÞ ≈ Aneiðnþ1ÞNη þ Bne−iðn−1ÞNη: ð59Þ

Since ImN > 0 for both saddle points in Eq. (47), the
second term of Sn diverges in the limit of η0 → −∞ unless
we take An ¼ 0. This seems to suggest that we should set
An ¼ 0 in order to make the action finite. With this choice,
the ϕn-dependent part of the wave function becomes [in the
regime where the approximation (59) is applicable]

ψnðϕn1Þ∝ eiSn ¼ exp

�
ia21

ϕn1
_ϕn1

2N

�
¼ exp

�
n− 1

2
a21ϕ

2
n1

�
;

ð60Þ

which has the obvious problem that the wave function
grows with increasing amplitude of the fluctuations. One
can check that the problem persists in the classically
allowed range a > a�. This is the basis for numerous
claims made in the literature that the tunneling wave
function predicts an unstable runaway behavior of the
fluctuation modes [13,16,19]. We shall see, however, that
the problem can be resolved by inclusion of a suitable
boundary term.
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C. Boundary terms

The boundary term SB in the action (6) should be
selected in such a way that boundary contributions obtained
after varying the action and integrating by parts vanish,
once the boundary conditions are imposed. The form of the
boundary term, of course, depends on the choice of
boundary conditions. The choice adopted in most of the
literature on quantum cosmology is Dirichlet boundary
conditions, with the 3-metric and the scalar field specified
at the boundary. The corresponding boundary action is

SB ¼ SGH þ ξ

Z
B

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3yKϕ2; ð61Þ

where SGH is the Gibbons-Hawking term, ξ is the scalar
field coupling to the curvature, gð3Þ is the determinant of the
induced metric on the boundary B, ya are the coordinates on
the boundary, and K is the extrinsic curvature of the
boundary. The second term in (61) is absent for a minimally
coupled field, but in our case ξ ¼ 1=6 and it has to be
included in order for the variation of the action with respect
to the metric not to give any uncompensated boundary
terms [26].
The Dirichlet boundary conditions are appropriate for

the Hartle-Hawking wave function,3 but for the tunneling
wave function one needs to take a different approach. The
spacetimes included in the path integral for ΨT have two
boundaries: the upper boundary B1 (η ¼ η1) with specified
values of a1 and χn1 and a lower boundary B0 where a → 0
(η0 → −∞). According to Eq. (36), the histories χnðηÞ ¼
aðηÞϕnðηÞ for the tunneling wave function should satisfy
the Robin boundary condition

1

N
dχn
dη

¼ inχn ðη → −∞Þ; ð62Þ

where we have used the relation iτ ¼ Nη. We will now
show that a suitable choice of the boundary terms in this
case is

SB ¼ SGH þ 1

2π2
X
n

Z
B0

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3y

�
ξK −

1

2
hn

�
ϕ2
n

þ 1

2π2
X
n

Z
B1

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3yξKϕ2

n; ð63Þ

where hn are parameters to be determined.

Variation of the action with respect to ϕn gives

2π2δS ¼ −
Z ffiffiffiffiffiffiffiffiffiffi

−gð4Þ
q

d4xδϕnð−∇2 þ ξRþm2Þϕn

þ
Z
B0

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3yδϕnð∂⊥ϕn þ 2ξKϕn − hnϕnÞ

þ
Z
B1

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3yδϕnð∂⊥ϕn þ 2ξKϕnÞ: ð64Þ

Here, ∂⊥ is the derivative in the direction of outer normal to
the boundary. For our metric (5) it is given by

∂⊥ ¼ � 1

Na
d
dη

; ð65Þ

where the upper and lower signs correspond to upper and
lower boundaries, respectively. The boundary term in (64)
vanishes on the upper boundary B1, where ϕn are fixed,
while on the lower boundary B0 we will impose the
boundary conditions

∂⊥ϕn þ 2ξKϕn − hnϕn ¼ 0: ð66Þ

Noticing that

K ¼ ∂⊥VB

VB
¼ 3

∂⊥a
a

; ð67Þ

where VB ¼ 2π2a3 is the boundary volume, we can express
(66) as

∂⊥χn − hnχn ¼ 0; ð68Þ

where we have used ξ ¼ 1=6. This coincides with (62) if
we set

hn ¼ −ina−1: ð69Þ

Let us now consider the part of the action that depends
on ϕn, Eq. (56). Integrating by parts and using the boundary
conditions, we find that the contribution of the lower
boundary cancels out and we obtain

Sn ¼
1

2π2

Z
B1

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3y

�
1

2
ϕn∂⊥ϕn þ ξKϕ2

n

�

¼ a1
2
χnðη1Þ∂⊥χnðη1Þ: ð70Þ

Then the wave function for χn becomes

ψnðχn1Þ ∝ exp

�
−
1

2
Rnχ

2
n1

�
; ð71Þ

where

3This is because the mode functions χnðηÞ in the Hartle-
Hawking approach are required to have specified values at η ¼ η1
and to satisfy χnðη → −∞Þ ¼ 0. This is sometimes justified by
the requirement that the scalar field action should be finite. We
note, however, that the logic here is somewhat circular: the
finiteness of the action depends on the choice of the boundary
term, which in turn depends on boundary conditions.
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Rn ¼ −
i
N

_χn1
χn1

: ð72Þ

With Nη ¼ iτ, this is the same as Eq. (27) that we obtained
using the WDW formalism. Since the condition Rn > 0 is
satisfied at η1 → −∞, it is guaranteed to be satisfied for all
η1. Thus we conclude that the path integral formalism with
appropriate boundary terms in the action gives the same
wave function as the WDW equation with tunneling
boundary conditions. In both approaches the scalar field
fluctuations are suppressed.

D. Boundary term as the initial wave function

The new boundary term that we introduced in Eq. (63)
can be written as

S̃Bn ≡ −
1

4π2

Z
B0

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3yhnϕ2

n ¼
i
2
nχ2n0; ð73Þ

where χn0 ¼ χnðη0Þ. This term allows an interesting inter-
pretation, which we shall now discuss.
Let us first show that the scalar field path integral in

Eq. (55) can be expressed as

ψnðχn1Þ ∝
Z

DχneiS̃n½χn�ψn0ðχn0Þ; ð74Þ

where

ψn0ðχn0Þ≡ eiS̃Bn ¼ e−nχ
2
n0=2 ð75Þ

and S̃n½χn� is the action (56) with only ξK boundary
terms included. The integration in Eq. (74) is to be taken
over paths χnðηÞ starting at χnðη0Þ ¼ χn0 and ending at
χnðη1Þ ¼ χn1; in other words this path integral assumes
Dirichlet boundary conditions. We assume also that the
functional measure includes an integral over χn0.
Substituting ϕn ¼ χn=a and

R ¼ 6

a2

�
1þ ä

N2a

�
ð76Þ

in the action (56) we obtain

S̃n ¼
1

2

Z
η1

η0

dη

�
1

N
_χ2n − Nn2χ2n − Nm2a2χ2n −

1

N
d
dη

�
_a
a
χ2n

��

þ 1

12π2

Z
B

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3y

K
a2

χ2n: ð77Þ

With
R
B

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

p
d3y ¼ 2π2a3 and K ¼ �3_a=ðNa2Þ, we

find that the result of integration of the total derivative
in (77) cancels out with the boundary term, so the result is

S̃n ¼
1

2

Z
η1

η0

dη

�
1

N
_χ2n − Nn2χ2n − Nm2a2χ2n

�
: ð78Þ

The functional integral in Eq. (74) is Gaussian, so the
saddle point approximation is exact. Integrating by parts
and using the classical equation of motion for χn, we can
express the action (78) as

S̃n ¼
1

2N
χn1 _χn1 −

1

2N
χn0 _χn0: ð79Þ

Extremizing iS̃n½χ� þ ln½ψn0ðχn0Þ� with respect to χn0, we
find

_χn0 ¼ inNχn0; ð80Þ

which is precisely the Robin boundary condition (62).
Also, from Eqs. (79), (75), and (80), the amplitude (74) is
given by

ψnðχn1Þ ∝ eiχn1 _χn1=2N; ð81Þ

where the second term in Eq. (74) has cancelled out with
Ψ0ðχn0Þ. The combination iS̃þ lnðΨ0Þ is now finite in the
limit η0 → −∞, because of the cancellation. Equation (81)
is equivalent to Eqs. (71), (72) that we derived in Sec. III C.
Thus we conclude that Eq. (74) is equivalent to the path
integral with Robin boundary conditions.
Now, the form of Eq. (74) is very suggestive. We can

interpret Ψ0ðχn0Þ as the initial wave function for the scalar
field at η0 → −∞. As suggested in Ref. [24], we can think of
the tunneling wave function as describing a small initial
universe that tunnels to a ≈ a� after reaching the bounce point
at a0 ≪ a�, in the limit of a0 → 0.4 Thewave function (75) is
that for amassless scalar field in the state ofEuclideanvacuum,
which is defined by requiring that the mode functions are
regular at τ → ∞. It was shown in Ref. [24] that the same
quantum state is obtained if one considers a small initial
universe that tunnels through a barrier in the limit when the
size of the initial universe goes to zero. In this limit themass of
the field χ can be neglected in the wave function (81).

IV. CONCLUSIONS

We discussed three different approaches to defining the
tunneling wave function of the universe ΨT . The first
approach is to impose the outgoing wave and regularity
conditions in superspace. This has been previously studied
in Refs. [10,23,24], with the conclusion that the resulting
wave function is uniquely defined and describes a universe
nucleating with the scalar field in a de Sitter invariant

4More precisely, the background cosmology assumed in
Ref. [24] included a small amount of radiation with density
ρr ¼ ϵr=a4. The bounce point a0 then depends on ϵr, and the
limit a0 → 0 is obtained at ϵr → 0.
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Bunch-Davies state. The regularity condition, requiring
that the absolute value of the wave function decreases with
growing amplitude of scalar field fluctuations, is a nonlocal
condition onΨT . Here we showed that it is equivalent to the
requirement that the scalar field modes ϕn satisfy a (local)
Robin boundary condition at a → 0.
Our main focus in this paper was to explore the

conjecture made in Refs. [6] that ΨT can also be expressed
as a Lorentzian path integral taken over histories interpo-
lating between a vanishing 3-geometry (a ¼ 0) and a given
configuration fa;ϕng. We showed that the Robin boundary
conditions for ϕn require an addition of a new boundary
term to the scalar field action and that the path integral is
then identical to the wave function specified by the
tunneling boundary conditions.
We showed also that the path integral with the new

boundary term can be expressed as a transition amplitude
from a universe of vanishing size with a scalar field in the
state of Euclidean vacuum. All three approaches give
identical wave functions with well behaved scalar field
fluctuations, contrary to earlier claims in the literature.
Our discussion in this paper was limited to a de Sitter

minisuperspace model with a scalar field included as a
perturbation. A natural extension of this model would be
to consider nonperturbative minisuperspaces, including a
few degrees of freedom, but allowing large variations of the
scalar field and large deviations from de Sitter geometry.
Suchmodelswith a homogeneous scalar field [10] andwith a
Bianchi-IX metric [27] have been studied in the framework
of boundary conditions in superspace, with the conclusion
that the tunneling and regularity conditions determine a
unique wave function with well-behaved fluctuations.
Extension of the path integral approach to nonperturbative
models remains an open problem for future research.
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APPENDIX: MINIMALLY COUPLED
SCALAR FIELD

The tunneling wave function in a de Sitter minisuper-
space with a minimally coupled massless scalar field was
discussed in Refs. [10,23]. In this case, Eqs. (12) and (13)
are replaced by

Hn ¼
ℏ2

2a2
∂2

∂ϕ2
n
−

1

2a2
ω2
nðaÞϕ2

n ðA1Þ

ω2
nðaÞ ¼ ðn2 − 1Þa4 þm2a6: ðA2Þ

In the wave function (18), we replace R�
n χ

2
n by R�

n ϕ
2
n.

As before, in the underbarrier range a < a� we introduce
the Euclidean time τ by Eq. (20); then the functions R�

n ðaÞ
can be represented by a single function RnðτÞ satisfying

a2
dRn

dτ
− R2

n þ ω2
nðτÞ ¼ 0; ðA3Þ

This can be reduced to a linear equation by the substitution

RnðτÞ ¼ −
a2

φn

dφn

dτ
; ðA4Þ

where the mode functions φnðτÞ satisfy

d2φn

dτ2
þ 2

a
da
dτ

dφn

dτ
−
ω2
n

a4
φn ¼ 0: ðA5Þ

Changing the variable as φn ¼ νn=a, we rewrite the
equation as

d2νn
dτ2

− ½n2 þ ðm2 − 2H2Þa2�νn ¼ 0; ðA6Þ

where we used Eq. (76) and R ¼ 12H2.
Since this equation is symmetric with respect to the

replacement of τ → −τ, the mode function can be written as
a superposition of a symmetric function gsnðτÞ and an
antisymmetric function ganðτÞ,

νnðτÞ ¼ An½gsnðτÞ − ganðτÞ� þ Bn½gsnðτÞ þ ganðτÞ�; ðA7Þ

where gsnðτÞ ¼ gsnð−τÞ and ganðτÞ ¼ −ganð−τÞ.
In the limit of τ → �∞, aðτÞ ∝ e∓τ, the solution of (A6)

is given by

νnðτÞ ≈ Ane−nτ þ Bnenτ; ðA8Þ

and

RnðτÞ ≈ a2
�
n
An − Bne2nτ

An þ Bne2nτ
∓ 1

�
: ðA9Þ

This can be positive or zero at τ → ∞ only if Bn ¼ 0. This
corresponds to the boundary condition

dνn
dτ

¼ −nνn ðτ → ∞Þ: ðA10Þ

It then follows from (A7) that

dνn
dτ

¼ −nνn ðτ → −∞Þ: ðA11Þ

These have the same form as Eqs. (32) and (36).
One can easily generalize the discussion in Ref. [24] and

show that the regularity condition for R−
n (Rþ

n ) is satisfied
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everywhere under the barrier if it is satisfied at a → 0

(a ¼ a�) and ifω2
n is positive everywhere under the barrier.

5

As a result, what we need to impose is the regularity
condition for R−

n at a → 0, which can be realized by either
boundary condition, (A11) or (A10).
Turning now to the path integral formalism, most of the

analysis in Sec. III C still applies. Using Eq. (65) and
iτ ¼ Nη, we can express the boundary conditions (A11) as

∂⊥φn ¼ −iðnþ 1Þa−1φn ðτ → −∞Þ: ðA12Þ
A comparison with Eq. (66) then shows that we need to add
to the action a boundary term of the form (63) with ξ ¼ 0
and

hn ¼ −iðnþ 1Þa−1: ðA13Þ

As before, the lower boundary contribution to the scalar
field action cancels out and Eq. (70) gives

Sn ¼
1

4π2

Z
B1

ffiffiffiffiffiffiffiffiffiffi
−gð3Þ

q
d3yφn∂⊥φn: ðA14Þ

Then the wave function for φn becomes

ψnðφn1Þ ∝ eiSn ¼ exp

�
ia21
2N

φn1 _φn1

�
; ðA15Þ

which is the same as

ψnðφn1Þ ∝ exp

�
−
1

2
Rnφ

2
n1

�
ðA16Þ

obtained using the WDW formalism.
As in Sec. III D, the path integral over φnðτÞ can be

expressed as

ψnðφn1Þ ∝
Z

DφneiS̃½φn�ψn0ðφn0Þ; ðA17Þ

where now the action S̃n does not include any boundary
terms,

ψn0ðφn0Þ ¼ e−ðnþ1Þa2
0
φ2
n0=2: ðA18Þ

and the integration is over histories φnðτÞ satisfying
Dirichlet boundary conditions at η0 → −∞ and η1.
Following the same steps as in Sec. III D, one can show
that the result is the same as in Eq. (A15).

[1] A. Borde, A. H. Guth, and A. Vilenkin, Inflationary Space-
times are Incomplete in Past Directions, Phys. Rev. Lett. 90,
151301 (2003).

[2] A. Vilenkin, Creation of universes from nothing, Phys. Lett.
117B, 25 (1982).

[3] J. B. Hartle and S. W. Hawking, Wave function of the
universe, Phys. Rev. D 28, 2960 (1983).

[4] A. D. Linde, Quantum creation of the inflationary universe,
Lett. Nuovo Cimento Soc. Ital. Fis. 39, 401 (1984).

[5] V. A. Rubakov, Quantum mechanics in the tunneling uni-
verse, Phys. Lett. 148B, 280 (1984).

[6] A. Vilenkin, Quantum creation of universes, Phys. Rev. D
30, 509 (1984).

[7] Y. B. Zeldovich and A. A. Starobinsky, Quantum creation of
a universe in a nontrivial topology, Sov. Astron. Lett. 10,
135 (1984).

[8] B. S. DeWitt, Quantum theory of gravity. 1. The canonical
theory, Phys. Rev. 160, 1113 (1967).

[9] A. Vilenkin, Boundary conditions in quantum cosmology,
Phys. Rev. D 33, 3560 (1986).

[10] A. Vilenkin, Quantum cosmology and the initial state of the
universe, Phys. Rev. D 37, 888 (1988).

[11] A. Vilenkin, Approaches to quantum cosmology, Phys.
Rev. D 50, 2581 (1994).

[12] J. J. Halliwell and J. Louko, Steepest descent contours in the
path integral approach to quantum cosmology. 1. The
De Sitter minisuperspace model, Phys. Rev. D 39, 2206
(1989).

[13] J. J. Halliwell and J. B. Hartle, Integration contours for the
no boundary wave function of the universe, Phys. Rev. D 41,
1815 (1990).

[14] J. Feldbrugge, J. L. Lehners, and N. Turok, Lorentzian
quantum cosmology, Phys. Rev. D 95, 103508 (2017).

[15] J. D. Brown and E. A. Martinez, Lorentzian path integral
for minisuperspace cosmology, Phys. Rev. D 42, 1931
(1990).

[16] J. Feldbrugge, J. L. Lehners, and N. Turok, No Smooth
Beginning for Spacetime, Phys. Rev. Lett. 119, 171301
(2017).

[17] J. Feldbrugge, J. L. Lehners, and N. Turok, Inconsistencies
of the new no-boundary proposal, arXiv:1805.01609.

[18] J. Diaz Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog,
and O. Janssen, Real no-boundary wave function in Lor-
entzian quantum cosmology, Phys. Rev. D 96, 043505
(2017).

[19] J. Diaz Dorronsoro, J. J. Halliwell, J. B. Hartle, T. Hertog,
O. Janssen, and Y. Vreys, Damped Perturbations in the
No-Boundary State, Phys. Rev. Lett. 121, 081302 (2018).

5The condition ω2
n > 0 may not be satisfied if the field has a

tachyonic mass (m2 < 0). In this case, we may need a special
treatment for the homogeneous mode (n ¼ 1); see Ref. [10].

ALEXANDER VILENKIN and MASAKI YAMADA PHYS. REV. D 98, 066003 (2018)

066003-10

https://doi.org/10.1103/PhysRevLett.90.151301
https://doi.org/10.1103/PhysRevLett.90.151301
https://doi.org/10.1016/0370-2693(82)90866-8
https://doi.org/10.1016/0370-2693(82)90866-8
https://doi.org/10.1103/PhysRevD.28.2960
https://doi.org/10.1007/BF02790571
https://doi.org/10.1016/0370-2693(84)90088-1
https://doi.org/10.1103/PhysRevD.30.509
https://doi.org/10.1103/PhysRevD.30.509
https://doi.org/10.1103/PhysRev.160.1113
https://doi.org/10.1103/PhysRevD.33.3560
https://doi.org/10.1103/PhysRevD.37.888
https://doi.org/10.1103/PhysRevD.50.2581
https://doi.org/10.1103/PhysRevD.50.2581
https://doi.org/10.1103/PhysRevD.39.2206
https://doi.org/10.1103/PhysRevD.39.2206
https://doi.org/10.1103/PhysRevD.41.1815
https://doi.org/10.1103/PhysRevD.41.1815
https://doi.org/10.1103/PhysRevD.95.103508
https://doi.org/10.1103/PhysRevD.42.1931
https://doi.org/10.1103/PhysRevD.42.1931
https://doi.org/10.1103/PhysRevLett.119.171301
https://doi.org/10.1103/PhysRevLett.119.171301
http://arXiv.org/abs/1805.01609
https://doi.org/10.1103/PhysRevD.96.043505
https://doi.org/10.1103/PhysRevD.96.043505
https://doi.org/10.1103/PhysRevLett.121.081302


[20] J. Feldbrugge, J. L. Lehners, and N. Turok, No rescue for the
no boundary proposal: Pointers to the future of quantum
cosmology, Phys. Rev. D 97, 023509 (2018).

[21] J. J. Halliwell and S. W. Hawking, The origin of structure in
the universe, Phys. Rev. D 31, 1777 (1985).

[22] S. Wada, Quantum cosmological perturbations in pure
gravity, Nucl. Phys. B276, 729 (1986); Erratum, Nucl.
Phys. B284, 747(E) (1987).

[23] T. Vachaspati and A. Vilenkin, On the uniqueness of the
tunneling wave function of the universe, Phys. Rev. D 37,
898 (1988).

[24] J. y. Hong, A. Vilenkin, and S. Winitzki, Creation of
massive particles in a tunneling universe, Phys. Rev. D
68, 023521 (2003).

[25] C. Teitelboim, The proper time gauge in quantum theory of
gravitation, Phys. Rev. D 28, 297 (1983).

[26] A. D. Barvinsky and S. N. Solodukhin, Nonminimal cou-
pling, boundary terms and renormalization of the Einstein-
Hilbert action and black hole entropy, Nucl. Phys. B479,
305 (1996).

[27] S. del Campo and A. Vilenkin, Tunneling wave function for
anisotropic universe, Phys. Lett. B 224, 45 (1989).

TUNNELING WAVE FUNCTION OF THE UNIVERSE PHYS. REV. D 98, 066003 (2018)

066003-11

https://doi.org/10.1103/PhysRevD.97.023509
https://doi.org/10.1103/PhysRevD.31.1777
https://doi.org/10.1016/0550-3213(86)90073-8
https://doi.org/10.1103/PhysRevD.37.898
https://doi.org/10.1103/PhysRevD.37.898
https://doi.org/10.1103/PhysRevD.68.023521
https://doi.org/10.1103/PhysRevD.68.023521
https://doi.org/10.1103/PhysRevD.28.297
https://doi.org/10.1016/0550-3213(96)00438-5
https://doi.org/10.1016/0550-3213(96)00438-5
https://doi.org/10.1016/0370-2693(89)91047-2

