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An instanton is known to exist in Euclidean spacetime only. Their role in real time dynamics is usually
understood as a tunneling effect by Wick rotation. We illustrate other effects of instanton in holography
by investigating five-dimensional effective gravity theory of the black D3-brane-D-instanton system. The
supergravity description of the D3-brane-D-instanton system is dual to the super-Yang-Mills theory with
topological excitations of the vacuum. We obtain Euclidean correlators in the presence of instantons by
analyzing the fluctuations of the bulk fields in the five-dimensional effective theory. Furthermore, analytic
continuation of Euclidean correlators leads to retarded correlators, which characterize real time dynamics.
We find interestingly real time fluctuations of topological charge can destroy instantons and the lifetime of
instanton is set by temperature. This implies instanton contribution to “real time dynamics” is suppressed at
high temperature, which is analogous to classic field theory results that the instanton contribution to

“thermodynamics” is suppressed at high temperature.
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I. INTRODUCTION

Instantons in quantum chromodynamics (QCD) are
known as topologically nontrivial excitations of the vacuum.
They are known to contribution to the thermodynamics of
QCD and are closely related to chiral symmetry breaking.
We refer the readers to [1,2] for comprehensive reviews.
Instantons are also known to consist of constituents called
BPS (Bogomol'nyi-Prasad-Sommerfield) monopoles or
dyons. There have been continuous efforts in linking
confinement and chiral symmetry breaking with instanton
constituents [3—11]. While extensive literature focuses on
the role of instantons in thermodynamics and phase tran-
sition, their role in real time dynamics has not received
enough attention. The goal of this work is to fill the gap.
Similar to instantons in quantum mechanics, instantons in
QCD are generally viewed as tunneling processes. A typical
question one may ask is how does the presence of an
instanton affects certain correlation functions, e.g., a
retarded correlator G®(w), which is a genuine real time
quantity. It is known that the retarded correlator is related to
the Euclidean counterpart GZ(wy) by
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G (wg) = —GF(w), (1.1)
with w = iwg = 2izTn. Note that the equality holds only
when o, takes value on discrete Matsubara frequencies. In
order to obtain the retarded correlator with an arbitrary real
w, analytic continuation is needed. However, it is not always
well defined. For example, in lattice gauge theory, G* and
GR are related through spectral function. Going from G to
G® involves an ambiguity.

Holography provides us with a possibility to study the
effect of instantons in real time dynamics. Instantons in
holographic models have been constructed as a D-instanton
background [12-14]. The effects of instantons on chiral
symmetry breaking and heavy quark potential have been
discussed holographically in [15-17]. The thermodynamics
of anisotropic instanton distribution has been studied
in [18,19]. While these are essentially related to
Euclidean quantities, holography also allows for the easy
access of real time quantities. In holography, we may also
work with purely imaginary wg, which can be viewed as a
natural analytic continuation of (1.1). Such an approach
allows for straightforward extraction of a retarded corre-
lation function from (1.1). In this paper, we illustrate the
effect of instantons on retarded correlators of a topological
charge at finite temperature, which are measures of its
fluctuations. Since instantons themselves carry a topologi-
cal charge, we find, interestingly, the fluctuations can
destroy instantons in real time. The lifetime of an instanton
is found to be set by the temperature. Simply speaking, the
contribution of an instanton to ‘“real time dynamics” is
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suppressed at high temperature. This is in line with the
classic field theory results: the contribution of an instanton
to “thermodynamics” is suppressed at high temperature
[20,21].

The paper is organized as follows: in Sec. I, we review
the D3-brane-D-instanton background at finite temperature.
In Sec. III, we obtain the five-dimensional (5D) effective
action and study 5D fluctuations in the D-instanton back-
ground. We proceed to calculate two point correlators of
stress tensor components, the gluon condensate, and
topological charge in Sec. IV. Finally, we discuss the effect
of instantons in real time dynamics and conclude in Sec. V.

II. REVIEW OF D3-BRANE-D-INSTANTON
SYSTEM

In this section, let us briefly review the background of the
black D3-branes with D-instantons and its dual field theory.
The original example for D3-branes with D-instantons was
proposed in [12], which is a deformed D3-brane solution of
type IIB supergravity by a nontrivial scalar field. In order to
preserve 1/2 of supersymmetry, a Ramond-Ramond (RR)
scalar charge is switched on and balanced by the dilaton
charge in this system. The resulting solution represents
a marginal “bound state” of D3-branes with smeared
D-instantons, i.e., D(-1)-branes. In this paper, we focus on
a finite-temperature extension of the D3-D(-1) background in
Euclidean signature [14]. In this background there is a RR
four-form C, and zero-form C field which couples to D3 and
D(-1)-branes respectively. In the Einstein frame, the 10-
dimensional (10D) supergravity action is given as [22,23]

1
2K%O

dlox\/ﬁ

Siop =
1 2 L a1 n
X 7310—5(3@) +§€ (Ox) —§|F5| Y

where @ is the dilaton filed, and F5 = dC, is the field
strength of C,. The original RR zero-form C is defined as
x = iC where y is usually named as an axion. By setting
x = —e"®+ yy where y, is a constant, the dilaton term
cancels the axion term in (2.1) so that the dynamics in the
action involves the metric and the RR four-form C, only.
The solution in Euclidean signature reads [14,23]

r 1R
ds%o = F[f(r)df2 +5ijdxldxj} +m?d7’2 + R2dQ2,
T e
f<r>_1 r47 X =€ +Z0,
1
e<b:1+r%log [m:|, FSZ‘/—ZA(€5+*€5). (2'2)
T

Here R4 = 47l'gchl?, |F5|2 = %FMNKPQFMNKPQ, 7 1s the
Euclidean time defined as 7 = it and €5 is the five-form

[Tt

volume element and “x” represents the Hodge dual.
The constant g denotes the number density of D(-1)-branes,
i.e., D-instantons. While the dilaton becomes divergent
at the black hole horizon, it does not give any effects
about the thermodynamics since the bulk observables
should be computed in the Einstein frame where the on-
shell action is the same as the case of the purely black
D3-brane.

According to the AdS/CFT dictionary, the above super-
gravity solution holographically describes the Euclidean
N = 4 super-Yang-Mills theory with SU(N) gauge sym-
metry in a certain nonvacuum state. Hence, the constant ¢
represents the vacuum expectation value (VEV) in
Euclidean spacetime:

Op = (TrF?), Op = (TrtF A F),

Op =—-0pxq#0. (2.3)
Here we define gluon condensate Oy and topological
charge density O in terms of the Euclidean gauge field
strength F. We use subscript E to indicate that the
Euclidean signature is to be used. Note that the sign
corresponds to that of an anti-instanton. Below we will
loosely refer to this as an instanton, which does not affect
the conclusion of this paper.

The temperature of the dual field theory is given by
T = %. The nontrivial profiles of ® and y correspond to an
effective 6 term. To see this, we consider the action of
probed D3-branes with smeared D(-1)-branes,

i
51)3_SDBI+/J3/C4+§H3(27T0‘/)2/)(-7:/\~7:+"',

(2.4)

where 3 = W and o = 2. The super-Yang-Mills action

in the dual theory comes from the leading order expansion
of the Dirac-Born-Infield (DBI) action in (2.4). Since y
only depends on r according to (2.2), the last term in (2.4)
give rises to a f term

x(r) ~0(r),

/)(]:/\.7::)( FANF~0 F N F.
R* R*

R4

(2.5)

This allows us to dial instanton density ¢ as an independent
parameter.

III. THE FIVE-DIMENSIONAL
EFFECTIVE THEORY

A. Dimensional reduction

In this section we are going to obtain a 5D effective
gravity theory of the D3-D(-1) system and explore the 5D
fluctuations of the bulk fields. Let us start with the 10D
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equations of motions for the bulk fields, which can be
derived by varying the action @2.1),!

1 1 1
Ruy = 5 Oy POy ® =5 %00z + ¢ Fuxpor N

V20 = =2 (0y)%.  g"VVy(e*®0ny) =0,  (3.1)
where the indices M, N, P, Q, L runs from 0 to 9. Inserting
the solution (2.2) into (3.1), we assume all the functions
only depend on the 5D coordinates x* = {x*, r} where
u=0,1, 2, 3. Hence, (3.1) can be rewritten as

5D 1 1
REzb ) = Aga + Eaaq)abq) - Eezq)aa)(ab)(’

1
0= Dal\/9i5) 970, @] 4 €*®g*0 D 1 Oy
9(s5D)
1
0= aa g gabe2<1>a !
N [\/965D) bX]
Rmn = _Agmnv (32)
where m, n runs from 6 to 9 and A =—-25 is the

RZ
cosmological constant. The last equation is automatically
satisfied on a five-sphere, so the 5D effective action could
be taken as.

1 1 1
SSD :ﬁ dsxm |:R<5> —5(0(13)2 +§€2¢(8)()2 —2A].
5
(3.3)

The reduction from 10D action to 5D effective action
essentially fixes F5 and metric components on S°. This is
justified on the gravity side as we have shown already the
ansatz automatically satisfies the field equation. We only
turn on 5D metric components, dilaton and axion, all of
which have a trivial dependence on S° coordinates. This is
sufficient for our purpose, since our goal is to calculate
correlators among stress tensor components O and O on
the field theory side.

B. The fluctuations

Let us consider the following fluctuations in 5D effective
action (3.3):

oo = Goo + € Er*hoo (1),
i = Gii + €7 hyi(r),
D > O+ e T5D(r),

X =y + e Sy (r). (3.4)

'Here we have used script R to denote the curvature in order to
distinguish it from the radius R of the bulk.

The fluctuations are taken to be a specific Fourier compo-
nent with Euclidean frequency @y and are homogeneous
in X, respecting rotational symmetry. The rotational sym-
metry also allows us to set h,, = hy, = h,, = H. We have
imposed the radial gauge, in which h,, = h, = 0. The
equations of motion for the Euclidean fluctuations can be
derived as

0 = —1672fhyy + 1672 f2hog — 6% fH + 21 f f'hg
+ % hoy + 1273 f2 Yy — r £ f Ry, + 61° f2H'
+ 3K 2 H + 21 f2 Ry,
0=—wiH —8r*fH +8r’f°H — r*f'hoy + 2 ff'H
+ P fhy, + 8 f2H' + r* ff'H + r* f2H",
_ 3(=f'H+2fH')
4f
0 = =26@(w% — 2r* f2D%) — r*hoo f' @ + 2r* f /60
+ r4fh60(1)' + 1073 f26®" + 3r* f2H' &'
+ 44 25 @ + 24 f260.

0 +lsoar -1 e®D' 5y
2 2 ’

(3.5)

We only keep four equations in (3.5). The remaining
equations are not independent since they should be satisfied
automatically by the solution to the equations in (3.5).
Among equations in (3.5), the first two are dynamical
equations. The third and fourth equations are constraint
equations, which can be combined to eliminate dy, giving
rise to a third dynamical equation. As a result, we need to
solve only three equations for hy,, H, 0@, respectively, by
integrating the equations from the horizon. Since the
background is Euclidean, we impose a regular boundary
condition. Let us consider wy > 0 for now. The solutions
take the following series solutions near the horizon:

24+ 120y
h —=Bn(r—1)ee/4|—__ &
R D
H(r) = By(r—1)2s/*
- 20wg + 320% + o},
8(2+wp)?

(r—l)—f—(’)(r—l)z],

(r—=1)+0(r- 1)2],

Co 6B,
—1+qn[d(r-1) wpg(2+wg)

SO(r) = (r—1)=e/4 {

BB ginla(r =) + O 1).

(3.6)

We have set ry = 1 in the above solution for simplicity.
This sets the scale by having z7 = 1. The series solutions
of hgy and H are obtained by solving the first two
dynamical equations in (3.5) and we find that there is
only one independent solution with normalization constant
By. When @ = 0, this is the Euclidean counterpart of the
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infalling solution discussed by Policastro, Son, and
Starinets (PSS) [24] in the limit of vanishing spatial
momentum. When we have nontrivial ®, 6@ satisfies an
inhomogeneous dynamical equation whose general solu-
tion is the sum of the homogeneous solution (proportional
to By) and special solution (proportional to C). Note that
the near horizon solution is modified from a simple series
solution due to the nontrivial profile of @. Here we organize
the solution as a power series in (r — 1), treating In(r — 1)
as O((r—1)°). (3.6) is essentially all order in In(r —1).
Integrating these solutions to the boundary, we could obtain
two independent solutions with a regularity boundary
condition. The number of solutions does not match the
number of independent sources. The remaining solutions
are pure gauge ones, which do not satisfy the regularity
boundary condition [24]. In our case, the pure gauge
solution is given by

1

hlll/ - p <vﬂgv + vvéﬂ)’ o0 = éﬂaﬂq)’ 5)( - éﬂaﬂ){

(3.7)

The gauge function ¢ has to be chosen such that fluctuation
fields remain in radial gauge. The explicit expressions of
the gauge function are found to be

2(r* = 1)D, —iwgDV1* — 1
2r? '

D,. (3.8)

57 = e lWET

__ ,—lwgT
& = e ——
rt—1

The corresponding pure gauge solution is given by

2 2 r1/2
hOO :fl/z <2 +_4>D1 _%Dl —ZiO)Esz,

r I

_4gD
H=2f2D,, 0= Kt
rf2(1 - g f)
—4gD

Sy 4= (3.9)

T AP —ginf P

Notice that there are two independent normalization con-
stants Dy in (3.8) which precisely generate the remaining
two solutions. Hence, we totally have four solutions at
hand; they are two numerical ones and two analytic pure
gauge solutions. To be specific, let us label the solutions by
i=1,11,111,1V with

I:By=1, Cy=0, D, =D,=0,

II: By=0, Cyo=1, D, =D,=0,

III: By=0, Cy=0, D,=1, D,=0,
IV:By=0, Cy=0, D,=0, Dy=1. (3.10)

Then we can analyze the equations of motion near the
boundary and calculate the correlation functions among the

dual operators from the asymptotic series of the fields A,
H, 6@, and dy. We can obtain the following asymptotic
behavior:

a ay as ay ay,
h00=a0+—2—|——4+—6+—8+—811nr+~',
r r r r r

by by by b
H=bj+5+—=+—2+—
r r r

6<D:f0+%+%+%lnr+---,

by,
7+71nr+...,
7’8 ’,.8

€1 G Cp

with the recursion relations among coefficients

bow> 3
a1=——02E, 02=—Q(Co—fo)+§bo—ao,

> o}
as :TEbo, ap :6—j(b0+2b2)’
q 1
by =0, bz—g(co—fo)—ibo,
b wj

by = —E(bo+2b2), by, —a(b(ﬁ'sz)v

fowi fow
fl 4 ) fh — 16 )

Cow? cow?t
¢ = 04 E cp = 016E (3.12)

Following the holographic dictionary, we take aq, by, cg,
and f, as sources to operators 7%, T O, and Op,
respectively. The coefficients a,, b,, c¢,, and f, are
corresponding VEVs. It may seems odd that a, and b,
are completely determined by recursion relations. We show
in Sec. IVB that correlators among 7% and T% are
completely fixed by Ward identities in the limit of vanish-
ing spatial momentum, making a, and b, nondynamical.
The coefficients c¢,, f, cannot be determined by analyzing
the boundary behavior only. They are related through the
constraint equation,

o —6b2 + 24b4 - 3bh + 4qf2 - 4q2f0

Cy 4q

(3.13)

The coefficients a, and b, are not determined up to the
order we work. In order to calculate the correlation
function, we turn on the sources for the operators and
measure the corresponding VEVs. The ratio of the VEV to
the sources can be defined by the following response
matrix:
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Jay
Gau Gah Guc Gaf Oay
b,
Gra Gpp Gpe Gipp | | ay
Gca Gcb Gcc Gcf g%
0
Gra Gpo Gre Gyy ot
day

Jay

by

by

by
dcy

by
0

0by

Jay
dcg
b,
dcg
Jcy
dcg
of>
dcg

a,
dfo
b,
dfo
ac,
dfy
9fs
dfo

(3.14)

Because of operator mixing in the renormalization group
flow, the off-diagonal matrix elements in the response
matrix is nonvanishing. For any given basis solution, the
response matrix satisfies

Clé Gau Gab Gac Guf d6

by | | Goa Gon Gie Gis || bh (3.15)
Cé Gca Gcb Gcc Gcf C6 ’ '
1 Gra Gpy Gre Grp/ \f

for i =1,1I1,111,1V. Since we have in total four basis
solutions, we can use them to calculate the response matrix
efficiently as

Gaa Gab Gac Gaf
Gba be Gbc be
Gea Gcb Gcc Gcf
Gra Gpp Gre Gy
aé aél aé][ aéV Cl(l) a(l)l a(l)l[ aéV -1
R A
Tl e || e
O AN A
(3.16)

Most of the matrix elements on the rhs of (3.16) are known
analytically. From solutions /7, I1I, and IV, we easily
obtain

al =0, BI=0, af=0, bi=0, =0,
all =2, pll=2  f=0, =1,

bl =1,  fil=_4g, b= _%7

alV = =2im, bV =0, o =0,

dY =2iw, b =0, V=0, bY=0. (3.17)

With recursion relations (3.12) and constraint (3.13), we
can fix most entries of the response matrix as

Gua Gup Gae Guy -1 3/2 -9 ¢

Gba Gop Goe Gpr | | 0 =1/2 q/3 —q/3

Gew Gop Gee Gy 0 —-2¢g x X

Gra Gy Gy Gy 0 —2¢ x x
(3.18)

The entries marked with “x” represent the value which has
to be determined numerically. In fact, the four undeter-
mined entries are not all independent. We can show that
there is a less obvious identity among them

Gcf_ch+2q = fo—GCC. (319)

Finally we remark on one important property of the
response matrix under the sign flip of wg. Up to now
we have considered wy > 0; the situation with w; < 0 is
easy to analyze: the regularity condition requires the
solutions near horizon ~(r—1)~“z/4. It follows that
solutions / and I/ remain unchanged under the sign flip.
On the other hand, the explicit pure gauge solutions show
that 711 is also unchanged, while /V changes sign.
Combining all these with recursion relations (3.12) and
constraint (3.13), we can show that the response matrix is
also unchanged under the sign flip of @wg. This will be
useful in the following.

IV. EUCLIDEAN AND RETARDED
CORRELATORS

A. Euclidean correlators

The D3-brane-D-instanton background is found in
Euclidean spacetime with nontrivial profiles of dilaton
and axion which is consistent with the field theory expect-
ation since the instanton only exists in Euclidean field
theory. The effect of the instanton to real world physics is
usually understood as a tunneling process. We will calcu-
late correlators among stress tensor, glueball, and topo-
logical charge density in this section, which are dual to the
perturbation of the metric, dilaton and axion, respectively,
as discussed in the previous sections. Notice that the
resulting correlators are all Euclidean in our current
analysis of the bulk gravity. In the next section, we will
study the counterpart in Minkowskian spacetime.

We show in the Appendix how to obtain correlators
among TY, T% Op, O from (3.18) and (A5). Here,
the sum over i is assumed in T% as this is the quantity
coupled to the isotropic metric perturbation H(r — o).
Respectively, the correlators are given by
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GE 0 = / dedxeioet (T (z, x)TO(0)) = 3,

%)
I
|

drd®xe =™ (TY (7, x)T(0)) = 3,

Q
S
I

drd®xei®= (Tii(z, x) T4 (0)) = -9,

drdPxe'®rt <T%0 (z,x)0((0)) = 4q,

i)
g5
Q

Il

Q
ry
|

drd’xe' =™ (TY (7,x)0p(0)) = —4q,

drd®xe =" (Tii(z,x)0(0)) = —4q,

Q
=t
Q
I
— e S S S S S

GE o= | ded’xe™=(Tii(z, )0 (0)) = 4q,
Gy = [ dedPxe™="(Og (7, x)0(0)) = 4G ;.
Gt = [ didPxe=*(Op(z,x)0p(0)) = —4G,
GE, = [ drd*xe = (Og(z,x)Of(0))
=—-2G. + 2G4 — 4q. (4.1)
Note that all correlators are in units of P = Z¥* which is

T8
the pressure of plasma, as we have shown in the Appendix.

The correlators among T% and T are trivial. We will see
shortly that they are simply fixed by Ward identities derived
by PSS [24]. The cross correlators among 7%, T% and O,
Op are fixed by a new set of Ward identities. The
correlators among O and stress tensor components arise
naturally from the fact that the spacetime integral of O is a
topologically protected quantity,

5/d1d3x\/§05(x):/drd3x\/§ Bg"”&gﬂyolg(x)—i-éoE
—0. (4.2)

Notice that (Og(x)) = 4q. By taking gy = hoo(r — o)
and 8g; = 0, we can obtain the response of O to the
metric perturbation dgg,

{0k (x))

= =2g5*(x — ).
S900(y) 245°(x =)

(4.3)

What we obtain above is nothing but the correlator
(Op(x)T®(y)). Tt takes a familiar form in momentum
space

*The coupling [ d*x éh}wT"” brings in an additional factor
of 2.

/ dedxeo (O (v, ) TO(0)) = —4q.  (44)

A similar procedure with §goy = 0 and 8g;; = H(r — )
leads to the correlator:

/ drd’xe' =" (O (7, x)TiE(0)) = (4.5)

It is not difficult to see that they are equivalent to the
corresponding correlators in (4.1) upon using complex
conjugation.

Furthermore, we can obtain from (3.19) the following
relation among Euclidean correlators:

1

5(Gbo =Gl ) =0. (4.6)

B. Ward identities

In this section, we will show that the apparently trivial
form of the correlators are in fact a consequence of Ward
identities following from diffeomorphism invariance and
conformal invariance of the action:

[g;w s ¢4D ] [g/w +V ‘54D + v ¢4D
+ &9,¢*° 4P + 5”8,4)(41’], (4.7a)
Slgp s ™. x*P] = S[Qg, $*P, 1) (4.70)

We have used the label “4D” to indicate that all the
variables in (4.7a) are four-dimensional, i.e., they are
sources corresponding to ag, by, ¢y, fo. Varying (4.7a)
with respect to fﬁD (x) and (4.7b) with respect to Q, we
obtain

=V, T (x) + 0p(x) V/¢*P (x) + Op(x)V'y*P(x) = 0,

(4.8a)
9u(T") = 0. (4.8b)

Varying (4.8b) with respect to g,, and setting g, = 6,,,
¢*P = ¥*P = 0, we obtain

9,(GE Y (q) + 84T + &(T;)
éﬂuG}g'Ap = _2<T}l??o>

— (TE)).
(4.9)

The derivation is parallel to the one in [24] except that our
background metric is flat Euclidean. We can show that, in

fact, (4.9) alone is enough to fix correlators G000 Y0

and G/, Note that g, = (wg.,0). We obtain from (4.9)
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wp(GP + () =0,
w(GP = (Ti) =0,

P+ Gy = —2(Ti), (4.10)
where we always assume summation over repeated indices.
Using (T%) = —(T%) = —3P, we obtain

00,00 00,ii ji.jj
Gy =3P, Gy =3P, Gz =-9P. (4.11)
It indeed agrees with (4.1) and explains the nondynamical
origin of the correlators.

Now we derive a new set of Ward identities involving O
and Op. Varying (4.8b) with respect to ¢*°(y) and y*P(y)
and setting g,, = 6,,, ¢*® =, =0, we obtain from
4.7a):

~q,G % —q"(0g) =0, —q,G¢°—g"(0g)=0. (4.12)
Note that (Og(x)) = —(Og(x)) = —4q, we obtain
immediately

GP0 —4g  GYO = _4q. (4.13)
Similarly, we can obtain from (4.7b)

8/ (X)(T (x)O0£(0)) =0,

8,0 (x)(T (x)O£(0)) = 0 (4.14)
The Fourier transform of (4.14) gives

Gl +Gr?=0  GY°+Gr2=0. (4.15)

Combining with (4.13), we obtain

Gi0=_4g G0 =14q (4.16)

All the cross correlators are fixed by Ward identities in the
limit of vanishing spatial momentum.

C. Analytic continuation

To see how the presence of an instanton affects real time
dynamics, we need to know the corresponding correlators
in Minkowski spacetime. The conventional holographic
approach is to directly work with Minkowski background,
which automatically gives a real time correlator. However
this is not applicable to the D-instanton background:
A naive Wick rotation of the background would lead to
purely imaginary VEVs for O and O. This is, in fact,
consistent with the field theory expectation that the
instanton exists only in Euclidean space. So only the
Euclidean correlator is well defined. Nevertheless, an
analytic continuation between the Euclidean correlator

and the real time correlator is possible in field theory.
We will use the following identity between the retarded
correlator and the Euclidean correlator:

GRiwg) = —GF(wp), (4.17)
where wp takes values of the Matsubara frequency
wgp = 2xnTn. A clean derivation of (4.17) can be found,
for example, in [25]. In (4.17), GR and G* are defined with

the same operator. It applies to the case of dilaton, whose
explicit Euclidean and Minkowskian correlators are given by

GR (@) = —i / didxe™ ([0(1, %), 0(0)]),

GEp(wg) = /drd3xei(”E’<0E(r,x)OE(0)>, (4.18)

with O = Og. The Minkowskian and Euclidean times are
related by it = 7, correspondingly @ = iwg. We have already
evaluated the Euclidean correlators in the D-instanton back-
ground. Through (4.17) they give us automatically the
retarded correlators, albeit defined only on w = i2zTn. To
extend the results to real frequency, we need to analytically
continue (4.17). There is a natural continuation:

GB () = ~Ghy(—in). (4.19)
with @ being real. (4.19) indicates that to obtain the retarded
correlator with real w, we need to evaluate the Euclidean
correlator with purely imaginary frequency —iw. Note that
we have been working with wy > 0 for the evaluation of
Euclidean correlators. The horizon solution fixed by the
regularity condition behaves as ~(r — 1)“#/4. The horizon
solution can be extended to the right half plane Rewy > 0.
Using the relation wy = —iw, it is mapped to the upper half
plane of @. Note that the horizon solution in terms of  is
precisely an infalling wave type ~(r—1)7/4. Had we
started by extending the left half plane of wg, where the
horizon solution behaves as ~(r — 1)~?£/4, we would not
obtain the infalling horizon solution by the same mapping
wg = —iw. To further confirm the prescription, we show that
the analytic continuation (4.19) holds for known examples of
super-Yang-Mills plasma with ¢ =0 where the direct
calculation of both Euclidean and retarded correlators is
possible. In this case, the EOM of dilaton decouples from the
metric perturbation. It is given by

2036 + 1P (2rf f/6D" + f2(1060 + 2r5P")) = 0.
(4.20)

The EOM of dilaton in the Minkowski background is given
by the mapping wp = —iw:

2025® + 3 (2rf /6@ + f2(106®' +2r60")) =0. (4.21)
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Note that the regular horizon solution in the Euclidean case is
also mapped to the infalling horizon solution in the
Minkowskian case. Taking into account the convention in
the definition (4.18), we readily confirm the equality (4.19)
for Rewg > 0.

Next, we discuss autocorrelator of O defined as

G () = —i / dtd®xe™'([O(t, x), 0(0)]),

Gholwn) = [ dedse™ (0. 0050). (422

In contrast to the above case, O and Oy differ by a factor.
To see this, we write down the field theory definitions for 0
and O (for comparison we also include O and Op):

Op=trFi=1tr€% +trB2,
OE:tr]:E/\]:EztrgE-BE,

O=1trF?=—tr& +tri3?,
O=trFAF=trE-B,
(4.23)

with £ and B being chromo electric and magnetic fields.
Note that it = 7. We obtain 9, = id,, thus £ = —i& and
Br = B. It is then straightforward to verify

Oy =0, O = iO0. (4.24)
Consequently, the analytic continuation for the autocorre-
lator of O involves an additional minus sign.

GR . (w) = GE . (—iw).

£ (4.25)

We can confirm the prescription at ¢ = 0 by the following
indirect comparison. Note that retarded correlators for O
and O are degenerate in the Minkowskian D3-brane
background because the dual dilaton and axion satisfy
the same equation of motion (EOM) [26]. Therefore we
would obtain from (4.25)

Gl (—it) = Gl (0) = G (@) = =Gl ie).

£ (4.26)

Below we confirm (4.26), where both sides can be
calculated with (4.1). Note that axion and dilaton also
satisfy the same EOM in the Euclidean background, which
simply gives G;r = G... However, the Kinetic terms of
dilaton and axion differ in sign. The sign difference is
reflected in the equations of G, and G%  in (4.1). Thus,
we find G ; (—iw) = =G, (—iw), consistent with (4.25).
Finally, we discuss the remaining correlators among
stress tensor components. Note that, under Wick rotation,
the Euclidean and Minkowskian operators are related by
T — 7%,

Til = T, (4.27)

It follows that the analytic continuation is modified to

G%O.OO(G)) _ —GOEO’OO<—ia)),
Gy ') = G (~iw),
Gp(w) = =Gy (~iw). (4.28)

Since we already have explicit results for the Euclidean
correlator among stress tensor components, we can make a
direct comparison with their Minkowskian counterpart in
PSS [24]. Setting the spatial momentum to zero in
their case and noting that our G® corresponds to their G,
we readily confirm the correctness of the analytic
continuation (4.28).

To proceed with the case g # 0, we simply apply the
above prescription: we numerically integrate the horizon
solution (3.6) with wg = —iw for @ > 0 to the boundary and
match to asymptotic series (3.11) to determine the response
matrix using (3.16). With elements of the response matrix,
we can use (4.1) to determine the boundary correlator.

D. Results on retarded correlators

Now we are ready to use (4.25) to study retarded
correlators for O and O, respectively. The retarded corre-
lators are readily obtained from (4.1) as

GHo(w) = =4G(~iw),

G’(S)O(a)) = —-4G,.(—iw). (4.29)
The results are known for the case ¢ = 0, where G¥ , and
Gg o are degenerate. Our numerical results indicate the
degeneracy is still true when ¢ < w, ¢ < T. Furthermore,
in the regime w <« T, the correlators display diffusive
behavior as

Goo = G§ 5 = —iwlcs /T, (4.30)
where I'cg is the diffusion constant of the Chern-Simons
(CS) number [26].

We are interested in the regime ¢ ~ O(T). This is where
the instanton effect becomes significant. We first look at the
regime w < T. In Fig. 1 we show the @ and g dependencies
of the real and imaginary parts of Gf, and ~G% .. We find

the imaginary parts of G§, and —~G7 . are almost indis-
tinguishable. Note that this is in contrast to the degeneracy
of Gf, and G% . (without minus sign) in the regime
q < T. The numerical results also indicate the following
scaling relation:

ReGB, ~ ¢*, ImG§y ~—ImGE - ~q*/w.  (4.31)
We further take a closer look at the g dependence of

G§o + G in Fig. 2. For the real part, Fig. 2 shows that
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FIG. 1. The top panels show the real and imaginary parts of GX , and —Gg o inunits of P at g/ (zT)* = 1 as a function of w. In the low
frequency regime, the real parts of G¥ , and —Gg ; differ and are almost independent of w. On the other hand, the imaginary parts of
G and G, are almost indistinguishable. We use an offset to guide the eyes. The numerical results indicate ImGg, ~ ImG%  ~ 1/o.
The bottom panels show the g dependence of the real and imaginary parts of G¥ ; and —G’g 5 in units of P at @/ (zT) = 0.01. The

R~

numerical results indicate ReG, ~ g*> and ImG§, ~ImG% . ~ ¢*. The ¢* dependence extends to a rather large value of g.

Re[Goo+G()6]
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FIG.2. The real and imaginary part of G% , + Gg o Inunits of P as a function of ¢ at /(zT) = 0.01. The real part shows a clear linear

dependence, while the imaginary part is almost g independent.

the difference of ReG¢,, and —ReG? , as seen in Fig 1 is
linear in ¢, suggesting the following scaling behavior:
ReG’gé ~¢q*+#q. For the imaginary part, Fig. 2
shows there is, in fact, a small difference not visible in
Fig. 1.

Moving on from the regime w <« 7T, we study a wider
range of w. We expect when @ > ¢, the instanton effect
becomes negligible; thus, G§, and Gf . again become
degenerate. We show the @ and g dependence of GX , and

G% ; in a wider range of w. The degeneracy of Gf,, and

—G’g o In the small  regime and the degeneracy G, and
G’g o 1n the large  regime are visible in Fig. 3. The figure

also suggests the saturation of ¢ dependence for both real
and imaginary parts of G§,, and G .

V. DISCUSSION

The regime with w < T and g ~ O(T*) deserves special
attention. Numerical results suggest the scaling (4.31),
which after reinstating the dimension gives
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FIG.3. The top panels show the real and imaginary parts of G% , and Gg - in units of P at ¢/(zT)* = 1 as a function of @. At small o,

o

we recover the degeneracy of G¥ , and —Gg o found before. At large w, the plot reveals the degeneracy of Gk, and Gg ; instead as
expected on general ground. The bottom panels show the ¢ dependence of the real and imaginary parts of G’éo and G’g) o in units of P at
o/ (nT) = 1. At large ¢, numerical results suggest a ¢°> dependence. Note that this regime is close to the degeneracy regime of

G§o and =G5 .

ImGB ,(w) ~ —ImGE . (w) = _aT
00 - 00 @ )

(5.1)

where I' ~ O(5). From Fig 1 we can see I' is positive. Note

that the imaginary part of the retarded correlator is related
to the spectral density y, and yp as

xo = —2ImGE Xo=—2ImG§ .. (5.2)

The spectral density should be positive for positive fre-
quency @ [27]. Combining with (5.1), we find indeed
positive spectral density for O, but negative spectral density
for 0. Away from the regime, we do recover positive
spectral density for both O and O from Fig. 3. We suggest
the violation of the positive condition for O in the regime is
related to the existence of the unstable fluctuation of O. To
see this, we consider the following correlator:

/ Bx((0(1, x) — O(0))2). (5.3)

Using the Kubo-Martin-Schwinger relation, we can express
(5.3) in terms of the imaginary part of the retarded
correlator

/d3x<(6(l,X) - 0(0))?)
_ /g_j[)(z _ e—iwt _ eiwt)GSO(w>
_ /C;_:‘T)(z — pmiot _ eiwt)]_#e_ﬂmlmGgo(w)

d 2¢°TT
z/—w(z— q
27

vl
In the last step, we approximate the integrand using (5.1).
This is justified as the dominant contribution at large ¢
comes from small w. This gives the long time behavior of
the fluctuation. The linear dependence in ¢ shows it is a
random walk growth, which is unstable. Note that the
scaling relation holds in the regime @ <« T, which sets
the time scale of the unstable mode. In other words, on a
time scale t~%, a fluctuation effectively destroys the
D-instanton background. Therefore, we conclude that
the lifetime of the instanton is set by the temperature.
The conclusion is in line with the classic field theory results
that the large instanton is suppressed at high temperature
[20,21]. As a final remark, we stress that classic results
were obtained based on thermodynamics consideration; our
conclusion were obtained from an analysis of real time
fluctuations.

e—i(ul _ ei(ut)

~¢TTt. (5.4)
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APPENDIX: HOLOGRAPHIC
RENORMALIZATION

The purpose of this appendix is to express correlation
functions in terms of elements of the response matrix. The
derivation closely follows [24,28]. We start from the 5D
Euclidean action (3.3) with Gibbon-Hawking term SGH,3

Sg = Ssp + Senu,
1 1
= K—g/ dx, /g5 [R“) -3 (0®)? + = e*®(Oy)* + 12]
2
+ = / d*xVhK. (A1)
K

Following [29], we add an additional counterterm Sc7 to
cancel the volume divergence to the bulk theory which is

3
Ser ==+ / d*xV'h. (A2)
5

Note that this is the counterterm for the gravity sector.
Other counterterms for dilaton and axion are also needed;
see [30] and references therein for early constructions. We
will need additional counterterms in the discussion below.
We assume the boundary is taken at » = X which would be
sent to infinity at the end of the calculation. Using the
equations of motion in (3.5) and keeping the contribution
from the boundary r =%, and combining the resultant
boundary terms with S;y and Sc7, we can obtain

1

Sp=—
£ 2k2(27)

1 37'4]100 91" Hh()()
SE 2K‘5 d4 |: f3/2 ( _fl/z) f1/2 (f1/2 )
_9rtH? AL E 3r5f/Hh00+3r5f’H2
T4 8f 8

1 1
-2 P (hoy + 3fH)6DD' + 1 e®r> (hoy + 3fH)Syd'
3 3
+ 2P f6DSy D + 1 > (Hhy)' + 3 PfH'H

1 1
-3 P D (@) + 3 ezq’r55)((5)()’] ) (A3)

Plugging the asymptotic expansions (3.11) into the above
formula, we obtain the on-shell action,

1
Sp=— [ d*x|( -

15
- Zaobo - 3a2b0 +

3a1b0

3
—CoCy +f0f1)r2+§a§
3 2 2
§b0 - 36101’)2 - 6b0b2 — (]

1 1
—2¢pcy +§Coch +f%+2f0f2—§fofh
= 3bgco + agfo + 3bofo —4cofo)

(A4)

+ q(=apcy

—16(cocy, — fofn)Inr+---|.

Note that all the coefficients are functions of 7: ay = ay(7)
etc. To evaluate the correlators in momentum space, we
express Sg in terms of Fourier components of the coef-
ficient aq(k). In doing this, we find that the coefficients of
the superficially 72 divergent terms are of the type w%b3,
w%c3, and wf3. Similarly, the In r divergent terms are of
the type whc3 and w}f3. Therefore all divergent terms are
contact terms and thus should be discarded [31]. The
remaining action is given by

/ dog [—3b0(—w5)a2(w5) — 6by(~wg)by(wg) — 2¢o(~wg)cr(wg) + 2fo(—wE) f2(@F)

42 lag(-wp)an(w) ~ 10ay(~)bo(wg) + 3bo(~0g)bo(w)

+ g[=ag(~wg)co(wg)

There are three types of terms in (A5). The first type is the
product of sources and VEVs like by(—wg)a,(wg). The
second type is the product of sources like ag(—wg)ag(wg),

To simplify the calculation, we have set the 5D cosmological
A = —6 and assume all the fields depend on 7 and r only, which is
case of our interest.

= 3by(~wg)co(wg) + ag(~wg) fo(wg) + 3bo(—wg)fo(wg)

—deo(~wg) folwg)] | (AS)

[

which indicates the presence of constant terms in
the resulting correlators. The third type is the product of
sources and ¢, such as gag(—wg)co(wg). Now we use
the response matrix to express VEVs in terms of
sources. We can then proceed to calculate the correlators
by the differentiation of the action with respect to
sources.
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Ghoo = [ dedres=(T9(e.)1(0)

(27)8%Sg
bay(—wg)dag(wg)’

Ghoii = /d1d3xeinT(T%0(T, x)T%(0))
. s
Say(—wg)dby(wg)’
G{‘;‘jj = /d1d3xe"“’ET<Tg(T,x)Tjéj(0)>
., @S
Sbo(—wg)dby(wg)’
Gho = [ ded*xese(1(5.)04(0)
. s
Say(—wg)dfo(wg)’
GoEo,O = [ did’xe™ =" (T (7, x)0£(0))

(27)3%S};

bay(—wg)écy(wg)’

I
e}

Gl o drd®xe™r* (Tii(z,x)O(0))

(271)6255
Oby(—wg)dfo(wk) ’

2

Gl o= / drd®xe' " (Tii(z,x) Og(0))

(27)8* Sk
8bo(—wg)dcy(wk) ’

GE, = /d1d3xeinT<OE(T,x)OE(O)>

B (27)8*SE
B 8fo(~wg)dfo(wg) ’

Gio = /d1d3xeinT<OE(r, x)0g(0))
B (27)8*S
- beo(~wg)dey(wg)

GE, = / dedxe (01, x) 05 (0)
. (2n#s
 8fo(~wp)dco(wg)”

(A6)

We have suppressed the overall prefactor # for notational
5

simplicity. Note that the prefactor has mass dimension four.
We restore dimension by multiplying (z7)* and converting
ﬂ _ 22N2T4 —p

2k 8 >
which is the same as pressure of plasma. Recall that we
have confirmed the response matrix is even in wg. This nice
property allows us to treat the sources as ordinary numbers.
This is essentially the procedure adopted in [24]. When the
response matrix is not even in @g, a more careful treatment
is needed [28]. Plugging (3.18) into (A6), we obtain (4.1).
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