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An instanton is known to exist in Euclidean spacetime only. Their role in real time dynamics is usually
understood as a tunneling effect by Wick rotation. We illustrate other effects of instanton in holography
by investigating five-dimensional effective gravity theory of the black D3-brane-D-instanton system. The
supergravity description of the D3-brane-D-instanton system is dual to the super-Yang-Mills theory with
topological excitations of the vacuum. We obtain Euclidean correlators in the presence of instantons by
analyzing the fluctuations of the bulk fields in the five-dimensional effective theory. Furthermore, analytic
continuation of Euclidean correlators leads to retarded correlators, which characterize real time dynamics.
We find interestingly real time fluctuations of topological charge can destroy instantons and the lifetime of
instanton is set by temperature. This implies instanton contribution to “real time dynamics” is suppressed at
high temperature, which is analogous to classic field theory results that the instanton contribution to
“thermodynamics” is suppressed at high temperature.
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I. INTRODUCTION

Instantons in quantum chromodynamics (QCD) are
known as topologically nontrivial excitations of the vacuum.
They are known to contribution to the thermodynamics of
QCD and are closely related to chiral symmetry breaking.
We refer the readers to [1,2] for comprehensive reviews.
Instantons are also known to consist of constituents called
BPS (Bogomol'nyi-Prasad-Sommerfield) monopoles or
dyons. There have been continuous efforts in linking
confinement and chiral symmetry breaking with instanton
constituents [3–11]. While extensive literature focuses on
the role of instantons in thermodynamics and phase tran-
sition, their role in real time dynamics has not received
enough attention. The goal of this work is to fill the gap.
Similar to instantons in quantum mechanics, instantons in
QCD are generally viewed as tunneling processes. A typical
question one may ask is how does the presence of an
instanton affects certain correlation functions, e.g., a
retarded correlator GRðωÞ, which is a genuine real time
quantity. It is known that the retarded correlator is related to
the Euclidean counterpart GEðωEÞ by

GEðωEÞ ¼ −GRðωÞ; ð1:1Þ

with ω ¼ iωE ¼ 2iπTn. Note that the equality holds only
when ωE takes value on discrete Matsubara frequencies. In
order to obtain the retarded correlator with an arbitrary real
ω, analytic continuation is needed. However, it is not always
well defined. For example, in lattice gauge theory, GE and
GR are related through spectral function. Going from GE to
GR involves an ambiguity.
Holography provides us with a possibility to study the

effect of instantons in real time dynamics. Instantons in
holographic models have been constructed as a D-instanton
background [12–14]. The effects of instantons on chiral
symmetry breaking and heavy quark potential have been
discussed holographically in [15–17]. The thermodynamics
of anisotropic instanton distribution has been studied
in [18,19]. While these are essentially related to
Euclidean quantities, holography also allows for the easy
access of real time quantities. In holography, we may also
work with purely imaginary ωE, which can be viewed as a
natural analytic continuation of (1.1). Such an approach
allows for straightforward extraction of a retarded corre-
lation function from (1.1). In this paper, we illustrate the
effect of instantons on retarded correlators of a topological
charge at finite temperature, which are measures of its
fluctuations. Since instantons themselves carry a topologi-
cal charge, we find, interestingly, the fluctuations can
destroy instantons in real time. The lifetime of an instanton
is found to be set by the temperature. Simply speaking, the
contribution of an instanton to “real time dynamics” is
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suppressed at high temperature. This is in line with the
classic field theory results: the contribution of an instanton
to “thermodynamics” is suppressed at high temperature
[20,21].
The paper is organized as follows: in Sec. II, we review

the D3-brane-D-instanton background at finite temperature.
In Sec. III, we obtain the five-dimensional (5D) effective
action and study 5D fluctuations in the D-instanton back-
ground. We proceed to calculate two point correlators of
stress tensor components, the gluon condensate, and
topological charge in Sec. IV. Finally, we discuss the effect
of instantons in real time dynamics and conclude in Sec. V.

II. REVIEW OF D3-BRANE-D-INSTANTON
SYSTEM

In this section, let us briefly review the background of the
black D3-branes with D-instantons and its dual field theory.
The original example for D3-branes with D-instantons was
proposed in [12], which is a deformed D3-brane solution of
type IIB supergravity by a nontrivial scalar field. In order to
preserve 1=2 of supersymmetry, a Ramond-Ramond (RR)
scalar charge is switched on and balanced by the dilaton
charge in this system. The resulting solution represents
a marginal “bound state” of D3-branes with smeared
D-instantons, i.e., D(-1)-branes. In this paper, we focus on
a finite-temperature extensionof theD3-D(-1) background in
Euclidean signature [14]. In this background there is a RR
four-formC4 and zero-form C field which couples to D3 and
D(-1)-branes respectively. In the Einstein frame, the 10-
dimensional (10D) supergravity action is given as [22,23]

S10D ¼ 1

2κ210

Z
d10x

ffiffiffi
g

p

×

�
R10−

1

2
ð∂ΦÞ2þ1

2
e2Φð∂χÞ2−1

2
jF5j2

�
; ð2:1Þ

where Φ is the dilaton filed, and F5 ¼ dC4 is the field
strength of C4. The original RR zero-form C is defined as
χ ¼ iC where χ is usually named as an axion. By setting
χ ¼ −e−Φ þ χ0 where χ0 is a constant, the dilaton term
cancels the axion term in (2.1) so that the dynamics in the
action involves the metric and the RR four-form C4 only.
The solution in Euclidean signature reads [14,23]

ds210¼
r2

R2
½fðrÞdτ2þδijdxidxj�þ

1

fðrÞ
R2

r2
dr2þR2dΩ2

5;

fðrÞ¼ 1−
r4T
r4
; χ¼−e−Φþχ0;

eΦ ¼ 1þ q
r4T

log

�
1

fðrÞ
�
; F5¼

ffiffiffiffiffiffiffiffiffiffi
−2Λ

p
ðϵ5þ⋆ϵ5Þ: ð2:2Þ

Here R4 ¼ 4πgsNcl4s , jF5j2 ¼ 1
5!
FMNKPQFMNKPQ, τ is the

Euclidean time defined as τ ¼ it and ϵ5 is the five-form

volume element and “⋆” represents the Hodge dual.
The constant q denotes the number density of D(-1)-branes,
i.e., D-instantons. While the dilaton becomes divergent
at the black hole horizon, it does not give any effects
about the thermodynamics since the bulk observables
should be computed in the Einstein frame where the on-
shell action is the same as the case of the purely black
D3-brane.
According to the AdS=CFT dictionary, the above super-

gravity solution holographically describes the Euclidean
N ¼ 4 super-Yang-Mills theory with SUðNÞ gauge sym-
metry in a certain nonvacuum state. Hence, the constant q
represents the vacuum expectation value (VEV) in
Euclidean spacetime:

OE ¼ hTrF 2i; ÕE ¼ hTrF ∧ F i;
OE ¼ −ÕE ∝ q ≠ 0: ð2:3Þ

Here we define gluon condensate OE and topological
charge density ÕE in terms of the Euclidean gauge field
strength F . We use subscript E to indicate that the
Euclidean signature is to be used. Note that the sign
corresponds to that of an anti-instanton. Below we will
loosely refer to this as an instanton, which does not affect
the conclusion of this paper.
The temperature of the dual field theory is given by

T ¼ rT
πR2. The nontrivial profiles ofΦ and χ correspond to an

effective θ term. To see this, we consider the action of
probed D3-branes with smeared D(-1)-branes,

SD3 ¼ SDBI þ μ3

Z
C4 þ

i
2
μ3ð2πα0Þ2

Z
χF ∧ F þ � � � ;

ð2:4Þ

where μ3 ¼ 1
ð2πÞ3l4s and α

0 ¼ l2s . The super-Yang-Mills action

in the dual theory comes from the leading order expansion
of the Dirac-Born-Infield (DBI) action in (2.4). Since χ
only depends on r according to (2.2), the last term in (2.4)
give rises to a θ term

χðrÞ ∼ θðrÞ;Z
R4

χF ∧ F ¼ χ

Z
R4

F ∧ F ∼ θ

Z
R4

F ∧ F : ð2:5Þ

This allows us to dial instanton density q as an independent
parameter.

III. THE FIVE-DIMENSIONAL
EFFECTIVE THEORY

A. Dimensional reduction

In this section we are going to obtain a 5D effective
gravity theory of the D3-D(-1) system and explore the 5D
fluctuations of the bulk fields. Let us start with the 10D
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equations of motions for the bulk fields, which can be
derived by varying the action (2.1),1

RMN ¼ 1

2
∂MΦ∂NΦ −

1

2
e2Φ∂Mχ∂Nχ þ

1

6
FMKPQLF

KPQL
N ;

∇2Φ ¼ −e2Φð∂χÞ2; gMN∇Mðe2Φ∂NχÞ ¼ 0; ð3:1Þ

where the indicesM, N, P, Q, L runs from 0 to 9. Inserting
the solution (2.2) into (3.1), we assume all the functions
only depend on the 5D coordinates xa ¼ fxμ; rg where
μ ¼ 0, 1, 2, 3. Hence, (3.1) can be rewritten as

Rð5DÞ
ab ¼ Λgab þ

1

2
∂aΦ∂bΦ −

1

2
e2Φ∂aχ∂bχ;

0 ¼ 1ffiffiffiffiffiffiffiffiffiffigð5DÞ
p ∂a½

ffiffiffiffiffiffiffiffiffiffi
gð5DÞ

p
gab∂bΦ� þ e2Φgab∂aχ∂bχ;

0 ¼ 1ffiffiffiffiffiffiffiffiffiffigð5DÞ
p ∂a½

ffiffiffiffiffiffiffiffiffiffi
gð5DÞ

p
gabe2Φ∂bχ�;

Rmn ¼ −Λgmn; ð3:2Þ

where m, n runs from 6 to 9 and Λ ¼ − 6
R2 is the

cosmological constant. The last equation is automatically
satisfied on a five-sphere, so the 5D effective action could
be taken as.

S5D¼
1

2κ25

Z
d5x

ffiffiffiffiffiffiffi
gð5Þ

p �
Rð5Þ−

1

2
ð∂ΦÞ2þ1

2
e2Φð∂χÞ2−2Λ

�
:

ð3:3Þ

The reduction from 10D action to 5D effective action
essentially fixes F5 and metric components on S5. This is
justified on the gravity side as we have shown already the
ansatz automatically satisfies the field equation. We only
turn on 5D metric components, dilaton and axion, all of
which have a trivial dependence on S5 coordinates. This is
sufficient for our purpose, since our goal is to calculate
correlators among stress tensor components OE and ÕE on
the field theory side.

B. The fluctuations

Let us consider the following fluctuations in 5D effective
action (3.3):

g00 → g00 þ e−iωEτr2h00ðrÞ;
gii → gii þ e−iωEτr2hiiðrÞ;
Φ → Φþ e−iωEτδΦðrÞ;
χ → χ þ e−iωEτδχðrÞ: ð3:4Þ

The fluctuations are taken to be a specific Fourier compo-
nent with Euclidean frequency ωE and are homogeneous
in x⃗, respecting rotational symmetry. The rotational sym-
metry also allows us to set hxx ¼ hyy ¼ hzz ¼ H. We have
imposed the radial gauge, in which hrr ¼ hμr ¼ 0. The
equations of motion for the Euclidean fluctuations can be
derived as

0 ¼ −16r2fh00 þ 16r2f2h00 − 6ω2
EfH þ 2r3ff0h00

þ r4f02h00 þ 12r3f2h000 − r4ff0h000 þ 6r3f3H0

þ 3r4f2f0H0 þ 2r4f2h0000;

0 ¼ −ω2
EH − 8r2fH þ 8r2f2H − r3f0h00 þ 2r3ff0H

þ r3fh000 þ 8r3f2H0 þ r4ff0H0 þ r4f2H00;

0 ¼ 3ð−f0H þ 2fH0Þ
4f

þ 1

2
δΦΦ0 −

1

2
eΦΦ0δχ;

0 ¼ −2δΦðω2
E − 2r4f2Φ02Þ − r4h00f0Φ0 þ 2r4ff0δΦ0

þ r4fh000Φ0 þ 10r3f2δΦ0 þ 3r4f2H0Φ0

þ 4r4f2eΦδχ0Φ0 þ 2r4f2δΦ0: ð3:5Þ

We only keep four equations in (3.5). The remaining
equations are not independent since they should be satisfied
automatically by the solution to the equations in (3.5).
Among equations in (3.5), the first two are dynamical
equations. The third and fourth equations are constraint
equations, which can be combined to eliminate δχ, giving
rise to a third dynamical equation. As a result, we need to
solve only three equations for h00, H, δΦ, respectively, by
integrating the equations from the horizon. Since the
background is Euclidean, we impose a regular boundary
condition. Let us consider ωE > 0 for now. The solutions
take the following series solutions near the horizon:

h00ðrÞ ¼ B0ðr− 1ÞωE=4

�
−24þ 12ωE

2þωE
ðr− 1ÞþOðr− 1Þ2

�
;

HðrÞ ¼ B0ðr− 1ÞωE=4

×

�
1−

20ωE þ 32ω2
E þω3

E

8ð2þωEÞ2
ðr− 1ÞþOðr− 1Þ2

�
;

δΦðrÞ ¼ ðr− 1ÞωE=4

�
C0

−1þ q ln½4ðr− 1Þ�−
6B0

ωEð2þωEÞ

−
3ðωE − 2ÞB0

8q
ð−1þ q ln½4ðr− 1Þ�Þ þOðr− 1Þ1

�
:

ð3:6Þ

We have set rT ¼ 1 in the above solution for simplicity.
This sets the scale by having πT ¼ 1. The series solutions
of h00 and H are obtained by solving the first two
dynamical equations in (3.5) and we find that there is
only one independent solution with normalization constant
B0. When Φ ¼ 0, this is the Euclidean counterpart of the

1Here we have used scriptR to denote the curvature in order to
distinguish it from the radius R of the bulk.
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infalling solution discussed by Policastro, Son, and
Starinets (PSS) [24] in the limit of vanishing spatial
momentum. When we have nontrivial Φ, δΦ satisfies an
inhomogeneous dynamical equation whose general solu-
tion is the sum of the homogeneous solution (proportional
to B0) and special solution (proportional to C0). Note that
the near horizon solution is modified from a simple series
solution due to the nontrivial profile ofΦ. Here we organize
the solution as a power series in (r − 1), treating lnðr − 1Þ
as Oððr − 1Þ0Þ. (3.6) is essentially all order in lnðr − 1Þ.
Integrating these solutions to the boundary, we could obtain
two independent solutions with a regularity boundary
condition. The number of solutions does not match the
number of independent sources. The remaining solutions
are pure gauge ones, which do not satisfy the regularity
boundary condition [24]. In our case, the pure gauge
solution is given by

hμν ¼
1

r2
ð∇μξν þ∇νξμÞ; δΦ¼ ξμ∂μΦ; δχ ¼ ξμ∂μχ:

ð3:7Þ
The gauge function ξ has to be chosen such that fluctuation
fields remain in radial gauge. The explicit expressions of
the gauge function are found to be

ξτ ¼ e−iωEτ
2ðr4 − 1ÞD2 − iωED1

ffiffiffiffiffiffiffiffiffiffiffiffi
r4 − 1

p

2r2
;

ξr ¼ e−iωEτ
rffiffiffiffiffiffiffiffiffiffiffiffi

r4 − 1
p D1: ð3:8Þ

The corresponding pure gauge solution is given by

h00 ¼ f1=2
�
2þ 2

r4

�
D1 −

ω2
Ef

1=2

r2
D1 − 2iωEfD2;

H ¼ 2f1=2D1; δΦ ¼ −4qD1

r4f1=2ð1 − q ln fÞ ;

δχ ¼ −4qD1

r4f1=2ð1 − q ln fÞ2 : ð3:9Þ

Notice that there are two independent normalization con-
stants D1;2 in (3.8) which precisely generate the remaining
two solutions. Hence, we totally have four solutions at
hand; they are two numerical ones and two analytic pure
gauge solutions. To be specific, let us label the solutions by
i ¼ I; II; III; IV with

I∶ B0 ¼ 1; C0 ¼ 0; D1 ¼D2 ¼ 0;

II∶ B0 ¼ 0; C0 ¼ 1; D1 ¼D2 ¼ 0;

III∶ B0 ¼ 0; C0 ¼ 0; D1 ¼ 1; D2 ¼ 0;

IV∶ B0 ¼ 0; C0 ¼ 0; D1 ¼ 0; D2 ¼ 1: ð3:10Þ
Then we can analyze the equations of motion near the
boundary and calculate the correlation functions among the

dual operators from the asymptotic series of the fields h00,
H, δΦ, and δχ. We can obtain the following asymptotic
behavior:

h00 ¼ a0 þ
a1
r2

þ a2
r4

þ a3
r6

þ a4
r8

þ ah
r8

ln rþ � � � ;

H ¼ b0 þ
b1
r2

þ b2
r4

þ b3
r6

þ b4
r8

þ bh
r8

ln rþ � � � ;

δΦ ¼ f0 þ
f1
r2

þ f2
r4

þ fh
r4

ln rþ � � � ;

δχ ¼ c0 þ
c1
r2

þ c2
r4

þ ch
r4

ln rþ � � � ; ð3:11Þ

with the recursion relations among coefficients

a1 ¼ −
b0ω2

E

2
; a2 ¼ −qðc0 − f0Þ þ

3

2
b0 − a0;

a3 ¼
ω2
E

4
b0; ah ¼

ω4
E

64
ðb0 þ 2b2Þ;

b1 ¼ 0; b2 ¼
q
3
ðc0 − f0Þ −

1

2
b0;

b3 ¼ −
ω2
E

12
ðb0 þ 2b2Þ; bh ¼

ω4
E

64
ðb0 þ 2b2Þ;

f1 ¼ −
f0ω2

E

4
; fh ¼

f0ω4
E

16
;

c1 ¼ −
c0ω2

E

4
; ch ¼

c0ω4
E

16
: ð3:12Þ

Following the holographic dictionary, we take a0, b0, c0,
and f0 as sources to operators T00

E , Tii
E, ÕE, and OE,

respectively. The coefficients a2, b2, c2, and f2 are
corresponding VEVs. It may seems odd that a2 and b2
are completely determined by recursion relations. We show
in Sec. IV B that correlators among T00 and Tii are
completely fixed by Ward identities in the limit of vanish-
ing spatial momentum, making a2 and b2 nondynamical.
The coefficients c2, f2 cannot be determined by analyzing
the boundary behavior only. They are related through the
constraint equation,

c2 ¼
−6b2 þ 24b4 − 3bh þ 4qf2 − 4q2f0

4q
: ð3:13Þ

The coefficients a4 and b4 are not determined up to the
order we work. In order to calculate the correlation
function, we turn on the sources for the operators and
measure the corresponding VEVs. The ratio of the VEV to
the sources can be defined by the following response
matrix:

SI-WEN LI and SHU LIN PHYS. REV. D 98, 066002 (2018)

066002-4



0
BBB@
Gaa Gab Gac Gaf

Gba Gbb Gbc Gbf

Gca Gcb Gcc Gcf

Gfa Gfb Gfc Gff

1
CCCA¼

0
BBBBBB@

∂a2∂a0
∂a2∂b0

∂a2∂c0
∂a2∂f0

∂b2∂a0
∂b2∂b0

∂b2∂c0
∂b2∂f0

∂c2∂a0
∂c2∂b0

∂c2∂c0
∂c2∂f0

∂f2∂a0
∂f2∂b0

∂f2∂c0
∂f2∂f0

1
CCCCCCA
: ð3:14Þ

Because of operator mixing in the renormalization group
flow, the off-diagonal matrix elements in the response
matrix is nonvanishing. For any given basis solution, the
response matrix satisfies

0
BBB@
ai2
bi2
ci2
fi2

1
CCCA¼

0
BBB@
Gaa Gab Gac Gaf

Gba Gbb Gbc Gbf

Gca Gcb Gcc Gcf

Gfa Gfb Gfc Gff

1
CCCA

0
BBB@

ai0
bi0
ci0
fi0

1
CCCA; ð3:15Þ

for i ¼ I; II; III; IV. Since we have in total four basis
solutions, we can use them to calculate the response matrix
efficiently as

0
BBB@

Gaa Gab Gac Gaf

Gba Gbb Gbc Gbf

Gca Gcb Gcc Gcf

Gfa Gfb Gfc Gff

1
CCCA

¼

0
BBB@

aI2 aII2 aIII2 aIV2
bI2 bII2 bIII2 bIV2
cI2 cII2 cIII2 cIV2
fI2 fII2 fIII2 fIV2

1
CCCA

0
BBB@

aI0 aII0 aIII0 aIV0
bI0 bII0 bIII0 bIV0
cI0 cII0 cIII0 cIV0
fI0 fII0 fIII0 fIV0

1
CCCA

−1

:

ð3:16Þ

Most of the matrix elements on the rhs of (3.16) are known
analytically. From solutions II, III, and IV, we easily
obtain

aII0 ¼ 0; bII0 ¼ 0; aII2 ¼ 0; bII2 ¼ 0; bII4 ¼ 0;

aIII0 ¼ 2; bIII0 ¼ 2; fIII0 ¼ 0; aIII2 ¼ 1;

bIII2 ¼ −1; fIII2 ¼ −4q; bIII4 ¼ −
1

4
;

aIV0 ¼ −2iω; bIV0 ¼ 0; fIV0 ¼ 0;

aIV2 ¼ 2iω; bIV2 ¼ 0; fIV2 ¼ 0; bIV4 ¼ 0: ð3:17Þ

With recursion relations (3.12) and constraint (3.13), we
can fix most entries of the response matrix as

0
BBB@
Gaa Gab Gac Gaf

Gba Gbb Gbc Gbf

Gca Gcb Gcc Gcf

Gfa Gfb Gfc Gff

1
CCCA¼

0
BBB@
−1 3=2 −q q

0 −1=2 q=3 −q=3
0 −2q × ×

0 −2q × ×

1
CCCA:

ð3:18Þ

The entries marked with “×” represent the value which has
to be determined numerically. In fact, the four undeter-
mined entries are not all independent. We can show that
there is a less obvious identity among them

Gcf −Gfc þ 2q ¼ Gff − Gcc: ð3:19Þ

Finally we remark on one important property of the
response matrix under the sign flip of ωE. Up to now
we have considered ωE > 0; the situation with ωE < 0 is
easy to analyze: the regularity condition requires the
solutions near horizon ∼ðr − 1Þ−ωE=4. It follows that
solutions I and II remain unchanged under the sign flip.
On the other hand, the explicit pure gauge solutions show
that III is also unchanged, while IV changes sign.
Combining all these with recursion relations (3.12) and
constraint (3.13), we can show that the response matrix is
also unchanged under the sign flip of ωE. This will be
useful in the following.

IV. EUCLIDEAN AND RETARDED
CORRELATORS

A. Euclidean correlators

The D3-brane-D-instanton background is found in
Euclidean spacetime with nontrivial profiles of dilaton
and axion which is consistent with the field theory expect-
ation since the instanton only exists in Euclidean field
theory. The effect of the instanton to real world physics is
usually understood as a tunneling process. We will calcu-
late correlators among stress tensor, glueball, and topo-
logical charge density in this section, which are dual to the
perturbation of the metric, dilaton and axion, respectively,
as discussed in the previous sections. Notice that the
resulting correlators are all Euclidean in our current
analysis of the bulk gravity. In the next section, we will
study the counterpart in Minkowskian spacetime.
We show in the Appendix how to obtain correlators

among T00
E , Tii

E, OE, ÕE from (3.18) and (A5). Here,
the sum over i is assumed in Tii

E as this is the quantity
coupled to the isotropic metric perturbation Hðr → ∞Þ.
Respectively, the correlators are given by
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GE
00;00 ¼

Z
dτd3xeiωEτhT00

E ðτ; xÞT00
E ð0Þi ¼ 3;

GE
00;ii ¼

Z
dτd3xeiωEτhT00

E ðτ; xÞTii
Eð0Þi ¼ 3;

GE
ii;jj ¼

Z
dτd3xeiωEτhTii

Eðτ; xÞTjj
E ð0Þi ¼ −9;

GE
00;O ¼

Z
dτd3xeiωEτhT00

E ðτ; xÞOEð0Þi ¼ 4q;

GE
00;Õ

¼
Z

dτd3xeiωEτhT00
E ðτ; xÞÕEð0Þi ¼ −4q;

GE
ii;O ¼

Z
dτd3xeiωEτhTii

Eðτ; xÞOEð0Þi ¼ −4q;

GE
ii;Õ

¼
Z

dτd3xeiωEτhTii
Eðτ; xÞÕEð0Þi ¼ 4q;

GE
OO ¼

Z
dτd3xeiωEτhOEðτ; xÞOEð0Þi ¼ 4Gff;

GE
Õ Õ

¼
Z

dτd3xeiωEτhÕEðτ; xÞÕEð0Þi ¼ −4Gcc;

GE
OÕ

¼
Z

dτd3xeiωEτhOEðτ; xÞÕEð0Þi

¼ −2Gcf þ 2Gfc − 4q: ð4:1Þ

Note that all correlators are in units of P ¼ π2N2T4

8
, which is

the pressure of plasma, as we have shown in the Appendix.
The correlators among T00

E and Tii
E are trivial. We will see

shortly that they are simply fixed byWard identities derived
by PSS [24]. The cross correlators among T00

E , Tii
E and OE,

ÕE are fixed by a new set of Ward identities. The
correlators among OE and stress tensor components arise
naturally from the fact that the spacetime integral of ÕE is a
topologically protected quantity,

δ

Z
dτd3x

ffiffiffi
g

p
ÕEðxÞ¼

Z
dτd3x

ffiffiffi
g

p �
1

2
gμνδgμνÕEðxÞþδÕE

�

¼ 0: ð4:2Þ

Notice that hÕEðxÞi ¼ 4q. By taking δg00 ¼ h00ðr → ∞Þ
and δgii ¼ 0, we can obtain the response of ÕE to the
metric perturbation δg00,

δhÕEðxÞi
δg00ðyÞ

¼ −2qδ4ðx − yÞ: ð4:3Þ

What we obtain above is nothing but the correlator
hÕEðxÞT00

E ðyÞi. It takes a familiar form in momentum
space2

Z
dτd3xeiωEτhÕEðτ; xÞT00

E ð0Þi ¼ −4q: ð4:4Þ

A similar procedure with δg00 ¼ 0 and δgii ¼ Hðr → ∞Þ
leads to the correlator:

Z
dτd3xeiωEτhÕEðτ; xÞTii

Eð0Þi ¼ 4q: ð4:5Þ

It is not difficult to see that they are equivalent to the
corresponding correlators in (4.1) upon using complex
conjugation.
Furthermore, we can obtain from (3.19) the following

relation among Euclidean correlators:

GE
OÕ

þ 2qþ 1

2
ðGE

OO − GE
Õ Õ

Þ ¼ 0: ð4:6Þ

B. Ward identities

In this section, we will show that the apparently trivial
form of the correlators are in fact a consequence of Ward
identities following from diffeomorphism invariance and
conformal invariance of the action:

S½g4Dμν ;ϕ4D; χ4D� ¼ S½g4Dμν þ∇μξ
4D
ν þ∇νξ

4D
μ ;ϕ4D

þ ξμ∂μϕ
4D; χ4D þ ξμ∂μχ

4D�; ð4:7aÞ

S½g4Dμν ;ϕ4D; χ4D� ¼ S½Ω2g4Dμν ;ϕ4D; χ4D�: ð4:7bÞ

We have used the label “4D” to indicate that all the
variables in (4.7a) are four-dimensional, i.e., they are
sources corresponding to a0, b0, c0, f0. Varying (4.7a)
with respect to ξ4Dμ ðxÞ and (4.7b) with respect to Ω, we
obtain

−∇μT
μν
E ðxÞ þOEðxÞ∇νϕ4DðxÞ þ ÕEðxÞ∇νχ4DðxÞ ¼ 0;

ð4:8aÞ

gμνhTμνi ¼ 0: ð4:8bÞ

Varying (4.8b) with respect to gλρ and setting gμν ¼ δμν,
ϕ4D ¼ χ4D ¼ 0, we obtain

qμðGμν;λρ
E ðqÞ þ δνλhTμρ

E i þ δνρhTμλ
E i − δμνhTλρ

E iÞ:
δμνG

μν;λρ
E ¼ −2hTλρ

E i: ð4:9Þ

The derivation is parallel to the one in [24] except that our
background metric is flat Euclidean. We can show that, in
fact, (4.9) alone is enough to fix correlators G00;00

E , G00;ii
E ,

and Gii;jj
E . Note that qμ ¼ ðωE; 0Þ. We obtain from (4.9)

2The coupling
R
d4x 1

2
hμνTμν brings in an additional factor

of 2.
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ωEðG00;00
E þ hT00

E iÞ ¼ 0;

ωEðG00;ii
E − hTii

EiÞ ¼ 0;

G00;jj
E þ Gii;jj

E ¼ −2hTii
Ei; ð4:10Þ

where we always assume summation over repeated indices.
Using hT00

E i ¼ −hTii
Ei ¼ −3P, we obtain

G00;00
E ¼ 3P; G00;ii

E ¼ 3P; Gii;jj
E ¼ −9P: ð4:11Þ

It indeed agrees with (4.1) and explains the nondynamical
origin of the correlators.
Now we derive a new set of Ward identities involvingOE

and ÕE. Varying (4.8b) with respect to ϕ4DðyÞ and χ4DðyÞ
and setting gμν ¼ δμν, ϕ4D ¼ χ4D ¼ 0, we obtain from
(4.7a):

−qμG
μν;O
E −qνhOEi¼0; −qμG

μν;Õ
E −qνhÕEi¼0: ð4:12Þ

Note that hOEðxÞi ¼ −hÕEðxÞi ¼ −4q, we obtain
immediately

G00;O
E ¼ 4q G00;Õ

E ¼ −4q: ð4:13Þ

Similarly, we can obtain from (4.7b)

δμνðxÞhTμν
E ðxÞOEð0Þi ¼ 0;

δμνðxÞhTμν
E ðxÞÕEð0Þi ¼ 0: ð4:14Þ

The Fourier transform of (4.14) gives

G00;O
E þ Gii;O

E ¼ 0 G00;Õ
E þGii;Õ

E ¼ 0: ð4:15Þ

Combining with (4.13), we obtain

Gii;O
E ¼ −4q Gii;Õ

E ¼ 4q: ð4:16Þ

All the cross correlators are fixed by Ward identities in the
limit of vanishing spatial momentum.

C. Analytic continuation

To see how the presence of an instanton affects real time
dynamics, we need to know the corresponding correlators
in Minkowski spacetime. The conventional holographic
approach is to directly work with Minkowski background,
which automatically gives a real time correlator. However
this is not applicable to the D-instanton background:
A naive Wick rotation of the background would lead to
purely imaginary VEVs for O and Õ. This is, in fact,
consistent with the field theory expectation that the
instanton exists only in Euclidean space. So only the
Euclidean correlator is well defined. Nevertheless, an
analytic continuation between the Euclidean correlator

and the real time correlator is possible in field theory.
We will use the following identity between the retarded
correlator and the Euclidean correlator:

GRðiωEÞ ¼ −GEðωEÞ; ð4:17Þ

where ωE takes values of the Matsubara frequency
ωE ¼ 2πTn. A clean derivation of (4.17) can be found,
for example, in [25]. In (4.17), GR and GE are defined with
the same operator. It applies to the case of dilaton, whose
explicit Euclidean andMinkowskian correlators are given by

GR
OOðωÞ ¼ −i

Z
dtd3xeiωth½Oðt; xÞ; Oð0Þ�i;

GE
OOðωEÞ ¼

Z
dτd3xeiωEτhOEðτ; xÞOEð0Þi; ð4:18Þ

with O ¼ OE. The Minkowskian and Euclidean times are
related by it ¼ τ, correspondinglyω ¼ iωE.Wehave already
evaluated the Euclidean correlators in the D-instanton back-
ground. Through (4.17) they give us automatically the
retarded correlators, albeit defined only on ω ¼ i2πTn. To
extend the results to real frequency, we need to analytically
continue (4.17). There is a natural continuation:

GR
OOðωÞ ¼ −GE

OOð−iωÞ; ð4:19Þ

with ω being real. (4.19) indicates that to obtain the retarded
correlator with real ω, we need to evaluate the Euclidean
correlator with purely imaginary frequency −iω. Note that
we have been working with ωE > 0 for the evaluation of
Euclidean correlators. The horizon solution fixed by the
regularity condition behaves as ∼ðr − 1ÞωE=4. The horizon
solution can be extended to the right half plane ReωE ≥ 0.
Using the relation ωE ¼ −iω, it is mapped to the upper half
plane of ω. Note that the horizon solution in terms of ω is
precisely an infalling wave type ∼ðr − 1Þ−iω=4. Had we
started by extending the left half plane of ωE, where the
horizon solution behaves as ∼ðr − 1Þ−ωE=4, we would not
obtain the infalling horizon solution by the same mapping
ωE ¼ −iω. To further confirm the prescription, we show that
the analytic continuation (4.19) holds for known examples of
super-Yang-Mills plasma with q ¼ 0 where the direct
calculation of both Euclidean and retarded correlators is
possible. In this case, the EOMof dilaton decouples from the
metric perturbation. It is given by

−2ω2
EδΦþ r3ð2rff0δΦ0 þ f2ð10δΦ0 þ 2rδΦ00ÞÞ ¼ 0:

ð4:20Þ

The EOM of dilaton in the Minkowski background is given
by the mapping ωE ¼ −iω:

2ω2δΦþ r3ð2rff0δΦ0 þf2ð10δΦ0 þ2rδΦ00ÞÞ ¼ 0: ð4:21Þ
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Note that the regular horizon solution in the Euclidean case is
also mapped to the infalling horizon solution in the
Minkowskian case. Taking into account the convention in
the definition (4.18), we readily confirm the equality (4.19)
for ReωE ≥ 0.
Next, we discuss autocorrelator of Õ defined as

GR
Õ Õ

ðωÞ ¼ −i
Z

dtd3xeiωth½Õðt; xÞ; Õð0Þ�i;

GE
Õ Õ

ðωEÞ ¼
Z

dτd3xeiωEτhÕEðτ; xÞÕEð0Þi: ð4:22Þ

In contrast to the above case, Õ and ÕE differ by a factor.
To see this, we write down the field theory definitions for Õ
and ÕE (for comparison we also include O and OE):

OE ¼ trF 2
E¼ trE2

Eþ trB2
E; O¼ trF 2¼−trE2þ trB2;

ÕE ¼ trFE ∧FE ¼ trEE ·BE; Õ¼ trF ∧F ¼ trE ·B;

ð4:23Þ

with E and B being chromo electric and magnetic fields.
Note that it ¼ τ. We obtain ∂t ¼ i∂τ, thus EE ¼ −iE and
BE ¼ B. It is then straightforward to verify

OE ¼ O; ÕE ¼ iÕ: ð4:24Þ

Consequently, the analytic continuation for the autocorre-
lator of Õ involves an additional minus sign.

GR
Õ Õ

ðωÞ ¼ GE
Õ Õ

ð−iωÞ: ð4:25Þ

We can confirm the prescription at q ¼ 0 by the following
indirect comparison. Note that retarded correlators for O
and Õ are degenerate in the Minkowskian D3-brane
background because the dual dilaton and axion satisfy
the same equation of motion (EOM) [26]. Therefore we
would obtain from (4.25)

GE
ÕÕ

ð−iωÞ¼GR
ÕÕ

ðωÞ¼GR
OOðωÞ¼−GE

OOð−iωÞ: ð4:26Þ

Below we confirm (4.26), where both sides can be
calculated with (4.1). Note that axion and dilaton also
satisfy the same EOM in the Euclidean background, which
simply gives Gff ¼ Gcc. However, the kinetic terms of
dilaton and axion differ in sign. The sign difference is
reflected in the equations of GE

OO and GE
Õ Õ

in (4.1). Thus,
we find GE

Õ Õ
ð−iωÞ ¼ −GE

OOð−iωÞ, consistent with (4.25).
Finally, we discuss the remaining correlators among

stress tensor components. Note that, under Wick rotation,
the Euclidean and Minkowskian operators are related by

T00
E ¼ −T00; Tii

E ¼ Tii: ð4:27Þ

It follows that the analytic continuation is modified to

G00;00
R ðωÞ ¼ −G00;00

E ð−iωÞ;
G00;ii

R ðωÞ ¼ G00;ii
E ð−iωÞ;

Gii;jj
R ðωÞ ¼ −Gii;jj

E ð−iωÞ: ð4:28Þ

Since we already have explicit results for the Euclidean
correlator among stress tensor components, we can make a
direct comparison with their Minkowskian counterpart in
PSS [24]. Setting the spatial momentum to zero in
their case and noting that our GR corresponds to their G,
we readily confirm the correctness of the analytic
continuation (4.28).
To proceed with the case q ≠ 0, we simply apply the

above prescription: we numerically integrate the horizon
solution (3.6) withωE ¼ −iω forω > 0 to the boundary and
match to asymptotic series (3.11) to determine the response
matrix using (3.16). With elements of the response matrix,
we can use (4.1) to determine the boundary correlator.

D. Results on retarded correlators

Now we are ready to use (4.25) to study retarded
correlators for O and Õ, respectively. The retarded corre-
lators are readily obtained from (4.1) as

GR
OOðωÞ ¼ −4Gffð−iωÞ;

GR
Õ Õ

ðωÞ ¼ −4Gccð−iωÞ: ð4:29Þ

The results are known for the case q ¼ 0, where GR
OO and

GR
Õ Õ

are degenerate. Our numerical results indicate the
degeneracy is still true when q ≪ ω, q ≪ T. Furthermore,
in the regime ω ≪ T, the correlators display diffusive
behavior as

GR
OO ¼ GR

Õ Õ
¼ −iωΓCS=T; ð4:30Þ

where ΓCS is the diffusion constant of the Chern-Simons
(CS) number [26].
We are interested in the regime q ∼OðTÞ. This is where

the instanton effect becomes significant. We first look at the
regime ω ≪ T. In Fig. 1 we show the ω and q dependencies
of the real and imaginary parts of GR

OO and −GR
Õ Õ

. We find
the imaginary parts of GR

OO and −GR
Õ Õ

are almost indis-
tinguishable. Note that this is in contrast to the degeneracy
of GR

OO and GR
Õ Õ

(without minus sign) in the regime
q ≪ T. The numerical results also indicate the following
scaling relation:

ReGR
OO ∼ q2; ImGR

OO ≃ −ImGR
Õ Õ

∼ q2=ω: ð4:31Þ

We further take a closer look at the q dependence of
GR

OO þGR
Õ Õ

in Fig. 2. For the real part, Fig. 2 shows that
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the difference of ReGR
OO and −ReGR

Õ Õ
as seen in Fig 1 is

linear in q, suggesting the following scaling behavior:
ReGR

Õ Õ
∼ q2 þ #q. For the imaginary part, Fig. 2

shows there is, in fact, a small difference not visible in
Fig. 1.
Moving on from the regime ω ≪ T, we study a wider

range of ω. We expect when ω ≫ q, the instanton effect
becomes negligible; thus, GR

OO and GR
Õ Õ

again become
degenerate. We show the ω and q dependence of GR

OO and
GR

Õ Õ
in a wider range of ω. The degeneracy of GR

OO and

−GR
Õ Õ

in the small ω regime and the degeneracy GR
OO and

GR
Õ Õ

in the large ω regime are visible in Fig. 3. The figure
also suggests the saturation of q2 dependence for both real
and imaginary parts of GR

OO and GR
Õ Õ

.

V. DISCUSSION

The regime with ω ≪ T and q ∼OðT4Þ deserves special
attention. Numerical results suggest the scaling (4.31),
which after reinstating the dimension gives

0.5 1.0 1.5 2.0
q

2

4

6

8

Re Goo Gõõ

1 2 3 4 5
q

0.020

0.015

0.010

0.005

Im Goo Gõõ

FIG. 2. The real and imaginary part ofGR
OO þ GR

Õ Õ
in units of P as a function of q at ω=ðπTÞ ¼ 0.01. The real part shows a clear linear

dependence, while the imaginary part is almost q independent.

FIG. 1. The top panels show the real and imaginary parts ofGR
OO and −GR

Õ Õ
in units of P at q=ðπTÞ4 ¼ 1 as a function of ω. In the low

frequency regime, the real parts of GR
OO and −GR

Õ Õ
differ and are almost independent of ω. On the other hand, the imaginary parts of

GR
OO andGR

Õ Õ
are almost indistinguishable. We use an offset to guide the eyes. The numerical results indicate ImGR

OO ≃ ImGR
Õ Õ

∼ 1=ω.
The bottom panels show the q dependence of the real and imaginary parts of GR

OO and −GR
Õ Õ

in units of P at ω=ðπTÞ ¼ 0.01. The
numerical results indicate ReGR

OO ∼ q2 and ImGR
OO ≃ ImGR

Õ Õ
∼ q2. The q2 dependence extends to a rather large value of q.
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ImGR
OOðωÞ ≃ −ImGR

Õ Õ
ðωÞ ¼ −

q2Γ
ω

; ð5:1Þ

where Γ ∼Oð 1
T3Þ. From Fig 1 we can see Γ is positive. Note

that the imaginary part of the retarded correlator is related
to the spectral density χO and χÕ as

χO ¼ −2ImGR
OO; χÕ ¼ −2ImGR

Õ Õ
: ð5:2Þ

The spectral density should be positive for positive fre-
quency ω [27]. Combining with (5.1), we find indeed
positive spectral density forO, but negative spectral density
for Õ. Away from the regime, we do recover positive
spectral density for both O and Õ from Fig. 3. We suggest
the violation of the positive condition for Õ in the regime is
related to the existence of the unstable fluctuation of Õ. To
see this, we consider the following correlator:

Z
d3xhðÕðt; xÞ − Õð0ÞÞ2i: ð5:3Þ

Using the Kubo-Martin-Schwinger relation, we can express
(5.3) in terms of the imaginary part of the retarded
correlator

Z
d3xhðÕðt; xÞ − Õð0ÞÞ2i

¼
Z

dω
2π

ð2 − e−iωt − eiωtÞG>
Õ Õ

ðωÞ

¼
Z

dω
2π

ð2 − e−iωt − eiωtÞ 2

1 − e−βω
ImGR

Õ Õ
ðωÞ

≃
Z

dω
2π

ð2 − e−iωt − eiωtÞ 2q
2ΓT
ω2

∼ q2ΓTt: ð5:4Þ

In the last step, we approximate the integrand using (5.1).
This is justified as the dominant contribution at large t
comes from small ω. This gives the long time behavior of
the fluctuation. The linear dependence in t shows it is a
random walk growth, which is unstable. Note that the
scaling relation holds in the regime ω ≪ T, which sets
the time scale of the unstable mode. In other words, on a
time scale t ∼ 1

T, a fluctuation effectively destroys the
D-instanton background. Therefore, we conclude that
the lifetime of the instanton is set by the temperature.
The conclusion is in line with the classic field theory results
that the large instanton is suppressed at high temperature
[20,21]. As a final remark, we stress that classic results
were obtained based on thermodynamics consideration; our
conclusion were obtained from an analysis of real time
fluctuations.

FIG. 3. The top panels show the real and imaginary parts ofGR
OO andGR

Õ Õ
in units of P at q=ðπTÞ4 ¼ 1 as a function of ω. At small ω,

we recover the degeneracy of GR
OO and −GR

Õ Õ
found before. At large ω, the plot reveals the degeneracy of GR

OO and GR
Õ Õ

instead as
expected on general ground. The bottom panels show the q dependence of the real and imaginary parts of GR

OO and GR
Õ Õ

in units of P at
ω=ðπTÞ ¼ 1. At large q, numerical results suggest a q2 dependence. Note that this regime is close to the degeneracy regime of
GR

OO and −GR
Õ Õ

.
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APPENDIX: HOLOGRAPHIC
RENORMALIZATION

The purpose of this appendix is to express correlation
functions in terms of elements of the response matrix. The
derivation closely follows [24,28]. We start from the 5D
Euclidean action (3.3) with Gibbon-Hawking term SGH,

3

SE ¼ S5D þ SGH;

¼ 1

κ25

Z
d5x

ffiffiffiffiffiffiffi
gð5Þ

p �
Rð5Þ −

1

2
ð∂ΦÞ2 þ 1

2
e2Φð∂χÞ2 þ 12

�

þ 2

κ2

Z
d4x

ffiffiffi
h

p
K: ðA1Þ

Following [29], we add an additional counterterm SCT to
cancel the volume divergence to the bulk theory which is

SCT ¼ −
3

κ25

Z
d4x

ffiffiffi
h

p
: ðA2Þ

Note that this is the counterterm for the gravity sector.
Other counterterms for dilaton and axion are also needed;
see [30] and references therein for early constructions. We
will need additional counterterms in the discussion below.
We assume the boundary is taken at r ¼ Σ which would be
sent to infinity at the end of the calculation. Using the
equations of motion in (3.5) and keeping the contribution
from the boundary r ¼ Σ, and combining the resultant
boundary terms with SGH and SCT , we can obtain

SE ¼ 1

2κ25

Z
d4x

�
3r4h200
4f3=2

ð1 − f1=2Þ þ 9r4Hh00
2f1=2

ðf1=2 − 1Þ

−
9r4H2

4
ðf1=2 − 1Þ − 3r5f0Hh00

8f
þ 3r5f0H2

8

−
1

4
r5ðh00 þ 3fHÞδΦΦ0 þ 1

4
eΦr5ðh00 þ 3fHÞδχΦ0

þ eΦr5fδΦδχΦ0 þ 3

4
r5ðHh00Þ0 þ

3

2
r5fH0H

−
1

2
r5fδΦðδΦÞ0 þ 1

2
e2Φr5δχðδχÞ0

�
: ðA3Þ

Plugging the asymptotic expansions (3.11) into the above
formula, we obtain the on-shell action,

SE ¼ 1

2κ25

Z
d4x

��
−
3a1b0
2

− c0c1 þ f0f1

�
r2 þ 3

8
a20

−
15

4
a0b0 − 3a2b0 þ

3

8
b20 − 3a0b2 − 6b0b2 − c21

− 2c0c1 þ
1

2
c0ch þ f21 þ 2f0f2 −

1

2
f0fh

þ qð−a0c0 − 3b0c0 þ a0f0 þ 3b0f0 − 4c0f0Þ

− 16ðc0ch − f0fhÞ ln rþ � � �
�
: ðA4Þ

Note that all the coefficients are functions of t: a0 ¼ a0ðtÞ
etc. To evaluate the correlators in momentum space, we
express SE in terms of Fourier components of the coef-
ficient a0ðkÞ. In doing this, we find that the coefficients of
the superficially r2 divergent terms are of the type ω2

Eb
2
0,

ω2
Ec

2
0, and ω2

Ef
2
0. Similarly, the ln r divergent terms are of

the type ω4
Ec

2
0 and ω4

Ef
2
0. Therefore all divergent terms are

contact terms and thus should be discarded [31]. The
remaining action is given by

SE ¼ 1

2κ25ð2πÞ
Z

dωE

�
−3b0ð−ωEÞa2ðωEÞ − 6b0ð−ωEÞb2ðωEÞ − 2c0ð−ωEÞc2ðωEÞ þ 2f0ð−ωEÞf2ðωEÞ

þ 3

8
½a0ð−ωEÞa0ðωEÞ − 10a0ð−ωEÞb0ðωEÞ þ 3b0ð−ωEÞb0ðωEÞ�

þ q½−a0ð−ωEÞc0ðωEÞ − 3b0ð−ωEÞc0ðωEÞ þ a0ð−ωEÞf0ðωEÞ þ 3b0ð−ωEÞf0ðωEÞ − 4c0ð−ωEÞf0ðωEÞ�
�
: ðA5Þ

There are three types of terms in (A5). The first type is the
product of sources and VEVs like b0ð−ωEÞa2ðωEÞ. The
second type is the product of sources like a0ð−ωEÞa0ðωEÞ,

which indicates the presence of constant terms in
the resulting correlators. The third type is the product of
sources and q, such as qa0ð−ωEÞc0ðωEÞ. Now we use
the response matrix to express VEVs in terms of
sources. We can then proceed to calculate the correlators
by the differentiation of the action with respect to
sources.

3To simplify the calculation, we have set the 5D cosmological
Λ ¼ −6 and assume all the fields depend on τ and r only, which is
case of our interest.
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GE
00;00 ¼

Z
dτd3xeiωEτhT00

E ðτ; xÞT00
E ð0Þi

¼ 4
ð2πÞδ2SE

δa0ð−ωEÞδa0ðωEÞ
;

GE
00;ii ¼

Z
dτd3xeiωEτhT00

E ðτ; xÞTii
Eð0Þi

¼ 4
ð2πÞδ2SE

δa0ð−ωEÞδb0ðωEÞ
;

GE
ii;jj ¼

Z
dτd3xeiωEτhTii

Eðτ; xÞTjj
E ð0Þi

¼ 4
ð2πÞδ2SE

δb0ð−ωEÞδb0ðωEÞ
;

GE
00;O ¼

Z
dτd3xeiωEτhT00

E ðτ; xÞOEð0Þi

¼ 2
ð2πÞδ2SE

δa0ð−ωEÞδf0ðωEÞ
;

GE
00;Õ

¼
Z

dτd3xeiωEτhT00
E ðτ; xÞÕEð0Þi

¼ 2
ð2πÞδ2SE

δa0ð−ωEÞδc0ðωEÞ
;

GE
ii;O ¼

Z
dτd3xeiωEτhTii

Eðτ; xÞOEð0Þi

¼ 2
ð2πÞδ2SE

δb0ð−ωEÞδf0ðωEÞ
;

GE
ii;Õ

¼
Z

dτd3xeiωEτhTii
Eðτ; xÞÕEð0Þi

¼ 2
ð2πÞδ2SE

δb0ð−ωEÞδc0ðωEÞ
;

GE
OO ¼

Z
dτd3xeiωEτhOEðτ; xÞOEð0Þi

¼ ð2πÞδ2SE
δf0ð−ωEÞδf0ðωEÞ

;

GE
Õ Õ

¼
Z

dτd3xeiωEτhÕEðτ; xÞÕEð0Þi

¼ ð2πÞδ2S
δc0ð−ωEÞδc0ðωEÞ

;

GE
OÕ

¼
Z

dτd3xeiωEτhOEðτ; xÞÕEð0Þi

¼ ð2πÞδ2S
δf0ð−ωEÞδc0ðωEÞ

: ðA6Þ

We have suppressed the overall prefactor 1
2κ2

5

for notational

simplicity. Note that the prefactor has mass dimension four.
We restore dimension by multiplying ðπTÞ4 and converting
the prefactor to the field theory quantity ðπTÞ4

2κ2
5

¼ π2N2T4

8
¼ P,

which is the same as pressure of plasma. Recall that we
have confirmed the response matrix is even in ωE. This nice
property allows us to treat the sources as ordinary numbers.
This is essentially the procedure adopted in [24]. When the
response matrix is not even in ωE, a more careful treatment
is needed [28]. Plugging (3.18) into (A6), we obtain (4.1).
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