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It has been suggested that dark matter is a superfluid of particles whose masses are on the rough order of
10−22 eV. Since the occupation numbers are huge, the state is coherent, and the speeds typical of orbital
velocities in halos, it has generally been assumed that a classical effective nonrelativistic treatment is
adequate. However, the Compton wavelength would be ∼1 pc, and around the Compton scale concerns
about some aspects of quantum measurement theory, known in principle but not quantitatively significant
in previous cases, become pronounced. I estimate here the stress-energy operator, averaged over a few
Compton wavelengths; a rough but useful approximation has a remarkably simple form. Conventional
quantum measurement theory gives physically unacceptable results: a thought-experiment to measure the
stress-energy is described which would involve only a modest apparatus but would excite particles in the
observation volume to relativistic energies; these particles would escape the Galaxy, and there would be a
substantial violation of energy conservation. Related foundational questions come up: the meaning of
measurements of observables with continuous spectra, and the problem of predicting when measurements
occur. The effective classical theory of fuzzy dark matter is not affected; however, the underlying quantum
theory cannot be regarded as satisfactory without resolving these issues. But we may interpret the results
more broadly. The macroscopic Compton scale amplifies inadequacies of measurement theory which have
not previously seemed pressing.
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I. INTRODUCTION

Known forms of matter and conventional gravitation
theory cannot explain the dynamics of galaxies and
clusters, nor their formation. While it remains possible
that modifications of gravity will sort out these issues, at
present most attention is given to the idea that some form of
“dark matter” will resolve them. An especially interesting
proposal is that this should consist of ultralight particles (of
mass perhaps 10−22 eV); see especially Hu et al. [1], and
Hui et al. [2] for a recent detailed treatment of many
aspects. Such models are known as “fuzzy,” “wave,” or
“quantum” dark matter. Their hypothesis is that the
particles are actually in a superfluid state, with streams
moving at typical orbital speeds within their halos. The de
Broglie wavelengths are of the order of 1 kpc, and this
delocalization allows fuzzy dark matter to avoid small-scale
problems which occur for other dark matter candidates.
Although motivated quantum-theoretically, the treatment

of dark matter for these purposes has been entirely classical
[2]. Indeed, the perspective in fuzzy dark matter inves-
tigations is that, because one has a superfluid with a huge
(on astrophysical scales) number density of particles in a
coherent state, one can regard the quantum physics as

“integrated out” and restrict attention to an effective
classical theory. The expectation of any normal-ordered
field observable in a coherent state will be the correspond-
ing effective classical quantity, so the dispersions of
observables are proportional to commutators and typically
very small; therefore one might think that quantum effects
will be macroscopically negligible.

A. The Compton scale

There is, however, reason to hesitate. The Compton
length is macroscopic, and indeed of astrophysical size, on
the order of 1 pc. The behavior of quantum fields changes
markedly at this scale; in particular, a knot of unresolved
issues in quantum measurement, present in principle at all
scales, become prominent.
It is a basic feature of relativistic quantum field theory

that, at and below the Compton scale, measurements
necessarily implicate relativistic modes. Even a state which
is initially nonrelativistic will have, after a Compton-scale
measurement, relativistic excitations. A well-known exam-
ple of this is that attempts to localize a particle at or below
this scale will give its momentum relativistic components,
and also give a significant probability of creating additional
pairs of particles. In such situations, the measurement has
clearly not conserved the energy of the particle state; indeed*helfera@missouri.edu
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the discrepancy is of the same order as the particle’s
original energy.
This problem—that quantum measurements do not

generally respect conservation laws—has been investigated
at least since Wigner [3]. While it has never been
definitively resolved, it has not usually been considered
to be worrisome, since in laboratory measurements it is
plausible that any failure of conservation in the observed
system could somehow be absorbed by the far larger
measuring apparatus. However, it is important to appreciate
that this does not mean that our present treatment of
measurement is consistent with conservation laws.
Arguments like Wigner’s support a view that the failures
can be made small for “large” apparatuses, but also that the
failures cannot be strictly eliminated, within conventional
quantum theory [3,4].
But in the case of fuzzy dark matter, because the

Compton scale is so large, we will see that the ratio of
the sizes of the measuring apparatus to the observed system
can be reversed. It is the energies of the measuring devices
which may be relatively small, with the dark energy content
large (∼10−2 M⊙pc−3 in our vicinity). So the Wigner-type
arguments do not apply, and there might be substantial
conflicts between measurements and conservation; we will
see that this is indeed the case.
I have focused the discussion on conservation laws, and

these are of critical importance, but there are other
difficulties with quantum measurement as well. One of
these is the question of what it means to measure an
observable with a continuous spectrum. Perhaps the most
basic problem is to give an objective criterion for when a
measurement occurs. At the moment, we know of no
quantity we can compute which would (for example) tell us
how likely it is that, given the state of a system, a particular
observable would be measured within a particular interval.1

We will be led to look at these problems, too, by thinking
about fuzzy dark matter around the Compton scale.
One resolution would be simply that ultralight-mass fields

are impossible. But we should remember that the function
of the macroscopic Compton length is really to amplify
problems which in principle are present at all scales. It seems
better to view these results as an opportunity to address the
inadequacies of quantum measurement theory.

B. The stress-energy

Dark matter interacts almost exclusively gravitationally,
so its observables must be derived from the stress–energy.
In this paper, I will estimate the effects of measuring this for
fuzzy dark matter on scales of a few Compton lengths.
There are two main reasons for this choice. One is that
many of the effects are proportional to the size of the
observation volume, tending to favor larger choices

(although not ones much beyond the Compton scale).
But also it turns out that, if we are willing to settle for
rough approximations, we can get remarkably simple
formulas for the stress-energy in this case.
The expectation-values of the stress-energy are, of

course, simply what would be calculated from the
effective classical theory. It is the states resulting from
the measurements—the projections of the original state
onto the observables’ eigenspaces—which are problematic.
These states turn out to contain essentially uniform dis-
tributions of excited modes, up to the wave number set by
the measuring scale. Most of these modes are relativistic,
making the resulting state very different from the original
superfluid. If such a measurement occurred, it would
populate a substantial fraction of the modes in the obser-
vational volume with relativistic particles, which would
escape the Galaxy. Fuzzy dark matter would be unstable
against quantum measurements.2

This is a disquieting result, and one should ask whether it
could be rejected by some known physical considerations.
(Could the parsec-scale measurements be unfeasible, even
in principle—perhaps one would need an enormous device
whose own gravitational field would wash out the effect
sought?) However, I shall describe a thought-experiment,
somewhat similar to the ideas of Khmelnitsky and Rubakov
[6], which would effect the measurements with a modest
apparatus. So it appears the problem does lie with applying
conventional quantum measurement theory to fields with
ultralight masses.
One attempt to resolve this might be to maintain that,

since none of the problematic observations have yet been
made, there is no conflict. “Cavalier” is a mild word to
describe this view, as it would mean that the stability of the
Galaxy is hostage against such observations. And this points
up a further difficulty. What we have seen is that conven-
tional theory predicts that small, relatively inconsequential,
apparatuses can be used to measure the stress-energy,
resulting in unacceptable changes to the quantum state. If
this is indeed the case, we should wonder whether other
physical processes, not requiring human interventions, could
also result in measurements. This leads back to the funda-
mental problem I mentioned earlier, that we do not have a
theory of when quantum measurements occur. In the case of
fuzzy dark matter, this cannot be dismissed, because we
require a theory which explains Galactic dynamics for the
past few Gy. We would need a good argument that few
problematic measurements, whether effected by humans or
other processes, could have taken place.
Two other points are worth noting here.
The question of what it means to measure operators with

continuous spectra has long been discussed. In the regime

1“Objective reduction” theories aim to address questions like
this [5].

2Extant observations of Galactic orbital velocities essentially
probe the gravitational potential, and are too coarse to give
measurements of (its gradient) the stress-energy on parsec scales.
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we consider, the pressure appears as a generator of
squeezes; its spectrum is continuous, and its failure to
commute with the energy is pronounced. I will show that
a natural attempt to measure the pressure with even modest
resolution would lead to states with energies wholly out of
scale with the other quantities in the problem. This effect
can be interpreted in terms of squeeze operators, with no
reference to fuzzy dark matter or quantum field theory,
and is of correspondingly general interest: Attempts to
measure the generators of squeezes would lead to states
with very large expected occupation numbers, and (at least
for the models investigated here) there is a limitation on
the accuracy of those measurements if we require finite
expected occupation numbers.
The second point is that, because dark matter interacts

almost exclusively gravitationally, its observables must be
derived from the stress-energy and must correspond to
geometric effects—in other words, the effects are quantum-
gravitational, although we are very far from the Planck
scale. We will see this explicitly when we consider
thought-experiments; it requires some care to control the
potential dependence of the apparatus on the quantum-
gravitational state.
This paper will not attempt to provide any solution to the

problems of quantum measurement theory; its goal is rather
to describe circumstances in which they are presented
unavoidably, and from a new perspective.

C. Literature

I have already mentioned Wigner’s seminal paper;
further references to this line of thought can be found in
Ref. [4], and are often cast in terms of the WAY (Wigner–
Araki–Yanase) theorem. Reference [4] also provides an
entrée into measurement theory for operators with con-
tinuous spectra. The bulk of all of this work builds on von
Neumann’s [7] general formalism, and that work contains a
number of important insights (although just what von
Neumann considered the physical interpretation of meas-
urement itself remains debatable3). All of these works
involve some technicalities in their formulations, and, as
one is dealing with foundational questions, it is important
to sort through these in connecting the mathematics to
the physics.

Concerns, related to the present ones, about measure-
ments and energetics in connection with black-hole
evaporation appear in [8–10].

D. Organization

Here is the plan of the paper. Section II derives a rough
approximation for the stress-energy, valid for estimates to
within a factor of a few of its leading terms (in an expansion
in relativistic effects) for its averages over a few Compton
lengths. We find the leading contributions are an average
energy density ρ̄ and average isotropic pressure P̄, both
expressible in terms of a single annihilation operator A.
Sections III and IV analyze measurements of ρ̄ and P̄;
Section IV considers the measurement of operators with
continuous spectrum taking into account finite-energy
constraints. Section V gives thought-experiments for meas-
uring the stress-energy, and Sec. VI discussion. There is an
Appendix, giving the eigenstates of the squeeze generator
and related computations.
Notation and conventions. Conventions for quantum

field theory are those of Schweber [11]; for general
relativity, those of Penrose and Rindler [12]. The metric
signature is þ−−−. Factors of the speed of light and
Planck’s constant are not given explicitly; Newton’s con-
stant is G.

II. THE STRESS-ENERGY IN THE
MODERATE SECTOR

Wewill be concerned with the quantum fields over scales
less than the gravitational radius of curvature (∼1 Mpc for
a galaxy). On these, to good approximation, the field
behaves as a special-relativistic Klein–Gordon one. It
can be written in terms of annihilation and creation
operators aðkÞ, a�ðkÞ as

ϕðxÞ ¼ 2−1=2ð2πÞ−3=2
Z

d3kffiffiffiffiffiffiffiffiffiffi
EðkÞp ðe−ikaxaaðkÞ þ H:c:Þ;

ð1Þ

where ka is the wave four-vector, with spatial part k and
temporal component EðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kkk2

p
. The corre-

sponding renormalized stress-energy operator is

Tab ¼ 2−1ð2πÞ−3
Z

d3kffiffiffiffiffiffiffiffiffiffi
EðkÞp d3lffiffiffiffiffiffiffiffiffi

EðlÞp ½e−iðkaþlaÞxaaðkÞaðlÞð−kalb þ ð1=2Þηabðm2 þ k · lÞÞ þ Hermitian conjugate

þ 2e−iðka−laÞxaa�ðlÞaðkÞðkalb − ð1=2Þηabððk · lÞ −m2Þ�: ð2Þ

3He emphasizes the necessity for measurement to be represented by projection of the state vector, and to be distinguished from unitary
evolution. But his most direct statement about what it is seems to hold that it is beyond physics: “... it is inherently correct that the
measurement or the related process of the subjective perception is a new entity relative to the physical environment and is not reducible
to the latter.” Page 418 in [7].
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This is complicated, but if we are willing to settle for a
rough approximationwe can get remarkably simple formulas.
The stress-energy is not really well-defined pointwise; it

must be averaged. Let the length scale for the averaging be
L, which we will take to be a few times the Compton scale.
The corresponding wave number will be Λ ¼ 2π=L. I will
call the modes with wave numbers below this scale
moderate; they include the subrelativistic modes, but also
have ones with appreciable, although not dominant, rela-
tivistic contributions.
Consider the effects of the averaging on each of

e−iðkaþlaÞxaaðkÞaðlÞ, eiðkaþlaÞxaa�ðkÞa�ðlÞ, e−iðka−laÞxaa�ðlÞ×
aðkÞ. When both wave vectors are moderate, there is no
significant interference. On the other hand, there will be
interference unless at least one of k� l is moderate. This
means that if one k, l is larger than about Λ, the other must
be, too, if the term is not suppressed.4

Very roughly, then, the contributions to the averaged
stress-energy which are not suppressed by interference are
of two sorts: where both the wave vectors are moderate, or
where neither is (and this latter case is restricted by kk� lk
being moderate). In this sense, the stress-energy respects a
division of the modes into two sectors: those which are
moderate, and those which are not. While the division is not
sharp, it will be adequate for our purposes, because fuzzy
dark matter is supposed to be deeply subrelativistic. The
argument just given does show that any couplings of such
modes to ones outside the moderate sector are suppressed.
It will therefore be enough for us to consider the

moderate sector kkk; klk ≤ Λ. This is the same as intro-
ducing a cutoff Λ in the integral (2). We may then make the
zeroth-order approximations ka ¼ mta ¼ la and EðkÞ ¼
EðlÞ ¼ m for the c-number factors in Eq. (2). The averaged
stress-energy is then

T̄ab ¼ 2−1ð2πÞ−3m
�
−
�Z

kkk≤Λ
d3ke−ikax

a
aðkÞ

��Z
klk≤Λ

d3le−ilax
a
aðlÞ

�
ðtatb − ηabÞ þ H:c:

þ2

�Z
kk≤Λ

d3leilax
a
a�ðlÞ

��Z
kk≤Λ

d3ke−ikax
a
aðkÞ

�
tatb

�
þ � � � ; ð3Þ

where the ellipsis indicates terms which are not purely in
the sector and also terms beyond zeroth order in the
tensorial dependence. The terms shown should, conserva-
tively, give the purely moderate-sector effects to within a
factor of a few.
We can simplify this. Let

A ¼ ð4πΛ3=3Þ−1=2
Z
kkk≤Λ

d3ke−ikax
a
aðkÞ: ð4Þ

(This operator depends on the point x at which the stress-
energy is measured.) Then A is an annihilation operator
with the standard discrete normalization

½A; A�� ¼ 1; ð5Þ
and we may write

T̄ab ¼ ρ̄tatb þ P̄ðtatb − ηabÞ þ � � � ; ð6Þ
where

ρ̄ ¼ mð2πÞ−3ð4πΛ3=3ÞA�A ð7Þ
and

P̄ ¼ −2−1mð2πÞ−3ð4πΛ3=3ÞðA2 þ ðA�Þ2Þ ð8Þ

are the leading averaged energy density and averaged
pressure operators in the moderate sector. (In this approxi-
mation, the pressure is isotropic and there is no momentum
density.)
We see that the averaged energy density has the same

formal structure as a harmonic oscillator; its eigenvalues are
simply mΛ3n, where n ¼ 0; 1; 2;…. However, in our case
the expected occupation numbers are ∼1083, so the spacing
is very fine on the scales of interest. The averaged pressure
is the generator of a squeeze operator; its spectrum is the
real line (with multiplicity two).

III. MEASUREMENTS OF ρ̄

Let the quantum state be a coherent state corresponding
to the complex classical state ϕcl (of purely positive
frequency), that is

jΨi ¼ exp ½−ð1=2Þωðϕcl;ϕclÞ þ ωðϕ;ϕclÞ�j0i; ð9Þ

where ωðf; gÞ ¼ ði=2Þ R ðf∂tg − ð∂tfÞgÞd3x. We will
assume that ϕcl has no modes with relativistic wave
numbers.
When a measurement of ρ̄ is made, the state (9) is

projected into an eigenspace of this operator. In order to
work this out, let us introduce the operators

bðkÞ ¼ aðkÞ − ð4πΛ3=3Þ−1=2eikaxaχkA; ð10Þ

4Wewill suppose the temporal averaging is less than L. Longer
temporal averages tend to suppress the e−iðkaþlaÞxaaðkÞaðlÞ,
eiðkaþlaÞxaa�ðkÞa�ðlÞ contributions.
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end where

χk ¼
�
1 if kkk ≤ Λ
0 otherwise:

ð11Þ

Then ½bðkÞ; bðlÞ� ¼ 0 and ½A; b�ðkÞ� ¼ 0 and

½bðkÞ; b�ðlÞ� ¼ δðk; lÞ − ð4πΛ3=3Þ−1χkχle−iðla−kaÞxa : ð12Þ

(The operators bðkÞ are linearly dependent, sinceR
χke−ikax

a
bðkÞd3k ¼ 0.) We also set

ψðyÞ ¼ 2−1=2ð2πÞ−3=2
Z

d3kffiffiffiffiffiffiffiffiffiffi
EðkÞp e−ikay

a
bðkÞ þ H:c:;

ð13Þ
then

jΨi ¼ exp ½−ð1=2Þωðϕcl;ϕclÞ þ ωðψ ;ϕclÞ þ 21=2ð2πÞ3=2ð4πΛ3=3mÞ−1=2ϕclðxÞA��j0i

¼ exp ½−ð1=2Þωðϕcl;ϕclÞ þ ωðψ ;ϕclÞ�
X∞
n¼0

ðn!Þ−1ð21=2ð2πÞ3=2ð4πΛ3=3mÞ−1=2ϕclðxÞA�Þnj0i: ð14Þ

This sum gives us a spectral resolution of jΨi for the operator ρ̄; the nth term

ΠnjΨi ¼ exp ½−ð1=2Þωðϕcl;ϕclÞ þ ωðψ ;ϕclÞ�ðn!Þ−1ð21=2ð2πÞ3=2ð4πΛ3=3mÞ−1=2ϕclðxÞA�Þnj0i ð15Þ

gives us the projection to the nth eigenstate. It is a Poisson
distribution.
The state (15) resulting from the measurement differs

markedly from an acceptable fuzzy dark matter state. It is the
factor ðA�Þnj0i which is problematic, for the operator A�
creates an essentially even distribution of particle modes
over the mass shell up to the wave number Λ, and these
modes mostly have relativistic wave-vectors. Thus rather
than the n deeply subrelativistic particles a fuzzy dark matter
state would have in this volume, we have an n-particle state
with what I have called moderate momenta, that is, with
appreciable but not dominant relativistic contributions. In
particular, these particles would not be gravitationally
bound; they would escape their host galaxy and supercluster.
The argument of the previous paragraph is schematic, for

two reasons. First, to really assess the mode-content of the
state (15) one must know the action of the number operators
a�ðkÞaðkÞ on it (not just A�A). Second, one would like to
know what the effects of measuring ρ̄ with finite resolution
are, since its eigenvalues are so finely spaced.
It turns out that the operator ρ̄ is simple enough that we

can do the analysis explicitly, and the conclusions do not
change as long as that resolution is even modestly below
the expected value hΨjρ̄jΨi. Suppose, e.g., the state has
been measured and found to be in the subspace with
N1 ≤ A�A ≤ N2. Let jΨN1N2

i be the resulting normalized
state. Then, assuming that kkk is larger than the wave
numbers contributing to ϕcl, a straightforward if slightly
lengthy calculation shows

ð4πΛ3=3ÞhΨN1N2
ja�ðkÞaðkÞjΨN1N2

i

¼ NN2þ1
cl =ðN2!Þ þ NN1

cl =ðN1!ÞPN2

n¼N1
Nn

cl=ðn!Þ
; ð16Þ

where

Ncl ¼ ð4πðΛ=2πÞ3=3Þ−1mjϕclj2 ð17Þ
is of the order of what the effective classical theory would
give for the number of particles in the observation volume
(before the measurement).5

If N2 < Ncl, the higher powers in (16) are the dominant
terms. If, for instance N1=Ncl and N2=Ncl < 1 are consid-
ered fixed, for large Ncl the expression (16) is close to Ncl.
Apart from the deeply subrelativistic modes contributing to
ϕcl, then, the effect of the measurement is to uniformly
populate the mass-shell up to the cutoff, with as many
excitations as there were “effective particles” in the
observation volume. The preponderance of these excita-
tions will be relativistic (and so in particular energy has not
been conserved), and the corresponding particles would
escape the Galaxy.
Aword about measurements of ρ̄ over different volumes

versus measurements of the total Hamiltonian is in order.
These do not commute, and so the total Hamiltonian cannot
be observed by adding observations of ρ̄ for different
volumes. Closely related to this, the need to “smear” the
stress-energy in order to get a well-defined operator means
we cannot really speak of the energy in a sharply demar-
cated domain. This is accommodated in our calculation by
the cut-off in wave numbers.

IV. MEASUREMENTS OF P̄

Both the behavior and the analysis of the average
pressure are different from those of the average density,

5Because of the rough approximations made in specifying
the volume and averaging, one cannot sharply say how many
particles the effective theory would place there.
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because P̄ is a generator of squeezes rather than a number
operator. The main result will be that measuring P̄ results in
states with energy contents far worse than those for ρ̄.
Partly, we will have to sort out physical questions about the
measurement of an operator with continuous spectrum; also
the terms A2, ðA�Þ2 in P̄ are much more strongly non-
commutative with the total energy than is A�A in ρ̄.
It will be helpful to write P̄ ¼ −ð2πÞ−3ð4πΛ3=3ÞmS,

where

S ¼ ð1=2ÞðA2 þ ðA�Þ2Þ ð18Þ

is a dimensionless squeeze generator. Using the formulas
above, it is straightforward to compute

hΨjSjΨi ¼ ð2πÞ2ð4πΛ3=3mÞ−1ðϕ2
cl þ ϕ̄2

clÞ: ð19Þ

This will typically be of the same order as hΨjA�AjΨi,
although S may have either sign. The eigenstates of S are
computed in the Appendix; we denote them jγν�i where
ν ∈ R and the sign is related to a parity. The normalization
is hγνσjγν́ σ́i ¼ δðν − ν́Þδσ;σ́ .
Let us first consider the measurement of an operator with

continuous spectrum in a more familiar context. Suppose
we try to measure the position of a particle on a line in
ordinary (nonrelativistic) quantum mechanics. The position
operator cannot itself be measured, in the sense that there
are no normalizable eigenvectors. We must imagine divid-
ing the line up into bins of finite size, and measuring which
of these bins the particle is in.
In and of itself, such a theory of measurement is

acceptable, but it runs into trouble when we start inves-
tigating the energetics of the situation. For instance, if
we have a free particle, and then measure which bin it
is in, the resulting wave function—the original wave
function projected to lie within the bin—necessarily has
components with arbitrarily high energies. (A function
with compact support has a Fourier transform which is
analytic, and so has contributions from arbitrarily high
wave-numbers.)
It seems reasonable that a real measurement of a particle

can communicate only a finite amount of energy to it, and
in this sense no real measurement which has bins of
precisely defined positions and extents can exist. A real
device, allowed only a finite amount of energy, will
measure an approximation to the position, even allowing
for binning. The actual operator such a finite-energy device
measures cannot have eigenstates which are strictly demar-
cated in space.
Just these sorts of issues come up for measurements

of P̄, although of the problematic localization is in its
eigenvalues (not physical position). One finds that
hγν́ σ́ja�ðkÞaðkÞjγνσi, which would give us a measure of
the energy-content of its eigenstates, exists only in a
very weak sense. It is not even strictly speaking a

distribution6; this means it is only defined when integrated
against a restricted class of very smooth test functions of
the eigenvalues μ, ν. The smoothness restrictions mean that
only measurements which are sufficiently smeared in the
eigenvalues are admissible. Arbitrarily high-resolution
measurements of P̄ are energetically unacceptable.
A real measurement cannot therefore not return even a

mathematically exact binning of eigenstates jγν�i of P̄; it
will rather produce some smeared approximation to such a
state. We shall suppose for simplicity that this is a
Lorentzian smearing with width Δν. (Similar results hold
for smearing by hyperbolic cosines.)
In the Appendix, such Lorentzian states, denoted jξν�i,

are given explicitly. The projection of the state jΨi to this
eigenspace will be

jΨν�i ¼ ðnormalizationÞeωðψ ;ϕclÞjξν�i: ð20Þ

The expectation hΨν�ja�ðkÞaðkÞjΨν�i (assuming kkk is
greater than the wave numbers occurring in ϕcl) can be
found in the Appendix. It is complicated, but only two
details about it are relevant here. The first is that the
expectation converges only for Δν > 2; this is the quanti-
tative consequence of the need for smearing described
above. If we were interested in states with low occupation
numbers and small values of the squeeze, it would be a
serious restriction; here, however, we typically expect ν to
be enormous and Δν must itself realistically be taken
quite large.
The second, much more serious—indeed, damning—

result of the computation is that, even for modest reso-
lutions the energy-contents are grossly unacceptable.
Taking jνj to be around its nominal generic value
hΨjA�AjΨi and assuming Δν=jνj≲ 1, we find

ð4πΛ3=3ÞhΨν�ja�ðkÞaðkÞjΨν�i ≃ ν2=2: ð21Þ

In other words, the mass shell is uniformly populated (up to
the cutoff), but by what is typically of the order of the
square of the number of classically expected particles. This
is of the order of the square of the corresponding result
for ρ̄=m.
Finally, much of this analysis, although not the final

conclusion, applies to squeezes in general (and does not
depend on properties of fuzzy dark matter or quantum field
theory). The computation of the generators’ spectra and
eigenstates holds generally. While I gave the discussion of
energetic concerns in terms of the operators a�ðkÞaðkÞ,
the same sort of analysis applies for A�A, and so the same
sorts of difficulties in measuring S with finite energies
(taken as finite values of the number operator A�A) hold.
The expectation hγν́ σ́jA�Ajγνσi exists only very weakly.

6With a change of variables, one can see it contains Fourier
transforms of exponentials.

ADAM D. HELFER PHYS. REV. D 98, 065015 (2018)

065015-6



For the smearings I have tried, only resolutions with
Δν > 2 appear admissible, and the expectation is of order
ν2. These difficulties are related to the scale-free character
of the eigenstates of S.

V. A TIMING MODEL

It is instructive to consider a thought-experiment aimed
at measuring components of the stress-energy. The first
issue we will encounter is that we must, for self-
consistency, admit certain quantum-gravitational behavior.
While interesting conceptually, in general this leads to
models which are very difficult to control. However, we
will find one which can be simply analyzed. The most
important conclusion will be that it does seem possible in
principle, with modest apparatus, to measure the compo-
nents of the stress-energy discussed earlier.
The model to be investigated here is conceptually

similar to the idea behind gravitational-wave detection via
pulsar timing arrays. Let us work in linearized gravity,
and consider two freely falling bodies, an emitter which
gives off signals at regular intervals according to its
proper time τe, and a receiver which detects them at its
proper time τr. Thus the receiver records a function
τeðτrÞ. We also assume that to zeroth order (in the metric
perturbation) there is no velocity between their world
lines. Then we have

d2τe
dτ2r

¼
Z

RabcdtaLbtcLdds; ð22Þ

where Rabcd is the linearized Riemann curvature, and
the integral is taken over the null geodesic from the
emitter to the receiver, whose tangent is La, with affine
parameter s [13].
Equation (22) shows that the times of arrival of signals

from the emitter will be affected by the intervening gravi-
tational field. It is just this effect which is the basis for pulsar
timing array searches for gravitational waves, and in fact
Khmelnitsky and Rubakov [6] suggested, based on a
classical analysis, that the oscillatory character of fuzzy
dark matter’s pressure might allow its detection by such
arrays.
The precise suggestion of Khmelnitsky and Rubakov

would not be helpful for investigating the effects of interest
here, for two reasons. First, the distances between pulsars,
and between pulsars and the Earth, are many Compton-
lengths. Second, the geometry in their scheme does not give
a very clean link to the stress-energy; the formulas are too
complicated to be a good first model of the quantum effects
to investigate. To see this and deal with it, I will push the
analysis of this geometry a bit further, and then modify it to
a spherically symmetric one.
It is straightforward to compute the curvature from the

stress-energy, by working in the de Donder gauge; one
finds the linearized metric perturbation is

hab ¼ −16πGð∂b∂bÞ−1ðTac − ð1=2ÞTacÞ; ð23Þ

where we take the retarded solution. In the moderate sector,
this gives

hab ¼ 8πGð2πÞ−3m
Z
kkk;klk≤Λ

d3kd3l½ð2mÞ−2e−2imtaðkÞaðlÞð−ð1=2Þηab − tatbÞ þ Hermitian conjugate

þ2e−iðka−laÞxa ½ðka − laÞðka − laÞ�−1a�ðlÞaðkÞðtatb − ð1=2ÞηabÞ�: ð24Þ

This follows from Eq. (23) by cutting off the creation and annihilation operators to modes with wave numbers ≤ Λ and
(therefore) approximating EðkÞ ≃ EðlÞ ≃m. Any theory of quantum gravity which has Einstein’s equation valid as an
operator equality at the linearized level will give the same result in this sector. (Two further comments are in order. First, in
principle, one should add an infinitesimal timelike imaginary part to the factors ka − la in the denominator, but the
singularity turns out to be soft enough that this does not matter. Second, one could also allow a homogeneous contribution,
representing incoming gravitational waves. However, we will shortly pass to an average over a sphere of directions, and this
will eliminate any such terms of nonzero helicity. This would be true whether the homogeneous terms were c-numbers, or
multiplied by operators representing linearized gravitational wave creation and annihilation. So it will apply to any
linearized quantum gravity theory in which Einstein’s equation holds at an operator level and the homogeneous solutions
have helicity two.)
We then find

d2τe
dτ2r

¼ −4πGð2πÞ−3m
Z
kkk;klk≤Λ

d3kd3l½ð2mÞ−2ð2imÞ−1e−2imtð1 − e2imDÞaðkÞaðlÞð2m2Þ þ Hermitian conjugate

þ2e−iðka−laÞxaD½ðka − laÞðka − laÞ�−1a�ðlÞaðkÞð1=2ÞðL · ðk − lÞÞ2� ð25Þ

whereD is the distance from the emitter to the receiver. While the first line is simply proportional to the pressure, the second
is rather complicated.
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The most interesting thing about Eq. (25) is that
integrating it to get τe introduces linear terms which must
in general be allowed to be operator-valued, for consistency
(since additions of constants to τr will contribute operator
terms to the integral). Physically, these constants of
integration are needed to specify the initial synchronization
of the world lines. In other words, even in this limited
approximation, the effects of quantum geometry on the
world-lines’ initial data must be considered. While this is of
considerable conceptual interest, it is better to start with a
simpler configuration.
We therefore imagine a modification of this timing

scheme, where instead of having two world lines, one
with a receiver and one with an emitter, we have a single
world line containing an emitter which sends out s-wave
pulses, which are then reflected from a sphere of mirrors
along world lines which (at zeroth order) are stationary at
distance D=2 with respect to the emitter, and are sub-
sequently received on the original world line. (I will discuss
the effects of uncertainties in the mirrors’ positions below.)
The effect of this on the formula (25) will be to average
over the spatial directions L, and we will get

d2τe
dτ2r

¼ Gð2πÞ−2ð4πΛ3=3Þ½sinðmDÞe−imDA2

þ Hermitian conjugateþ ð2=3ÞmDA�A�
¼ 2πGm−1½−2 sinðmDÞP̄þ ð2=3ÞmDρ̄�: ð26Þ

In principle, this is an observable, but it is far too small
an effect to be directly detectable in reasonable circum-
stances. However, the quantity

τe − τr ¼ DþGð2πÞ−2ð4πΛ3=3Þ½αA2 þ ᾱðA�Þ2 þ 2βA�A�;
ð27Þ

where

α ¼ −ð2mÞ−2 sinðmDÞe−imD ð28Þ

β ¼ ð1=6ÞmD3; ð29Þ

turns out to be accessible. [In Eq. (27), the symbol ᾱ is the
complex conjugate of α, not some average.]
The quantity on the square brackets in Eq. (27) can, by a

canonical transformation, be rewritten as a number operator
if jαj < jβj (and as a generator of squeezes if jαj > jβj). The
condition jαj < jβj is equivalent to mD≳ 1.1. Our analysis
here is only good in the moderate sector, for which we
should have mD≳ 2π, and thus we are in the number-
operator case. The relevant canonical transformation turns
out to be

Â ¼ ðcosh ξÞðie−imD=2AÞ þ ðsinh ξÞð−ieimD=2A�Þ ð30Þ

(so ½Â; Â�� ¼ 1), with

tanh 2ξ ¼ eimDα=β ¼ −ð3=2Þ sinðmDÞ=ðmDÞ3: ð31Þ

Then we have

αA2 þ 2βA�Aþ ᾱðA�Þ2 ¼ 2β̂Â�Â − ε̂; ð32Þ

where

β̂ ¼ ð1=6ÞmD3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð9=2Þðsin2mDÞ=ðmDÞ6

q
ð33Þ

ε̂ ¼ ð1=6ÞmD3
h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð9=2Þðsin2mDÞ=ðmDÞ6

q i
:

ð34Þ

In fact, for mD ≥ 2π, we have ξ ≤ 3 × 10−4, so we have
β̂ ≈ β, α̂ ≈ 0 ≈ ε̂. The quantum correction in Eq. (27) is
very nearly simply a multiple of ρ̄, and its analysis
parallels that.
For the system under consideration, taking ð4πΛ3=3ÞA�A

to be ð2πÞ3 times the number density given by the effec-
tive classical theory [see Eq. (7)] and D to be a parsec,
the magnitude of the quantum contribution in Eq. (27)
is ∼10−7 s.
What one would actually measure would be τe − τr. An

observation would yield twice the distance to the reflecting
sphere, as the zeroth-order term D plus a quantum-
gravitational correction; one cannot distinguish these two
terms by this observation. While in one sense this is
disappointing, it does not in fact matter for our main point:
Recall that we are interested, not so much in the value

returned by the observation, as in the observation’s effect
on the quantum state. For this, we simply need to be able to
measure τe − τr to a resolution fine enough to implicate the
quantum corrections, that is, to around 10−7 s.
To see that there is no difficulty (in principle) in doing

this, let me return to the question of how well the mirrors’
positions must be controlled. Since the mirrors will not be
exactly spherically distributed, the pulses will return from
different mirrors at different times; let us take their mean
time of arrival as our τe. We then must consider D in
Eq. (27) to depend (slightly) on the direction L. However,
since L appears quadratically in Eq. (25), the effect of
averaging over the directions will give contributions only
from the l ¼ 0 and l ¼ 2 multipoles of this function (and
their coefficients differ by a factor of order unity). It is
therefore enough to control the quadrupole moments of D
to be (say) an order of magnitude smaller than its monopole
part, say ∼10−8 l − s or ∼1 m. This also shows that we
need only consider a fairly small number of mirrors,
enough to average out the quadrupole.
The requirements imposed by the uncertainty relation on

the mirrors’ positions and velocities, and on the timing
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apparatus, are very mild, allowing the devices to be far less
massive than the fuzzy dark matter measured, since we only
need that the mirrors be controlled to an accuracy of the
order of 1 m over the time the pulse encounters it.
This argument shows that measurements of ρ̄ do seem

possible in principle.
Could one measure the average pressure P̄ by a similar

procedure? This does seem possible, although it is a bit
more involved. To see how one might do this, recall that the
operator A is a function of space-time position, and in
particular time; in our approximation it evolves with a
factor e−imt. In Eq. (27) it is evaluated at the reception point.
If we were to consider a difference in temporal measure-
ments for two pulses, say

ðτe − τrÞjτe¼t − ðτe − τrÞjτe¼t−π=ð2mÞ

¼ 2Gð2πÞ−2ð4πΛ3=3Þ½αA2 þ ᾱðA�Þ2�; ð35Þ

this would effect a measurement of P̄ (at a time halfway
between the two times of receipt). (For this formula to be
directly applicable, one would need a device which
reported the double difference (35), not the two individual
τe − τr measurements.) The magnitude of this effect would
be below that for ρ̄ by a factor of about tanh 2ξ, so it would
be ∼10−11 s or smaller, but there seems to be no objection
in principle to measuring it.

VI. DISCUSSION

Fuzzy dark matter proposals, while generally analyzed
classically, are supposed to depend on an underlying
quantum field. Perhaps the most extraordinary feature of
this is that its Compton length is of astrophysical size
(∼1 pc); around this scale relativistic quantum effects
become important. In particular, some difficulties in quan-
tum measurement theory are amplified.
Wigner and followers showed that in general quantum

measurements are not compatible with conservation laws;
but they also showed that these discrepancies could be
made small if the measuring apparatus was much larger
than the system measured. Since this is the case typical in
laboratories, and since no violations of fundamental con-
servation laws have been observed, the problems have not
seemed urgent.
However, the large Compton length for fuzzy dark matter

allows the ratio between the measuring apparatus and the
subject system to be reversed. In this paper, we have seen it
is possible, in principle at least, to have a physical device of
modest mass which measures the average of the stress-
energy over a few Compton scales (corresponding to
∼10−2 M⊙). We do indeed find serious problems with
conservation of energy, if we apply the standard quantum
prescriptions.
For the average energy density ρ̄, we find a substantial

fraction of the modes in the observation volume become

relativistically excited. This would not only change the
energy notably; the resulting particles would escape the
Galaxy, and the quantum state would no longer be what was
originally hypothesized, a superfluid in a coherent state.
The situation for the average pressure P̄ is more difficult

to analyze, because it requires us to confront another
problem: the measurement of operators with continuous
spectra. Our treatment focussed on questions of energetics.
There are strong restrictions on the resolutions which could
be accommodated by finite-energy measurements. The
simplest natural choices of measurements compatible with
those resolutions turn out to lead to quantum states with far
higher excitations than for ρ̄. While this treatment is ad-hoc
and cannot be considered definitive, it strongly suggests
that P̄ is very singular, insofar as the standard model of
quantum measurement is valid.
It does not seem plausible to simply assert that, as we

have not so far made any actual measurement of ρ̄ (or
P̄), there is not really any problem. For that defense
seems to accept that making these measurements—
which involves only modest actions—would not only
result in serious violations of energy conservation, but
threaten the Galaxy’s stability. This position seems
hardly credible. Even if one were to accept it, it would
lead to another concern: since the actions required to
make a problematic measurement seem modest, one
cannot a priori rule out the possibility that problematic
measurements have been effected by physical processes
not requiring human intervention in the past few Gy of
the Galaxy’s history. This would be a credible concern,
and those who wished to simultaneously defend fuzzy
dark matter and conventional measurement theory
would need to respond to it. (A response would require
answering still another question—when do measure-
ments occur?—discussed below.)
There is one assumption in the paper which deserves

special attention. Any attempt to discuss the primary effects
of dark matter must turn on its link to gravity, and because
here I consider a quantum measurement process it is
necessary to relate the geometry of space-time to the
quantum stress–energy operator. I do that by assuming
that Einstein’s equation holds, at the linearized level, as an
equality of operators. Essentially any attempt to quantize
gravity, as that phrase is usually understood (superstring
theory, loop quantum gravity, etc.), will have this property.
Yet this hypothesis could be wrong. While it is certainly

necessary to reconcile gravity and quantum theory, it could
be that the way to do so is not by quantizing gravity but by
some of other modification. Perhaps (for example) space-
time is inherently classical and so somehow a quantum field
must determine a well-defined classical stress-energy. But
on its face this would be completely at odds with other
quantum-measurement properties of the field.
The simplest possibility would be that somehow fuzzy

dark matter is classicized on lengths greater than some
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scale l≲ 1 pc (by some new physics). Then, presumably,
the successes of the model in treating galaxies would
be secure. We could still have some sort of quantum-
gravitational behavior on scales below l. There would
additionally be the question of just how the classicization
would affect the particle-physics properties of the field (it is
most commonly hypothesized to be an axion), which could
be important in the early Universe.
The question of how to modify quantum measurement

theory should really be placed in a broader context. While
conventional theory tells us how to model a measurement,
given that one occurs, it is entirely silent about when the
measurements do occur. We know of no quantity to com-
pute, e.g., which would tell us, given appropriate initial
conditions, how likely it is that a given observable will be
measured within a given interval of time. Yet this is an
objective question to which physics should be able to
supply an answer.
This issue is at the heart of current theories of cosmol-

ogy: inflationary models depend on a hypothesized con-
version of quantum fluctuations to classical ones, and that
appears to be a quantum reduction. See Refs. [14,15] for
ideas along these lines.

A. Is reduction as a distinct process
the problem?

One could also call into question the reduction postulate
for measurements; indeed, there is a spectrum of views on
this. Some physicists accept reduction as it is given in
elementary texts; others believe that it ought not to figure in
a properly formulated theory, that measurements are just
another kind of unitary evolution and it is the idealized
treatment of the observed subsystem as an independent
entity which forces reduction to appear. However, there is
as yet no developed theory which fully substantiates this
belief. I would suggest that its adherents try to analyze the
situation described in this paper, and see if they can
improve on the results based on reduction. Whatever
alternative one envisions, it is essential to have a theory
which will correctly describe a sequence of measurements
of different observables.
But it is far from clear that reduction, in and of itself,

is the culprit. The problems here arise not precisely from
the use of the reduction postulate, but from the identi-
fication of the eigenstates of the components of the
stress–energy, and their interpretation. Any substitute for
reduction, which has the effect of driving the system into
such an eigenstate, will suffer the same problem, unless it
provides some further ingredient to resolve that.
Consider, e.g., the “relative states formulation” of

Everett or the “many worlds interpretation” of DeWitt
[16]. These approaches aim to provide a treatment of
quantum theory entirely by means of unitary evolution—
but reproducing familiar quantum theory (with reduction)
as a sort of “effective” consequence.

I shall not critique these proposals here. What I want to
point out is that, according to their creators, they are
supposed to reproduce the results of conventional theory,
including reduction. Their novelty is rather to provide
additionally what they call a “meta” point of view, and at
this “meta” level the reduction is seen to be a short-hand for
the creation of certain correlations. So if these papers’
claims are taken at face value, they will not resolve the
problems uncovered here. However, both of these papers
are rather schematic, and it is possible that a more detailed
development of their ideas will uncover structure which
will alter this conclusion.

B. de Broglie–Bohm approaches

Conventional quantum theory is called into question
by the results here. One of the best known alternatives is the
de Broglie–Bohm approach [17–19]. There remains some
controversy over this even at the quantum-mechanical
level, and there is no generally accepted way of carrying
it over to quantum field theory. Nevertheless, it has received
the attention of serious workers. I will not critique it, but
rather explain what would be involved in attempting to
connect it with the work here.
Recall that de Broglie–Bohm theory posits that the

positions of particles have real, classical meaning, and
that ultimately all measured quantities must derive from
these. There exists also a wave function satisfying a
Schrödinger equation, but this does not have at all the
same interpretation as in conventional quantum theory. It
rather contributes an additional “quantum force” to the
equations of motion of the particles. Both the trajectories
and the wave-functions are classical, although knowledge
of them is subject to classical uncertainties. One should
note that the actual position of the system at any time is
only a point in the configuration space, while the wave
function is to be defined on that entire space. As time
passes, the actual position describes a curve in configura-
tion space, but the wave function is function on the
Cartesian product of the configuration space with time.
The trajectory is a curve in that space, and so the actual
particles only sample directly the values of the wave
function along this curve.7

There are three, related, issues of extension involved
in developing the theory to the point where it could be
applied to the measurement problems in this paper. The
first, already mentioned, is getting a relativistic theory.

7There is also a “natural” probability distribution one can
assign to the positions of the particles, given by the squared
modulus of the normalized wave-function; this is called
“quantum equilibrium.” Note however that even if we start
from such a distribution, as we learn more about the system we
cannot generally maintain it. Indeed, the equations of motion
preserve the quantum equilibrium condition, but our increasing
knowledge forces the actual probability distribution to become
narrower.
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Second, one would need to know how de Broglie–Bohm
systems act as sources for gravity. Finally, one needs to
know how measurements of space–time geometry feed
back on the de Broglie–Bohm system.
One could take the view that in the Galaxy fuzzy dark

matter is supposed to be a coherent state of non-
relativistic particles, and treat these according to a de
Broglie–Bohm prescription. Insofar as that description
reproduces standard non-relativistic quantum theory, one
presumably has no trouble. However, this is not enough
to explain how the particles give rise to a source for
gravity (does that depend only on the particles, or also on
the de Broglie–Bohm wave function? how?). Also, while
this non-relativistic view may serve as a starting-point for
treating dark matter in the Galaxy, one presumably needs
a fuller picture to connect with the motivating axion
theories, and with the physics of dark matter in the very
early Universe.
I turn now to the question of measurements. In the

de Broglie–Bohm approach, only configuration variables
are candidates for measurement, and what one actually
observes are macroscopic pointer variables. One must
verify, through modeling of the measurement apparatus,
that these are indeed correlated with whatever micro-
configuration variables one hopes to learn about. In the
case at hand, I have sketched the construction of a specific
device built of fairly simple components (clocks, mirrors,
light-sources), and so one has a good template for what a de
Broglie–Bohm analysis should try to model.
Pinto-Neto, Santos and Struyve [20,21] considered a

related problem, not Galactic dark matter, but inflationary
fluctuations, and encountered some of these issues. They
used, however, not the particles’ positions, but the field
values as the configuration space for a de Broglie–Bohm
approach. They also made certain assumptions about the
form of the metric, in terms of the de Broglie–Bohm
quantities. They thus take up, in their context, two of the
three issues I mentioned above (the third being the
measurement theory of the associated geometry).

APPENDIX: CALCULATIONS FOR THE
SQUEEZE OPERATOR

I work out here some formulas for the squeeze operator

S ¼ ð1=2ÞðA2 þ ðA�Þ2Þ ðA1Þ

figuring in the formula for the pressure, where A is a
normalized annihilation operator. (By a change of phase
one can get other squeeze operators.) The steps are virtually
all standard. I give here the main stages, leaving out some
of the straightforward intermediate passages.
Define

q ¼ 2−1=2ðeiπ=4Aþ e−iπ=4A�Þ; ðA2Þ

then one can verify

i∂=∂q ¼ 2−1=2iðeiπ=4A − e−iπ=4A�Þ ðA3Þ

from the commutation relation ½A; A�� ¼ 1. Inversely, we
have

A ¼ 2−1=2ðe−iπ=4qþ e−iπ=4∂qÞ; ðA4Þ

and its Hermitian adjoint. Note that these differ from the
usual relation between a number representation and a
position representation by a rotation by π=4 in phase
space; equivalently, by a square root of the Fourier
transform. Since the Fourier transform is unitary, the
norm in the q-representation is the standard L2 norm.
Since the vacuum state in the position representation is
invariant under Fourier transformation, it retains its stan-
dard form j0i ¼ π−1=2 expð−q2=2Þ in the q-representation.
The squeeze operator has the simple form

S ¼ −iq∂q − i=2 ðA5Þ

in terms of q. It evidently generates dilations:
expðiαSÞγðqÞ ¼ e−α=2γðqeαÞ. Its eigenvectors are

γν;�ðqÞ ¼ ð2πÞ−1=2Hð�qÞjqjiν−1=2 ðA6Þ

(whereHðxÞ is the Heaviside function), with normalizationR∞
−∞ ¯γν;σγν0;σ0dq ¼ δðν − ν0Þδσ;σ0 . (The parity eigenstates are
of course 2−1=2ðγν;þ � γν;−Þ.)
In this paper, we are interested in understanding the

occupation-number content of the eigenstates of S.
However, we must explicitly account for the fact that
the spectrum of S is continuous, and therefore the
operator cannot be measured with infinite precision.
The expectation hγμ;�jA�Ajγν;�i does exist in a weak
sense, but only when integrated against a restricted, very
smooth, class of test functions; this is because states
whose S-content is restricted to a a sharply demarcated
bound necessarily have components with arbitrarily high
occupation numbers.
To deal with this, we will consider states which are not

quite eigenstates of S, but are smeared by Lorentzians:

ξν;� ¼ ð2ðΔνÞ3=πÞ1=2
Z

∞

−∞

1

ðν́ − νÞ2 þ ðΔνÞ2 γν́;�dν́ ðA7Þ

is such a state, centered at ν and width Δν.8

A straightforward calculation based on the formulas
above gives

8The unusual normalization arises because here we have a
Lorentzian distribution as an amplitude, rather than a probability.
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ð4πΛ3=3ÞhΨν�ja�ðkÞaðkÞjΨν�i ¼ Ncl − ð1=2Þ þ 2ðΔνÞ2
4ðΔνÞ2 − 1

þ ν2 þ ðΔνÞ2 − ð3=4Þ
2ðΔνÞ2 − 2

ðΔνÞ2

− ð2πÞ3=2ð4πΛ3=3Þ−1=2

×

�
ϕcleiπ=4

ð4ΔνÞð1 − iΔνÞ
4ðΔνÞ2 − 1

þ conjugate

�
; ðA8Þ

valid for Δν > 2. This is very complicated, but the points we need do not depend on that. We are primarily interested in the
case where ν ∼ Ncl is very large. Then as long as Δν=ν≲ 1, the quantity (A8) is ∼ν2=2.
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