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We study the free massive scalar field in de Sitter spacetime with static charts. In particular, we find
positive-frequency modes for the Bunch-Davies vacuum state natural to the static charts as superpositions
of the well-known positive-frequency modes in the conformally-flat chart. We discuss in detail how these
modes are defined globally in the two static charts and the region in their future. The global structure of
these solutions leads to the well-known description of the Bunch-Davies vacuum state as an entangled state.
Our results are expected to be useful not only for studying the thermal properties in the vacuum fluctuations
in de Sitter spacetime but also for understanding the nonlocal properties of the vacuum state.
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I. INTRODUCTION

Quantum entanglement plays an important role in
quantum field theory in curved spacetime in some cases.
Thermal properties that appear in vacuum states in curved
spacetimes can be understood as a result of entanglement of
states in causally disconnected regions. The Unruh effect is
an example, which predicts that a uniformly accelerating
observer sees the Minkowski vacuum as a thermally excited
state with the Unruh temperature T, = a/2x, where a is
the acceleration of the observer [1-9]. The entanglement in
the vacuum state of a field is important not only for the
thermal nature' seen by a uniformly accelerating observer,
but also for the quantum radiation which appears as the
result of the Unruh effect [11-13]. The authors of
Refs. [11-13] demonstrated that the entanglement structure
between the states of the left and right Rindler wedges for
describing the Minkowski vacuum state is essential in
understanding the quantum radiation produced by a uni-
formly accelerating detector.

It is also well known that thermal properties appear in
the quantum field theory in de Sitter spacetime [14—18].
A detector at rest in de Sitter spacetime which is coupled
to the vacuum fluctuations shows the thermal excitation
with the Gibbons-Hawking temperature Tgy = H/2x,
where H is the Hubble parameter that characterizes de
Sitter spacetime [14]. This phenomenon can also be
understood in terms of entanglement between the states
in the two causally disconnected static regions [8,19,20].

ISee Ref. [10] for a recent critical discussion of the Unruh
thermal bath.
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The entanglement structure of the vacuum states in de
Sitter spacetime is important for understanding not only
the thermal properties but also the quantum radiation
produced by a uniformly accelerating detector in de Sitter
spacetime [21]. This might also be important for under-
standing the nonlocal properties and the quantum entan-
glement entropy of quantum field theory in the vacuum
states in de Sitter spacetime [22—28], which might provide
us with some insight into relativistic quantum information
[29-32] and holographic gravity dual theories.

In this paper we clarify the global properties of the
positive-frequency modes, which lead to this entanglement
structure in the Bunch-Davies vacuum state [14,15,33,34]
in de Sitter spacetime. In particular we construct positive-
frequency modes suitable for this purpose in the region to
the future of the two static charts, which are then analyti-
cally continued to the static charts. (See Fig. 1 for a Carter-
Penrose diagram of de Sitter spacetime.) These modes are
analogous to the positive-frequency modes in Minkowski
spacetime natural to the two Rindler wedges [3,11]. Then
we use the globally-defined positive-frequency modes thus
obtained to understand the entanglement structure of the
vacuum state in de Sitter spacetime.

The rest of the paper is organized as follows. In Sec. II
we summarize the relations between the mode functions
in Rindler wedges and those constructed in the future
region described by the expanding degenerate Kasner
universe, which are connected by analytic continuation.
In Sec. III we summarize various coordinate charts of de
Sitter spacetime that we use in this paper. In Sec. IV we
construct positive-frequency modes for the Bunch-Davies
vacuum state in the future region as superpositions of
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FIG. 1. Conformal spacetime diagram of de Sitter spacetime.
The R-region and the L-region are described by static chart, while
the future F-region is describe by an expanding universe (see
Sec. IID).
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FIG. 2. Relations among modes in the R-, F- and L-regions.
The functions v and v% are the positive-frequency mode
functions in the R-region and the L-region, respectively. The
function ulf is the positive-frequency mode function of the global
spacetime, which is obtained by the analytic continuation from
the R-region to the F-region. The functions v _; and v%_, denote
mode functions in the F-region, which behave as the left-moving
wave mode and the right-moving wave mode, respectively,
near the horizon. The modes v/ _, and »}_, continued into the
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analytic continuation of vﬁ into the L-region yields e™"”

R-region and the L-region yield 111; and v~ ), respectively. The
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the well-known positive-frequency modes in the confor-
mally-flat chart, also known as the Ponicaré chart that
contains the future region. In Sec. V we analytically
continue these positive-frequency modes to the left and
right static charts, and in Sec. VI we use this result to
derive the expression for the Bunch-Davies vacuum state
as a state with entanglement between states in the right
static chart and those in the left static chart. We also study
analogous entanglement for the a-vacua [35,36] and find
the entanglement entropy of a pair of modes consisting of
entangled states. We find that the entanglement entropy
does not depend on the mass of the field, contrary to the
previous works with two open charts [22,27,28].

II. SUMMARY OF ENTANGLEMENT STRUCTURE
IN MINKOWSKI SPACETIME

We first review the relationship between the mode
functions for scalar field of mass m constructed in
Rindler spacetime and those in the expanding degenerate
Kasner spacetime as presented in Ref. [11]. Then we present
the well-known expression of the Minkowski vacuum state
as an entangled state, which is a consequence of this
relationship. This review will be useful for understanding
the relationship between the mode functions of the scalar
quantum field in the static charts and those in the future
region of de Sitter spacetime. For simplicity we consider
2-dimensional Minkowski spacetime with cartesian coordi-
nates ¢ and z. (In 4-dimensions the sector with transverse
momentum k| is equivalent to the 2-dimensional counter-
part with m changed to \/m? + k3 .)

We first summarize the coordinate systems we use for
each region of spacetime:

(i) the right Rindler wedge (R-region, [f| <z): t =

essinhz, 7z = e coshr;

(ii) the left Rindler wedge (L-region z < —|t|): ¢ =

e¢sinh%, 7 = —e* cosh 7;
(iii) the future degenerate Kasner spacetime (F-region,
t>|z]): t = e"cosh(, z = €' sinh (.
Thus, we are using the units such that the acceleration of
the world line £ =0 is 1. (It would be straightforward
to include the past degenerate Kasner spacetime for the
analysis in this section [11].)

Let us recall that the Klein-Gordon inner product
between two complex solutions f, and fp of the scalar
field equation, (V,V# —m?)f = 0, in the spacetime with
the metric

ds> = =N?dt> + G, dx“dx", (1)

is defined by the following integral over the hypersurface
with constant :

G — _
(fas fB)kG = i/d%%(f/aaofg—fz;aoffx)- (2)

(See, e.g., Ref. [6].) This inner product can readily be
shown to be time independent. It is well known that the
following mode functions defined in the F-region form a
complete set of positive-frequency solutions [8,37-39]:

(me")e~ir<, (3)

where p takes all real values. Here x; = (,¢), and the
coordinates # and ¢ are the time and space coordinates,
respectively. (See, Fig. 2 for the relations among the mode
functions introduced in this Section.)
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The functions ulf (xr) can be shown to be superpositions

of the positive-frequency solutions for the Minkowski
vacuum as follows (see, e.g., [40]). We use the integral
representation for the Hankel function [41],

1 [oo ) a-+ pf\ir/?
— dpe~ifr | L
2i /_oo pe <a - ﬂ>

—iacosh C+iffsinh C _

e
. 2
x e ?PHE) (o = f2)112), (4)
with @ = mt, f = mz and K = arcsinh(k/m), to find
' ) 1 [ i t+z\ir/2
—lwgt+ikz _ d —ikp
¢ 2i /_m be <t - z)
X e”P/zHE? (m(2 = 2)1/?), (5)

where @, = mcosh K = Vk* + m?. The variable  has an
infinitesimal negative imaginary part so that the condition
Im(a+ ) <0 for the validity of Eq. (4) is satisfied. If
we use the coordinates (#,¢) introduced in the F-region,
we have

e—iwlirikZ —
2i J_

:\/5/_ dpe™rul (xp), (6)

where we have used e‘”p/zHg)p (me") = e”P/ZHl(»i) (me') =

e”|p‘/2H,(-|2,3\ (me') and let p — —p. This equation can readily

l/ dpe"’cl’e’PCe”I’/zH< >(me’7)

be inverted as

xF f —ilee—iwkt+ikz’
47za)k

where we have used dKC = dk/w;. Thus, the mode functions
uf; (xg) are superpositions of the positive-frequency mode
functions e~z for Minkowski vacuum and vice versa. It
is also well known that the functions u}, (xz) are normalized
so that

()

(. ke = 8°(p = p')- (8)

As aresult, if the quantum scalar field ¢(x) is expanded as.

b= / " apluf ()b, + B (9)

then one finds [b,,, 13;,} =o6°(p—p')and [b,.b,] = 0.
The Minkowski vacuum state |0),, is defined by

Bp|0)M = 0 for all p. This fact can be shown as follows.
|

MH)()C) — 1
I P A/ 1—e=27IP|
up(xr) =g |
up (x) = =y

TABLE 1. Analytic continuation for the coordinate variables
between the R-region, the F-region and the L-region, in Min-
kowski spacetime.

F < R
F< L

{=1+71,
{=-1-%i,

=
I
Pt P
ol ol

If we expand the quantum scalar field ¢ in the standard
way as
,\ e~ it tikz AT Jiwgt—ikz 10
b= |7 e g, (10)
then the Minkowski vacuum state is defined by the
requirement that ¢,|0),; = O for all &, as is well known.
By substituting Eq. (7) into Eq. (9) and comparing the
result with Eq. (10) we find

(11)

1 & A
¢, = d _llcpb .
= oz | 0
On the other hand, if we substitute Eq. (6) into Eq. (10) and
compare the result with Eq. (9), we obtain

b / o dk
P o 2wy,
Thus, the two conditions, (i) &;]0)y =0 for all k and
(ii) b »[0)y =0 for all p, are equivalent. Hence, the
Minkowski vacuum state can be defined by condition
(ii) as well as by condition (i), which is the standard one.
The analytic continuation of the positive-frequency modes
u,(xp) to the R- and L-regions is performed in such a way

that the Minkowski time coordinate ¢ has an infinitesimal
negative imaginary part. (This is because the factor

ei’Cpék.

(12)

e~V R for positive-frequency modes should be regular-
ized by letting t — ¢ — ie, € > 0, so that any k-integration
involving them converges for large |k|.) As a result
(? — 22)* = ¢*™ in the F-region must be analytically
continued to e~"%(z? — 2)* = ¢2*¢=%) in the R-region,
and similarly for the L-region. This observation leads to
the rules for analytic continuation given by Table I. We use
this table and the formula

K, (z) = —%le_%”iH,(,Q)(ze_%i), —g <argz <z, (13)
with z = mé& or mé and with v = +ip, to continue the
solution uf(xy) given by Eq. (3) to the R- and L-regions.

Thus, we find the following results [1]:

R(x) + e7"PloL(x))  for p > 0,

(v (x) + e‘”‘mv";‘(x)) for p <0,
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where x = xi = (r,¢) if x is in the R-region and x = x; = (%,¢) if x is in the L-region and where, for p > 0,

sinh(z ; . .
ﬁw:{vjmkMMVWIM>M(K@mL 1s)
0 if z < —|7| (L-region),
0 if z> |tf| (R-region),
vh(x) = . . (16)
. VIR e, (mE)e P if z < —|t]  (L-region).
|
(We have made the arrow left-pointing to indicate the 5 F Y A 7 0 r
direction of time evolution.) Note that, in each of these (vp Up’)KG =1 . dg | v, (n ’é’)a_nvp’ ()
regions, the coordinates z (7) and & (&) are the time and o
space coordinates, respectively. - —vb(n.¢)- vﬁ (n,¢ )] . (22)
It is interesting to find the mode functions in the F-region I

that are obtained by evolving the right and left Rindler
modes, v (x) and v%(x). It is important to note that they are
not obtained by analytic continuation because v%(x) and
v5(x) are not analytic functions, being 0 on open regions.
Instead we use Eq. (14) and its complex conjugate in

reverse with the observation that, with p > 0,

o) = e 0 (3) = T (0] = 0 )
=) — e G (17)

oh(3) = i 7 () = e ()] = o8 )
=l ) — ) (18)

Thus, we obtain [38]
i

—————J i, (meMe= ¢, (19
2/sinh(z|p|) pi(me”) (19)

vﬁ(xp) =

where we have used

Lol 2
T-ipl(v) = 5 [P HD () + Hip\ ()] for y real. (20)

It is clear from Eqs. (17) and (18) that the modes v} (xf),
which we call the Kasner modes, satisfy (v}, 0% )xq =

8P(p — p’) for all real p and p’. (Note that (“_5’ M_Z’)KG —
—6”(p—p') and that (E, ”5/)KG =0.) This fact can

directly be verified from Eq. (19). First we note, using
the metric,

ds* = e¥(—dn* + dZ?), (21)

that the Klein-Gordon inner product between these modes
is given by

The integral can readily be evaluated by noting that, near
the horizon, i.e., for large and negative #, we have from
Eq. (19)

F( ) I 1 (me”) i —ip¢
v, (Xp) & — - . - — e
b 2/sinh(z|p]) T(1—ilp|)\ 2
— ;g—i\pln—ipﬁi&v, (23)

\faa|p]

where

We have used

T - ip)p = 7!

= Sin(alp]) (25)

Notice that the modes v (xp) are purely left-moving if
p > 0 whereas they are purely right-moving if p < 0.

Now we can use the relations (14) or (17) and (18) to
examine the entanglement structure of the Minkowski
vacuum state |0),;. We expand the scalar field ¢(xz) in
the F-region in terms of v} (xy) as

Pxr) = / ® dplo(xp)a, + )AL (26)

00

By Eqgs. (17) and (18), in the union of the R- and L-regions
Eq. (26) becomes

) = / ® dplvR(x)a, + vh(x)a_, + R@)a;

+ vk (x)al,). (27)

By comparing Eq. (9) with the expression obtained by
substituting Eqgs. (17) and (18) into Eq. (26), one finds
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1
1 —_ 6_2”|P‘

S
I

(a, —emPlal,), (28)

for all p. Thus, the condition on the Minkowski vacuum
state, BP|O>M = 0 for all p, becomes

(a, —e"Plal,)|0)y = 0. (29)

Then, defining the Rindler vacuum state |0)g;, by the
conditions &,|0)g;, = 0 for all p, one finds that condition
(29) leads to

0) = Aexp ( / dpe-ﬂpa;aip)\om (30)

where N is an (infinitesimal) normalization factor.
Heuristically, if we approximate this formula by discretiz-

ing the momentum so that [A o A;,] Opp» Where A, o a

pp' P’
then it is approximated as
M _NHZ n! ' n Aip) |0>R1n
p>0 n=
—NHZ P p.n) my o (31)
p>0 n=

where |p,n)y (|p,n),) are the n-particle states of the right
(left) Rindler mode v% (x) (v5(x)). Thus, as is well known,
the Minkowski vacuum state is an entangled state in terms
of the left and right Rindler states. One can also consider it
as a state with entanglement between the states correspond-
ing to the modes v} (x) and vf,(xz) in the F-region.

III. VARIOUS CHARTS OF DE SITTER
SPACETIME

In this section we list coordinates for various charts of de
Sitter spacetime used in this paper. This spacetime is the
maximally symmetric solution of the Einstein equations
with a positive cosmological constant A = 3H?. It can
be described as a 4-dimensional hypersurface in the
5-dimensional Minkowski spacetime with cartesian coor-
dinates z#, u = 0, 1, 2, 3, 4, with the line element

ds? = =(d2")? + (dz2')? + (d2)? + (d2°)* + (dz*)%.
(32)

The condition that gives de Sitter spacetime is
("2 + () + (@) + (2 + () = 7 (33)

We adopt the units such that H = 1 from now on.
(1) The right conformally-flat chart describes the region
with —z! < z°. The coordinates are 7z, g, 6, and ¢,
where

Jj=2,3.4, (34)

with (72,73, 4*) = (cos @, sin O cos ¢, sin O sin @),
—o0 <np <0and 0 < rp.

(i) The left conformally-flat chart describes the region
with z' < z°. The coordinates are 7, , r;, 6, and ¢,

where
1 1 r?
2= (__+77L ——L>
2 nL nL

1/1 r?
Zl = < +1nr - —L>
2 nL nL

d=-"Lai,  j=234, (35)
nL
with —co < <0 and 0 < ry.
(iii) The right static chart describes the region where
|z°| < z! (the R-region). The coordinates are T4, R,

0, and ¢, where
=4/1=RisinhT,, z!'=4/1—RicoshTy,,

:RAﬁj, j:2a374a (36)

with —co < Ty < o0 and 0 < R4 < 1. This chart is
part of the right conformally-flat chart and their
coordinates are related by
Ry = _Ir e Th=\/nr =15 (37)
nMr
(iv) The left static chart describes the region where z! <
—|z°| (the L-region). The coordinates are T;, R, 6,

and ¢, where
=4/1=R3sinhT;, z'=-4/1—RjcoshT,,

=R, j=2.3.4, (38)

with —co < T; < o0 and 0 < R; < 1. This chart is
part of the left conformally-flat chart and their
coordinates are related by

RL:—r—L, e Tv=y/m—r1. (39)
nL

(v) The future region is the region where z° > |z!| (the
F-region). The coordinates are Ry, Ty, 6, and ¢,

where
2 =4/Ry—1coshTy,  z! =y/R%—1sinhTy,
=R/,  j=2,3.4, (40)
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with 1 < Ry < 00 and —o0 < Ty < oo. This region
is the intersection of the left and right conformally-
flat charts. The coordinates for these charts are
related as follows:

Ry—_TE_ L
nMr nL
1
e_TB:\/F%—T’]%:ﬁ. (41)

rL—ng

The line element (32) is given in the left or right
conformally-flat chart as

1
e

ds* = — (=di’ +dr’* + r°dQp,),  (42)
where (r,n) = (rg,ng) or (rz,n; ). The line element
of the unit 2-sphere is denoted by dQ<Z2> here. In the

left or right static chart, i.e., in the R- or L-region, it
is given by

R2
ds? = —(1 — R})dT? + d—2 + R*dQ?

1=R (2)° (43)

where (T,R) = (T4, R,) or (T, Ry). Finally, in the
F-region, we find
dR?
R% -1

ds? = + (R} = 1)dT% + R3dQ%, . (44)

@)

In this paper we study the relationship between solutions
of the scalar field equation, (V”V” —m?)¢ =0, in these
charts. In any of these charts the line element takes the
form,

ds? = ~[N(p. ) d* + [M(p. )P dp? + [K (p. )20,

(45)

In all cases the complete set of solutions to the scalar field
equation can be given as

l//lcfm(tvpvg?(p) = (pkf(t’p)yfm(eﬂ (,0), (46)

and v, (2, p, 0, @), where k is a continuous label. The
Klein-Gordon inner product is

(l//Kfmv WK’L”’m’)KG =—i / dpded(p\/ _g[l//lcfmatl//x’f’m’
- 6tl//lcfm : WK’f’m’]' (47)

By the orthonormality of the spherical harmonics Y, (6, ¢)
we find

(l//mf’m’l//K’t”m’)KG = ((pmf’ ¢K’f)RKG5ff'5mm’- (48)

where (*, *)gkg is the radial Klein-Gordon inner product
defined by

2
(Pues Pt )rrG = i/dp%

% |:— afpk’f _ a@

(pKfT ot Py |- (49)

Thus, if we normalize the functions ¢, (p,?), which
we call the temporal-radial part of w,.,(t,p,0,¢), by

(@er @eerec = 0P (k =) [and  (@rr. Poz)rkc = O,
and if the quantum field ¢(z,p, 0, ) is expanded as

$0.0.0.0) = [ A3 (1.0.0.0)de

‘m
+ kam(t’ P> 9, (p)&ifm]’ (50)
then [d sy, d.

") = 6P (k — k)80 8y with all other
commutators vanishing.

IV. POSITIVE-FREQUENCY SOLUTIONS FOR
THE BUNCH-DAVIES VACUUM IN
THE FUTURE REGION

In this section we present the positive-frequency modes
that are natural to the F-region for the scalar field of mass m
with no coupling to the scalar curvature for the Bunch-
Davies vacuum. It is well known that a complete set of
positive-frequency modes for the Bunch-Davies vacuum is
given in the right conformally-flat chart by

Wiem (MR TRy 0. 0) = @re(rR.MR)Y e (0, @), (51)
where

e 30+ 3 iy o(1) :
e (TRoNR) = W(—kﬂR)feTHu (=kng)je(krg),

k>0, (52)

o o

Thus, if we expand the quantum scalar field ¢ as

¢ = A de[l//kfm(nR’ rR90’ (p)ékfm
Z.m

with

+l//kfm(’1R’ rR769 (p)éltfm]’ (54)
then the Bunch-Davies vacuum state |0)pp is defined by
requiring that ¢y, |0)gp = O for all k, £ and m. It is also
well known that they satisfy (¢z, @ps)rrg = 6 (k — k')
(see, e.g., Ref. [17]). By using the formula [41]2

*Originally, the mathematli)cal formula is given with the use
of K,(ax) instead of H (az), but they are related by

K, (ax) = mie™/2HY (iax)/2.
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/00 dzleﬁl)(az)Jﬂ(bz)

0
2'(b/a)
al'(u+1)

XF</1+1/+/4—|—1>F</1—1/+;4+1>

— g1 pvp)in/2

2 2

A+v4+p+1 A-v4+pu+1
2F1 2 5 2 5

1; (b/a)2> ,
(55)

which is valid for Re(—ia £ib) > 0, Re(u+1+1+£v)
>O,With/1:—ip,/4:f+%,a:—n,b:randwithz/
given by Eq. (53) and with the assumption that rp < —7z
for now, we find

1 o0 )
\/—Z_IIA dkk_lp_%(Pkf(’?Ra rr)

_ 2-ip F(§+f—ip+u>r<§+f—ip—u>
- 2V2al(¢ +3) 2 2

x ¥ ((=ng)? = r3)2U| (= 7w /18), (56)
where
S r\p\ +f+l\p\+1/
Ufpff(x) “(1-x2) <
3 7 _
5+ +l|p| v t > (57)

We have used the formula

SFi(a,b,c;7) = (1 =2) P F (c—a,c—b,c;z) (58)
for p > 0. This formula can also be used to show that the
function U),|,(x) is real if 0 < x < 1. Note that the variable
ng must have an infinitesimal negative imaginary part for
the validity of Eq. (56) because of the condition Re(—ia +
ib) > 0 for Eq. (55).

Since the function ¢, (g, rg) are (the temporal-radial
part of) positive-frequency modes for the Bunch-Davies
vacuum, so is the right-hand side of Eq. (56) (in the
R-region). In order to find the expression for this function
in the F-region, we need to examine how it should be
analytically continued from rp < —np (R-region) to rz >
—ng (F-region). To do so, we use the fact that the variable
ng must have an infinitesimal negative imaginary part for
the integral in Eq. (56), as we mentioned above, so that
the k-integral converges. This implies in particular that
[1 — (=rg/ng)*]* with rg < —ng should be continued to
e [(=rg/ng)?* — 1]%. By performing this analytic continu-
ation in Eq. (56) and using Eq. (41) we find

1 o0 o o
\/—Z_ﬂA dkk™"P =gy (g, rg) = 277 i}, (Rp. T),

(59)
where
ol i
(RB7TB) =e 2 prU\p\f(RB)e PTs, (60)
with
1 Syl -ip+v
s 5)
2V2al(¢ +3) 2
3 .
34 f—ip—
xr<%> , (61)
and
4 l—iptuy At e—ip—1\ 7 1/2
e = [P( I )] (62)
34 l+iptv 34 l+ip—v '
PECE P E)

The label p can take any real value. Note that the coordinate
Ty is a spatial coordinate in the F-region [see Eq. (44)].
Here, we have defined
3 .
ilpl s+ +1ilpl+v
U\PI/(RB) = RK( -1)>, ; <2f’
3 .
s+ +ilpl—v 3
2 . p2
) f A R . 63
5 + 5B (63)
Thus we have shown that Eq. (59) can be derived from the
mathematical formula (55) with the assumption that rp >
—1ng, 1.€., in the F-region. (The mode functions uIF,f(RB, Tg)
are proportional to those found by Markkanen [20] for
m? = 2, but our normalization factor is different from his.3)
One can also invert Eq. (59) as

1
(pkf(nerR)_\/m/ dpklpz ip l{ipu (RB9TB)ﬁ (64)
by using
1 © kN ip
T~ dp<P> —P(K —k).  (65)

Thus, the functions u},

(xg)Y £, (0, @) are superpositions of
the positive-frequency  solutions ., (11x, 7z, 0, @) =
@re(Mrs TR)Y 2 (0, @) for the Bunch-Davies vacuum, and

vice versa.

0Our normalization factor disagrees with that of Eq. (95) in

Ref. [20] by a factor of 1/V1 — =27/,
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Let us expand the field in the F-region as

/dp

+—u;;<xF>Yfm<e,¢>é;fm}. (66)

¢<XF707 (P) xF Yfm(g (p)bpfm

Then, Egs. (59) and (64) imply, as in the Minkowski case,
that the condition for the Bunch-Davies vacuum state,
Creml0)gp =0 for all k, £, and m, can be given as
bpem|0)gp = 0 for all p, £, and m.

We note that, since the field equation depends on £ only
through #(¢ + 1), which is invariant under £ < —¢ — 1,
another solution can be obtained by replacing U\,
(Rp, Tp) in the expression of u?,(Rp, Tj) by

1 .
e i s—=C¢+ilp|+v
W\plf(RB) :RBK I(R 1) o F (zf
L—¢+ilp|-v 1
CEERE L —— R% 67
3 > (67)

We find (u pf,up,f) KG = =6P(p — p’) from Eq. (59) by
using (¢z, e )xg = 6P (k — k') and the formula
o dk

_ T rilp'-p) — §D
2”0 AL &(p = p'). (68)

We can express (the temporal-radial part of) the mode
functions, ul‘?f(RB, Tg), in terms of the positive-frequency
modes @,,(n,.7,) in the left conformally-flat chart in
exactly the same way. Thus, we have

1 o ) o
\/—Z—[A dkklp_%(/’kf('lL’rL):zlpel(s_p“ﬁf(RBsTB)- (69)

Finally, let us emphasize that the analytic continuation
from Rz < 1 to Ry > 1 of the hypergeometric function in
the definition (63) of U, ,(R) is not unique and that it had
to be specified as described before Eq. (59). The function
U)p|¢(x) is not real for x > 1 although it is for 0 <x < 1.
These facts can be made clearer by expressing it in terms of
hypergeometric functions with argument 1 — R with the
use of the following formula:

I'(c)I'(c—a-D)
I'(c—a)l'(c—b)
x,Fi(a,b,a+b—-c+1;1-72)
I'(c)l'(a+b—-c)
['(a)T'(b)
c—b,c—a-b+1;1-7z).
(70)

2Fi(a.b,c;z) =

+ (1 _ )c—a—b

X, Fi(c—a

Thus, we find

[(¢ +3)0(i|p])
= emlrl
U\plf(RB> F(2+f+t\p|+u)r(5 f+z\p| ) "V\pm(RB)
D(¢ + (= llpl) —
(2+f IIPH’I-/) (7+f—i|p‘—y) V‘p‘f(RB)’ (71)
2
where
3 .
o, (A E—ilpl v
Vipe(Re) = Ry - 14, (ZLEZ P
3 .
247 — —
%,l—im;l—@;). (72)

There is no ambiguity in the hypergeometric function here
because it is analytic for all positive Rg. The relation (71)
can readily be inverted as

F(%+t’+é\p|+v)r(%+f+2i\lf|—”>
2sinh(z|p|)T(¢ + 2)T(i|p|)
X [UIP\K(RB) - e_”‘p‘U\ﬂlf(RB)]' (73)

V\p|f(RB) =

V. RELATIONSHIP BETWEEN THE MODE
FUNCTIONS IN THE STATIC AND
FUTURE REGIONS

In this section we analytically continue the positive-
frequency mode functions u Iljf (Rg, T) found in the previous
section to the two static regions, the R- and L-regions. By the
observation made in the previous section about the analytic
continuation, i.e., (1= (=rg/ng)*)* = ™ ((=rg/ng)*—1)*
and the formula (1—(=r/n.)*)* = ™ ((=ry/n.)*=1)%,
which can be derived similarly, we arrive at the rules stated in
Table II. Using these rules, we find

zlp|

e_TU\Plf(RB) Pt (Fregion)
S

where the functions U, ¢(x) for x > 1 and U|< ‘)f( ) for0 <

x < 1 are defined by Egs. (63) and (57), respectively. Hence,
from Eq. (60) we readily find

TABLE II. Continuation of the coordinate variables from F
region to R and L regions, in de Sitter spacetime.

F< R TB:TA+%i’
Fol Tp—

RB = RA, R% -1= e"”(l —Ri)

_TL_%I', RB :RLa R%_l :e_”i(l_R%),
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ME;;) ('x) = m( pf( ) + e_”‘plvf;f(x)) for p > 0,
e (¥F) = (=) 1 L AplR (o) (75)
Uy (X) = \/l—e’T""(U‘pM(x) +e Pyl (x)) for p <0,
where, with p > 0,
S) —ipT,y oo
v,’ff(x) _ 2 smh(ﬂp)Nng‘plf(RA)e p in the R-region, (76)
0 in the L-region,
; 0 in the R-region,
= . 77
Vpe () 2 Slnh(”p)prUlp‘)f( 1)e”PTL in the L-region. (77)

The Klein-Gordon normalization (v}, v%,)xc = (v},
vh ke = 6°(p = p') follows from Eq. (75) and
(p. )k = 8°(p = p'). The modes vff ,(x) coincide
with the normalized mode functions in the right static chart
in the literature [17] up to a phase factor as they should.
In exactly the same manner as in the Minkowski case we

find with p > 0 [see Eqgs. (17) and (18)]

Uﬁf (x)— vﬁf (xr) ’=ﬁ [Hﬁf(xﬁ) - e_”pufp,f(xF)] ]
(78)
Vpe(x) = vf, (xp)
= o) - o).
(79)

By substituting the definition (60) of u}(xz) here and
comparing the resulting formulas with Eq. (73) we find

1 its i
”Zf(x) = —4”|p| e (a‘P‘+6‘p‘)le‘f(RB)e PTy, (8())

—o0

[Se]
F F __ip2
(Ve Up/f>RKG = —’RB/

LT [W

2/p|

where we have taken into account the fact that
the coordinate Rp, decreases towards the future. This
inner product can be evaluated near the horizon, i.e.,
in the limit Rz — 1 (i.e., Rp, — o0), by noting that in
this limit

where we have defined the phase factor e%» by

T o
T(ip) = | —————e. 81
(ip) |p|sinh|p|° ®1)

It is clear from the construction of v[ff (xg) that they are
normalized by the radial Klein-Gordon inner product, but it
is also easy to verify this fact directly by examining the
behavior of these modes near the horizon. First we note that
by introducing the coordinate Ry, as

RB = coth RB*’ (82)

the line element of de Sitter spacetime in the F-region,
Eq. (44), becomes

ds> = (R} = 1)(=dR}, + dT}) + R3dQY, . (83)

The radial Klein-Gordon inner product is

dT {vﬁf(RB, Tp)

avg,,f(RB,TB)_ava .
ORp, OR,,  lremls
av f(RB,TB) dm
‘pIdRB - Z}QB Vipie(Rp) | (84)
[
V‘plf(RB) (2RB)_TP ~ 2_1‘[7'@ ‘P‘RB*' (85)

Thus we indeed obtain (v}, v}, )rxg = 6”(p = p'). We
also find from this equation that
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F ~ i(8,4+6,—|p|log?2) ,i|p|Rg.—ipT,
vpf(RB‘TB)N el( pTOp ‘pl g )el“" B«—IPLp (86)

\/4z|p|

Thus, the mode functions vgf(RB,TB) are purely left-
moving (right-moving) for if p > 0 (p < 0).

VI. ENTANGLEMENT STRUCTURE OF THE
BUNCH-DAVIES VACUUM AND
ALPHA-VACUA

Notice the similarity of the relationship between the
Minkowski positive-frequency modes and the Rindler
modes [see Eq. (14)] to that between the Bunch-Davies
positive-frequency modes and the modes in the static charts
[see Eq. (75)]. This similarity makes it straightforward to
write down a relation similar to Eq. (31) for the Bunch-
Davies vacuum.

We expand the scalar field as

Hx0.9)=Y / ® Ap[R, ()Y o (6.0)2pem

£.m
+ ”%f (x) Yfm (97 w)&—p,fm + /Ulpef (X) Yfm (6’ (p)&;f’m
+ 05 ()Y 2 (0.90)0L 4, (87)

in the union of the R- and L-regions. Then, the normali-
zation conditions for the mode functions imply that
[apfm’ &;/f’m’} = [bpfrm bI‘)/f’m’] =8"(p = p')8sp 8y With
all other commutators vanishing. Recall that the Bunch-
Davies vacuum state |0)gp, is defined by the condition that
Bpfm|0>BD =0 for all p, #, and m, where the operators

b ¢ were defined by Eq. (66). We define the static vacuum
state |0)g by @ ,4,|0)s = O forall p, #, and m. Then we find

0} = Nexp (Z / dpe-”pa;mai,,.fm)|0>s. (88)
Z.m

By discretizing the label p, we can write this expression
heuristically as

0)pp o H ze_"p"|mev”>R ® |ptm,n),

p>0,,m n=0

(89)

where |p£m, n)g and |p£m, n); are the n-particle states for
the modes v[’ff(xR)Y em(0, @) in the right static chart and
véf(xL)Yfm(H, @) in the left static chart, respectively.
Again, it is possible to view this state as a state with
entanglement between the states defined in the right and left
static charts.

Next we consider the a-vacuum state [35,36], which is
introduced by adopting the following mode functions in the
F-region as the positive-frequency modes:

ugf(xB>Yfm(9v ®)

= [cosh aul,(xg) + e sinhau® , ,(xp)]Y (0, 9).  (90)
We shall express the a-vacuum states |0), as states with
entanglement between the states in the right and left static
charts. By inverting Eq. (90) and substituting the result into
Egs. (78) and (79), we find

U;P;f(xB) = “pugf(xB) + pU" (xp), (91)
where
ap = m (COSha + e‘”""e"p Sinh a),
1 .
B, = ————/(e"sinha + eI cosh ). (92)
1 j— e_Zﬂ‘p‘

Proceeding in the same manner as in the case for the
Bunch-Davies vacuum, we find that the a-vacuum is
expressed in terms of the static vacuum as follows:

|0>a = Nexp |:A dpy[’ (a’ 6)&Lfmaipfm |0>(v)

[Se]

« [ Y (@0 |ptm.n)s ® | = p.em. ns.
p>0,/m n=0
(93)
where y,(a,0) = —f,/a,, p > 0, is given by
e~ sinha + e " cosha
Vp(% 0) - (94)

cosha + e e @sinha

The entanglement entropy for a pair of the mode with
given values of p > 0, £, and m is

S, = =Tr[p(p)logp(p)] = —log(1 = |,[?)

Iy,
————>log |7
1 - |7/p|2 P

? (95)

where p(p) is the density matrix obtained by tracing out the
states with p < 0 or, equivalently, the states in the L-region.
Fig. 3 shows the behavior of the entanglement entropy S,
as a function of p and @. We have chosen 8 = 0, but the
behavior is similar for other values of @ unless 8 takes
values around z. This result can be compared with the
previous works which computed the entanglement entropy
in de Sitter spacetime with the two open charts [22,27,28].
The entanglement entropy for the Bunch-Davies vacuum
state, which is computed with the two static charts, is
obtained by the usual thermal density matrix. As is clear
from Egs. (94) and (95), the entanglement entropy for the
general a-vacuum state does not depend on the mass of the
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FIG. 3. 3D plot of s, as function of p and a with 6 = 0.

scalar field, contrary to these previous works with the two
open charts. The radius of the spherical surface that divides
the spatial slice into two regions is the Hubble radius for the
static charts, while it is much smaller than the spherical
radius for the open charts. There also exists a region of
width of the Hubble radius between the two open charts
[42]. It is possible that the difference between our result and
those of Refs. [22,27,28] could be explained by these facts
and the fact that the entanglement entropy is observer-
dependent in general.

VII. SUMMARY AND CONCLUSIONS

In this paper we investigated the noninteracting massive
quantum scalar field in de Sitter spacetime, focusing our
investigation on the description of the vacuum state as an
entangled state between the states constructed in the static
charts. To demonstrate such a description from first
principle, we constructed positive-frequency modes for
the Bunch-Davies vacuum state in the region to the future
of the two static charts of de Sitter spacetime. These
positive-frequency modes have global properties similar
to those of positive-frequency modes in Minkowski

spacetime, which was studied in detail in Ref. [11]. The
global properties of these modes led directly to the well-
known characterization of the Bunch-Davies vacuum state
as a state with entanglement between the states in the two
static charts. This characterization will be useful for
understanding not only the thermal behavior in vacuum
fluctuations but also nonlocal properties of the quantum
field in de Sitter spacetime. As an application of this
entanglement structure we computed the entanglement
entropy of a pair of the modes which are entangled in
the a-vacuum. We found that this entropy does not depend
on the mass of the field, contrary to the results with the two
open charts in the literature.

The description of the Minkowski vacuum state as an
entangled state between the two Rindler wedges is known
to be useful for understanding the quantum radiation
produced by a uniformly accelerating detector coupled
to vacuum fluctuation of a field in Minkowski spacetime
[11], which will be important for testing the Unruh effect.
A similar quantum radiation has been discovered in the
model consisting of a uniformly accelerating detector
coupled to vacuum fluctuation of a field in de Sitter
spacetime [21]. It has been shown that there exists a similar
theoretical structure in the formulas for the quantum radi-
ation in Minkowski spacetime and de Sitter spacetime. The
results in the present paper will be useful for understanding
the origin of the quantum radiation in a similar context.
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