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We study the free massive scalar field in de Sitter spacetime with static charts. In particular, we find
positive-frequency modes for the Bunch-Davies vacuum state natural to the static charts as superpositions
of the well-known positive-frequency modes in the conformally-flat chart. We discuss in detail how these
modes are defined globally in the two static charts and the region in their future. The global structure of
these solutions leads to the well-known description of the Bunch-Davies vacuum state as an entangled state.
Our results are expected to be useful not only for studying the thermal properties in the vacuum fluctuations
in de Sitter spacetime but also for understanding the nonlocal properties of the vacuum state.
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I. INTRODUCTION

Quantum entanglement plays an important role in
quantum field theory in curved spacetime in some cases.
Thermal properties that appear in vacuum states in curved
spacetimes can be understood as a result of entanglement of
states in causally disconnected regions. The Unruh effect is
an example, which predicts that a uniformly accelerating
observer sees the Minkowski vacuum as a thermally excited
state with the Unruh temperature TU ¼ a=2π, where a is
the acceleration of the observer [1–9]. The entanglement in
the vacuum state of a field is important not only for the
thermal nature1 seen by a uniformly accelerating observer,
but also for the quantum radiation which appears as the
result of the Unruh effect [11–13]. The authors of
Refs. [11–13] demonstrated that the entanglement structure
between the states of the left and right Rindler wedges for
describing the Minkowski vacuum state is essential in
understanding the quantum radiation produced by a uni-
formly accelerating detector.
It is also well known that thermal properties appear in

the quantum field theory in de Sitter spacetime [14–18].
A detector at rest in de Sitter spacetime which is coupled
to the vacuum fluctuations shows the thermal excitation
with the Gibbons-Hawking temperature TGH ¼ H=2π,
where H is the Hubble parameter that characterizes de
Sitter spacetime [14]. This phenomenon can also be
understood in terms of entanglement between the states
in the two causally disconnected static regions [8,19,20].

The entanglement structure of the vacuum states in de
Sitter spacetime is important for understanding not only
the thermal properties but also the quantum radiation
produced by a uniformly accelerating detector in de Sitter
spacetime [21]. This might also be important for under-
standing the nonlocal properties and the quantum entan-
glement entropy of quantum field theory in the vacuum
states in de Sitter spacetime [22–28], which might provide
us with some insight into relativistic quantum information
[29–32] and holographic gravity dual theories.
In this paper we clarify the global properties of the

positive-frequency modes, which lead to this entanglement
structure in the Bunch-Davies vacuum state [14,15,33,34]
in de Sitter spacetime. In particular we construct positive-
frequency modes suitable for this purpose in the region to
the future of the two static charts, which are then analyti-
cally continued to the static charts. (See Fig. 1 for a Carter-
Penrose diagram of de Sitter spacetime.) These modes are
analogous to the positive-frequency modes in Minkowski
spacetime natural to the two Rindler wedges [3,11]. Then
we use the globally-defined positive-frequency modes thus
obtained to understand the entanglement structure of the
vacuum state in de Sitter spacetime.
The rest of the paper is organized as follows. In Sec. II

we summarize the relations between the mode functions
in Rindler wedges and those constructed in the future
region described by the expanding degenerate Kasner
universe, which are connected by analytic continuation.
In Sec. III we summarize various coordinate charts of de
Sitter spacetime that we use in this paper. In Sec. IV we
construct positive-frequency modes for the Bunch-Davies
vacuum state in the future region as superpositions of

1See Ref. [10] for a recent critical discussion of the Unruh
thermal bath.
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the well-known positive-frequency modes in the confor-
mally-flat chart, also known as the Ponicaré chart that
contains the future region. In Sec. V we analytically
continue these positive-frequency modes to the left and
right static charts, and in Sec. VI we use this result to
derive the expression for the Bunch-Davies vacuum state
as a state with entanglement between states in the right
static chart and those in the left static chart. We also study
analogous entanglement for the α-vacua [35,36] and find
the entanglement entropy of a pair of modes consisting of
entangled states. We find that the entanglement entropy
does not depend on the mass of the field, contrary to the
previous works with two open charts [22,27,28].

II. SUMMARY OF ENTANGLEMENT STRUCTURE
IN MINKOWSKI SPACETIME

We first review the relationship between the mode
functions for scalar field of mass m constructed in
Rindler spacetime and those in the expanding degenerate
Kasner spacetime as presented in Ref. [11]. Then we present
the well-known expression of the Minkowski vacuum state
as an entangled state, which is a consequence of this
relationship. This review will be useful for understanding
the relationship between the mode functions of the scalar
quantum field in the static charts and those in the future
region of de Sitter spacetime. For simplicity we consider
2-dimensional Minkowski spacetime with cartesian coordi-
nates t and z. (In 4-dimensions the sector with transverse
momentum k⊥ is equivalent to the 2-dimensional counter-
part with m changed to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p
.)

We first summarize the coordinate systems we use for
each region of spacetime:

(i) the right Rindler wedge (R-region, jtj < z): t ¼
eξ sinh τ, z ¼ eξ cosh τ;

(ii) the left Rindler wedge (L-region z < −jtj): t ¼
eξ̃ sinh τ̃, z ¼ −eξ̃ cosh τ̃;

(iii) the future degenerate Kasner spacetime (F-region,
t > jzj): t ¼ eη cosh ζ, z ¼ eη sinh ζ.

Thus, we are using the units such that the acceleration of
the world line ξ ¼ 0 is 1. (It would be straightforward
to include the past degenerate Kasner spacetime for the
analysis in this section [11].)
Let us recall that the Klein-Gordon inner product

between two complex solutions fA and fB of the scalar
field equation, ð∇μ∇μ −m2Þf ¼ 0, in the spacetime with
the metric

ds2 ¼ −N2dt2 þ Gabdxadxb; ð1Þ

is defined by the following integral over the hypersurface
with constant t:

ðfA; fBÞKG ¼ i
Z

d3x

ffiffiffiffi
G

p

N
ðfA∂0fB − fB∂0fAÞ: ð2Þ

(See, e.g., Ref. [6].) This inner product can readily be
shown to be time independent. It is well known that the
following mode functions defined in the F-region form a
complete set of positive-frequency solutions [8,37–39]:

uFpðxFÞ ¼ −
i

2
ffiffiffi
2

p e
πjpj
2 Hð2Þ

ijpjðmeηÞe−ipζ; ð3Þ

where p takes all real values. Here xF ¼ ðη; ζÞ, and the
coordinates η and ζ are the time and space coordinates,
respectively. (See, Fig. 2 for the relations among the mode
functions introduced in this Section.)

FIG. 1. Conformal spacetime diagram of de Sitter spacetime.
The R-region and the L-region are described by static chart, while
the future F-region is describe by an expanding universe (see
Sec. III).

FIG. 2. Relations among modes in the R-, F- and L-regions.
The functions vRp and vLp are the positive-frequency mode
functions in the R-region and the L-region, respectively. The
function uFp is the positive-frequency mode function of the global
spacetime, which is obtained by the analytic continuation from
the R-region to the F-region. The functions vFp>0 and v

F
p<0 denote

mode functions in the F-region, which behave as the left-moving
wave mode and the right-moving wave mode, respectively,
near the horizon. The modes vFp>0 and vFp<0 continued into the
R-region and the L-region yield vRp and vL−p, respectively. The

analytic continuation of vRp into the L-region yields e−πpvLp.
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The functions uFpðxFÞ can be shown to be superpositions
of the positive-frequency solutions for the Minkowski
vacuum as follows (see, e.g., [40]). We use the integral
representation for the Hankel function [41],

e−iα coshKþiβ sinhK ¼ 1

2i

Z
∞

−∞
dpe−iKp

�
αþ β

α − β

�
ip=2

× eπp=2Hð2Þ
ip ððα2 − β2Þ1=2Þ; ð4Þ

with α ¼ mt, β ¼ mz and K ¼ arcsinhðk=mÞ, to find

e−iωktþikz ¼ 1

2i

Z
∞

−∞
dpe−iKp

�
tþ z
t − z

�
ip=2

× eπp=2Hð2Þ
ip ðmðt2 − z2Þ1=2Þ; ð5Þ

where ωk ¼ m coshK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The variable t has an

infinitesimal negative imaginary part so that the condition
Imðα� βÞ < 0 for the validity of Eq. (4) is satisfied. If
we use the coordinates ðη; ζÞ introduced in the F-region,
we have

e−iωktþikz ¼ 1

2i

Z
∞

−∞
dpe−iKpeipζeπp=2Hð2Þ

ip ðmeηÞ

¼
ffiffiffi
2

p Z
∞

−∞
dpeiKpuFpðxFÞ; ð6Þ

wherewe have used e−πp=2Hð2Þ
−ipðmeηÞ ¼ eπp=2Hð2Þ

ip ðmeηÞ ¼
eπjpj=2Hð2Þ

ijpjðmeηÞ and let p → −p. This equation can readily
be inverted as

uFpðxFÞ ¼
ffiffiffi
2

p Z
∞

−∞

dk
4πωk

e−iKpe−iωktþikz; ð7Þ

wherewe have used dK ¼ dk=ωk. Thus, themode functions
uFpðxFÞ are superpositions of the positive-frequency mode
functions e−iωktþikz forMinkowski vacuum and vice versa. It
is also well known that the functions uFpðxFÞ are normalized
so that

ðuFp; uFp0 ÞKG ¼ δDðp − p0Þ: ð8Þ
As a result, if the quantum scalar field ϕðxFÞ is expanded as.

ϕ ¼
Z

∞

−∞
dp½uFpðxFÞb̂p þ uFpðxFÞb̂†p�; ð9Þ

then one finds ½b̂p; b̂†p0 � ¼ δDðp − p0Þ and ½b̂p; b̂p0 � ¼ 0.
The Minkowski vacuum state j0iM is defined by

b̂pj0iM ¼ 0 for all p. This fact can be shown as follows.

If we expand the quantum scalar field ϕ in the standard
way as

ϕ ¼
Z

∞

−∞

dkffiffiffiffiffiffiffiffiffiffiffi
4πωk

p ðĉke−iωktþikz þ ĉ†ke
iωkt−ikzÞ; ð10Þ

then the Minkowski vacuum state is defined by the
requirement that ĉkj0iM ¼ 0 for all k, as is well known.
By substituting Eq. (7) into Eq. (9) and comparing the
result with Eq. (10) we find

ĉk ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πωk

p
Z

∞

−∞
dpe−iKpb̂p: ð11Þ

On the other hand, if we substitute Eq. (6) into Eq. (10) and
compare the result with Eq. (9), we obtain

b̂p ¼
Z

∞

−∞

dkffiffiffiffiffiffiffiffiffiffiffi
2πωk

p eiKpĉk: ð12Þ

Thus, the two conditions, (i) ĉkj0iM ¼ 0 for all k and
(ii) b̂pj0iM ¼ 0 for all p, are equivalent. Hence, the
Minkowski vacuum state can be defined by condition
(ii) as well as by condition (i), which is the standard one.
The analytic continuation of the positive-frequencymodes

upðxFÞ to the R- and L-regions is performed in such a way
that the Minkowski time coordinate t has an infinitesimal
negative imaginary part. (This is because the factor

e−i
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
t for positive-frequency modes should be regular-

ized by letting t → t − iϵ, ϵ > 0, so that any k-integration
involving them converges for large jkj.) As a result
ðt2 − z2Þα ¼ e2αη in the F-region must be analytically
continued to e−iπαðz2 − t2Þα ¼ e2αðξ−iπ

2
Þ in the R-region,

and similarly for the L-region. This observation leads to
the rules for analytic continuation given by Table I. We use
this table and the formula

KνðzÞ ¼ −
πi
2
e−

π
2
νiHð2Þ

ν ðze−πi
2 Þ; −

π

2
< arg z ≤ π; ð13Þ

with z ¼ mξ or mξ̃ and with ν ¼ �ip, to continue the
solution uFðxFÞ given by Eq. (3) to the R- and L-regions.
Thus, we find the following results [1]:

uFpðxFÞ ←

8>><
>>:

uðþÞ
p ðxÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−2πjpj
p ðvRpðxÞ þ e−πjpjvLpðxÞÞ for p > 0;

uð−Þp ðxÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πjpj

p ðvLjpjðxÞ þ e−πjpjvRjpjðxÞÞ for p < 0;
ð14Þ

TABLE I. Analytic continuation for the coordinate variables
between the R-region, the F-region and the L-region, in Min-
kowski spacetime.

F ↔ R ζ ¼ τ þ π
2
i, η ¼ ξ − π

2
i

F ↔ L ζ ¼ −τ̃ − π
2
i, η ¼ ξ̃ − π

2
i
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where x ¼ xR ¼ ðτ; ξÞ if x is in the R-region and x ¼ xL ¼ ðτ̃; ξ̃Þ if x is in the L-region and where, for p > 0,

vRpðxÞ ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðπjpjÞ
p

π KipðmξÞe−ipτ if z > jtj ðR-regionÞ;
0 if z < −jtj ðL-regionÞ;

ð15Þ

vLpðxÞ ¼
(
0 if z > jtj ðR-regionÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðπjpjÞ
p

π Kipðmξ̃Þe−ipτ̃ if z < −jtj ðL-regionÞ:
ð16Þ

(We have made the arrow left-pointing to indicate the
direction of time evolution.) Note that, in each of these
regions, the coordinates τ (τ̃) and ξ (ξ̃) are the time and
space coordinates, respectively.
It is interesting to find the mode functions in the F-region

that are obtained by evolving the right and left Rindler
modes, vRpðxÞ and vLpðxÞ. It is important to note that they are
not obtained by analytic continuation because vRpðxÞ and
vLpðxÞ are not analytic functions, being 0 on open regions.
Instead we use Eq. (14) and its complex conjugate in
reverse with the observation that, with p > 0,

vRpðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πp
p ½uðþÞ

p ðxÞ − e−πpuð−Þp ðxÞ� → vFpðxFÞ

≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πp
p ½uFpðxFÞ − e−πpuF−pðxFÞ�; ð17Þ

vLpðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πp
p ½uð−Þp ðxÞ − e−πpuðþÞ

p ðxÞ� → vF−pðxFÞ

≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πp
p ½uF−pðxFÞ − e−πpuFpðxFÞ�: ð18Þ

Thus, we obtain [38]

vFpðxFÞ ¼ −
i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπjpjÞp J−ijpjðmeηÞe−ipζ; ð19Þ

where we have used

J−ijpjðyÞ ¼
1

2
½eπjpjHð2Þ

ijpjðyÞ þHð2Þ
ijpjðyÞ� for y real: ð20Þ

It is clear from Eqs. (17) and (18) that the modes vFpðxFÞ,
which we call the Kasner modes, satisfy ðvFp; vFp0 ÞKG ¼
δDðp − p0Þ for all real p and p0. (Note that ðuFp; uFp0 ÞKG ¼
−δDðp − p0Þ and that ðuFp; uFp0 ÞKG ¼ 0.) This fact can
directly be verified from Eq. (19). First we note, using
the metric,

ds2 ¼ e2ηð−dη2 þ dζ2Þ; ð21Þ
that the Klein-Gordon inner product between these modes
is given by

ðvFp; vFp0 ÞKG ¼ i
Z

∞

−∞
dζ

�
vFpðη; ζÞ

∂
∂η v

F
p0 ðη; ζÞ

−
∂
∂η v

F
pðη; ζÞ · vFp0 ðη; ζÞ

�
: ð22Þ

The integral can readily be evaluated by noting that, near
the horizon, i.e., for large and negative η, we have from
Eq. (19)

vFpðxFÞ ≈ −
i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπjpjÞp ·

1

Γð1 − ijpjÞ
�
meη

2

�
−ijpj

e−ipζ

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πjpjp e−ijpjη−ipζþiδv ; ð23Þ

where

eiδv ¼ −i
�
Γð1þ ipÞ
Γð1 − ipÞ

�1
2

�
m
2

�
−ip

: ð24Þ

We have used

jΓð1 − ipÞj2 ¼ πjpj
sinhðπjpjÞ : ð25Þ

Notice that the modes vFpðxFÞ are purely left-moving if
p > 0 whereas they are purely right-moving if p < 0.
Now we can use the relations (14) or (17) and (18) to

examine the entanglement structure of the Minkowski
vacuum state j0iM. We expand the scalar field ϕðxFÞ in
the F-region in terms of vFpðxFÞ as

ϕðxFÞ ¼
Z

∞

−∞
dp½vFpðxFÞâp þ vFpðxFÞâ†p�: ð26Þ

By Eqs. (17) and (18), in the union of the R- and L-regions
Eq. (26) becomes

ϕðxÞ ¼
Z

∞

0

dp½vRpðxÞâp þ vLpðxÞâ−p þ vRpðxÞâ†p

þ vLpðxÞâ†−p�: ð27Þ
By comparing Eq. (9) with the expression obtained by
substituting Eqs. (17) and (18) into Eq. (26), one finds
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b̂p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πjpj

p ðâp − e−πjpjâ†−pÞ; ð28Þ

for all p. Thus, the condition on the Minkowski vacuum
state, b̂pj0iM ¼ 0 for all p, becomes

ðâp − e−πjpjâ†−pÞj0iM ¼ 0: ð29Þ

Then, defining the Rindler vacuum state j0iRin by the
conditions âpj0iRin ¼ 0 for all p, one finds that condition
(29) leads to

j0iM ¼ N exp

�Z
∞

0

dpe−πpâ†pâ
†
−p

�
j0iRin; ð30Þ

where N is an (infinitesimal) normalization factor.
Heuristically, if we approximate this formula by discretiz-
ing the momentum so that ½Âp; Â

†
p0 � ¼ δpp0 , where Ap ∝ ap,

then it is approximated as

j0iM ¼ N
Y
p>0

X∞
n¼0

e−πpn

n!
ðA†

pÞnðA†
−pÞnj0iRin

¼ N
Y
p>0

X∞
n¼0

e−πpnjp; niR ⊗ jp; niL; ð31Þ

where jp; niR (jp; niL) are the n-particle states of the right
(left) Rindler mode vRpðxÞ (vLpðxÞ). Thus, as is well known,
the Minkowski vacuum state is an entangled state in terms
of the left and right Rindler states. One can also consider it
as a state with entanglement between the states correspond-
ing to the modes vFpðxFÞ and vF−pðxFÞ in the F-region.

III. VARIOUS CHARTS OF DE SITTER
SPACETIME

In this section we list coordinates for various charts of de
Sitter spacetime used in this paper. This spacetime is the
maximally symmetric solution of the Einstein equations
with a positive cosmological constant Λ ¼ 3H2. It can
be described as a 4-dimensional hypersurface in the
5-dimensional Minkowski spacetime with cartesian coor-
dinates zμ, μ ¼ 0, 1, 2, 3, 4, with the line element

ds2 ¼ −ðdz0Þ2 þ ðdz1Þ2 þ ðdz2Þ2 þ ðdz3Þ2 þ ðdz4Þ2:
ð32Þ

The condition that gives de Sitter spacetime is

−ðz0Þ2 þ ðz1Þ2 þ ðz2Þ2 þ ðz3Þ2 þ ðz4Þ2 ¼ 1

H2
: ð33Þ

We adopt the units such that H ¼ 1 from now on.
(i) The right conformally-flat chart describes the region

with −z1 < z0. The coordinates are ηR, rR, θ, and φ,
where

z0 ¼ 1

2

�
−

1

ηR
þ ηR −

r2R
ηR

�
;

z1 ¼ 1

2

�
−

1

ηR
− ηR þ r2R

ηR

�
;

zj ¼ −
rR
ηR

n̂j; j ¼ 2; 3; 4; ð34Þ

with ðn̂2; n̂3; n̂4Þ ¼ ðcos θ; sin θ cosφ; sin θ sinφÞ,
−∞ < ηR < 0 and 0 ≤ rR.

(ii) The left conformally-flat chart describes the region
with z1 < z0. The coordinates are ηL, rL, θ, and φ,
where

z0 ¼ 1

2

�
−

1

ηL
þ ηL −

r2L
ηL

�
;

z1 ¼ 1

2

�
1

ηL
þ ηL −

r2L
ηL

�
;

zj ¼ −
rL
ηL

n̂j; j ¼ 2; 3; 4; ð35Þ

with −∞ < ηL < 0 and 0 ≤ rL.
(iii) The right static chart describes the region where

jz0j < z1 (the R-region). The coordinates are TA, RA,
θ, and φ, where

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− R2

A

q
sinhTA; z1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− R2

A

q
coshTA;

zj ¼ RAn̂j; j ¼ 2;3; 4; ð36Þ
with −∞ < TA < ∞ and 0 ≤ RA < 1. This chart is
part of the right conformally-flat chart and their
coordinates are related by

RA ¼ −
rR
ηR

; e−TA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2R − r2R

q
: ð37Þ

(iv) The left static chart describes the region where z1 <
−jz0j (the L-region). The coordinates are TL, RL, θ,
and φ, where

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−R2

L

q
sinhTL; z1 ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−R2

L

q
coshTL;

zj ¼RLn̂j; j¼ 2;3;4; ð38Þ
with −∞ < TL < ∞ and 0 ≤ RL < 1. This chart is
part of the left conformally-flat chart and their
coordinates are related by

RL ¼ −
rL
ηL

; e−TL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2L − r2L

q
: ð39Þ

(v) The future region is the region where z0 > jz1j (the
F-region). The coordinates are RB, TB, θ, and φ,
where

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
B − 1

q
coshTB; z1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
B − 1

q
sinhTB;

zj ¼ RBn̂j; j ¼ 2; 3; 4; ð40Þ
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with 1 < RB < ∞ and −∞ < TB < ∞. This region
is the intersection of the left and right conformally-
flat charts. The coordinates for these charts are
related as follows:

RB ¼ −
rR
ηR

¼ −
rL
ηL

;

e−TB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R − η2R

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2L − η2L
p : ð41Þ

The line element (32) is given in the left or right
conformally-flat chart as

ds2 ¼ 1

η2
ð−dη2 þ dr2 þ r2dΩ2

ð2ÞÞ; ð42Þ

where ðr; ηÞ ¼ ðrR; ηRÞ or ðrL; ηLÞ. The line element
of the unit 2-sphere is denoted by dΩ2

ð2Þ here. In the
left or right static chart, i.e., in the R- or L-region, it
is given by

ds2 ¼ −ð1 − R2ÞdT2 þ dR2

1 − R2
þ R2dΩ2

ð2Þ; ð43Þ

where ðT; RÞ ¼ ðTA; RAÞ or ðTL; RLÞ. Finally, in the
F-region, we find

ds2 ¼ −
dR2

B

R2
B − 1

þ ðR2
B − 1ÞdT2

B þ R2
BdΩ2

ð2Þ: ð44Þ

In this paper we study the relationship between solutions
of the scalar field equation, ð∇μ∇μ −m2Þϕ ¼ 0, in these
charts. In any of these charts the line element takes the
form,

ds2 ¼ −½Nðρ; tÞ�2dt2 þ ½Mðρ; tÞ�2dρ2 þ ½Kðρ; tÞ�2dΩ2
ð2Þ:

ð45Þ

In all cases the complete set of solutions to the scalar field
equation can be given as

ψκlmðt; ρ; θ;φÞ ¼ φκlðt; ρÞYlmðθ;φÞ; ð46Þ

and ψκlmðt; ρ; θ;φÞ, where κ is a continuous label. The
Klein-Gordon inner product is

ðψκlm;ψκ0l0m0 ÞKG ¼ −i
Z

dρdθdφ
ffiffiffiffiffiffi
−g

p ½ψκlm∂tψκ0l0m0

− ∂tψκlm · ψκ0l0m0 �: ð47Þ

By the orthonormality of the spherical harmonics Ylmðθ;φÞ
we find

ðψκlm;ψκ0l0m0 ÞKG ¼ ðφκl;φκ0lÞRKGδll0δmm0 : ð48Þ

where ð•; •ÞRKG is the radial Klein-Gordon inner product
defined by

ðφκl;φκ0lÞRKG ¼ i
Z

dρ
Mðρ; tÞ½Kðρ; tÞ�2

Nðρ; tÞ

×

�
φκl

∂φκ0l

∂t −
∂φκl

∂t φκ0l

�
: ð49Þ

Thus, if we normalize the functions φκlðρ; tÞ, which
we call the temporal-radial part of ψκlmðt; ρ; θ;φÞ, by
ðφκl;φκ0lÞRKG ¼ δDðκ − κ0Þ [and ðφκl;φκ0lÞRKG ¼ 0],
and if the quantum field ϕðt; ρ; θ;φÞ is expanded as

ϕðt; ρ; θ;φÞ ¼
Z

dκ
X
lm

½ψκlmðt; ρ; θ;φÞd̂κlm

þ ψκlmðt; ρ; θ;φÞd̂†κlm�; ð50Þ
then ½d̂κlm; d̂†κ0l0m0 � ¼ δDðκ − κ0Þδll0δmm0 with all other
commutators vanishing.

IV. POSITIVE-FREQUENCY SOLUTIONS FOR
THE BUNCH-DAVIES VACUUM IN

THE FUTURE REGION

In this section we present the positive-frequency modes
that are natural to the F-region for the scalar field of massm
with no coupling to the scalar curvature for the Bunch-
Davies vacuum. It is well known that a complete set of
positive-frequency modes for the Bunch-Davies vacuum is
given in the right conformally-flat chart by

ψklmðηR; rR; θ;φÞ ¼ φklðrR; ηRÞYlmðθ;φÞ; ð51Þ
where

φklðrR; ηRÞ ¼
e−

iπ
2
ðlþ1

2
Þffiffiffiffiffi

2k
p ð−kηRÞ32eiνπ

2 Hð1Þ
ν ð−kηRÞjlðkrRÞ;

k > 0; ð52Þ
with

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−m2

r
: ð53Þ

Thus, if we expand the quantum scalar field ϕ as

ϕ ¼
Z

∞

0

dk
X
l;m

½ψklmðηR; rR; θ;φÞĉklm

þ ψklmðηR; rR; θ;φÞĉ†klm�; ð54Þ
then the Bunch-Davies vacuum state j0iBD is defined by
requiring that ĉklmj0iBD ¼ 0 for all k, l and m. It is also
well known that they satisfy ðφkl;φk0lÞRKG ¼ δDðk − k0Þ
(see, e.g., Ref. [17]). By using the formula [41]2

2Originally, the mathematical formula is given with the use
of KνðaxÞ instead of Hð1Þ

ν ðazÞ, but they are related by
KνðaxÞ ¼ πieπνi=2Hð1Þ

ν ðiaxÞ=2.
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Z
∞

0

dzzλHð1Þ
ν ðazÞJμðbzÞ

¼ a−λ−1eðλ−νþμÞiπ=2 2λðb=aÞμ
πΓðμþ 1Þ

× Γ
�
λþ νþ μþ 1

2

�
Γ
�
λ − νþ μþ 1

2

�

× 2F1

�
λþ νþ μþ 1

2
;
λ − νþ μþ 1

2
; μþ 1; ðb=aÞ2

�
;

ð55Þ

which is valid for Reð−ia� ibÞ > 0, Reðμþ λþ 1� νÞ
> 0, with λ ¼ −ip, μ ¼ lþ 1

2
, a ¼ −η, b ¼ r and with ν

given by Eq. (53) and with the assumption that rR < −ηR
for now, we find

1ffiffiffiffiffiffi
2π

p
Z

∞

0

dkk−ip−
1
2φklðηR; rRÞ

¼ 2−ip

2
ffiffiffi
2

p
πΓðlþ 3

2
ÞΓ

�3
2
þ l − ipþ ν

2

�
Γ
�3

2
þ l − ip − ν

2

�

× e
πp
2 ðð−ηRÞ2 − r2RÞ

ip
2UðSÞ

jpjlð−rR=ηRÞ; ð56Þ

where

UðSÞ
jpjlðxÞ ≔ xlð1 − x2Þijpj2 2F1

�3
2
þ lþ ijpj þ ν

2
;

3
2
þ lþ ijpj − ν

2
;lþ 3

2
; x2

�
: ð57Þ

We have used the formula

2F1ða; b; c; zÞ ¼ ð1 − zÞc−a−b2F1ðc − a; c − b; c; zÞ ð58Þ

for p > 0. This formula can also be used to show that the
functionUjpjlðxÞ is real if 0 ≤ x < 1. Note that the variable
ηR must have an infinitesimal negative imaginary part for
the validity of Eq. (56) because of the condition Reð−ia�
ibÞ > 0 for Eq. (55).
Since the function φklðηR; rRÞ are (the temporal-radial

part of) positive-frequency modes for the Bunch-Davies
vacuum, so is the right-hand side of Eq. (56) (in the
R-region). In order to find the expression for this function
in the F-region, we need to examine how it should be
analytically continued from rR < −ηR (R-region) to rR >
−ηR (F-region). To do so, we use the fact that the variable
ηR must have an infinitesimal negative imaginary part for
the integral in Eq. (56), as we mentioned above, so that
the k-integral converges. This implies in particular that
½1 − ð−rR=ηRÞ2�α with rR < −ηR should be continued to
eiπα½ð−rR=ηRÞ2 − 1�α. By performing this analytic continu-
ation in Eq. (56) and using Eq. (41) we find

1ffiffiffiffiffiffi
2π

p
Z

∞

0

dkk−ip−
1
2φklðηR; rRÞ ¼ 2−ipeiδpuFplðRB; TBÞ;

ð59Þ

where

uFplðRB; TBÞ ¼ e−
πjpj
2 NplUjpjlðRBÞe−ipTB ; ð60Þ

with

Npl ¼ 1

2
ffiffiffi
2

p
πΓðlþ 3

2
Þ

����Γ
�3

2
þ l − ipþ ν

2

�

× Γ
�3

2
þ l − ip − ν

2

�����; ð61Þ

and

eiδp ¼
"
Γð32þl−ipþν

2
ÞΓð32þl−ip−ν

2
Þ

Γð32þlþipþν
2

ÞΓð32þlþip−ν
2

Þ

#
1=2

: ð62Þ

The label p can take any real value. Note that the coordinate
TB is a spatial coordinate in the F-region [see Eq. (44)].
Here, we have defined

UjpjlðRBÞ ¼ Rl
BðR2

B − 1Þijpj2 2F1

�3
2
þ lþ ijpj þ ν

2
;

3
2
þ lþ ijpj − ν

2
;lþ 3

2
;R2

B

�
: ð63Þ

Thus we have shown that Eq. (59) can be derived from the
mathematical formula (55) with the assumption that rR >
−ηR, i.e., in the F-region. (The mode functions uFplðRB; TBÞ
are proportional to those found by Markkanen [20] for
m2 ¼ 2, but our normalization factor is different from his.3)
One can also invert Eq. (59) as

φklðηR;rRÞ¼
1ffiffiffiffiffiffiffiffi
2πk

p
Z

∞

−∞
dpkip2−ipeiδpuFplðRB;TBÞ; ð64Þ

by using

1

2π
ffiffiffiffiffiffi
kk0

p
Z

∞

−∞
dp

�
k
k0

�
ip
¼ δDðk0 − kÞ: ð65Þ

Thus, the functions uFplðxFÞYlmðθ;φÞ are superpositions of
the positive-frequency solutions ψklmðηR; rR; θ;φÞ ¼
φklðηR; rRÞYlmðθ;φÞ for the Bunch-Davies vacuum, and
vice versa.

3Our normalization factor disagrees with that of Eq. (95) in
Ref. [20] by a factor of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πk=H

p
.
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Let us expand the field in the F-region as

ϕðxF; θ;φÞ ¼
X
l;m

Z
∞

−∞
dp

h
uFplðxFÞYlmðθ;φÞb̂plm

þ uFplðxFÞYlmðθ;φÞb̂†plm
i
: ð66Þ

Then, Eqs. (59) and (64) imply, as in the Minkowski case,
that the condition for the Bunch-Davies vacuum state,
ĉklmj0iBD ¼ 0 for all k, l, and m, can be given as
b̂plmj0iBD ¼ 0 for all p, l, and m.
We note that, since the field equation depends on l only

through lðlþ 1Þ, which is invariant under l ↔ −l − 1,
another solution can be obtained by replacing Ujpjl
ðRB; TBÞ in the expression of uFplðRB; TBÞ by

WjpjlðRBÞ ¼ R−l−1
B ðR2

B − 1Þijpj2 2F1

�1
2
− lþ ijpj þ ν

2
;

1
2
− lþ ijpj − ν

2
;
1

2
− l;R2

B

�
: ð67Þ

We find ðuFpl; uFp0lÞKG ¼ δDðp − p0Þ from Eq. (59) by
using ðφkl;φk0lÞKG ¼ δDðk − k0Þ and the formula

1

2π

Z
∞

0

dk
k
kiðp0−pÞ ¼ δDðp − p0Þ: ð68Þ

We can express (the temporal-radial part of) the mode
functions, uFplðRB; TBÞ, in terms of the positive-frequency
modes φplðηL; rLÞ in the left conformally-flat chart in
exactly the same way. Thus, we have

1ffiffiffiffiffiffi
2π

p
Z

∞

0

dkkip−
1
2φklðηL;rLÞ¼2ipeiδ−puFplðRB;TBÞ: ð69Þ

Finally, let us emphasize that the analytic continuation
from RB < 1 to RB > 1 of the hypergeometric function in
the definition (63) ofUjpjlðRBÞ is not unique and that it had
to be specified as described before Eq. (59). The function
UjpjlðxÞ is not real for x > 1 although it is for 0 ≤ x < 1.
These facts can be made clearer by expressing it in terms of
hypergeometric functions with argument 1 − R2

B with the
use of the following formula:

2F1ða; b; c; zÞ ¼
ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ
× 2F1ða; b; aþ b − cþ 1; 1 − zÞ

þ ð1 − zÞc−a−b ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ

× 2F1ðc − a; c − b; c − a − bþ 1; 1 − zÞ:
ð70Þ

Thus, we find

UjpjlðRBÞ ¼
Γðlþ 3

2
ÞΓðijpjÞ

Γð32þlþijpjþν
2

ÞΓð32þlþijpj−ν
2

Þ
eπjpjV jpjlðRBÞ

þ Γðlþ 3
2
ÞΓð−ijpjÞ

Γð32þl−ijpjþν
2

ÞΓð32þl−ijpj−ν
2

Þ
V jpjlðRBÞ; ð71Þ

where

V jpjlðRBÞ ¼ Rl
BðR2

B − 1Þ−ijpj
2
2F1

�3
2
þ l − ijpj þ ν

2
;

3
2
þ l − ijpj − ν

2
; 1 − ijpj; 1 − R2

B

�
: ð72Þ

There is no ambiguity in the hypergeometric function here
because it is analytic for all positive RB. The relation (71)
can readily be inverted as

V jpjlðRBÞ ¼
Γð32þlþijpjþν

2
ÞΓð32þlþijpj−ν

2
Þ

2 sinhðπjpjÞΓðlþ 3
2
ÞΓðijpjÞ

× ½UjpjlðRBÞ − e−πjpjUjpjlðRBÞ�: ð73Þ

V. RELATIONSHIP BETWEEN THE MODE
FUNCTIONS IN THE STATIC AND

FUTURE REGIONS

In this section we analytically continue the positive-
frequencymode functionsuFplðRB; TBÞ found in the previous
section to the two static regions, the R- and L-regions. By the
observation made in the previous section about the analytic
continuation, i.e., ð1−ð−rR=ηRÞ2Þα→eiπαðð−rR=ηRÞ2−1Þα
and the formula ð1−ð−rL=ηLÞ2Þα→eiπαðð−rL=ηLÞ2−1Þα,
which can be derived similarly, we arrive at the rules stated in
Table II. Using these rules, we find

e−
πjpj
2 UjpjlðRBÞe−ipTB ðF-regionÞ

←

8<
:

e
πp
2 UðSÞ

jpjlðRAÞe−ipTA ðR-regionÞ;
e−

πp
2 UðSÞ

jpjlðRLÞeipTL ðL-regionÞ;
ð74Þ

where the functionsUjpjlðxÞ for x > 1 andUðSÞ
jpjlðxÞ for 0 ≤

x < 1 are defined by Eqs. (63) and (57), respectively. Hence,
from Eq. (60) we readily find

TABLE II. Continuation of the coordinate variables from F
region to R and L regions, in de Sitter spacetime.

F ↔ R TB ¼ TA þ π
2
i, RB ¼ RA, R2

B − 1 ¼ e−πið1 − R2
AÞ

F ↔ L TB ¼ −TL − π
2
i, RB ¼ RL, R2

B − 1 ¼ e−πið1 − R2
LÞ,
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uFplðxFÞ ←

8>><
>>:

uðþÞ
pl ðxÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−2πjpj
p ðvRplðxÞ þ e−πjpjvLplðxÞÞ for p > 0;

uð−Þpl ðxÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πjpj

p ðvLjpjlðxÞ þ e−πjpjvRjpjlðxÞÞ for p < 0;
ð75Þ

where, with p > 0,

vRplðxÞ ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinhðπpÞp
NplU

ðSÞ
jpjlðRAÞe−ipTA in the R-region;

0 in the L-region;
ð76Þ

vLplðxÞ ¼
(
0 in the R-region;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπpÞp

NplU
ðSÞ
jpjlðRLÞe−ipTL in the L-region:

ð77Þ

The Klein-Gordon normalization ðvRpl; vRp0lÞKG ¼ ðvLpl;
vLp0lÞKG ¼ δDðp − p0Þ follows from Eq. (75) and

ðuFpl; uFp0lÞKG ¼ δDðp − p0Þ. The modes vRjpjlðxÞ coincide
with the normalized mode functions in the right static chart
in the literature [17] up to a phase factor as they should.
In exactly the same manner as in the Minkowski case we
find with p > 0 [see Eqs. (17) and (18)]

vRplðxÞ→vFplðxFÞ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−2πp
p

h
uFplðxFÞ−e−πpuF−p;lðxFÞ

i
;

ð78Þ

vLplðxÞ → vF−plðxFÞ

≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πp
p

h
uF−p;lðxFÞ − e−πpuFplðxFÞ

i
:

ð79Þ

By substituting the definition (60) of uFpðxFÞ here and
comparing the resulting formulas with Eq. (73) we find

vFplðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4πjpjp eiðδ

0
jpjþδjpjÞV jpjlðRBÞe−ipTB ; ð80Þ

where we have defined the phase factor eiδ
0
p by

ΓðipÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

jpj sinh jpj
r

eiδ
0
p : ð81Þ

It is clear from the construction of vFplðxFÞ that they are
normalized by the radial Klein-Gordon inner product, but it
is also easy to verify this fact directly by examining the
behavior of these modes near the horizon. First we note that
by introducing the coordinate RB� as

RB ¼ cothRB�; ð82Þ

the line element of de Sitter spacetime in the F-region,
Eq. (44), becomes

ds2 ¼ ðR2
B − 1Þð−dR2

B� þ dT2
BÞ þ R2

BdΩ2
ð2Þ: ð83Þ

The radial Klein-Gordon inner product is

ðvFpl; vFp0lÞRKG ¼ −iR2
B

Z
∞

−∞
dTB

�
vFplðRB; TBÞ

∂vFp0lðRB; TBÞ
∂RB�

−
∂vFplðRB; TBÞ

∂RB�
vFp0lðRB; TBÞ

�

¼ −
i

2jpj δ
Dðp − p0ÞR2

B

�
V jpjlðRBÞ

dV jpjlðRB; TBÞ
dRB�

−
dV jpjlðRBÞ

dRB�
V jpjlðRBÞ

�
; ð84Þ

where we have taken into account the fact that
the coordinate RB� decreases towards the future. This
inner product can be evaluated near the horizon, i.e.,
in the limit RB → 1 (i.e., RB� → ∞), by noting that in
this limit

V jpjlðRBÞ ≈ ð2RBÞ−
ijpj
2 ≈ 2−ijpjeijpjRB� : ð85Þ

Thus we indeed obtain ðvFpl; vFp0lÞRKG ¼ δDðp − p0Þ. We
also find from this equation that
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vFplðRB:TBÞ ≈
1ffiffiffiffiffiffiffiffiffiffiffi
4πjpjp eiðδ0pþδp−jpj log 2ÞeijpjRB�−ipTB : ð86Þ

Thus, the mode functions vFplðRB; TBÞ are purely left-
moving (right-moving) for if p > 0 (p < 0).

VI. ENTANGLEMENT STRUCTURE OF THE
BUNCH-DAVIES VACUUM AND

ALPHA-VACUA

Notice the similarity of the relationship between the
Minkowski positive-frequency modes and the Rindler
modes [see Eq. (14)] to that between the Bunch-Davies
positive-frequency modes and the modes in the static charts
[see Eq. (75)]. This similarity makes it straightforward to
write down a relation similar to Eq. (31) for the Bunch-
Davies vacuum.
We expand the scalar field as

ϕðx;θ;φÞ¼
X
l;m

Z
∞

0

dp½vRplðxÞYlmðθ;φÞâplm

þvLplðxÞYlmðθ;φÞâ−p;lmþvRplðxÞYlmðθ;φÞâ†plm
þvLplðxÞYlmðθ;φÞâ†−p;lm�; ð87Þ

in the union of the R- and L-regions. Then, the normali-
zation conditions for the mode functions imply that
½âplm; â†p0l0m0 � ¼ ½b̂plm; b̂†p0l0m0 � ¼ δDðp − p0Þδll0δmm0 with
all other commutators vanishing. Recall that the Bunch-
Davies vacuum state j0iBD is defined by the condition that
b̂plmj0iBD ¼ 0 for all p, l, and m, where the operators
b̂plm were defined by Eq. (66). We define the static vacuum
state j0iS by âplmj0iS ¼ 0 for all p, l, andm. Then we find

j0iBD ¼ N exp

�X
l;m

Z
∞

0

dpe−πpa†plma
†
−p;lm

�
j0iS: ð88Þ

By discretizing the label p, we can write this expression
heuristically as

j0iBD ∝
Y

p>0;l;m

X∞
n¼0

e−πpnjplm; niR ⊗ jplm; niL; ð89Þ

where jplm; niR and jplm; niL are the n-particle states for
the modes vRplðxRÞYlmðθ;φÞ in the right static chart and
vLplðxLÞYlmðθ;φÞ in the left static chart, respectively.
Again, it is possible to view this state as a state with
entanglement between the states defined in the right and left
static charts.
Next we consider the α-vacuum state [35,36], which is

introduced by adopting the following mode functions in the
F-region as the positive-frequency modes:

UF
plðxBÞYlmðθ;φÞ
¼ ½cosh αuFplðxBÞ þ eiθ sinh αuF−p;lðxBÞ�Ylmðθ;φÞ: ð90Þ

We shall express the α-vacuum states j0iα as states with
entanglement between the states in the right and left static
charts. By inverting Eq. (90) and substituting the result into
Eqs. (78) and (79), we find

vFplðxBÞ ¼ αpUF
plðxBÞ þ βpUFðxBÞ; ð91Þ

where

αp ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πjpj

p ðcosh αþ e−πjpje−iθ sinh αÞ;

βp ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πjpj
p ðeiθ sinh αþ e−πjpj cosh αÞ: ð92Þ

Proceeding in the same manner as in the case for the
Bunch-Davies vacuum, we find that the α-vacuum is
expressed in terms of the static vacuum as follows:

j0iα ¼ N exp

�Z
∞

0

dpγpðα; θÞâ†plmâ†−p;lm
�
j0iðvÞ

∝
Y

p>0;lm

X∞
n¼0

½γpðα; θÞ�njplm; niS ⊗ j − p;lm; niS;

ð93Þ

where γpðα; θÞ ¼ −βp=αp, p > 0, is given by

γpðα; θÞ ¼
e−iθ sinh αþ e−πp cosh α
cosh αþ e−πpe−iθ sinh α

: ð94Þ

The entanglement entropy for a pair of the mode with
given values of p > 0, l, and m is

Sp ¼ −TrL½ρðpÞ log ρðpÞ� ¼ − logð1 − jγpj2Þ

−
jγpj2

1 − jγpj2
log jγpj2; ð95Þ

where ρðpÞ is the density matrix obtained by tracing out the
states with p < 0 or, equivalently, the states in the L-region.
Fig. 3 shows the behavior of the entanglement entropy Sp
as a function of p and α. We have chosen θ ¼ 0, but the
behavior is similar for other values of θ unless θ takes
values around π. This result can be compared with the
previous works which computed the entanglement entropy
in de Sitter spacetime with the two open charts [22,27,28].
The entanglement entropy for the Bunch-Davies vacuum
state, which is computed with the two static charts, is
obtained by the usual thermal density matrix. As is clear
from Eqs. (94) and (95), the entanglement entropy for the
general α-vacuum state does not depend on the mass of the
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scalar field, contrary to these previous works with the two
open charts. The radius of the spherical surface that divides
the spatial slice into two regions is the Hubble radius for the
static charts, while it is much smaller than the spherical
radius for the open charts. There also exists a region of
width of the Hubble radius between the two open charts
[42]. It is possible that the difference between our result and
those of Refs. [22,27,28] could be explained by these facts
and the fact that the entanglement entropy is observer-
dependent in general.

VII. SUMMARY AND CONCLUSIONS

In this paper we investigated the noninteracting massive
quantum scalar field in de Sitter spacetime, focusing our
investigation on the description of the vacuum state as an
entangled state between the states constructed in the static
charts. To demonstrate such a description from first
principle, we constructed positive-frequency modes for
the Bunch-Davies vacuum state in the region to the future
of the two static charts of de Sitter spacetime. These
positive-frequency modes have global properties similar
to those of positive-frequency modes in Minkowski

spacetime, which was studied in detail in Ref. [11]. The
global properties of these modes led directly to the well-
known characterization of the Bunch-Davies vacuum state
as a state with entanglement between the states in the two
static charts. This characterization will be useful for
understanding not only the thermal behavior in vacuum
fluctuations but also nonlocal properties of the quantum
field in de Sitter spacetime. As an application of this
entanglement structure we computed the entanglement
entropy of a pair of the modes which are entangled in
the α-vacuum. We found that this entropy does not depend
on the mass of the field, contrary to the results with the two
open charts in the literature.
The description of the Minkowski vacuum state as an

entangled state between the two Rindler wedges is known
to be useful for understanding the quantum radiation
produced by a uniformly accelerating detector coupled
to vacuum fluctuation of a field in Minkowski spacetime
[11], which will be important for testing the Unruh effect.
A similar quantum radiation has been discovered in the
model consisting of a uniformly accelerating detector
coupled to vacuum fluctuation of a field in de Sitter
spacetime [21]. It has been shown that there exists a similar
theoretical structure in the formulas for the quantum radi-
ation in Minkowski spacetime and de Sitter spacetime. The
results in the present paper will be useful for understanding
the origin of the quantum radiation in a similar context.
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