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In the present work, the set of stationary solutions of the Gross-Neveu model in the ’t Hooft limit is
extended. Such an extension is obtained by striving for a hidden supersymmetry associated with
disconnected sets of stationary solutions. How the supersymmetry arises from the Darboux-Miura
transformations between Lax pairs of the stationary modified Korteweg–de Vries and the stationary
Korteweg–de Vries hierarchies is shown, associating the correspondent superpotentials with self-consistent
condensates for the Gross-Neveu model.
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I. INTRODUCTION

The Gross-Neveu (GN) model [1] corresponds to a
quantum field theory for nonlinear interacting fermions
without mass. The model presents some interesting proper-
ties: dynamical mass generation, asymptotic freedom, and
spontaneous breaking of symmetry. Models with interact-
ing fermions and self-consistent condensates have been
used to describe a large variety of phenomena related to
soliton physics, kinks, and breathers, especially in particle
physics [2,3], superconductivity [4–6], and conducting
polymer models [7–9], among other areas [10,11].
In the past 40 years, nonperturbative solution methods

for this field theory in the ’t Hooft limit (or large N limit)
have been studied in detail. The first analytical solutions in
this direction were obtained by applying the inverse
scattering method [12,13], which allowed one to relate
fermionic condensates to superpotentials of pairs of reflec-
tionless systems of the Schrödinger type in 1þ 1 dimen-
sion (1þ 1D), thus bringing to light a hidden nonlinear
N ¼ 4 supersymmetry in the stationary sector of the GN
model [14–16]. The inverse scattering method has allowed
the generation of an infinite family of semiclassical con-
densates, corresponding to one-gap (massive) Dirac poten-
tials with solitary defects in its spectrum [17].
A more general method to construct analytical solutions

was found by applying the series expansion of the Gorkov
resolvent [10], obtaining as a more general condition that
the GN model semiclassical stationary condensates must

be solutions of the inhomogeneous stationary modified
Korteweg–de Vries hierarchy (s-mKdVh). This led to the
construction of exact periodic inhomogeneous condensate
solutions known as kink crystals and kink-antikink crystals,
which have already been found as self-consistent conden-
sates through the Hartree-Fock approximation [18–20].
Such condensates correspond to two- and three-gap poten-
tials for the Dirac Hamiltonian or Bogoliubov–de Gennes
operator in 1þ 1D.
The most important results in this paper are the

following:
(i) The extension of the stationary scalar condensates

for the Gross-Neveu model to the most general form,
as finite-gap Dirac potentials with solitonic defects.
Such an extension is achieved by using the super-
symmetry hidden in the system. The supersymmet-
ric method presented below allows one to evade
the inverse scattering approach and to algebraically
construct infinite families of extended Schrödinger
Hamiltonians with central charge and nonlinear
N ¼ 4 supersymmetry starting from the exactly
solvable finite-gap Schrödinger systems. When one
pair of fermionic integrals are of order one, it is
possible to identify any of such fermionic integrals
and the central element of the respective superalgebra
with the Lax pair formulation of an equation in the
s-mKdVh. Thus, the stationary condensate solutions
of the GN model are identified with the superpoten-
tials that define the set of fermionic integrals of order
one. The nonlinear N ¼ 4 hidden supersymmetry is
observed by using the Darboux-Miura transforma-
tions and the Lax pair formalism of the s-KdVh and
the s-mKdVh.

(ii) From the recurrence relations in the construction of
the s-mKdVh and the algebro-geometric formalism,
the self-consistency equations that fix the occupation
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of the allowed states by the fermions of different
flavors for each condensate are written in the form
of a consistent system of equations with more
unknowns than equations; therefore, there are an
infinite number of solutions. As an example, a
special case of ground state that allows the decou-
pling of the occupations among bound states is
studied. For this example the occupation of each
bound state depends only on its energy and the
occupation of the states in the spectrum of the finite-
gap background.

This work is structured as follows: in Sec. II, by means of
the method of series expansion of the Gorkov resolvent, the
self-consistent condensates of the GN model are identified
with solutions of the s-mKdVh. In Sec. III, the s-KdVh and
one useful Lax pair formulation of it are summarized,
showing their relation to symmetries in quantum mechan-
ics. How to obtain s-mKdVh solutions starting from
s-KdVh solutions will also be shown. In Sec. IV, the
contents of the previous section are connected to Crum-
Darboux spectral transformations, and their relation to
supersymmetric quantum mechanics is introduced. In
Sec. V, algebro-geometric/finite-gap solutions of the
s-KdVh are presented in Its-Matveev form. Through
Crum-Darboux transformations, infinite families of finite-
gap potential with soliton defects are obtained. Two types
of spectral transformations are studied from finite-gap
potentials, which in Sec. VI, will be related to three types
of solutions of the GN model with different spectral
characteristics. Finally, in Sec. VII, the self-consistency
conditions of the stationary condensates of the GN model
will be studied. As an example, the condensate with
solitonic potential well defects on a two-gap background
will be detailed.

II. THE GN MODEL, SERIES EXPANSION OF THE
GORKOV RESOLVENT AND THE s-mKdVh

The GN model is described by the Lagrangian

LGN ¼
XN
j¼1

ψ̄ ji∂ ψ j þ
g2

2

�XN
j¼1

ψ̄ jψ j

�2

; ð2:1Þ

where ψ j, for j ¼ 1; 2;…; N, correspond to N fermions of
different flavors. A bosonization is allowed for this model,
where the bosonic field corresponds to the fermionic
condensate Δ ¼ −g2ðPN

j¼1 ψ̄ jψ jÞ.
Through the path integral approach, an effective action

Seff for Δ can be obtained,

Seff ¼ −
Z

Δ2

2g2
d2x − iN ln det ½i∂ − Δ�: ð2:2Þ

At the ’t Hooft limit, where N → ∞ and g2N ∼ 1, it is
possible to use the saddle point method to ensure the

convergence of the two-point propagator associated with
(2.1). The convergence happens for the minimums of (2.2).
The variation of such an action for the stationary case yields
the following consistency equations:

ΔðxÞ ¼ −iNg2trD;E ½γ0Rðx; EÞ�; ð2:3Þ

where Rðx; EÞ≡ hxjðHD − EÞ−1jxi is a 2 × 2matrix known
as the Gorkov diagonal resolvent of the Bogoliubov–de
Gennes operator or Dirac Hamiltonian in 1þ 1D,

HD ¼
� −i d

dx ΔðxÞ
ΔðxÞ i d

dx

�
; HDΨ ¼ EΨ; ð2:4Þ

γ0 ¼ σ1. Thus, the solutions of (2.3) correspond to the
semiclassical solutions of the GN model. At this point, it is
possible to connect with the Hartree-Fock treatment of
the GN model, where the consistence equation for the
condensate Δ is related to the population of fermion flavors
in the form

ΔðxÞ ¼ −g2
�X

occ

ψ̄ ψ

�
; ð2:5Þ

where
P

occ corresponds to the sum over all occupied states
in the spectra of (2.4), taking into account the flavor
degeneration.
By exploiting the properties of the resolvent in (2.3), a

general approach to construct analytical solutions for the
model was found [10,11]. The resolvent Rðx; EÞ satisfies
the following algebraic properties R ¼ R†, trDðRσ3Þ ¼ 0,
detR ¼ − 1

4
and also satisfies the Dickey-Eilenberger

equation [21]

∂
∂xRσ3 ¼ i

��
E −Δ
Δ −E

�
; Rσ3

�
: ð2:6Þ

The power series expansion of the Gorkov resolvent on
the energy variable, R ¼ P∞

n rnðxÞ=En, can be truncated
in order to find analytic solutions for the condensate ΔðxÞ.
In this case the resolvent takes the form

Rnðx; EÞ ¼ N ðEÞ
Xn
l¼0

En−l
�

ĝlðxÞ f̂l−1ðxÞ
f̂�l−1ðxÞ ĝlðxÞ

�
; ð2:7Þ

under the condition

f̂n ¼ 0; ð2:8Þ

and the latter is known as the nth equation of the s-mKdVh,
where ĝlðxÞ and f̂lðxÞ are completely defined by (2.6) in the
following recursive form:

ADRIÁN ARANCIBIA PHYS. REV. D 98, 065013 (2018)

065013-2



f̂l ¼ −
i
2
f̂0l−1 þ Δĝl;

ĝl ¼ i
Z

ðf̂l−1 − Δf̂�l−1Þdxþ cDl ;

f̂−1 ¼ 0; f̂0 ¼ ΔðxÞ; ĝ0 ¼ cD0 ¼ 1; ð2:9Þ

where cDl are real integration constants, cD2jþ1 ¼ 0,
j; l ∈ N0.
The truncation condition (2.8) defines ΔðxÞ as a solution

of the s-mKdVh. The first five equations in the hierarchy
correspond to

f̂−1ðxÞ ¼ 0;

f̂0ðxÞ ¼ ΔðxÞ;
f̂1ðxÞ ¼ −

i
2
Δ0;

f̂2ðxÞ ¼ −
1

4
ðΔ00 − 2Δ3Þ þ cD2 Δ;

f̂3ðxÞ ¼
i
8
ðΔ000 − 6Δ2Δ0Þ − icD2

2
Δ0:

This hierarchy of equations corresponds to integrable
systems and can be solved by algebro-geometric methods.
This is because the equations in the s-mKdVh allow Lax
pair formulation, which corresponds to write (2.8) as two
commutating operators ½HD;PD� ¼ 0, where PD is a 2 × 2
matrix differential operator of order n and takes the role of
the Lax-Novikov integral of theHD Dirac Hamiltonian. For
the s-mKdVh, the Lax integral PD takes the form

PD
n ¼

Xn
l¼0

�
ĝlðxÞ f̂l−1ðxÞ
f̂�l−1ðxÞ ĝlðxÞ

�
σ3HDn−l; ð2:10Þ

for which the Lax equation in the stationary case is

½PD
n ;HD� ¼

�
0 2f̂nðxÞ

−2f̂�nðxÞ 0

�
¼ 0: ð2:11Þ

This formulation relates stationary solutions ΔðxÞ of the
mKdVh to scalar potentials for one-dimensional Dirac
Hamiltonian operators that have the Lax-Novikov integral
of motion. In addition, the interpretation of those Dirac
Hamiltonians as Bogoliubov–de Gennes (2.4) operators
relates the ΔðxÞ potentials to the stationary solutions of the
GN model.
The coefficients cDk are related to the edges of the

spectrum of Hamiltonian operator HD,

σðHDÞ ¼ ð−∞; E0� ∪ ½E1; E2� ∪ � � �
∪ ½E2j−1; E2j� ∪ ½E2nþ1;∞Þ;

E2j−1 ≤ E2j, in the form

cDk ¼
Xk

j0 ;j1 ;…;jn¼0
j0þj1þ���þjn¼k

2−2k
Y2nþ1

i¼0

ð2jiÞ!
ðji!Þ2ð2ji − 1Þ ðEiÞji : ð2:12Þ

The self-consistency equation (2.3) corresponds to a
system of equations that defines the occupation of each
physical state of the spectra of HD by the different flavors.
Another important behavior of the Lax pair operators is a

Burchnall-Chaundy type relationship between matrix dif-
ferential operators, which relates powers of the Lax pair
operators in the following form:

PD2
n ¼ Pn;BCðHDÞ ¼

Y2n−1
l¼0

ðHD − ElÞ; ð2:13Þ

which defines the eigenvalues zD of HD and yD of PD over
a hyperelliptic curve

ðyDÞ2 ¼
Y2n−1
l¼0

ðzD − ElÞ: ð2:14Þ

The latter relation is in the basis of the algebro-geometric
solution method for the s-mKdVh.
The normalization constant N ðEÞ of the diagonal resol-

vent (2.7) is defined by the condition detR ¼ − 1
4
as

follows:

DetðRnðx; EÞÞ ¼ N ðEÞ2Pn;BCðEÞ ¼ −
1

4
: ð2:15Þ

III. THE s-KdVh, SYMMETRIES IN QUANTUM
MECHANICS, AND s-KdVh⇌s-mKdVh

MIURA TRANSFORMATION

The supersymmetric method of construction of new
condensates for the GN model is based on the Miura
transformation between solutions of the mKdVh and the
KdVh. In order to introduce this transformation, first it is
necessary to summarize the s-KdVh, and then the way to
obtain solutions of the s-mKdVh from pairs of solutions of
the s-KdVh will be shown.
The s-KdVh corresponds to a set of nonlinear integrable

systems, and its equations are recursively defined as
follows:

fl;x ¼ −
1

4
fl−1;xxx þ ufl−1;x þ

1

2
uxfl−1; ð3:1Þ

f0 ¼ 1, being the equations of the s-KdVh

2fl;x ¼ 0: ð3:2Þ

Explicitly, one finds
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2f0;x ¼ 0;

2f1;x ¼ ux;

2f2;x ¼ −
1

4
ðuxxx − 6uux − 4c1uxÞ;

2f3;x ¼
1

8
ð16uxxxx − 5uxuxx − 5u2x − 5uuxx

þ 15u2ux − 2c1ðuxxx − 6uuxÞ
þ8c2uxÞ;

..

.

where cl are real valued integration constants.
These equations allow Lax pair formulation in the form

2flþ1;x ¼ i½P2lþ1; H�; ð3:3Þ

where ½:; :� is the usual commutator;

H ¼ HðuÞ ¼ −
d2

dx2
þ u ð3:4Þ

corresponds to the stationary Schrödinger operator in one
dimension, ℏ ¼ 2m ¼ 1; the operator

P2lþ1 ¼ P2lþ1ðu; ∂σðHðuÞÞÞ

¼ −i
Xl
j¼1

�
fl−j

d
dx

−
1

2
fl−j;x

�
Hl ð3:5Þ

is called the Lax operator; and ∂σðHðuÞÞ is the border of
the physical spectrum of HðuÞ that defines the coefficients
cj in P2lþ1.
The Lax equation ½H;P2lþ1� ¼ 0 describes an odd order

integral of motion for each Schrödinger Hamiltonian
associated with solutions u of the s-KdVh. The order of
this integral, called the Lax-Novikov integral, depends
on the number of allowed bands and bound states in the
spectrum of such a Hamiltonian.
The constants cj in (3.3) are defined as function of the

energies Em ∈ ∂σðHðuÞÞ,

ck ¼ −
Xk

j0 ;j1 ;…;j2g¼0

j0þj1þ���þj2g¼k

2−2k
Y2g
i¼0

ð2jiÞ!
ðji!Þ2ð2ji − 1ÞE

ji
i ; ð3:6Þ

where k ¼ 1;…;l and c0 ¼ 1.
There exists a transformation between the mKdVh sol-

utions and the KdVh solutions, which is called the Miura
transformation. The Miura transformation is defined by

u ¼ v2 − vx: ð3:7Þ

If v is any s-mKdVh solution, there is a f̂2n−1 such that

f̂2n−1ðvÞ ¼ 0: ð3:8Þ

Then due to the identity

fn;xðuÞ ¼ ið2v − ∂xÞf̂2n−1ðvÞ; ð3:9Þ

u is a s-KdVh solution,

fn;xðuÞ ¼ 0: ð3:10Þ

Note that the inverse affirmation is not correct.
The s-mKdVh is invariant under the change v → −v, and

hence the transformation (3.7) allows one to define

uþ ¼ v2 þ vx ð3:11Þ

and

u− ¼ v2 − vx; ð3:12Þ

where u� are both s-KdVh solutions dependent on v. From
another perspective: let two functions uþðxÞ and u−ðxÞ
satisfy the same equation in s-KdVh and depend on a
function vðxÞ as in (3.11) and (3.12), respectively. In this
case, vðxÞ must simultaneously satisfy (3.9) for v and for
−v. By adding these two equations the following identity
is obtained: 4vf̂i ¼ 0, which implies that v must satisfy
s-mKdV equation (3.8). This frame is in the basis of the
hidden supersymmetry of the stationary sector of the GN
model. It is natural to ask, why change the problem
from the search of one solution of the mKdVh to the
search of two connected solutions of the KdVh? In the next
sections, it is shown how, by starting from an initial
Schrödinger potential uþ and its eigenstates, it is possible
to construct through the Darboux transformation a super-
symmetric pair u− and a superpotential vðxÞ. A character-
istic of the Darboux transformation is to keep the
symmetries, so if uþ has a Lax-Novikov integral (i.e.,
a s-KdVh solution), then u− also has its respective Lax-
Novikov integral (i.e., another s-KdVh solution). By
observing intertwining operators that generate such trans-
formations [A ¼ d

dx þ vðxÞ], families of superpotentials
vðxÞ will be found, which will be solutions of the
s-mKdVh and candidates to self-consistent stationary
condensates of the Gross-Neveu model.

IV. CRUM-DARBOUX TRANSFORMATIONS AND
SUPERSYMMETRY IN 1+ 1D

The system of Eqs. (3.11) and (3.12) hides a supersym-
metry in its structure. From the point of view of the Lax
pair formulation, uþ defines the Schrödinger Hamiltonian
Hþ ¼ − d2

dx2 þ uþ and u− defines the Schrödinger

Hamiltonian H− ¼ − d2

dx2 þ u−, while v defines the Dirac

operator HD ¼ −i d
dx σ3 þ vσ1. To simplify, a unitary
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transformation to HD is done, which defines the operator
Q1 ¼ e−i

π
4
σ1HDei

π
4
σ1 , such that

Q1 ¼
�

0 A

A† 0

�
¼

�
0 d

dx þ v

− d
dx þ v 0

�
; ð4:1Þ

and this operator Q1 plays the role of the square root of

H − E⋆ ¼
�
Hþ 0

0 H−

�

¼ −
d2

dx2
þ v2 þ σ3vx

¼ Q2
1 ¼

1

2
fQ1;Q1g: ð4:2Þ

The operator H can be interpreted as an extended
Schrödinger operator and corresponds to the Witten
Hamiltonian of supersymmetric quantum mechanics in
1þ 1D. The Hamiltonian H presents two fermionic inte-
grals in the form Q1 and Q2 ¼ iσ3Q1 for the grading
operator Γ ¼ σ3. The Lie superalgebra of these integrals of
motion takes the following form:

½H;Qa� ¼ 0; fQa;Qbg ¼ 2δabðH − E⋆Þ; ð4:3Þ

where a, b ¼ 1, 2.
Besides, it is possible to observe that Ψ�ðxÞ ¼

exp ð� R
x
x0
dx0vðx0ÞÞ are eigenstates (not necessarily phys-

icals) of H� with energy E⋆, or equivalently

H�Ψ�ðxÞ ¼ E⋆Ψ�ðxÞ: ð4:4Þ

Starting from the state Ψ�ðxÞ of H�, u∓ðxÞ is defined as a
Darboux transformation of u�ðxÞ in the form

u�ðxÞ → u∓ðxÞ ¼ u�ðxÞ − 2ðlnðΨ�ðxÞÞÞ00; ð4:5Þ

and this type of transformations plays an important role in
the theory of integrable systems, spectral analysis, and
soliton systems. In the context of such transformations, the
components of the fermionic integrals Q, defined in (4.1),
A ¼ d

dx þ vðxÞ and A† ¼ − d
dx þ vðxÞ (Hermitian conju-

gated of A), are known as intertwining operators between
Hþ and H−. Because of the factorizations Hþ − E⋆ ¼ AA†

and H− − E⋆ ¼ A†A the following intertwining relations
are fulfilled:

AH− ¼ HþA; A†Hþ ¼ H−A†: ð4:6Þ

These identities play a fundamental role in the solution
of spectral problems of high complexity, since these allow
one to obtain the spectrum ofH∓ from the spectrum ofH�,
and vice versa. If Ψ�ðx; EÞ is a state of H� with energy E,

then the intertwining relations (4.6) imply that A†Ψþðx; EÞ
is a state ofH− with energy E, while A performs the reverse
mapping, and AΨ−ðx; EÞ is a state of Hþ with energy E.
There will be some problems with the mapping of the states
Ψ�ðxÞ, since A can be written as

A ¼ Ψ−ðxÞ d
dx

1

Ψ−ðxÞ ; ð4:7Þ

so it annihilates Ψ−ðxÞ among the eigenstates of H−, i.e.,
AΨ−ðxÞ ¼ 0, while A† annihilates the state ΨþðxÞ, of the
same energy, among the eigenstate spectrum ofHþ. In fact,
by definition

A† ¼ −ΨþðxÞ d
dx

1

ΨþðxÞ ; ð4:8Þ

ΨþðxÞ ¼ 1
Ψ−ðxÞ, and A†ΨþðxÞ ¼ 0. At this point, it is

interesting to note that if Ψ�ðxÞ is a concave (convex)
state without zeros for x ∈ R then Ψ∓ðxÞ is a bounded
eigenstate of H∓. In this case u∓ðxÞ shows a solitonic
defect in the form of a potential well, which supports such a
bound state.
Darboux transformation is generalized by the Crum-

Darboux transformation [22,23]. Such a transformation
corresponds to the application of successive Darboux
transformations and induces a formulation of nonlinear
supersymmetry in quantum mechanics. An order n Crum-
Darboux transformation to Schrödinger operator H0 ¼
− d2

dx2 þ V0ðxÞ results in a new operator

Hn ¼ −
d2

dx2
þ VnðxÞ;

Vn ¼ V0 − 2
d2

dx2
logWn; ð4:9Þ

where Wn is the Wronskian of n formal eigenstates ψ j of
H0, H0ψ j ¼ Ejψ j, Ei ≠ Ej,

Wn ¼ Wðψ1;…;ψnÞ ¼ detA;

Aij ¼
di−1

dxi−1
ψ j; i; j ¼ 1;…; n ð4:10Þ

The eigenstates Ψ0ðx;EÞ ≠ ψ j of H0, H0Ψ0ðx;EÞ ¼ EΨ0

ðx;EÞ are mapped to eigenstates Ψnðx;EÞ of Hn, HnΨn
ðx;EÞ ¼ EΨnðx;EÞ through the fraction of Wronskians,

Ψnðx;EÞ ¼
Wðψ1;…;ψn;Ψ0ðEÞÞ

Wn
; ð4:11Þ

where W0 ¼ 1 has been chosen. It is possible to introduce
the first-order differential intertwining operators
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An ¼
d
dx

þWn;

Wn ¼ −
d
dx

logWn þ
d
dx

logWn−1: ð4:12Þ

These operators and their conjugate factorize Hn−1 and Hn

in the form A†
nAn ¼ Hn−1 − En, AnA

†
n ¼ Hn − En, and

intertwine them as follows: AnHn−1 ¼ HnAn, A†
nHn ¼

Hn−1A
†
n.

The intertwining operator An can equivalently be repre-
sented in the form

Aj ¼ ðAj−1 � � �A1ψ jÞ
d
dx

1

ðAj−1 � � �A1ψ jÞ

¼ d
dx

−
�
d
dx

lnðAj−1 � � �A1ψ jÞ
�
; ð4:13Þ

where A1 ¼ ψ1
d
dx

1
ψ1

and Aj−1 � � �A1ψ j is an eigenstate of
eigenvalue Ej for Hj−1, any other formal eigenstate
Ψj−1ðEÞ of Hj−1, Hj−1Ψk−1ðEÞ ¼ EΨn−1ðEÞ is mapped
for Aj in the eigenstate ΨjðEÞ ¼ AjΨj−1ðEÞ of Hj with the
same eigenstate as HjΨjðEÞ ¼ EΨjðEÞ.
In this way, it is possible to intertwine Hn and H0

using the order n intertwining operator An ≡ An � � �A1,
AnH0 ¼ HnAn, A

†
nHn ¼ H0A

†
n. If Wn ≠ 0 and V0ðxÞ is

nonsingular, for x ∈ R, then the extended system H ¼
diagðH0; HnÞ is characterized by a nonlinear supersym-
metry dependent on the scattering data of the eigenstates
used in Crum-Darboux transformation. In the superalgebra
there exist two nilpotent Z2-odd antidiagonal super-
charges Qþ¼A†

nσþ¼ 1
2
ðQ2þ iQ1Þ and Q−¼Anσ−¼Q†

þ,
½Q�;H� ¼ 0, Q2

� ¼ 0, where σ� ¼ 1
2
ðσ1 � iσ2Þ. These

generate a nonlinear Lie superalgebra in the form
fQa;Qbg ¼ 2δab

Q
n
l¼1ðH − ElÞ.

This supersymmetric representation shows a spontane-
ous breaking of symmetry, which depends on the spectral
data of the chosen ψ i states. The HðuÞ Schrödinger
operator has an order two formal degeneration for each
energy level, so the election of the states ψ i is arbitrary,
and in general, it is a linear combination between the pair
of linearly independent states of the same energy. There are
states that through the Darboux transformations produce
(i) a nonlinear phase shift in the initial potential, (ii) one
defect in the initial potential with the form of a solitonic
potential well, and/or (iii) singularities. In addition to the
above, special elections of pairs of states that produce
singularities can altogether generate one or two soliton
defects, supporting bounded states in the forbidden gaps of
the spectrum of the initial potential.
It is possible to differentiate between three supersym-

metric frames: exact, broken, and partially broken super-
symmetries. Let Hn and ψ i be defined as in (4.9), the
supersymmetry associated withH is exact if Hn (H0) has a

normalizable ground state of energy Ei lower than the
energy of the ground state of H0 (Hn). In this case, H
supports a ground state in the form Ψ0 ¼ ð0;Anψ

⋆
i ÞT

[Ψ0 ¼ ðψ i; 0ÞT], where ψ⋆
i is a state of H0 of energy Ei

linearly independent of ψ i, and thus the ground state Ψ0 is
annihilated for all generators of supersymmetry QjΨ0 ¼ 0,
j ¼ 1, 2.
The supersymmetry is broken if H0 and Hn both

have normalizable ground states of the same energy Ei,
such that H has two normalizable ground states
Φ0;0 ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

n
l¼1ðE0 − ElÞ

p
ψ0; 0ÞT and Φ0;n¼ð0;Anψ0ÞT ,

where ψ0 is the bound state of H0. In this case the
generators of supersymmetry do not annihilate the
ground states; rather they transform them one into
the other Q−Ψ0;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
n
l¼1ðE0 − ElÞ

p
Ψ0;n and QþΨ0;n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

n
l¼1ðE0 − ElÞ

p
Ψ0;0, Q−Ψ0;n ¼ QþΨ0;0 ¼ 0.

A third case arises if the lower energy state in Crum-
Darboux transformation ψ i corresponds to the lower energy
edge of bands, in this case ψ0 ¼ ψ i, and the supersymmetry
generators annihilate both states Q�Φ0;a ¼ 0, a ¼ 0; n.
About the latter case, it is necessary to say that the finite-
gap structure of V0 expands the number of supersymmetry
generators from N ¼ 2 to N ¼ 4. There is a central
extension of the superalgebra due to the Lax-Novikov
integral present in finite-gap systems. This is called a
partially broken supersymmetry because the initial two
fermionic integrals annihilate the two bound states while
the additional two do not [24].
The central extension is also possible in the first two

cases but it is essential in the definition of the third one.
An important behavior occurs when the Crum-Darboux

transformation takes place, for it makes it possible to
preserve the symmetries of the initial system. For example,
let H be a Hamiltonian with integral of motion P,
½H;P� ¼ 0; a Crum-Darboux transformation to H allows
one to define a Hamiltonian H0 and an intertwining
operator A between H and H0, AH ¼ H0A and
A†H0 ¼ HA†, and then through Darboux dressing to P it
results that P0 ¼ APA† is an integral of H0. In simple steps
it is proved that ½H0; P0� ¼ 0, which ensures that by means
of the Crum-Darboux transformation a solution of the
s-KdVh (½H;P� ¼ 0) yields another solution of the s-KdVh
(½H0; P0� ¼ 0). The order of the equation in the hierarchy
solved by the transformed system depends on the order of
P0, and it can be equal, lower, or higher than the initial
solution order. This is possible due to an order reduction
mechanism that relies on the spectral data of H and the
states used in the Crum-Darboux transformation. In this
direction, sometimes it is possible to reduce the operator P0

to a lower order operator P̃0 due to an identity in the form
P0 ¼ Q

iðH − λiÞP̃0 which ensures that if P0 is an integral,
then P̃0 also is. On the other hand, if u is a solution of one
equation of the s-KdVh, then automatically it is a solution
of infinite equations of a higher order of the hierarchy.
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In other words, if u is a solution of any equation of the
hierarchy that defines a Lax pair H and P, ½H;P� ¼ 0, then
it is always possible to construct a new Lax pair H and
P̃ ¼ P

Q
n
j¼1ðH − λjÞ, ½H; P̃� ¼ 0, where λj ∈ R and n is a

positive integer, that corresponds to the Lax pair formu-
lation of a higher order equation in s-KdVh.

V. ALGEBRO-GEOMETRIC SOLUTIONS OF THE
s-KdVh AND THEIR CRUM-DARBOUX

TRANSFORMATIONS

In this section the Its-Matveev formula of the algebro-
geometric finite-gap solutions of the s-KdVh is presented.
Moreover, two types of spectral transformations are stud-
ied, and infinite families of finite-gap potential with
solitonic defects are obtained.
The Lax pair of KdVh Hg;0 ¼ Hðug;0Þ and P2gþ1 ¼

P2gþ1ðug;0; ∂σðHg;0ÞÞ satisfy the Burchnall-Chaundy rela-
tionship [25]

P2
2gþ1 ¼

Y2g
i¼0

ðH − EiÞ; ð5:1Þ

which relates the eigenvalues y of P2gþ1 to the eigenvalues
z of Hg;0 through the hyperelliptic curve

y2 ¼
Y2g
i¼0

ðz − EiÞ: ð5:2Þ

The algebro-geometrical method allows one to find the
finite-gap solutions in the form of second derivatives of
logarithms of Riemann theta functions. The Its-Matveev
formula [26,27] for potentials with g gaps is given by

ug;0ðxÞ ¼ −2
d2

dx2
lnðθðxv þ ϕ; τÞÞ þ Λ0; ð5:3Þ

with v;ϕ ∈ Cg.
The eigenstates for the Hamiltonian associated with (5.3)

are given in the form

ψðr; xÞ ¼ θðxv þ ϕþ αðrÞ; τÞ
θðxv þ ϕ; τÞ exp ð−ixξðrÞÞ; ð5:4Þ

where θ is the Riemann theta function of genus g which
presents a periodicity in the form θðzþ a; τÞ ¼ θðz; τÞ, for
a ∈ Zg,

θðz; τÞ ¼
X
n∈Zg

exp ð2πihn; zi þ πihn;nτiÞ; ð5:5Þ

with z ∈ Cg and τ the modular matrix. The genus g of the
Riemann theta function corresponds to the number of
band gaps in the spectrum of the associated Schrödinger
operator [27,28].

The parameters in (5.3) and (5.4) are completely defined
by the curve (5.2). The modular matrix is a g × g symmetric
matrix with a positive defined imaginary part, whose
elements, as well as the components of v and the constant
Λ0, are uniquely determined by the energies of the edges of
the spectrum of H, while αðrÞ and ξðrÞ also depend on a
point r ¼ ðz; yÞ on the hyperelliptic curve (5.2) such that
Hψðr; xÞ ¼ zψðr; xÞ and P2gþ1ψðr; xÞ ¼ yψðr; xÞ. On the
other hand, ϕ depends on the full spectral data of H [27].
Crum-Darboux transformations to solutions in the

Its-Matveev form correspond to finite-gap systems with
bound states in their forbidden bands. An equation in
s-KdVh 2fgþlþ1;xðug;lðxÞÞ ¼ 0 with parameters cl,
l ¼ 0;…; 2gþ 2l, defined by the energies ∂σðHg;lÞ ¼
fE0;…; E2gg ∪ ð∪i¼1;…;l fzðri;1Þ; zðri;1ÞgÞ, has solutions
with irreducible P2gþ2lþ1 when ug;l takes the form

ug;lðxÞ ¼ ug;0ðxÞ − 2
d2

dx2
lnðWðψa1;1;a1;2ðr1;1; r1;2; xÞ;

…;ψal;1;al;2ðrl;1; rl;2; xÞÞÞ; ð5:6Þ

with

ψai;1;ai;2ðri;1; ri;2; xÞ ¼ ai;1ψðri;1; xÞ þ ai;2ψðri;2; xÞ ð5:7Þ

real functions, whereai;1 and ai;2 areC constants and ri;1 and
ri;2 are elements in different charts of the Riemann surface
related to hyperelliptic curve (5.2) with zðri;1Þ ¼ zðri;2Þ and
yðri;1Þ ¼ −yðri;2Þ, zi ≠ zj, for i ≠ j, i; j ¼ 1;…; l.
The s-KdVh solution ug;lðxÞ defines a Lax pair in the

form

Hg;l ¼ Hðug;lðxÞÞ;
P2gþ2lþ1 ¼ P2gþ2lþ1ðug;lðxÞ; ∂σðHg;lÞÞ; ð5:8Þ

where the Darboux dressing of the integral P2gþ1 yields the

identityP2gþ2lþ1 ¼ AlP2gþ1A
†
l ,Al ¼ AlAl−1 � � �A1 with Aj

defined as in (4.12) but changing ψ i → ψai;1;ai;2ðri;1; ri;2; xÞ.
To perform a quantum mechanical interpretation, the

operatorH must fulfill the role of Hamiltonian and P2gþ2lþ1

the role of integral of motion. To ensure real valued
observables, it must be required that both H and P be
Hermitian operators without singularities in the real axis.1

It is necessary to demand that ug;lðxÞ have no singularities
for x ∈ R and that its spectrum be real, which implies Ei,
zj, Λ0 ∈ R, for i ¼ 0;…; 2g and j ¼ 1;…; l. Under these
conditions the operation † corresponds to the Hermitian
conjugation.

1It is not necessary to require this interval as an Hermiticity
condition (an example of this is the infinite potential well) but,
given the nature of solitonic potentials, this is the most natural
choice for the present type of systems.
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To construct ug;lðxÞ nonsingular, it is possible to choose
ug;0ðxÞ and ug;lðxÞ − ug;0ðxÞ both nonsingular or both
singular but in the latter case the singularities of the first
term must cancel the singularities of the second. To obtain
ug;0ðxÞ singular, it is enough with a correct election of ϕ.
Overall, this is possible when zi ∈ σðHÞc, where c corre-
sponds to the complement; i.e., ψai;a2ðri;1; ri;2; xÞ must be
nonphysical states of H. It is necessary to use the zeros
theorem for the correct choice of sign of the ratio ai;1=ai;2
for each energy zðri;1Þ. Note that there are an infinite
number of solutions.
Soliton potential wells added by Crum-Darboux trans-

formations to the solution in Its-Matveev form deform the
shape of the initial finite-gap potential. It is possible to
obtain different shape types of solitonic potential wells
depending on which forbidden band supports the associ-
ated bounded states. The asymptotic behaviors of the
Crum-Darboux transformation correspond to phase shifts
in the periodic structures of the initial potential.

A. Types of Miura-Darboux transformations

Two types of Darboux transformations to ug;lðxÞ are
interesting. Their differences produce three types of sol-
utions for the GN model.
Auto Darboux transformations: the real eigenstates

Alψðr; xÞ for Hg;l, zðrÞ ≤ Ei, Ei ∈ ∂σðHg;lÞ, correspond
to nonsingular states of modulated exponential growing
(decreasing), which cannot generate bound states through
Darboux transformation. As a consequence of the Its-
Matveev formula, the Darboux transformation using
Alψðr; xÞ connects two shape invariant isospectral poten-
tials, ug;lðxÞ and ũrg;lðxÞ. The potential ũrg;lðxÞ differs from
ug;lðxÞ in phase shifts of the positions of the solitons (due to
changes in the coefficients al;i) and of the crystal structures
that generate each band. The phase shift in crystal struc-
tures is given as follows:

δϕ ¼ ϕ̃r − ϕ ¼ αðrÞ; ð5:9Þ
where ϕ is defined in (5.3) and αðrÞ comes from the
definition of ψðr; xÞ in (5.4). ϕ and ϕ̃r correspond to
vectors whose components are the phases of the crystal
structures in ug;lðxÞ and ũrg;lðxÞ, respectively.
The operators

XlðrÞ ¼ Alψðr; xÞ
d
dx

1

Alψðr; xÞ
; ð5:10Þ

XlðrÞ† ¼ −
1

Alψðr; xÞ
d
dx

Alψðr; xÞ ð5:11Þ

intertwine Hg;l ¼ XlðrÞ†XlðrÞ þ zðrÞ and H̃r
g;l ¼ XlðrÞ

XlðrÞ† þ zðrÞ ¼ − d2

dx2 þ ũrðxÞ in the form XlðrÞHg;l ¼
H̃r

g;lXlðrÞ and XlðrÞ†H̃r
g;l ¼ Hg;lXlðrÞ†, respectively. By

being the initial and the transformed potentials isospectral

by construction, these must be solutions of the same
equation of the s-KdVh with exactly the same coefficients
cl. Thus, H̃r must have a Lax-Novikov integral P̃r

2gþ2lþ1 ¼
P2gþ2lþ1ðũrg;lðxÞ; ∂σðHg;lÞÞ, such that ½P̃r

2gþ2lþ1; H̃
r
g;l� ¼

−2i d
dx fgþlþ1ðũrðxÞ; ∂σðHg;lÞÞ. It is possible to connect

the Lax operators through the intertwining operator
(5.10) in the form

XðrÞP2gþ1 ¼ P̃r
2gþ1XðrÞ: ð5:12Þ

To prove this identity, it is enough to note that XðrÞ
P2gþ1ðXðrÞP2gþ1Þ† ¼ P̃r

2gþ1XðrÞðP̃r
2gþ1XðrÞÞ† and that any

deformation of (5.12) in the form XðrÞP2gþ1 ¼
P̃r
2gþ1XðrÞ þDðrÞ, with DðrÞ an intertwining operator

betweenHg;l and H̃r
g;l, is inconsistent for any order ofDðrÞ.

The simplest example of auto Darboux transformation
corresponds to choosing ψðr; xÞ as the generator of the
Darboux transformations to ug;0ðxÞ. The result of such a
transformation is

ũrg;0ðxÞ ¼ −2
d2

dx2
lnðθðxv þ ϕ̃r; τÞÞ þ Λ0; ð5:13Þ

a shape invariant transformation of ug;0ðxÞwith ϕ displaced
to ϕ̃r ¼ ϕþ αðrÞ.
Solitonic Darboux transformations: these are Darboux

transformations constructed using real states of Hg;l−1
of the form Ψ½l� ¼ Al−1ψal;1;al;2ðrl;1; rl;2; xÞ, where Al−1,
ψal;1;al;2ðrl;1; rl;2; xÞ, are defined in (5.7) and the paragraphs
below it.
The intertwining operators

Al ¼ Ψ½l� d
dx

1

Ψ½l� ;

A†
l ¼ −

1

Ψ½l�
d
dx

Ψ½l� ð5:14Þ

intertwine Hg;l−1 ¼ A†
l Al þ zðrl;1Þ with Hg;l ¼ AlA

†
lþ

zðrl;1Þ, in the form AlHg;l−1 ¼ Hg;lAl and A†
l Hg;l ¼

Hg;l−1A
†
l . The Darboux dressing of the Lax-Novikov

integral P2gþ2ðl−1Þþ1 of Hg;l−1 allows one to find a Lax-

Novikov integral P̂2gþ2lþ1 ¼ AlP2gþ2ðl−1Þþ1A
†
l for Hg;l,

such that ½P2gþ2lþ1; Hg;l� ¼ 0. Since P2gþ2lþ1 is two orders
greater than P2gþ2ðl−1Þþ1, it is possible to note that ug;l is a
solution of an equation in s-KdVh of one order higher than
the initial solution ug;l−1.
In [16,24] the solitonic potentials and their respective

Lax-Novikov integrals for the free background and the
Lamé periodic background have been studied in detail,
and concrete norms for the construction of solitonic
potentials have been established from the zeros theorem.
The simplest example of solitonic Darboux transformation
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is to use ψa1;1;a1;2ðr1;1; r1;2; xÞ as the generator of a
Darboux transformation to ug;0ðxÞ. The result of such a
transformation is

ug;1ðxÞ¼−2
d2

dx2
lnða1;1θðxvþϕþαðr1;1Þ;τÞ

×expð−ixξðr1;1ÞÞþa1;2θðxvþϕþαðr1;2Þ;τÞ
×expð−ixξðr1;2ÞÞÞþΛ0; ð5:15Þ

where the constants ξðrj;1Þ and ξðrj;2Þ present an imaginary
part different from zero for zðrj;1Þ in the forbidden bands of
the spectrum ofHg;0; this is due to the exponential growth or
decrease of nonphysical states. Far from the center of the
soliton defect, the solitonic Darboux transformation looks
like an auto Darboux transformation because only nonlinear
phase shifts remain in the transformed potential. This is due
to the asymptotic dominance of one of the exponential
terms in (5.15). Both asymptotic potentials correspond
to potentials in the Its-Matveev form with phase shifts
jΔϕij ¼ jαiðr1;2Þ − αiðr1;1Þj, where i ¼ 1;…; g corre-
sponds to the index of each vector component.

VI. STATIONARY CONDENSATES FOR
THE GN MODEL

It is possible to differentiate between three types of
stationary solutions for the GN model in dependence of
their shapes and the spectrum of their respective Dirac
operators: (i) kink finite-gap condensates: in this case, the
condensate oscillates around zero and presents a central
allowed band [see Figs. 1(a) and 2(a)]; (ii) kink-antikink
finite-gap condensates: in this case the shape of the
condensate oscillates around a constant different from zero
and presents a central gap [see Figs. 1(b) and 2(b)]; and
(iii) kink on kink-antikink finite-gap condensates: these
condensates are associated with solitonic Darboux trans-
formations, present a domain wall that divides two different
kink-antikink finite-gap phases. Such a domain wall is
supported by a single bound state of zero energy [see
Figs. 1(c) and 2(c)]. Solitonic defects with Dirac energies
closer than zero allow one to construct pairs of domain
walls [see Fig. 3].

(a) (b) (c)

FIG. 1. Examples of stationary condensates of the GN model: solitonic defects on a homogeneous background. For each graphic are
shown the shape of the condensateΔðxÞ, in a blue continuous line, and its spectrum σðHDÞ, in green thick lines the continuous spectrum,
in dashed red line the band gaps, and in cyan dots the bound states and the band edges. Note that −ΔðxÞ is a condensate solution of the
GN model too, with an identical spectrum. (a) Trivial zero solution, (b) homogeneous background with two kink-antikink defects, and
(c) kink on a homogeneous background with two kink-antikink defects.

(a) (b) (c)

FIG. 2. Examples of stationary condensates of the GNmodel: solitonic defects on two- and three-gap scalar Dirac potentials. The same
symbology as in Fig. 1 is used but with a brown dashed thin line added to show the shape of the finite-gap background: (a) a two-gap
condensate with two modulation shape solitonic defects that support each two bound states in the external gaps, one in each forbidden
band; (b) a three-gap background with three solitonic defects, two of them as modulations and one kink-antikink defect that supports two
bound states in the central band gap; and (c) a kink version of the previous condensate, where its spectrum additionally contains a zero
energy state.
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A. Defects on kink-antikink finite-gap
condensates

Through auto Darboux transformations

Δ ¼ −
d
dx

lnðAlψðr⋆ÞÞ ð6:1Þ

are constructed. The pair of Miura transformations that
defines Δ in (6.1) corresponds to ug;l − z⋆ ¼ Δ2 − d

dxΔ
and ũr⋆g;l − z⋆ ¼ Δ2 þ d

dxΔ.
The described transformation allows one to define the

extended Schrödinger Hamiltonian H̃ ¼ diagðHg;l; H̃
r⋆
g;lÞ,

the fermionic integrals

Q̃1 ¼
�

0 X1;lðr⋆Þ†
X1;lðr⋆Þ 0

�
¼

�
0 − d

dx þ Δ
d
dx þ Δ 0

�
;

ð6:2Þ

and Q̃2 ¼ iσ3Q̃1, and also a Lax-Novikov integral in the
form

P̃1 ¼
�P2gþ2lþ1 0

0 P̃r⋆
2gþ2lþ1

�
ð6:3Þ

that satisfies the following superalgebra:

½H̃; Q̃a� ¼ 0; fQ̃a; Q̃bg ¼ 2δabðH̃ − z⋆Þ; ð6:4Þ

½P̃1; H̃� ¼ 0; ½P̃1;Qa� ¼ 0: ð6:5Þ

The identities (6.5) correspond to the Lax pair formulation
of the equations of both s-KdVh and s-mKdVh,
respectively. Remember that the equations in the mKdVh
are invariant under the change Δ → −Δ; hence Δ ¼
d
dx lnðAlψðr⋆ÞÞ also corresponds to a stationary GN
condensate.
Additionally, it is possible to define P̃2 ¼ σ3P̃1, which is

another Lax-Novikov integral for H̃, ½P̃2; H̃� ¼ 0. The
integral P̃2 together with Q̃a, a ¼ 1, 2 defines a pair of new
fermionic integrals ½P̃2; Q̃a� that complete the N ¼ 4
fermionic integrals.
As a consequence of (6.5), the kink-antikink condensates

Δ described in (6.1) are solutions of f̂2gþ2lþ1ðΔÞ ¼ 0 [see
(2.10)], where coefficients cDk are given by the energies
∂σðQ̃1Þ,

σðQ̃1Þ ¼
�
−∞;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 − z⋆

p i
∪
h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 − z⋆

p
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − z⋆

p i
∪ � � � ∪

h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2g−1 − z⋆

p
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2g − z⋆

p i
∪
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2g − z⋆
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2g−1 − z⋆

p i
∪ � � � ∪

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − z⋆

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 − z⋆

p i
∪
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0 − z⋆
p

;∞
�

∪l
j¼1 f−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj − z⋆

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj − z⋆

p g; ð6:6Þ

where fE0;…; E2ng ¼ ∂σðHg;0Þ and zj ¼ zðrj;1Þ ¼ zðrj;2Þ
the energies of the bound states supported by the solitons in
the potential of Hg;l. Note that for a common base of
eigenstates the eigenvalues Ẽ of Q̃1 and the eigenvalues Ẽ
of H̃ are related in the form Ẽ2 ¼ Ẽ − z⋆. This type of
solutions, as seen in Fig. 2(b), corresponds to self-con-
sistent condensates Δ with a central energy band gap.

B. Defects on kink finite-gap condensates

These are the limits of kink-antikink finite-gap conden-
sates in which Alψðr⋆Þ is the ground state of Hg;l, and it
must also correspond to an edge of band, with energy E2g.

In this case P2gþ2lþ1 and X1;lðr⋆Þ shareAlψðr⋆Þ as a kernel,
and then there exist S such that P2gþ2lþ1 ¼ SX1;lðr⋆Þ and
P̃r⋆
2gþ2lþ1 ¼ X1;lðr⋆Þ†S†. This produces an order reduction

of the Lax-Novikov central integral of the Dirac
Hamiltonian operator Q̃1, where P̃1 ¼ Q̃1S̃1,

S̃1 ¼
�
0 S†

S 0

�
; ½S̃1; Q̃1� ¼ 0: ð6:7Þ

The identity (5.12) defines S̃1 and Q̃1 as the Lax pair of
f̂2gþ2lðΔÞ ¼ 0 in the s-mKdVh, with coefficients cDk given
by the boundaries of the spectrum of Q̃1, ∂σðQ̃1Þ.

(a) (b)

FIG. 3. Kink defects look like a domain wall that pushes away
two different phases of the condensate, while soliton defects with
energies very close to zero allow one to have two transitions
between these two phases, which is due to the spontaneous
appearance of a kink and an antikink. The width of the kink-
antikink increases while the energy of the defect approaches zero,
while in the zero limit one or both domain walls can disappear in
the spatial infinities.

ADRIÁN ARANCIBIA PHYS. REV. D 98, 065013 (2018)

065013-10



σðQ̃1Þ ¼
�
−∞;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 − E2g

p i
∪
h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 − E2g

p
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − E2g

p i
∪ � � � ∪

h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2g−1 − E2g

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2g−1 − E2g

p i
∪ � � � ∪

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − E2g

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 − E2g

p i
∪
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0 − E2g

p
;∞

�
∪l
j¼1 f−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj − E2g

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj − E2g

p g: ð6:8Þ

In this case Q̃a, S̃1 and S̃2 ¼ iσ3S̃1 correspond to the four
fermionic integrals of H̃.

C. Soliton defects plus kink on kink-antikink
finite-gap background

Through solitonic Darboux transformations

Δ ¼ −
d
dx

lnðAl−1ψal;1;al;2ðrl;1; rl;2; xÞÞ ð6:9Þ
are constructed. In this case, the pair of satisfied Miura
transformations are ug;l−1 − zl ¼ Δ2 − d

dxΔ and ug;l − zl ¼
Δ2 þ d

dxΔ.
The extended Schrödinger Hamiltonian takes the form

H ¼ diagðHg;l−1; Hg;lÞ and its Lax-Novikov integral can be
written as

P1 ¼
� ðHg;l−1 − zlÞP2gþ2ðl−1Þþ1 0

0 P2gþ2lþ1

�
; ð6:10Þ

½P1;H� ¼ 0. In the definition of P1 has been introduced
the term ðHg;l−1 − zlÞ to have operators of the same order in
its diagonal elements, which will be necessary in the next
analysis.
In this case, it is easy to show that P1 plays the role of

integral of motion for the Dirac Hamiltonian operators

Q1 ¼
�

0 A†
l

Al 0

�
; Q2 ¼ iσ3Q1; ð6:11Þ

½P1;Qa� ¼ 0: ð6:12Þ

On the other hand, in the Dirac Hamiltonian frame the kink
nature of the superpotential in Qa generates a spontaneous
order reduction of the s-mKdVh Lax-Novikov operator P1

because in this case it is possible to do the factorization
P1 ¼ Q1S1,

S1 ¼
�

0 P2gþ2ðl−1Þþ1A
†
l

AlP2gþ2ðl−1Þþ1 0

�
;

S2 ¼ iσ3S1; ð6:13Þ

and from this point of view, it is allowed the order reduction
P1 → S1. So taking Q1 as the Dirac Hamiltonian, the
irreducible integral of motion, in the form of the s-mKdV
Lax-Novikov operator (2.10), is not P1 but rather S1,

½Q1;S1� ¼ 0: ð6:14Þ

Δ are the solutions of f̂2gþ2lðΔÞ ¼ 0 with coefficients cDk
given by the boundaries of the spectrum of Q1, ∂σðQ1Þ.

σðQ1Þ ¼
�
−∞;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 − zl

p i
∪
h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 − zl

p
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − zl

p i
∪ � � � ∪

h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2n−1 − zl

p
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2n − zl

p i
∪ 0 ∪

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2n − zl

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2n−1 − zl

p i
∪ � � � ∪

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − zl

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 − zl

p i
∪
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0 − zl
p

;∞
�

∪l−1
j¼1 f−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
zj − zl

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
zj − zl

p g: ð6:15Þ

The existence of a zero energy state is directly related to the
kink or antikink nature of Δ.
For a commonbase of states the energiesE of Q̆ ¼ Q1; Q̃⋆

and the energies E of H̆ ¼ H; H̃ keep the relation E2 ¼
E − z̆, where z̆ correspond to zl or z⋆, respectively. The
stationary condensatesΔ have the characteristic property that
their spectra are always symmetrical with respect to E ¼ 0.

VII. SOLITONIC DEFECTS AND
SELF-CONSISTENCY

The role of the consistence equations (2.7) is to define the
spectrum of fermion matter that composes each condensate.
There exist infinite possibilities to fill the fermion states in the
spectrum of a condensate Δ. Among them, it is possible to
differentiate between ground states and exciton solutions.
In ground state configurations, a particle (hole) occupies

(empties) a state only if those of smaller (greater) energy are
also occupied (emptied), while exciton configurations allow
discontinuities in the occupation of the states.
By using the identities (2.7) and (2.15), the consistency

equation (2.3) for a condensate Δ with nþ 1 gaps and 2l
defects, n; l ∈ N0, takes the form

i
Δ
Ng2

¼ trE

�
Enþ2lΔþ Σffiffiffiffiffiffiffi

−Π
p Q

l
k¼1ðE2 − E2

b;kÞ

�
;

Σ ¼
Xbn=2cþl

j¼1

Enþ2l−2jf̂2j;

ffiffiffiffiffiffiffi
−Π

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

Y2nþ1

j¼0

ðE − Ee;jÞ
vuut ; ð7:1Þ
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where g2 is the coupling constant of the GN model,2 the
constants Ee;j, for j ¼ 0; 1;…; 2nþ 1, correspond to the
energies of the edges of the bands of HD, and Eb;k ¼
−Eb;lþk, 0 < Eb;1 < Eb;2 < � � � < Eb;l, to the energies of
the bound states of HD. Here trE is defined as

trE ≡ 1

N

XN
r¼1

Z
Cr

dE
2π

≡ 1

N

Z
C

dE
2π

; ð7:2Þ

where the integration paths Cr in (7.2) depend on the
spectrum occupied by the particles and antiparticles (holes)
of flavor r (see Fig. 4). Thus, Eq. (7.1) corresponds to a
system of bn=2c þ lþ 1 equations that defines the UV
cutoff and the occupation of each state in the spectrum of
HD by the different flavors.
By observing that Eq. (7.1) must be fulfilled for any

values of f̂2j ¼ f̂2jðxÞ, j ¼ 1;…; bn=2c þ l, it is possible
to reduce those equations in the following set of consis-
tence equations: one equation for UV cutoff

i
Ng2

¼ trE

�
Enffiffiffiffiffiffiffi
−Π

p
�
; ð7:3Þ

2bn=2c equations for the occupation of the bands

0 ¼ trE

�
En−jffiffiffiffiffiffiffi
−Π

p
�
; ð7:4Þ

where j ¼ 1;…; 2bn=2c, and l equations for the occupation
of the bound states

0 ¼ trE

�
En−2bn=2cffiffiffiffiffiffiffi

−Π
p ðE2 − E2

b;jÞ

�
; ð7:5Þ

where j ¼ 1;…; l. The unknown variables of these equa-

tions are the occupation fractions νðjEjÞ ¼ nð−jEjÞ−nðjEjÞ
N ,

−1 < νðjEjÞ < 1, where nðEÞ is the number of flavors that
occupy the eigenstate of allowed energy E.
It is interesting to note that the result of (7.5) for each

pair of defects is independent of the other pairs. The
occupation fraction νk ¼ νðjEb;kjÞ for the pair of bounded
states of energies jEb;kj and −jEb;kj depends on the spectral
information of the finite-gap background and only on the
modulo of the energy of such a pair of defects, without
taking into account the existence of the other pairs. This is a
characteristic already observed in the solitonic case in the
free massive background.
The consistence equations are the same for a kink

condensate as for an identical condensate without the kink.

(a)

(b)

(c)

(d)

FIG. 4. Occupation of fermion matter. The occupation of the fermionic states by each flavor is characterized by the spectrum of the
condensate Δ. Such a spectrum defines the poles and the branch cuts in the argument of the trace in Eq. (7.1). Here the meaning of the
integration paths for ground state configurations is shown: (a) Examples of paths for ground states; the first path leaves holes in Dirac sea
(antiparticles) so its charge Q will be “negative.” The second case corresponds to a full Dirac sea, where there are no particles nor
antiparticles, and thus, the total charge is zero. In the third case, there are only particles, so it has a “positive” charge. Since the paths
cross the axis only once, these examples correspond to ground state type paths. (b) The path Cr for the rth fermion flavor. The path Cr in
(b) is identical to the path C0

r in (c). C0
r results from adding a closed integration path in the upper plane to Cr, and such a closed

integration path covers the axis Im½z� ¼ 0 with direction Re½z� ¼ ∞ → Re½z� ¼ −∞ and whose integral, by means of the residue
theorem, is equal to zero. (d) The superposition of the integration path of all flavors construct the path C. To simplify, the scattering
zones, of particles and holes, are chosen empty. In other words, the lower allowed band is occupied by all the flavors, i.e., the path C
cover N times the respective branch cut, and the upper allowed band is empty. On the other hand, some flavors occupy the bound states,
and then the poles are turned by C a number n < N of times. Another assumption for simplicity is to choose all the states in the bands
occupied by the same number of fermions.

2To avoid confusion, note that in this section g2 is not related to
the genus of the Riemann theta function, for here n takes this role.
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In kink condensates there are 2lþ 1 bound states, where
one of such states has zero energy. In Eq. (7.1) this change
corresponds to multiplying the numerator and denominator
by E, the consistence equations remaining unchanged. As a
consequence, the consistence equations (2.3) do not fill the
occupation of the state of zero energy, and by definition
νð0Þ ¼ 0.
In the following, the self-consistency of the condensates

that present solitonic defects on one- and two-gap back-
grounds will be studied. For simplicity, a ground state
occupation will be presented, in which the states of the
lower allowed band are fully occupied, the states in the
upper allowed band are completely empty, and all the states
in the allowed bands have the same occupation fraction.
The one-gap solution corresponds to massive Dirac

particle Δ ¼ �M, M > 0. In this case, Dirac operator Q
[see (6.2)] connects two copies of H0;0 ¼ − d2

dx2. The eigen-
states of H0;0 correspond to ψðkÞ ¼ eikx, H0;0ψðkÞ ¼
EψðkÞ, E ¼ k2, k ∈ R for physical states and k ∈ I
for nonphysical states. Through the Miura-Darboux trans-
formation, the massive condensate rises from the state
ψðimÞ ¼ e−mx, m ¼ �M, being Δ ¼ − d

dx lnψðimÞ. Note
that for m ¼ 0 the 0-gap condensate is obtained through the
physical edge of band state ψð0Þ ¼ 1 of H0;0.
The one-gap condensates with defects are obtained using

nonphysical states of H0;0 in the form

Δ ¼ −
d
dx

ln

�
Wðψ̆1;…; ψ̆ j; e−mxÞ

Wðψ̆1;…; ψ̆ jÞ
�
; ð7:6Þ

where ψ̆2l ¼ sinhðκ2lðxþ τ2lÞÞ and ψ̆2lþ1 ¼ coshðκ2lþ1

ðxþ τ2lþ1ÞÞ, with j and l positive integers and
jκlj < jκl−1j < jmj. In this case, the spectrum of Q
corresponds to

σðQÞ ¼ ð−∞;−M� ∪i¼1;…;j −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − κ2i

q
∪i¼1;…;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − κ2i

q
∪ ½M;∞Þ;

and Eq. (7.5) defines the occupation fraction νk of the
bound states of the central band in the form

jEb;jj ¼ M sin

�
πνj
2

�
; j ¼ 1;…; l: ð7:7Þ

Note that for this type of condensates the occupation
fractions are related by ν1 < ν2 < � � � < νl. This result
allows solutions of the ground state type, in which any
particle of any flavor can exist only if there exists another of
the same flavor with the allowed energy immediately lower.
Within the solutions on the finite-gap background, the

inhomogeneous simplest case (modulo spatial displace-
ments) is the kink crystal background

Δ ¼ −ðln dnðMx; kÞÞ0

¼ Mk2
snðMx; kÞcnðMx; kÞ

dnðMx; kÞ ; ð7:8Þ

where snðx; kÞ, cnðx; kÞ, and dnðx; kÞ are the Jacobi elliptic
functions with modular parameter k, 0 < k < 1. The
condensate (7.8) is a solution of the s-mKdVh,

0 ¼ Δ00ðxÞ − 2ΔðxÞ3 − 2ðk2 − 2ÞM2ΔðxÞ;

and this equation is also known as the nonlinear
Schrödinger equation and corresponds to f̂2ðΔÞ ¼ 0.
From now on, the following relationship between

Jacobi’s theta function and Riemann’s theta function will
be used:

ΘðxjkÞ ¼ θ

�
xþ 1

2
; τ

�
; τ ¼ i

K0

K
; ð7:9Þ

dnðu; kÞ ¼ ΘðuþKÞ
ΘðuÞ

Θð0Þ
ΘðKÞ ; ð7:10Þ

where Kð:Þ is the elliptic integral of the first kind, K ¼
KðkÞ is the complete elliptic integral of the first kind, and
K0 ¼ Kðk0Þ, k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
.

From the supersymmetric point of view, the kink
crystal condensate connects two Lamé one-gap
Schrödinger potentials displaced in half a period: u1;0 ¼
M2k2ð2snðMx; kÞ2 − 1Þ and ũð0;0Þ1;0 ¼ M2k2ð2snðMxþ
KðkÞ; kÞ2 − 1Þ. The Darboux transformation that generates
this superpotential is constructed using the ground state
ψ ¼ dnðMx; kÞ of the one-gap Schrödinger system H1;0.
Such a Darboux transformation allows one to construct a
kink two-gap condensate, with two band gaps separating a
central band [29].
This condensate has a period of 2KðkÞ, defined in terms

of the complete elliptic integral of first kind KðkÞ.
The spectrum of kink crystal (7.8) is given by σðHDÞ ¼

ð−∞;−M� ∪ ½−Mk0;Mk0� ∪ ½M;∞Þ, where the energy
band gaps correspond to −M < E < −Mk0 and Mk0 <
E < M.
The eigenstates of H1;0, H1;0ψ

α
� ¼ EðαÞψα

� are

ψα
�ðxÞ ¼

HðMx� αÞ
ΘðMxÞ exp ½∓ MxZðαÞ�; ð7:11Þ

where EðαÞ ¼ M2dn2ðα; kÞ and Z and H are the Jacobi zeta
and eta functions respectively,

ZðujkÞ ¼ d
du

lnΘðuÞ; ð7:12Þ

HðuÞ ¼ −iq1=4 exp
�
i
πu
2K

�
Θðuþ iK0Þ; ð7:13Þ
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q ¼ expðiπτÞ: ð7:14Þ

For more details about these functions and the spectral
properties such as quasimomentum, see [16]. The functions
Ψα

� are parametrized in terms of the parameter α, which
lies in a rectangular domain with vertices α ∈ f0;K;Kþ
iK0; iK0g.
By using chains of Darboux transformations, it is

possible to construct an infinite set of symmetric conden-
sates with one central allowed band in the form

ΔðxÞ ¼ −
d
dx

ln

�
Wðϕð1Þ;…;ϕð2lÞ; dnðMx; kÞÞ

Wðϕð1Þ;…;ϕð2lÞÞ
�
;

ð7:15Þ

ϕð2jþ 1Þ≡ C2jþ1ψ
α2jþ1

þ ðxÞ þ 1

C2jþ1

ψ
α2jþ1
− ðxÞ; ð7:16Þ

ϕð2jÞ≡ C2jψ
α2j
þ ðxÞ − 1

C2j
ψ
α2j
− ðxÞ; ð7:17Þ

0 < α1 < α2 < � � � < α2l < K: ð7:18Þ

The spectrum of these condensates is defined by

σðHDÞ ¼ ð−∞;−M� ∪2l
i¼1 f−Mdnðαi; kÞg

∪ ½−Mk0;Mk0�
∪2l
i¼1 fMdnðαi; kÞg ∪ ½M;∞Þ:

It is possible to obtain potentials with 2ð2l − 1Þ bound
states, and one way to obtain these is to choose a parameter
Cj and to take either the limit Cj → 0 or ∞. With this
method, one of the solitons disappears in some of the two
spatial infinities, x → �∞. As a consequence of the loss of
two bound states, the characteristic equation in s-mKdVh
of the initial condensates will fall by two orders. In
summary, through this method stationary condensates Δ
are constructed, whose spectra are symmetrical with respect
to E ¼ 0; they also have a finite number of bands and any
number of bound states in them.
Because of the different occupation number of each

sector of the spectrum, the occupation fraction ν0 is
introduced for the occupation of the states in the central
band and νj, j ¼ 1;…; l, for the bound states.
Because of the symmetries of the spectrum, the occu-

pation constant ν0 is undefined as in the kink case. Thus,
the consistency equation (7.5) for the condensate (7.15)
takes the form

νl ¼
2

π
tan−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
b;l − k02M2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − E2

b;l

q
1
CA; ð7:19Þ

and the result shows how the effective occupation fraction
of the defects relies on their energy and width of the central
band (or the same, the modular parameter k). The inverse
interpretation defines the energy of the defect as a function
of the effective occupation fraction and the width of the
central band

jEb;lj ¼ M cos

�
πν1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þ tan2

�
πν1
2

�s
: ð7:20Þ

It is interesting to notice that in limit k0 → 0 known results
of the solitonic case in the free massive background are
obtained (7.7). In this limit k → 1, K → ∞, and the kink
crystal (7.8) is reduced to the Callan-Coleman-Gross-Zee
kink Δ ¼ M tanhðMxÞ [12].
For more complex condensates, the consistence equa-

tions depend on hyperelliptic integrals of higher order.

VIII. DISCUSSION AND OUTLOOK

By using an exotic supersymmetry between finite-gap
systems with defects, the set of analytical stationary
solutions for the GN model has been constructed, observ-
ing the existence of inhomogeneous and nonperiodic
condensates with band structures and a finite number of
bound states.
The Darboux transformation has allowed the recursive

construction of infinite families of exactly solvable
Scrödinger systems from a finite-gap potential given by
the Its-Matveev formula.
The process of constructing solitary defects on finite-gap

Schrödinger potentials has generated scalar Dirac potentials
(or Bogoliubov–de Gennes self-consistent condensates)
that present solitary defects on finite-gap backgrounds.
Each one of these Dirac systems exhibits an irreducible
integral of motion corresponding to a Lax operator of the
s-mKdVh.
The Darboux dressing of the Lax operator of finite-gap

systems has allowed the finding of the self-consistency
equations for all the stationary condensates, having as a
main characteristic the independence of the consistence
equations for each pair of bound states of opposite energy,
each one depending only on finite-gap background data and
the modulus of its characteristic energy.
On the dependence of their shape and spectrum, the set

of self-consistent stationary condensates presented here can
be separated into three groups. These condensates neces-
sarily have the form of (i) kink finite-gap condensates with
solitonic defects, which oscillate around zero and present a
central allowed band, (ii) kink-antikink finite-gap conden-
sates with solitonic defects, which oscillate around a
constant different from zero and present a central forbidden
band, and (iii) kink domain wall condensates on kink-
antikink finite-gap background with solitonic defects,
which looks like a kink (antikink) domain wall that pushes
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away two kink-antikink finite-gap phases and supports one
bound state of zero energy in the central forbidden band;
the two kink-antikink finite-gap phases oscillate around
opposite constants.
In what follows, some interesting related study problems

will be discussed. Important aspects to be studied about the
condensates presented here are their mass spectrum and
their stability. In the direction of the first point, the study of
the Green function and the density of states of the
respective Schrödinger and Dirac equations for finite-gap
systems with defects are within the research interests of the
author. About the stability of these condensates and their
decay channels [17]: the possible decays of allowed bands
into bound states or allowed bands into other allowed bands
are mysteries yet to be revealed.
The thermodynamic role that these condensates could

occupy in a GN model is another interesting point of
study, the most direct approach being the Ginzburg-
Landau expansion of the thermodynamic grand potential

]11,15,18 ].
On the other hand, as well as s-mKdVh is related to the

GN model, the Zakharov-Shabat Ablowitz-Kaup-Newell-
Segur hierarchy (ZS-AKNS) is related to the chiral GN
model or the Nambu-Jona-Lasinio model in 1þ 1D.
There exists a generalization of the Darboux transforma-
tion for Dirac operators in 1þ 1D. Particularly, such a
transformation allows the construction of pseudoscalar

Dirac potentials in the form of soliton defects on finite-
gap backgrounds with the spectrum not necessarily
symmetric. Although these potentials also present a
Lax-Novikov integral, they are not solutions of the s-
mKdVh, rather of the ZS-AKNS hierarchy of equations
[30,31]. In general, these potentials correspond to com-
plex pseudoscalar potentials with asymmetric spectra,
any number of bound states, and a finite number of
energy band gaps. Because of the existence of the Lax-
Novikov integral and an adequate Darboux transforma-
tion, it is possible to find a representation for a nonlinear
N ¼ 4 supersymmetry for extended Dirac Hamiltonians.
The supersymmetric method has proved to be useful for

solving problems of nonlinear interaction between bosons
[32,33] and problems of nonlinear interaction between
fermions, herein studied. In this direction, it is interesting to
search for uses of the supersymmetric methods for the
study of coupled systems between bosons and fermions.
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