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Scheme invariants in ¢* theory in four dimensions
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We provide an analysis of the structure of renormalization scheme invariants for the case
of ¢* theory, relevant in four dimensions. We give a complete discussion of the invariants, up to four
loops, and include some partial results at five loops, showing that there are considerably more
invariants than one might naively have expected. We also show that one-vertex reducible
contributions may consistently be omitted in a well-defined class of schemes, which of course

includes MS.
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I. INTRODUCTION

Beyond leading order, it is well-known that the values
of p-function coefficients are scheme-dependent, i.e.,
depend on the renormalization scheme. On the other
hand, one would expect that statements with physical
meaning should be expressible in a scheme-independent
way. A notable recent example is the issue of the
existence of an a function; i.e., a function that generates
the f functions through a gradient-flow equation. For
this to be feasible, the p-function coefficients must
satisfy a set of consistency conditions, which must
clearly be scheme invariant; as this has been verified
for various field theories in three [1-3], four [4], and six
[5] dimensions. The number of scheme-independent
combinations at each loop order would naively be
expected to be given by the difference of the number
of p-function coefficients and the number of independent
variations of coefficients; however, the number of
independent invariants actually found is considerably
larger. This may be understood in a pragmatic way, in
terms of the structure of the expressions for the scheme
changes of the coefficients; however, a possibly deeper
insight is afforded by Hopf algebra considerations. A
general discussion of scheme dependence, with a par-
ticular focus on one-particle reducible (1PR) structures,
was recently given in Ref. [6], and here, the study of
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scheme-invariant combinations was initiated with refer-
ence to the N/ =1 scalar-fermion theory.

The present paper is to be seen as a companion to a
forthcoming article [7] where the ideas of scheme
invariance and the relation to Hopf algebra will be
explored in general and also exemplified for the case
of ¢ theory in six dimensions; our purpose here is to
extend the discussion to ¢* theory in four dimensions.
We shall summarize results of Ref. [7], where it is
necessary to render the present discussions self-
contained. An additional complication in ¢* theory is
due to the existence of one-vertex reducible (1VR)
graphs. These are one-particle irreducible (1PI) graphs
that may be separated into two distinct portions by
severing a vertex. They have no simple poles when
using minimal subtraction and dimensional regulariza-
tion, and hence, a vanishing f-function coefficient in this
scheme. It would be convenient to be able to omit these
coefficients from our considerations. Indeed, we shall
show that although we may, if desired, include such
coefficients, we may also consistently confine our atten-
tion to a well-defined subset of schemes in which these
coefficients are absent.

The structure of the paper is as follows: in Sec. II, we
introduce the ¢* theory and give the results at one, two,
and three loops. Section III contains our main results,
namely the full set of four-loop scheme invariants and a
partial five-loop calculation. In Sec. IV, we show that one
may straightforwardly restrict attention to a set of
renormalization schemes in which 1VR contributions
are absent. In Sec. V, we set our results for scheme
invariants within the Hopf algebra framework. Finally,
we summarize our results and give pointers to future
work in the Conclusion. Some general theory, which is
developed in detail in Ref. [7] and which underpins our
work, is summarized in Appendix A. Appendix B lists
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some Hopf algebraic cocommutative coproducts that
arise in Sec. V but were too complex for inclusion in
the main text. Finally, in Appendix C, we show how to
express scheme changes in terms of differential operators
acting on the p-function coefficients.

II. ONE, TWO, AND THREE LOOP
CALCULATIONS

In this section, we establish our notation and obtain the
invariants up to three loop order (the first nontrivial case for
¢* theory). We consider the action

1 . 1 oo 1 oo
S = / dx (E 0,9'0'¢' — §m2¢'¢’ - Igijkl¢l¢]¢k¢l>
(1)

for the case d = 4, which corresponds to a renormalizable
theory. The anomalous dimension y;; may be expressed as a
series of two-point 1Pl diagrams with 4-point vertices
connected by internal lines representing the contractions of
couplings. Up to three loops, we have

B(l) 20153>©<,

27:d24@+d3@+..., (2)

where here and elsewhere we suppress indices as
far as possible. We consistently neglect contributions
from “snail” diagrams in which a bubble is attached
to a propagator. Such contributions do not arise in
minimal subtraction, and they will not be generated by
redefinitions if the redefinitions themselves do not
include such diagrams. The pf-function f;;; may then
be decomposed into 1PI pieces together with one-
particle reducible pieces determined by the anomalous
dimension, in the form:

B=B+8>—) (3)

with B denoting the 1PI contributions and S, the
sum over the four terms where y is attached to each
external line. Up to three loops, the contributions to j
are given by

B> CZS6><Z + CQRS3><>C><7
59 =83 [ esu(_[) X+ C3b>®< + So C3C><EI + Q{@ )

+ 036512>® + Cay

+ c3rS6

For later convenience we introduce the notation that
g%u is the graph corresponding to cs3,, and ¢, is the
graph corresponding to d,, etc. We note that in Eq. (4)
the graph ggf is primitive in that it has no divergent
subgraph.

Changes of the renormalization scheme are well-known
to be equivalent to redefinitions of the coupling, which may
be parametrized as [6]

gjijkl = (g +f(g))mnpqcmicnjcpkcql (5)

+ 34053

where

1

Clg) = (1 =2¢(g)) ™ (6)

After a scheme change, the f function and anomalous
dimension are represented by a similar diagrammatic series,
but with modified coefficients given by

cx + ocy,

dx — dy = dy + ddx, (7)

cx >y =
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where ¢y and dy represent coefficients of generic
diagrams in series such as Eqgs. (4), (2) respectively.
As explained in the Appendix (which in turn is a
summary of the discussion in Ref. [7]), it is useful to
parametrize the scheme change by v defined implicitly
by Eq. (A4). We assume that v is parametrized in a
similar way to Egs. (5), (6), with analogues of f(g), c(g)
given by similar diagrammatic series to those for the
p-function and anomalous dimension, but with cy — Jy
and dy — ey.
At one and two loops, we have

561 == (Sdl == (SCZ = 5C2R == 5d2 =0. (8)
At three loops, we find using Eqgs. (A10) and (A11)

5030 = 2X/21/}1 + 2X/11512R’
8ese = 2X1h +2X5k .,

A
dcyp = 2X5,

503(1 = 2X/11/12,

5636 :O, 6C3f :O,
A
5c3aR = X/II?ZR’ 5C3bR = Q’X}lL?ZR’ 5d3 = 6X1{/2.
9)
Here,
X%()L,Y = Cx(sy - 6ch,
XJ;?’Y = dxéy — €xCy, (10)

with corresponding definitions for X’;gy, XY, when
needed. We see from Eq. (A10) that the coefficients
appearing in X%) etc., should in principle be “hatted”
quantities defined according to Eq. (All); but at this
level, there is no distinction between the two, i.e.,
¢i=cy, Cr=cy, Elzzdz. Note that c3, and c3; are

individually invariant—which in the case of c3; follows
immediately from the fact that it corresponds to a
primitive graph. In deriving invariant combinations of
coefficients, it is important to note that

M A Ay _ rA o 24
XX,Y__XY,X’ XX,Y—_XY,)o XX.Y__XY.X' (11)

We now start the search for these invariant combina-
tions of coefficients at lowest (three-loop) order.
A priori, since at this order there are nine three-loop
coefficients and five variations §;, 5%, 0y, €, Oog, ONE’S
naive expectation would be 9—-5=4 invariants.
However, the variations on the right-hand side of
Eq. (9) are expressed in terms of only three independent
quantities, X%, X, and X%, and so, in fact, we
should have 9 —3 = 6 independent invariant combina-

tions of three-loop coefficients. Indeed, we easily find
from Eq. (9) that

3)
= €34+ €30 — 2C34g,

14(13> =3¢y, + ds, (12)

3
IE Ig) = 2C34r — C3pR>

3
Ié ) = C34 + C3,

are four independent invariant combinations (making a
total of six invariants with the individually invariant cs,
and C3f)‘

III. THE FOUR AND FIVE LOOP
CALCULATIONS

In this section, we comprehensively examine the
issue of scheme invariants at four loops and partially
(due to increased calculational complexity) at five loops.
The full list of four loop diagrams was presented in
Ref. [8]. The anomalous dimension is given at this
order by

|
2y = d4a@ + d4b@ + d40@ + d4d@; (13)

while the 1PI part of the f function will be parametrized as
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5(4) :83 C4a>@< + C4b>®< -+ C4C>@<
+ S C4d>@ + C4e>@ + C4f><€ + 649%
+ C4h><q + C4¢><< + S0 C4j>ﬂ[ + C4k><

+ C4l>< + c4m><[ + Can + Cao + ey g
(14)
+ €4qS6 @ + C4r324® + Cys
8 (curX OO0 +ean ) ) ))
+ Se C4cRm + C4dR><@ + C4eR>@<

In Eq. (14), the graph g, is the only primitive one. for the one-vertex irreducible coefficients,
We find [again, using Eqgs. (A10) and (A11)] variations o
of the four-loop coefficients given by 6¢sar = 2X7 348

Scapr = 4X 70
5C4ll - 4"Xl 3a + 4X3€ 1 + 4X%/12R, bR 1,3bR

Scqy = =beap = 2875, +2X5L ),
Scye = 6X7, +2X7

Scaq = 2X15, + 2Kk + 2851,
Sege = 284 | +2X7h,

0C4g = 3XY 3¢ T 2X3aR1 +2X%% 5,
Scay = Sy = 2X5, + 2X1h,,

Scaer = 2X50r + X

6Char = 2X1 3bR>

OChor = 2X2 SR>

Oc4rr = 2X1 3aR +X3bR |+ 2X5 g,

OC4gr = 2X1,3bR + 2X272R, (16)

for the 1VR coefficients, and

Scq; = XY 3b+Xzzv 6dy, = 0.

Seay = 2R+ XM+ 2RM L | Sdyy = 3RV, + 6X7, .

Scy = 2K, +2X% |+ 2X%, . 8dye = 2K, + 6X%,

5Cap = ¢4, = ey = 0, Sdyg = 4)(1?3 +6X5, (17)

6C4p = Xt 13c 2% 13d T XZR 2> for the anomalous dimension coefficients. At this level, in
8¢y, = —6csy = X s contrast to the earlier three-loop calculation, we do needAto

5 5 distinguish “hatted” from “unhatted” quantities. The X*
ocq, = 2X34 + X3 (15)  quantities are defined by
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X/;éy - éxéy—(sxéy, (18)

in other words as for X** in Eq. (10) but with the S-function
quantities cy y replaced by hatted quantities Cy y. Similar
definitions apply to X%, etc., but with dyy replaced by
hatted quantities d x.y where relevant. Here, again ¢; = ¢y,
Gy = Cy, 32 = d,, while the quantities ¢3, etc. are defined by

1
C3g = €34+ 556307 (19)
with dcs, as defined as in Eq. (9), and similar expressions for
¢, etc., and also EZ3. The additional terms in the hatted
quantities derive from the first Lie derivative term on the
right-hand side of Eq. (A10).

Now again we look for invariants at this order. Note that
Cams Can» Cags dg, are individually invariant—which again, in
the case of ¢y, follows immediately from the fact that it
corresponds to a primitive graph. There are 30 four-loop
coefficients whose variations are given in Egs. (15)—(17);
and there are 18 variations up to the three-loop level, namely
53a—3f.3aR,3bR’ €3, 5?’ 0162, 6102r, 01€2, 62, €2, Oap, 5%’ 01 We
would therefore naively expect 30 — 18 = 12 invariants.
However, the variations on the right-hand sides of Eqs. (15)—
(17) are expressed in terms of only 12 independent X/X
combinations, and therefore, the correct expectation is
30 — 12 = 18 invariants. Indeed, together with the four
individually invariant coefficients cg,,, Cay> Cas» day> W€
find the following 14 linear invariant combinations:

#HL _
I = ¢y — cyys

4)L
1(2 ) = Cyp t+ Cafs

13 = Cyq +2C4f+2C4[,

14(‘4)L = c41+ 2¢40 — 2¢4y — Capr + 2C44R.
[é‘”’“ = ¢4, + 3¢y, + dy,,

B = ot =it e cum

1(74>L = Cap = Caq + Cag = Cap F Cacr 5 Cagr-
Ié‘m = C4p = Car + 2C49 = Car — Capr + Cagr,
I =3y, + 64 + ddy — 2dyy,

1" = ey + cas

IV = 2dy, + 3dy, — 3dyy + 6Caer.

I@L = 4cyar —4Cher + Caprs

4L _
11377 = capr — 2¢44r:

4L
I§4> = C4cR — Capr + Cagr — CasR- (20)

We call these 18 invariants “linear.”” We also find three
“quadratic” invariants

1(14)Q = ¢1(2dye — dug) + 3cac3 + 3dscay,

40 __
1577 = ¢1Cyer — CorC3p — drC3pp,

4
1§ 0= c1(Caar = €agr) + €2€34r = C2RC3a5 (21)

which are a consequence of the relations

Ay A Ay
e XY, — dh XY, = 1 X5,
Ay M Ay
CorX(p — dayXop = €1 Xop0s

) i )
2 Xor — CorXTH = 1 X5k, (22)

respectively.  Altogether we have found 21
invariants, considerably more than (in fact almost
double) the 12 that might naively have been
expected.

We note that one may derive a fourth identity

y J
C2X2§e,2 + d2X%/,12R = CZRXz?zv (23)
which leads to an invariant

2
4
14(1 2 _ dy(Capr = 2Cagr) + 2C2Ca0p + §C2R(2d4c —dyg);

(24)

but in fact, Eq. (23) may be derived from linear combi-
nations of the identities in Eq. (22) and correspondingly

14(14>Q is a linear combination of invariants already found in
Egs. (20) and (21).

We now proceed to a very partial five-loop calcu-
lation. The number of diagrams at five loops is daunt-
ingly high, so we have not undertaken a complete
calculation of all the invariants. A natural place to start
is with the five-loop anomalous dimension, which has
only 11 terms:
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2y =ds, + dsy
+ dse + dsg
_'_ d5i + d5j

We find from Egs. (A10) and (A11) that the variations
of the coefficients in Eq. (25) are given by

8ds, =2X7,.

8ds, = 12X5, 5 +4X7, +4X30,

ods, = 6X§£ 2t 4Xiy4d + 4X§T3,

dds; = 6X1 o T 3X3 s

6d56:6X —|—2X1 4L—|—2X2R3,

odsy = 6X3aR 2t 4Xl apt 3X2R,3’

odsy = 2X1 4a ngy

ods, = 6X§ZJ 2385, 4287, + 2X%74d + 2X2 3

bds; = 3X3a2 +3X3bR2 +2Xl 4D +X1 Ac +2X2 3

ods; :3X +3X3bR2+2X1 4b+2X1 4d+X +2X2R3’
Sds; = 3X§g ,+2X7,, +2RY,. (26)

The hatted X-type terms are defined in a similar manner to
Eq. (18), i.e., by replacing p-function quantities cy y and
dyxy in Eq. (10) by hatted quantities ¢y y, and C,ZX’Y. The
hatted coefficients are, in turn, defined in terms of the
corresponding unhatted quantities in a manner similar to
Eq. (19). However, in the case of four-loop anomalous
dimension coefficients, we need to define

dyy = dyy + %5/‘14177 (27)
where §'dy;, (and similarly §'d,,. ;) are defined as in Eq. (17),
but with hatted replaced by tilded quantities, namely

8dyy, = 33XV, + 6X%r . (28)

)?’}”3 is defined as for ng but with d; replaced by ds. This
in turn is defined by a similar equation to Eq. (19), but with

I-1ie

+ d5c@ + d5d

(25)

+ d5g@ + So | dsp,

dy=d;+ %&13, (29)
with 8d5 as in Eq. (9). This appears rather complicated, but
simply reflects the nested structure of Eq. (A11). This feature
has not been apparent in our calculations until now, because
there the terms quadratic in £ have not hitherto contributed.

However, it proves impossible to construct an invariant
combination purely of anomalous dimension coefficients,
and in fact, we need to include some 1VR four-point
contributions, depicted below:

5aR 50R 5¢R

(30)

The wvariations of the corresponding coefficients are
given by

5 i
5csar = XVer + 2XY 3 ak>
OCspr = 2X1 4er T 2X2 3bR>

Scser = 6XVor + 2Xz 2R (31)
where the hatted quantities are again defined in a similar
way to Eq. (18). Note that [as we see in Eq. (16)] the
variation dcy, g is expressed in terms of unhatted quantities,
so there is no need to invoke the modified &' here. Naively,
no linear invariant constructed purely from the coefficients
in Egs. (25) and (31) would be expected—there are 16
independent variations in Eq. (26) and only 14 coefficients.
However, it turns out that there are three unexpected
relations among the invariance conditions, resulting in just
one five-loop linear invariant formed using only anomalous
dimension and 1VR coefficients, namely
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155)L = dSb - ZdSC - 2d56 - 2d5f + 4d5]
—6Cs,5 + 6CspR — Cscp- (32)
In addition, we also find several quadratic invariants, namely
5
Ig e = cids, + 2dycq), + c3pC34.
5
Ig € =2 (dsy = dsi) — dycye + dscsyy,

1§5>Q = c1(2¢sar = Cspr) = 2d3(2¢44r = Cacr)
— ¢35(2¢34r — C3bR),
3 1
199 = ¢)(ds, - 3ds,) - S da) = Edg,
(510 !
15 = Cl(3c5bR — C5CR) + _CZRJ

2
+ 6d;(Ccaqr = Cacr) + d3C3pps

Ié € = ¢|(ds. + 2ds, — 2ds),)
— 6d;(Cap — Cag — 2Ca0r + 2Cacr) + CopJ
= 2d5(c3. — €3a),
Igs)Q = c¢(dsp, — 2ds,) + 3dy(ca — 2¢4, + 2c4,)
+ (¢ — Cap)J + 633, + 2¢3.d3,
1'% = ¢\ (dse + dsy = 2ds;) = 3da(cap = 3Caar + 2eack)

+—(5cop —4cy)J + ds(c3, = €30 = C30r + C3pR)-

=

(33)

where J denotes the frequently occurring combination
defined by

J = 2¢4e + 3¢y, — 6cy;. (34)
These owe their existence to relations like
o X3, + do X, + 63,85, =0, (35)

together with similar relations for 3b-3 f, 3aR, 3bR; together
with

CIX;},/S + 5?3)?}1{12 + CZX}?,,?l = O,
oA Ao 5y
c1Xoks + dSXﬂll,{zR + X% =0,
o X5 + dy XY, + d XY, = 0. (36)

The number of invariants is as expected, since the 11 relations
of the form Egs. (35) and (36) reduce the effective number of
independent variations from 16 to 5, yielding 14 —-5=9
invariants (both quadratic and linear).

In the absence of a complete calculation, one may
estimate the total number of invariants which will be found
at five loops. The five-loop f function was calculated in
Ref. [9], and it contained contributions from 124 1PI 5-loop
4-point diagrams and 11 5-loop 2-point anomalous

dimension diagrams, making 135 coefficients in total."
There are 67 independent variations at five loops, implying
a naive expectation of 135 — 67 = 68 linear invariants. On
the other hand, there are 57 five-loop X-type terms [some of
which of course appear in Eq. (26)], which, following the
argument explained at four loops, implies an actual total of
135 — 57 = 78 linear invariants. But furthermore, there are
altogether 27 identities of the form Egs. (35) and (36),
constructed from the one one-loop quantity, the three two-
loop quantities, and the nine three-loop quantities. This
implies an additional 27 quadratic invariants, making 105
invariants in total. As at four loops, there are considerably
more invariants than might have been expected. One may
also speculate on the possible existence of higher-order
invariants based on higher-order Jacobi-style identities.

IV. ONE-VERTEX REDUCIBLE GRAPHS

In this section, we briefly discuss the issue of S-function
contributions from one-particle reducible (1VR) graphs. It
is well-known that no such contributions arise using
minimal subtraction within dimensional regularization
(MS), as may easily be established by consideration of
the diagram-by-diagram subtraction process. It would be
convenient if when considering scheme redefinitions, one
could restrict attention to schemes that have the same
feature. In fact, if we start from a scheme such as MS in
which the f-function coefficients corresponding to four-
point 1VR graphs G, are zero, i.e., cg, = 0, itis clear from
Egs. (A10) and (A11) that the simple conditions

5g, =0 (37)

will ensure that the redefined coefficients will also satisfy
G, = 0.2 This relies on the fact that for L, L loop graphs
G, G, with L + L’ > 3, if (in the notation of the Appendix)
LG’ contains 1VR graphs, then at least one of G or G’
must itself be 1VR. We therefore have a simple all-orders
prescription given by Eq. (37) for defining schemes with no
1VR contributions.

The redefined coupling as given by Eqgs. (5) and (6) turns
out to adopt a simple form when cg, =65, = 0. We
assume that f(g), c(g) in Egs. (5) and (6) are given by
similar diagrammatic series to those for the  function and
anomalous dimension, but with ¢y — &y and dy — &y. At
one loop, we simply find 6, = &,. At two loops, we find

32 = 52 + 52,
Sar = Sog + 0%, (38)

so that the condition for 1VI graphs is

"The six-loop f function was recently computed in Ref. [10].
*There are no 1VR two-point graphs, and therefore, there is no
need to impose €g, = 0.
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cor =0, S2R = 5%’ (39)

At three loops,

- 2
03y = 03, + 61(6, + Sop) +§5{’,

53;7 = 63;7 + 5162,

2,
03 = 030 + 6,(8, + 6og) + 567,

3

- 2 3

03¢ = 034 + 610, +§51,

- 2 3

030 = 03, + 20,0, +§51,
- 5 5
03ar = O34k + 551521% + 61,
S3pr = O3pr + 61(8, + Sag) + 5.

€'3 = €3 + 35162. (40)

It is easy to confirm using Eq. (38) that o,z = 3, =
03pr = 0 corresponds to

Bk =8, Oupr =510 (41)

The emerging pattern is clear; the value for 5 . 1s the product
of the & s for its 1VI subgraphs. At four loops, we find

- 3 13
O4ar = O4ar T 3016348 +§5%R +§5%52R +61,

% 2 4o 2 4
O4pr = Oapr +206103pr 1+ 63 +§5152R+25152+5 .

~ 3 8

O4cr =04cr +01034r +§5153bR +616, +§5%52R +61.

N 5 2
844k = S4ar + 6183, +6153pr + 535 + 615, +§5%52R +§547
S4er = 0183+ €2025 + 8765,

1

S4pR = Oarr + 01034+ 5183ar 50153k 575,
2
+25%52R+§5‘l*,
- 2. )
Ougr = Oagr + 6163, + 61838 + 2616, + =516 + 267, (42)

3 3

Using Egs. (38) and (40), we find that 65, = 0 up to this
level corresponds to taking

S _ 4
54aR - 51 ’

S4eR = 3183177

Bapr =03, Oacr =010, Baar =503,

54fR =01034» 54gR =003, (43)
so that each four-loop 1 VR § is the product of the § s for its
1'VI subgraphs, as expected. It seems highly likely that this
simple pattern persists to all orders, but we have not been
able to construct a proof.

When considering the scheme invariants, we can there-
fore restrict ourselves to those schemes with ¢, = 0. The

counting of invariants is then slightly different. Upon
setting c3,p = c3pr = 0 in Eq. (12), there are then just

three invariant combinations, namely, / 53/) =c3, + 30,1 53)

and I§3>. We have lost two coefficients (c3,z and c3pg) and
one independent variation (X%%,), and so we expect to lose
2 — 1 =1 invariants.

The pattern is similar at four loops; if we impose
Eq. (41), then we have Scyup_4gr =0, and so we can
consistently set c4,z_408 = 0 in Eq. (20). We now have 23
coefficients and the 14 variations 33a_3f, €3, S?, 5,65, 6,85,
5y, &, 5%, 5, leading to a naive expectation of 23 — 14 = 9
invariants. On the other hand, out of the original 18 linear
invariants in Eq. (20), we are left with 11 invariant linear
combinations, plus the four individual invariants, making
15. Again, this is as anticipated, since we have lost the
seven coefficients c4,p_4or and the four independent
variations X74 g, XV, Xdhg, and X3y ,, so we lose
7 —4 =73 invariant linear combinations. Furthermore,
it is clear that in the 1VI case only one of the identities
in Eq. (22) remains, and consequently, only one of the
quadratic invariants in Eq. (21) survives. The total number
of invariants is therefore 16; once again, almost double the
naively expected number.

Finally, we can consistently set ¢s,zg = ¢s5pr = 5.8 = 0
in Eq. (32), to obtain a invariant constructed solely from
anomalous dimension coefficients

1Y = ds, = 2ds, — 2ds, — 2ds; +4ds;.  (44)

V. RELATION WITH HOPF ALGEBRA

Scheme invariants may be described graphically by
adopting and extending rules described by Panzer [11]
using the Hopf algebra coproduct A: G - G ® G, where §
is the vector space spanned by the set of connected 1PI
superficially divergent graphs and the disconnected prod-
ucts of such graphs. The action of the coproduct A on a
Feynman graph g € G is defined by

Ag=> ¢;®g/g V subgraphs g; C g.g:.9 € G,
i

gi # 1,9, otherwise Ag = @. (45)

Here, g/g; denotes the graph obtained from ¢ by con-
tracting each connected 1PI graph in the subgraph to a
single vertex, or a single line if the connected 1PI graph has
two external lines. Further details and a general discussion
will be presented in Ref. [7], but this brief overview is
sufficient for our present purposes. The invariants of
Egs. (20), (21), and (32) should correspond to combina-
tions of graphs with a symmetric, or cocommutative,
coproduct, following the general results of Ref. [7]. In
this section, we verify this by explicit calculation. First, we
readily derive the following useful results: At three loops
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A(g) = g' ® 0% +29.* ® g,

A(g;*") =9, ® g,

Ag) =29)' ® > + 9, ® g,

A(g*) =2g)' ® 9” +(9;)* ® g},

A(g*) = 9! ® 9>+ 9.° @ 95,

A(gff) =0,

A(g,*) =2g9,' ® 9,7,
A(g*R) =3g,' ® g, + 29, ®@ g;' + (9})* ® g
A =g' @ ™ +9' ® > + 9> ® 9" + (9))* ® g

A(g*) = 9" ® 9,7 + 29,7 ® g, + 9> ® 9.°%,
Ag,*") =29, ® 9,7 + 29, ® g,' + 9> ® 9,°F
Alg*) =29' ® 9" +9,° ® 9.
AMg*)=0"®6+9' @47 +97 " ® ¢ +9° ® 9>+ (9') @9 +9'9.> ® g
Ag*) =9 ® 9>+ 9" ® g,
Ag") =g ® 9" + 9" ® g, +29,° ® g%,
Ag%) =39, ® 27 + 97’ ® 9" +29,°* ® 9,” + (4:')* ® g°,
A(g;") = A(g;*) =29)' ® . + 9,7 @ ;' + (9,")* ® 9,
AMg¥) =9 ® 9" +9°® 9+ 99 ® 9,
AMg*) =0"'®9:7+6'® 97+ 6" @ 9" + 9, ® 9:° + (4,')* ® 9%
Ag") =29 ® 0, + 9 @ 9 + 9,°° ® 95",
A(g*m) = A(9,14n) =9'®e*+9 Qa9 +9° ® g’
Agp*)=9'® gfc +20' ® 0+ 0 @9 +29)')V @9+ o' @9
Ag*) = 9" ® g,
Alg*) =g ® 9,117
AMg)=6'®9+9' ®6*+9°® 97+ (9 ®9”+39'9” ® g
A(g;*) =0,
A(g* ) = 4g)' ® 6,7 F + 207 ® g, +39,F ® 9, +3(0,')* ® 0,7 +20,' 9.7 ® 3",
A(g;*"R) =29,' @ 9,7"F +29 @ 9,2 + (9,')* ® 9°F +20,' 9> ® g,
A ') =g' ® 97" +20)' ® " + 97" ® 0 + 0 ® . + 9 ® 9> +2(9)') ® g

+ 992 ® 9 + 9.9, ® g)'.
A ) =29 ® 9" + 9! ® 9 + 9, ® g + 97 @ 97 +2(02' ) ® 97 + 9" 9 ® 91
Ag*) =9 ® 0" +9'®u"+0." Q9 +9.'9,” @ 93",

)=
)=

Ag") ="' Q9P+ 92" @ g + 0! ® 0° + 9> ® 9" + 20> ® 9, + (9")* @ 9, + 91" 9:* ® 95",
) =

Ag* ) =g"' @0+ 02 @0 +0,'®0* +0.*® a0 + (0" ® 9> +9.' 9> @ 93",

and for the two-point graphs,
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A(g,*) =g,* ® g,%,

A

At five loops, the basic coproducts are

Ag) =g ® ¢2.

Ag') =20 ® g +9;®9 +9;® g/

A(g) =20 ® 2 +29; @ g, + 29, ® gi*
Alg) =g} ® 2 + 29 ® g,

Alg°) =29 ® g, + gi* ® ¢ + 29, ® g},
A(g") =201 ® ¢} +33F ® g +49} ® g} +

)=

)

)

)

)

)

)=9,®9 +29,® 4" +29,9, ®g;.

Ag=g"®g+9°®% +9 Qg +3; ®g)F

)=0"®g+9""®gG+20;®g +9,®g"
=9 ®gy+93bR®gy+gi®gy+
)
)
)
)

(

A(g,") =39"' ® 9° +20,* ® 97+ (9:.')* ® 9,7,
(
(

+9,®4°
+91®
®G+9 Q4" +20) @91 +2(9))’ @G+ 9. ® G+ 9, ® &2

9,%)=g9' ® g, +29,> ® g%
Ag,*) =29 @ 9,° + 29> ® 9,> + (9

)’ ® g, (48)

T’ ®F+20\ 3 ® ¢,

39’ ® g +20.3% ® ¢,

+(9)*®g +9,9 @ g,
9+ (9 ® g + 9,9, ® g7,

Mg =g"®g+5,®9 +9,®4 +9,19y®9w

A(gy" :29 ®G*+ 9" ® g+ @G+ 3" @G+ 5" ® g + 9,9 ® g} +29,9, ® F + 5" g, ® g,
A(g"*) = ®91”R+9y®93”’e+g Q%+ ®g +9i9" gy +9ig @ GF +gig; ® g,

AGR) =20l @GR+ 7 @GR+ ® gl + 9 ® gi +2(9})* ® g}’ + 9lg} ® 9. (49)

At three loops, the coproducts for g;%¢ and g,/ are
cocommutative and zero, respectively, corresponding to the
individual invariance of c3,, c35. Corresponding to the
invariants in Eq. (12), we have the following combinations
with cocommutative coproducts:

A9 + g = g**F) = 29, ®, 9,* —29," ®, 9,*%,
AP = g;"%) = 2¢," ®, 0,*F — g, ®; 9%,
A(927" + 9:°°) =20, @ 92* + g @5 g;*F.
A9, +9,°) =29, ®, 9,7, (50)
where
G1 ®s G2:G1®G2+G2®Gl. (51)

The scheme-invariant combination of RG coefficients
corresponding to a combination of graphs Y a;g; +
> j&jg; with a cocommutative coproduct is [7]
>iaiSici + > ,;a;8d;, where S; are the symmetry factors

|

for the four-point graphs, and S those for the two-point
graphs. The relevant symmetry factors at this loop order are
given by

S3f - 1, S3e - 2,
S/3 = S3a = S3c = S3d = S3bR = 4,
S3b - 6, SSaR - 8 (52)

So for instance,

9.3+ 9.3 = g7 > 4z, +4esg — 8caar, (53)

which agrees with / 53) in Eq. (12) up to an overall factor.

At four loops, the coproducts for g;*", g;*" and g,*
are cocommutative, and that for g¢,* is zero, corre-
sponding to the individual invariance of cg,,, C4,, Ca,
and d,,. Corresponding to the invariants in Eq. (20), we
have the following combinations with cocommutative
coproducts:
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A(gy* + g% + g,

A(g/14l +g/140 _ 29 4bR +2g 4gR -q, g/13c

A(9,14d + 9,4 - 9,14k + g, — g, R

—_— — — — — ~— ~—
I
@)
=
L=

A( 294d+g,14q—g4"+g4°R+g 4gR
A(g " — g™ + g% — g% — 4R + g, R
4L

—-9,' 93— 9,1 9% + 9,1 9,°"%) = Cg )

. 1 4)L

A<9;14e +g/14’+2gy4c—gy4d+§gglgy3) :CE) ’

A(g,* +g;*

r)=ciy”,
A( 4b_’_3g}/4L 39y4d+29,{4eR +g gyS): 11 ,
A(g;*R 4 g 4R —2g, 4cR): 12 ’
A(g R = g R + g1 9,7) = 13 .
A(zgﬂétbR _ 9,14“R + g,14fR _ Zgﬁ4gR _ 9/119,13a) —
(54)
Here, rather than give explicit expressions on the

right-hand side, we use C Le G ®, G to denote [-loop
cocommutative coproducts corresponding to linear
invariants. Since their exact form is not especially
significant, we relegate the full expressions to
Appendix B. The noteworthy new feature here is the

|

S4s — 1,

necessity sometimes to add quadratic terms, of course
with no counterpart in the original linear invariants of
Eq. (20), on the left-hand side in order to obtain
cocommutative results. The need for this is explained
in general in Ref. [7].

Corresponding to the quadratic invariants in Eq. (21), we
have

A(zgﬂlgy% _ gﬂlgyéld + 972g 3d

+20:29,% = (9:")20:%) = C17°.

4
A0 2% = 92 g, = 9,2, %) = V2,
@e.

Alg;' (9% — 2g,%R) + 29,29, 3R — g;7R ;] = C5

Here, we see the need for additional cubic terms on the
left-hand side, in addition to the quadratic terms corre-
sponding to those in the invariant. The relevant graph
combination corresponding to the additional invariant in
Eq. (24) may be derived from those already given, and
hence, it is not displayed here. Here, we use Cil 0
G®,G to denote [-loop cocommutative coproducts
corresponding to quadratic invariants. The coefficients
of the linear invariants in Eq. (20) may be obtained from
the linear terms on the left-hand side of Eq. (54) by
substitutions similar to those described at three loops
after Eq. (50). Likewise, the coefficients of the quadratic
invariants in Eq. (21) may be obtained from the
quadratic terms on the left-hand side of Eq. (55) by
similar substitutions. Here, the relevant symmetry factors
are given by

Sl:S2:S4a:S4m:S4n:S4p:S4q:2’

Sar = Sapr = Sagr = Sac = Saq = Sar = San = Su
— S4k — S4[ — S4r - Silc - S:ld — 4,

S,Z — S4e - 6,

S4cR = S4dR = S4—fR = S4b = S4g = S4() = S:tb = 87

S4eR — S4j - Sila — 12,

S4aR = 169 (56)

together with those in Eq. (52). We also find corresponding to Eq. (32)

A(4gy5b

- g >R+ gl g%

— 49,29, + 29, g,%")

_ 4g}/SC _ 29;'56 _ gy5f 4 4gy5j _ ZngaR + 4ngbR

= cF, (57)

Corresponding to the quadratic invariants in Eq. (33), we find
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A [9/1 ! (gzsaR

Alg' (g, —g,

9°"%) + 9,7 (=g

1
)—29y2GJ—5(973)2+gz'gy29y3 =

i 5
Alg (20,8 = g;5R) + 6,2R G + 9,2 (9,98 = 2,*R) + ¢, 26,38 + (g,1)2 (g% — g% — 9,%R) + 9,1 g;2R g,30] = €D,

Algy' (9, + 9,

-9, (9> =0+ (") (Y -9 - g,

0% +2g,*) + (29,°
Alg:' (29, +9,° —49,°) —g

974203+ (922 - 0,29 9,° — 92" 9,297 + (9]

Alg:' (29,7 —9,°%) + 9,2 (0" -

+(59,°F —89,2)G,+9,° (29,7 — 29,7 -

where

-29,")—9,%(9;

4b _ 29/1401 _ 9/14aR + 2914CR> + ngG/

Y — gt )+ 9, 9,7 gf”]z it

—0,"")G,+49,°% 9,7 +9,°°9,”]
(29/1419 3gﬁ4aR +4g 4cR)
)2 4c]

cP? (s8)

Gy =g+ g —gY (59)

corresponds to J defined in Eq. (34). The invariants of Egs. (32) and (33) may be recovered from Egs. (57) and (58) as
before. Here, the relevant symmetry factors [in addition to those in Eqgs. (52) and (56)] are

SlSa = 1’ Sle -

SSbR — S/Sk - 12, S,Sf - 16,

VI. a-FUNCTION CONSIDERATIONS

A good deal of effort has been invested in recent years [ 12—
15] in the search for an a-theorem, a generalization of
Zamolodchikov’s two-dimensional c-theorem [16] to four
dimensions (or indeed to other dimensions higher than two
[17-21]). From our point of view, as mentioned in the
introduction, the crucial development is the demonstration
that the f functions in theories in four and six dimensions
obey a gradient flow equation similar to one that plays a
critical role in the derivation of the c-theorem [22-25]. These
gradient flow equations often place constraints relating the -
function coefficients, as has been shown for four-dimensional
gauge theories [4] and six-dimensional ¢* theories [5]
(similar gradient flows have been demonstrated in three
dimensions [1-3], though here, the theoretical underpinning
has not yet been provided). Our purpose in this section is to
apply the same considerations to our four-dimensional ¢*
theory, where we are able to confirm our results using the
explicit calculations available to a high loop order. We start by
presenting the basic theoretical background in general nota-
tion in the interests of clarity and brevity. For a theory with
couplings ¢/, the corresponding /3 functions are defined by

d
ﬁ I = H d_gl’ (61)

7
where p is a mass scale (in practice usually the standard
dimensional regularization mass scale). The essential

SSaR

S/5L_S/5h_4S5cR_Sd—S _S/Si:S/Sj:&

= 85, = 24. (60)

conclusion of Refs. [23,24] is the existence of a function
A, such that

01A =Tyyp’ (62)
where 9; = % and
Tiy=Gy+oW;—0;W,; (63)
with G;; symmetric.” The function A is invariant up to
A= A+gupp, (64)

where g;; is an arbitrary symmetric matrix. At lowest order,
we have an a function given by

AW =AM (65)

’In general, for a theory with a symmetry, the § function
should be replaced by a “generalized” f function [24]. It was
shown by explicit calculation in Ref. [26] that the difference
between the two becomes nontrivial at three loops for a fermion-
scalar theory in four dimensions. However, for a pure scalar
theory, we do not expect any distinction until five loops, which is
beyond our interests in this section.
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and Eq. (62) simply implies

340 =3¢, = A = ¢, (66)
|
A®) = AP +AY
and now Eq. (62) entails
4A0) = 24,
4A§5) = 3C2R + CIT(4),
4A0) = 6y + 20, T, (68)

Here, T represents the coefficient of the single fourth-
order metric term. The figure below displays this structure
by showing its contraction with a dg (represented by a
cross) and a 1) (represented by a diamond).

(69)

(the factor of 3 on the right-hand side derives from the
multiplicity factor of S5 for the corresponding term in the f
function). At the next order, we have

+ AP (67)

[

In Eq. (68), there are two equations and three unknowns
resulting in one residual free parameter. This corresponds to
the invariance under

(70)

reflecting the freedom described by Eq. (64) at lowest order

(with g;; = ¢'¥8;;, g arbitrary). The six-loop a-function
is given by

(71)

+AY

and the seven associated five-loop metric contributions are depicted below, with the same conventions as for 7*) earlier.

0 Q@@DIIID-

4

We now find from Eq. (62)

5
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A(16) =3¢y + dy T, The solution of Eq. (73) is then
249 = 24y + 3¢, (T + TV,
2A(]6) — 361Tg5) + d2T<4)’ A§6) _ _§+ éT(‘l)’

6
54 = 3esy, © 36
© ) AT =760
A3 :6C3d+2CIT2 B

6) Sl 6
4A® = 12¢5, + 26,7 + 4,7, A =% - 21 144,
6 5 5
SAY) =3csp + oy (T + T) 4 of T, 4G — % _ T 4 44,
2A(56) = 6C3C + ClTS) + 2C2RT(4), 5 3 6
© 5) 4 plS) T =Z+24),
2A5 = 6C3hR + CI(T2 + 2T4 ) + C2T(4), 5
33
AY = 3esy + 20, T 4 6,7, (73) 1y =5 =T Al
The values of the coefficients may be extracted from Tgs) 2 27@ 4+ 8 Af),
Ref. [8] and are given at one and two loops by 5 3
Cq :1, C2:—1, CQR:O, dzzg (74) 3 1
TgS) =72 + ETW’
and at three loops by ) ) 7 1
TS +T7 ==Z+-T®, (76)
| 3 | o 3°9
C3q4 :z, C3p = Ty C3¢ =C3¢= R
€30 = 2,037 = 1205, Here, we have ten equations for 12 unknowns, resulting in
1

d— _ —0 75 two free parameters. This corresponds to the lower-order
3=—%  Car=C3pr=0. (75) .. : o

invariance, together with the invariance under
|

AY =AY pagh, AP 5 A 4 g,

AY 5 AY pagh, 1Y ST 3¢9,

T o 70 4294, T 7 429,

T 1) 4 8, (77)

reflecting the freedom under

A—->A+ 9(4):Bijklﬂijmngklmn7 (78)

with ¢ arbitrary. Finally, the seven-loop a function is parametrized as
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AD =4 A @ o @ o
e
— <
+ AP

These seven-loop vacuum diagrams were given in Fig. 6 of Ref. [27], and we have retained their ordering (similarly, the five

and six loop vacuum diagrams were depicted in their Figs.

4 and 35, respectively). Since there are 24 six-loop metric

contributions, we have introduced a compact notation to avoid depicting them all individually. Equation (80) shows the six-

(6)

loop vacuum diagrams, seen already in Eq. (71), but now with some vertices labeled. We introduce the notation 7'y, to
denote a metric contribution where the vertices x, y in diagram n correspond to the 7, J indices, respectively, of a
contribution to 7;;. The labeling shown is sufficient to cover all of the independent possibilities.

1

HROD -
NN K

The number of 7-type contributions is the number of distinct ways of selecting an ordered pair of vertices from the diagrams

shown in (80), namely 24. At this order, Eq. (62) implies

3
447 = 5dz(Té5> + 1) + 24,

3
24 =2 a, 7

2

1
64y = do(TS) + 16 + 17

247 = ;1%
+ 719

2AD = (1, + 7, 7,

)

247 = ;7% + ¢,

+ C317T(4) + dz(Tf)

+ 2T 4 640
+ 3C2R(T25) + TgS)) + 2d4b

T\ +3cpTY + 4, T
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6A4<‘ = Cl ga>d + 2C3dT + 6C4l
6AY) = ¢,

1
240 = 20,1 + Edz(zTS) +TV)) 4 12¢y,

24 = 2¢/(T), + TO) +3e,(T + TY) + 2

lce

1
2Aé7) = 2C1T52>e + 3C'2Tg5) + EdzTgS)

2A§7) =2¢3, T® + dzTgS) + 6¢C4,
24 = 26,10, + 3e5(T8) + T)) + 2d,
2A§7) =2cT E?a + 302T<5) + dzT(zs)
=3¢/(T lc)d + Tgb)c + T(lbd) + d3 T

2A§g V=30, 7% 4+ dyT® + 3¢y,

(7) — 3¢ ngb +12¢y,
2A = 6C4q + c3fT( )
6Al 0> = (T, £ TO) b e + TO) 4 3T + 3caun
4A§71) = 01<Tg6c)d + Téf,’])L) + 2c2RTf‘5) + 3. T + 6,44z
2A<171) =T Q[ZC + 262RT( )y c3.TW + 3¢y,
A1) = ¢, (2T, + T4)) + TS + 4espp T + 12¢y
240) = 2¢/(TO + TO) + 6,7 4+ 203, 7@ + 6¢4y
6A<1? = Tg?d +2¢3,T™ + 6¢4y,
4AT) = 26,7, + 6T + 23,7 + 6cyy
2A<14) = zcng(l)a)a + C2T§5) + 3car
2A<15) = (Tg?b + Téil,) + c2RTgs) + 263, T + 6cy,
2A15 - 5/’6 T TSIm + 2Tﬁ<1a)b) + CZT( '+ C2RTg '+ c3prT™ + 6¢4cr
2410 = ¢ (T, +2TE)) + oo(T) +2T) + €3, 7™ + c3e T + 6curr

o (75,
(%
2A'6 Cl(TW’ + T3ac) + 2C2RT( '+ dey TH 4 12¢y,
2A16 = 01(2 5}1(, + T3b)c) +4c2T< ) 4+ 2¢3,T® + 12c4x
6 = 12T 5cd + T%d)a) + 202RTg )+ 12¢4,

Ai? =2¢,T éa’c + 4c2T( ) + 203, T® + 3¢y,
241 = 26y (T, + Tig,) + 4T + 24cy,
2A<177) = 201T(6>, + 202Tgs) + 4C3eT(4) + 12¢y,,

3ac

ZAQ = 261Tg(;)b + 2c2T§5) +4e3, T 4 12¢y,,.
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The counting of unknowns is now slightly more
subtle; we shall explain this in some detail since the
solution of Eqs. 81 leads to constraints on the
p-function coefficients, and we would like to be sure
that we have obtained the correct number of these.
There are 36 four-loop structures (including 1PR
structures, which cannot contribute to the A-function
and hence must be set to zero) leading to the 36
equations in Eq. 81; and there are 17 A coefficients [as
shown in Eq. (79)] and 24 T coefficients at this order.

However, T(lcb and T( )

lce
0+ 7

lce’

only appear in the combination
and TE h>c, <1?7)d’ and T(lf_)d only appear in the

combination T(l?c + Tg?d + Tgi)d; furthermore, there are

two invariances, under shifts among T (3?6, T%Z)a, Tgf.)d,

T((’> and among T‘(f;)b, Tff;)c, Tg?h’ Tgi)y Therefore, there

5bc?
is a total of 17 +26 —5 = 38 unknowns at this order.
(5)—T§5)

The lower-order metric coefficients T’ get deter-
mined in Eq. (76) up to two unknowns, resulting in 40
unknowns in total. There are seven five-loop vacuum
diagrams, which can contribute to the freedom in
Eq. (64) [the diagrams appearing in (72) but
with insertions of A replacing the diamonds and
crosses], but two of these give the same contribution.
There is also one four-loop vacuum diagram contrib-
uting to the freedom in Eq. (64) [the one appearing in
(69) but with insertions of A1), B replacing the
diamond and cross, respectively]. Finally there is a
three-loop vacuum diagram corresponding to the free-
dom in Eq. (70). Therefore, the number of unknowns
that are solved for is only 40 —6—1—1 =32. This
implies that 36 —32 =4 of the 36 equations must
remain as constraints. Indeed, after solving the equa-
tions we find the constraints

261d4a - dzlf) = O,

1
3111y +3d2< L +§c3e)

+2(cr = C2R)Iz(13) =0,

20, (1) = 1) +4(cy — cop) 1Y =34, (215 = ¢3,) =0,

201( 51)_115)

1 1
gl (2154) —Ig4) +14(14) ‘H(fz) 5 Can +§C4o)

— o) 215 = ¢5,) = 0.
(82)

+(c2

We note that as is to be expected, these constraints may
be expressed in terms of the invariants defined in
Eqgs. (12), (20), and (21). At four loops (again extracted
from Ref. [8]) the coefficients are

1 7
4a:§(652—11) cqp=1-03, C4C:E7
1 121
C4d:§ C4e:m, Cap=1-205,
1 1
C4g:C40:Z<2§3_1)’ C4h:C41:8(5_6C3),
5 37 2
04526’ C4j:_@’ C4k:C4r:§
Cam =403 =5, ¢4y =-75,
cap=3(C4=283).  cag=-3(203+C4), 45 =-40(s,
5 5 13 2
dygy=——=, dy=—7=, dse=-—, dyy=-, 83
4a 48 4b 32 LT 44 =3 (83)
with cyg = -+ = c4pg = 0, and we may easily check

that the values in Eqgs. (74), (75), and (83) satisfy the
constraints in Eq. (82).

We refrain from giving the values of the a coefficients in
the general case. However, an interesting special case is that
of a symmetric 7;;. It turns out that we can impose
symmetry on 7;; up to this order without needing to
impose any further constraints on the p-function coeffi-
cients. The a-function coefficients are then

m_ 3 1 (4)
A 4T
! ETREVVEN
o A
A V=4 7
> T TRed T4z
@M _79 3w 3,40
L, (O
3096 8 6 4
7
AV =55 =36 + T — 64 +4a7) 2417,
AV = ¢,
5 3C5
1 _67_13_ 4,0
=L _2T® 44
6 T340 24 T
@ T3 13 2
= - ZA
7240 24 37
5 19 5 6
Ay =92
9 (283 +C4)s
18 21
Al = =G+ 3T 9~ 184 + 1241 — 5417,
7
Al = 1041 — 64 447 —241),
7 21 6 7
A = - E—5§3+T4 249 + A,
33
AT = 5530+ 19 =740+ 6aYy - Af}.
97
Al = 5+ 1245 + 5T - gAY 1441,
314
A§§):—?+30§3+12T —16A' +4A) (84)
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and
0 = =2 4D,
-8 22
0 =S -ar 41l
10, =00 - 27 4 AP,
e — ; ST( ) +§Ag>’
T(Z?b = —T2¢y,
Tihe =~ 25ﬁ +48¢; + 3TW + 2441 — 244 + 164]
Tiop = —% 4308, + 6T — 8418 1+ 440,
Tg?c = ng)b — 2443,

4
T, = 2~ 182, +776) ~ 364 +244() - 124,

T =20t 6 =T+ 3 A

T, = —T{), +6A\(.

TS, = 35—9+ 128, = 7@ + 144 — 1247 4 847,
Tg?c = 35—9— 1285 +%T<4) - 14A4(¥6> + 12A(1?)) —4A571>,
TS, = -3 +3¢ +%T<4> oA,

Tih = %1 —9¢5 + Z 7@ — 164 + 1241 —6A\7,
T, = -2+ 5T - AP 1 af). (85)

We see that the effect of imposing symmetry has been to
reduce the freedom in the a-function coefficients from the
original six parameters to two.

VII. CONCLUSIONS

We have shown how scheme changes in ¢* theory may
be analyzed within a compact and efficient framework. In
particular, we have derived the full set of scheme invariants
up to four loop order and shown that their number is
consistent with general expectations, though considerably
higher than might be expected from a naive counting. In
particular, we have identified the existence of quadratic
invariants, which would be missed in a naive counting.
Furthermore, we have shown that in the context of the Hopf
algebra approach to renormalization, each invariant is
associated with a cocommutative combination of graphs.
We have also considered the construction of the a function

generating the S functions up to four-loop order via a
gradient flow equation. In particular, we have analyzed the
consistency conditions which guarantee this construction,
again showing that their number is as expected, and
furthermore, as expected, they may be expressed in terms
of linear combinations of the scheme invariants. Finally, we
have considered one-vertex reducible diagrams and shown
that there is a natural family of schemes in which these do
not contribute to the # function.

Future work might explore the Hopf algebra connection
further. Furthermore, at higher orders than we have yet
considered, there might be the possibility of cubic and
higher order invariants. The extension of the analysis
presented here to gauge theories might present additional
challenges.
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APPENDIX A: GENERAL RESULTS

For a theory with couplings ¢/, the corresponding S
functions are defined by

o) =u g,

i (A1)

and the f functions in a new renormalization group scheme
defined by ¢(g) are given by

B(g) = P(g),g". (A2)
where for any vector V in coupling space,
0
V,=V/ —. A3

We choose to parametrize the redefined coupling as

g =e"yg. (A4)
We then find using the easily proved result
f(eth) = e f(h) (AS)
that
P'(g) = e7"fy(g)e"g. (A6)
Then using
[0, Vgl = (L,V),, LV =vV-Vw, (A7)
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together with where
. 1 1.,
1 1
we find :ﬂ_§£v<ﬁ_§’cv(ﬂ_'“)> (A11)
/ S (_l)n n
Flg)=> oL B(9)- (A9)  APPENDIX B: SYMMETRIC HOPF COPRODUCT
n=0 :

In this Appendix, we give the full results for the cocom-
mutative expressions on the right-hand sides of Egs. (54),
o (55), (57), and (58). For the combinations corresponding to
5p(g) = B'(9) — Bg) = =L.p, (A10) four-loop linear invariants in Eq. (54), we have
|

For our purposes, it is useful to use this result in the form

i =o,

4L
CE "= 20)' @, 9,7 +29;" ®, 9,7 +49,> ® 9,2 + 9,*° ® g%,
4L
C§ = G ®s 97" + 02" ®; 927 +20," ®; 927 + 9:° ® 1R +29,” ® 9,7
4L .
CE; "= 20,' @ 9,7 +29,2 @, 9, 49, ® 91° =29, ®, 9, 92* — (9:')* ®; 9,7,

L
Cg ) = 2921 Qs gi3b +g/11 Qs g}/3 +2giz Qs gy27

Cé4>L =0 ®, 0,3+ 9! ®5 93— 9, ®; 9, + 9,2 ® 9,°,

C =20, @, 01 =29, ®, 97 +9,' @ 0,7 + 9" ®, 97+, ®, 9K +29,2 ®, 5,>X 29 ® 9% + ,>° ® 9,°F.
C?)L =0° Qs 0, —49,2 ® 9" —29)' ®, 9, 9:* + 9, ®, 9" 9>,

5" =292 ®, 92 +9,' ®, 9, +%911 ®:9,°+9:' ® 919,

CY(?L =9,'®, 9.

CV =20 ®, 9,2 +20,' ®, 92 +9,' ®, 9,7 +29:' ®, 69,2,

C@L =20, ®, 9°F —29;' @5 9,7 +29,> ® 9, +39:°F ® 9,*F - 29, ®, 9:°.

C =202 002~ 32 ® 9,27 +29,' ®, 9, 9.2+ (9, ®, 97"

Cl =402 002~ 02®,9:%~20,' ®, 0, ~ 9, ®, 9" 9,F ~2(9,'* ®, 9> (B1)

For the combinations corresponding to four-loop quadratic invariants in Eq. (55), we have

12 =2g)' ®, g, — 9! ®, 9, + 3,7 ®, 9, + 20> ®, 9, + 29, ®, 9.%9,
+292° ®; 6:'9,° +20,' 07 ® 9, — (92') & 927" = (9:")’ ®; 9,°,
= 0" @, 61*F - 2 ®, 6, — 9,7 ® 07 + (1) ® 0 — 0, ®, 9" g
- 91'9,% ®, 9.2 — 929, ®, ' — 99,2 ® 9" — 92" 9, @, (9,
Cg4>Q =g,' ®, (9 = 29,%R) + 29,7 @, 9,*F — 9,*R @, 927 + (9:')? ®, 97 + 9" @5 92" 92> = 2(9:")? ®, 9™
—20,' ®, 92' 97 + 9.2F ®, 9" 9,7 +49:°R ®, 921 927 — 29,7 @, 9" 92K + 49" ®; 9.29,°F
+20,' ® 9,'9° = 29," ®; 9:'9.7F = 2(9,")* ®, 92" 9;” +5(9:")* ®, 9" 9:7F. (B2)

For the combination corresponding to the five-loop linear invariant in Eq. (57), we have

5)L
COF = 22g.2 ®, g 2R + 49, ®, 9,8 —2g,' ®, 9,*R — g,2F ®, 9,° + 29,2 ®, 6;' 9% — 4g,' 9% ®, 9,2
+(9:")* ®, 9,° +29," ®; 92" 9" (B3)
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Finally, for the combinations corresponding to five-loop quadratic invariants in Eq. (58), we have

C2=g,'®, 0, +9,°®, 0" + 9, ®, 0, +9,°®, 9.0 + 0,7 ®, 9.9, + 9, ®, 9,20,
CC =0 ®, (9, ~29,%) = 9,2 ®, 6:* +9,° ®, 9, — (9,° +20,") ®, 9" 9,> + 20, 9,7 ® 91 9,
CgS)Q =g,' ®, (g5 — g, 5k) +9y2 ®, (=g, R + g *R) + 6,3 @, (=g, 3R + g, PR + (9,1)2 ®, 4, %R + 0,1 ®, ;' ;%R
=20,' ®5 97792 * =9, 927" @5 2™ + 9,7 ®5 9 (9:°F = 92°) + 92! @5 92°9:°" —20," 9,7 ®; 97"
=30, ®s 9,79, +29," ®5 9,9, +9," 9, ®5 9,7 =39, ®; 0,7 9,7 + 92° ®, 9:°% 9,7 + 92°F ®; 9,79,
-9 ®:0:' 9,7~ (92') ®s 7% 9,° +9,' 9” ®; 9 9,
P =g'®, (9, -9, ~29,®,G,~ 9, ®9, —3,' ®, 9,%9,° ~2(0;' ® 9,9,> + 9> ®, ;' 9,%)
+29,' ®; 0, (gy ) +29,'9,°®9'9,%,
CY = g, ®, (29,78 — 6,5F) + g,2X ®, G, + 9,2 ®, (62*F = 29,*F) + 6, ®, 9:"F + 9, ®, 0, 9% = (0,")> 5 91
(") ®s 0™ +(9' ) @ 9% = (92") & 9™ = 20," &, 92" 9,* " +29,° @ 9, 97" +20," ;" ® 9,7
+20,' ® 979, + 0,7 @, 92" 97" +20,7" ® 0,1 9.7 + 29,7 ®, 9,1 9,7 +29,7 97" ®, 02" = 29,29, % ®, 9!
-20,""° ®,9,' 9,2 429, 97" ®, 9,2 + 91" ®5 979, + 9,7 ®, 9,1 9,7 + 0" ®, 9279, =29, ®, 9,°9,°
=20, ®, 9279, +39,° 0,7 @, 9,7 ~2(0,")’ ®5 07" +2(9,")* ® 7" 02" +292' ®5 97" (9:')?
+(9') ®: 91" 9° +2(92' ) ®,9.°9,” +(9:') ®5 0,7 9,° +2(92")’ ®; 91" 9,°
Cés>Q =0,'®; (9, +9,°-29,") - 9,> ®, (0" —29,*" — 0,*F +29,*F) + 9,*F @, G — 9,° ®, (9,° — 9,*)
- (") ®, 0% = (9" s 9, +(9,')* @5 1Y = 20," ®; 92" 9:*F = (9,')* @5 9,* R +29,' ®; 92*R g,
+ 0,78 ®, 92" 97" +20,°" ® 9:' 9:7F = 29," ®, (9,7 = 9.7+ 9,77F) 9,2 +29,7F ®, 9. 9,7 + 29, ®, 9,29,7%
=20, ®,9,' 9,2 + 9, ®; 62" 9,7 +20,7 ®, 9,79, =29, ®, 9,7 9,7 = 29> ®, 9,79, +29,*F ®, 9,7 9,7
26" ®, 9, 9, + (') ®5 0,7 9,° = (9:') ® (9,° +29,°") +2(92')’ ®, 9" 9,7
CPC =01 ®, (29, — 9,%) + 9, ®, (9 = 9:* +20,*) + (20> = 9.°F) ®, G + 49,7 ®, 9, + 9, ®, 9,0
+20,7" ®,9)' 9.7 +49,7 ®, 92! 927" + 69, ®9,°0,°" — 97" @, 9, 9.7~ 02" ®, 9279 = 9.7 ®, 92" 9,
+6,' ®, 9,29, +49,° ®, 9:' 9,7 +49,7° ®, 9, 9,7 +49)' ®,9,°9,° +29,° ®, 9,'9,* + 29" ®, 9.9,
+20.7®:9:'9,° =9, ® 02" 9,2 +20,7 ®, 9,79, + 0:' 9.7F ®, 9,1 9,7 +20,' 9 ® 92" 9,2 + 49" ) ® 9279,
CP% = 0,' ®, (29, + 9,7 —49,7) — g, ®, (20,"" = 39,*F +4g,*F) + (50,°* ~ 89,>) ®, G,
+9,° ®, (29, =29, = 9> * + 293”’*) +20,' ®,9:' 0% +20," ®, 9:' 9, —20," ®; 92" Y +(92)* ®s 9,*
+20,' ®, 9,1 9,% +89,7F ®, 9,' 9,7 + 69" ®, 9,°9,°F =89, ®; 9,1 9,7 =49, ®; 9,29,7F
=50, ®5 9,9, = 91" ®, 9,297 — 9,° ®, 92" 9,7 =89, ® 9,79, =89, ®, 92" 9,° +59,' ®, 9:*F 9"
+50.7" ®9:' 9,2 =49, ®5 9,79, =9, ®5 9,79, =79, ®, 9,' 92* = 9> ®, 9 9,° +49,° @, 9 9,°"
—40,7% ®, 929, =49, ®, 9:°% 9,2 + 79,7 @, 9:*° 9,7 +(6:")* ®5 021 9,° +2(9:')* ®, 92" 927" = 2(9:')* ® 9:°9,°
+891'9:2 ®, 91" 9,2 —69,' ;% ®; 9:' 9,7 +29," ®, 9:'9,%9,% =39, ®, 92" 9:*° 9,7 —2(9:")* ®, (9’92 (B4)
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APPENDIX C: DIFFERENTIAL OPERATORS FOR
SCHEME CHANGES

Following the general considerations of Ref. [7], we may
define differential operators

Y = (6,770 + e Y1), 1)
U,s
where
YU’S _ (Cer/Ilr./ll’s + derylr./ll’s)’
Y}/l’.\' _ Z(clrpilr.yl/s + derylr.yl/s), (CZ)
Lr
which generate scheme changes according to
{eirdi} = exp(Y){cy. dy, } (C3)

Here, {r, s} label the  or y function coefficients at each
loop order {1, 1'}. The operators D" etc., satisfy

Dﬂlr.ﬂl’s —

Dylr.yl’s _

_D/ll’s.ﬂlr DA, yl's Dyl’\ ﬂlr
b

—Drlsir, (C4)

Scheme invariants are then determined as polynomial
functions F({c,,,d,,}, such that

YArF = Yy'"F =0 (C5)
for all A, r.
In the case of ¢* theory, we find at the lowest order
0 7] 0
DM = 2 2 2 ,
8C3a + 8C3C + 8C3d
0 0 7] 0
DMAR =2 -2 2
dcs, dcs, - Oc3ar - Ocspr
0 0
D2 =2~ 46— C6
8C3b + 3d3 ( )
and at the next-to-leading order
0 0 0 0
DHAa =4 2 2 -2 ,
8C4a + 8041, + 8C4d 8C4f
0 0] 0

DI _ g )

8C4L. 8046 8C4j’

piae__p 9 +2 0 +3 0 +2 0 0

aC4b 8C4f aC4g 8C4k 86‘40
0 0 0 0 0
DALA3d _ 9 S N 2 2
Ocay Ocyy, Ocy; * dcy, * 8C4r’

a +2i+2 8 +i+2i+i
Ocyy, Ocyi - Ocyy dcy  Ocy,’

D&l,/lf'ae ——4

ac4a

DS — 9 _ 9
86’41, 8C4q7
piaak—_ 9 +2 0 +2 0 +2 0 .
aC4g OCyar Ocycr aC4fR
0 0 0 0 0
DHBIR =3 — 32— +4 + +2
Ocyq Ocyy Ocapr  Ocyer Oc4ar
0 0
+2

8C4gR 3C4fR’

prriz 9 30 150 40

0cye Ody, 0dy, Odyy’
0 0 0 0
DI2I2R _ 4 o~ 9 7 _
8C4a 8049 8C4[ 6C40
+2— 0 +2— 9
aC4gR 8C4fR
0 0 0 0
DR =_2 - 6 6 ,
8C4e 6C4j * 8d4c * 8d4d
0 0
DRRY2 = _) 6—. C7
OC4er * 8d4,, (€7)

Note that, here we suppress the label r in the case of the
one-loop S function and the two-loop y function, where
there is only one coefficient.

The Y*" and Y7'", defined according to Eq. (C2), satisfy
the commutation relations

[Y’“ Y/12] — _2Y/13u + 2yﬂ3c + 2Y}L3e7
[YM YA2R] zyﬂﬁa _ ZY/BC + Y/BaR + ZY}B})R
(YA, Y72 = =2Y#b + 6Y73, (C8)
and
[Y’“,Y’Ba] 4yl4a +2yl4b _|_2Y/14d 2Y/14f’
[Y’H , Y/Hb] 6Y}“4C Y/14e + Y/M]
[Yﬂ, Y/13c] — 2Y24b _|_2Y}L4f + 3Y/14g +2Y/14k + YA40
[Y’H Y/Bd] 2Y14d 2Y}L4h ZYM’ + 2y/140 + 2Y}Ar
[Yﬂ YBe] — 4Yﬁ4a + 2y/l4h + 2Y}At + YMk + 2yl4l + Yﬂ4r
[Yﬂ , YBf] YMP Y/14q
[YM Y/BaR] — _2Y}»4g +2Y/1411R + 2Y,14CR +2yl4fR
[YM , Y/BbR] 2y/14d YMk + 4yl14hR + Y/14CR + 2y/14dR
+ DYHMgR _ yM4[fR
[YM , YyS] — _4Y/14c + 3Y}/4b +zyy4c +4yy4d’
[YAZ YAZR] — 4y/14u _ 2Y}Ag _ 2Y/14l _ Y/14o + zy/l4gR
+ 2Y}L4fR’
[YAZ’ Y;/Z] — _2yﬂ4e _ Yi4j +6Y}/4C _|_6y;/4d7
[YHR, Yy2] — _2Y14eR + 6Y74b. (C9)
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Note that, the structure constants appearing in Egs. (C8)
and (C9) are the same as those in Egs. (C6) and (C7), which
is a consequence of the Jacobi identities following from the
associativity of the graph insertion process as described in
Ref. [7]. At the following order, we have

DR =6 aie 3 ‘9%1
DRz =6 ajsh
Der2 — 12 33517 + 6(96815c +3 33511 )
D2 — 9 ia :
DRaR72 — 6 % -2 ac(jaR
DBbRY2 _ 3 5‘351' +3 835 i 86?1;1% ’
) 0 0

D = 4 2 2
ads, “ody, ~od,

0 0 0 0
DHlrde — 4 2 2 ,
odsy, | “ods,  “ods, " 0ds,
0 0 0
DAlrdd — 4 2 2
oy, “ody |~ ods
0 0 0
DA A4eR — +2 +6 ,
Ocsar Ocspr Ocser

0 0 0 0 0
D213 =4 4 2 2
ddy, “ods, | “ods, | “0dy  ods,’
0 0 0 0
D/IZR y3 3 2 _ ,
8d5e * 8d5f + [“)d5] 8C5CR
0 0 0
72,73 — —
D 8d5g+28d5k 3ad5d’ (C10)

with, correspondingly, the commutation relations

Y/Ba’ YyZ] — 3Yy51’
Y’Bb, Yﬂ] — 3Yy5k’
yBd yr] = 6yre 4+ 3y7,
]
YBe’ Yy2] lznyb + 6yy5d + 3yy5h
YBf, YyZ] — znya’
[YBaR YyZ] 6yy5f _ 2Yj/5aR
[Y/BbR’ YyZ] 3yy51 4 3Y}/51 _ 2Y/15bR
[Y#1, yr4a] = 6yr5d 4. 2y7%9 4 27k
[Y’“, Yy4b] 4Y75F 4 oyrSi 2Y}’5J
[YM, Yy4c] 4y y5b +2Y}/56 +2yy5h +2y}'51
[Y’“, Yy4d] Y? y5¢ + 2Y75h + 2Y}’5/
[YM Y/14eR] Y ASaR +2yﬂ5bR +6Y}LSCR
[Y/IZ’Y;B] 4y ySb +4y750 +2yy5h +2y751 + szj,
[Y)QR’ Yy3] Y ySe + 3yy5f +2yy5] ZY)“SCR’
[Y72,yr3) = Y75 4 2y75k — 3yr5d, (C11)

It is readily verified using Egs. (C2), (C6), (C7), and (C10)
that the linear and quadratic invariants constructed in
previous sections satisfy Eq. (C5).
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