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We study the ϕ4⋆ model for a scalar field in a linearization of the Snyder model, using the methods of the
worldline formalism. Our main result is a master equation for the 1-loop n-point function. From this we
derive the renormalization of the coupling parameters of the theory and observe the appearance of a ϕ6

divergent contribution that opens the question of whether this theory is renormalizable or not. Additionally,
we observe that some terms in the renormalized action can be interpreted as coming from an effective
metric proportional to the square of the field.
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I. INTRODUCTION

Many theoretical arguments point at the conclusion that
the present understanding of the structure of spacetime
must be modified at short distances if one wants to
reconcile quantum mechanics and general relativity. In
particular, the concepts of point and localizability may not
be adequate in this context, suggesting the possibility of
introducing new geometrical concepts in order to describe
spacetime at the Planck scale.
One of the oldest attempts in this sense is the idea of a

noncommutative geometry. The first proposal of this kind
was advanced in a paper by Snyder [1], who conjectured that
the noncommutativity of spacetime coordinates could alle-
viate the singularities in field theory. The idea did not raise
much interest until more recent times, when noncommuta-
tive geometry has become an important field of research,
both in mathematics [2] and in theoretical physics [3].
Two classes of models have attracted much attention: the

canonical one [4], inspired by the Moyal formulation of
quantum mechanics [5], which assumes constant commu-
tators between the position coordinates, and the κ-Poincaré
model [6], in which the commutators of the coordinates
form a Lie algebra.
An important tool in the study of these models has been

the introduction of the Hopf algebra formalism and the

definition of a noncommutative star product, that maps the
product of functions of noncommutative coordinates into a
product of commutative ones [7]. This allowed the con-
struction of a quantum field theory (QFT) on noncommu-
tative spaces, using the star product to deform the product
of fields. Several investigations have been carried out in this
way, in relation with canonical [4] and κ-Poincaré QFT [8],
revealing unexpected features. One of the most interesting
findings has been the discovery of the UV/IR mixing [9],
i.e., the appearance of infrared divergences in the process of
renormalization of the ultraviolet ones.
Comparatively little is known about field theory in

Snyder space, in spite of the fact that it enjoys the important
property of preserving the Poincaré invariance, contrary to
other noncommutative models, where the invariance is
deformed or broken. Snyder spacetime has been inves-
tigated from several points of view [10], and some
generalizations have been proposed [11–13], but only
recently quantum field theory has been examined besides
the tree level. One of the reasons could be the fact that the
Hopf algebra of the Snyder model is nonassociative, so that
the star product depends on the order of the multiplication
of the fields, complicating the already involved calculations
of other models and opening the possibility of defining
several nonequivalent interaction terms.
After early proposals for a formulation of the tree-level

theory [11,12,14], the field theory of a scalar field with
quartic self-interaction in a generalized Snyder model has
been studied, in an approximation linear in the noncom-
mutativity parameter β [15]. However, an expansion in β
does not give the exact ultraviolet behavior of the theory. In
[16] the investigation has been extended to all orders in β.
Unfortunately, due to insurmountable algebraic difficulties,
it has been possible to compute only some of the terms
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appearing in the one-loop two-point function. The results
point at a renormalizable theory, where however the
phenomenon of IR/UV mixing is present, at least for some
choices of the interaction term.
On the other hand, one of the techniques that has proven

useful in QFT computations is the worldline formalism
(WF). Since Feynman’s original idea to express some QFT
quantities in terms of path integrals in a first quantization
language [17], the formalism has been applied to several
computations, among them in the calculation of gravita-
tional anomalies [18], in quantum gravity [19], Abelian and
non-Abelian gauge theories [20] and on manifolds with
boundaries [21]. The strength of this formalism lies in its
possibility to handle symmetries and the way they are
automatically displayed in the simplified results.
Lately, the WF has also been introduced in the frame-

work of noncommutative QFT [22], where different models
on the Moyal plane have been studied. The interesting
results achieved in these works, together with the promising
properties of Snyder spaces, have motivated us to general-
ize the application of the WF to the latter. Actually and as
far as we know, in this paper we provide the first example of
the application of these methods to noncommutative QFT
on spaces different from the Moyal plane.
The organization of this article is as follows. In Sec. II we

review the definition and basic properties of Snyder spaces.
A formulation of a quartic interacting QFT in Snyder space
is presented in Sec. III, formulation which is specially
suited to the use of the WF, which is performed in Sec. IV.
The master formula obtained for the 2n-point functions, cf.
Eq. (24), is then used to compute the 2-, 4- and 6-point
functions in Secs. V–VII respectively. In these sections, we
proceed also to the renormalization of the parameters
involved in each n-point function. Later, we discuss this
results and state our conclusions in Sec. VIII. The rather
long expressions of the coefficients involved in the com-
putation of our master formula are left to Appendix A,
while the presentation of some relevant results on path
integrals in phase space are given in Appendix B. Finally,
some intermediate results regarding the computation of the
4-point function are written in Appendix C.

II. GENERALIZED SNYDER SPACES

The Snyder space was originally introduced in [1] as an
example of a discrete spacetime where Lorentz invariance
is not broken. The generalized Snyder spaces are defined
then as its deformations such that the noncommutative
coordinates x̄μ and pμ satisfy the following commutation
relations [12,13]:

½x̄μ; x̄ν� ¼ iβMμνψðβp2Þ;
½pμ; pν� ¼ 0;

½pμ; x̄ν� ¼ −iϕμνðβp2Þ; ð1Þ

while the Lorentz generators Mμν have the same commu-
tation relations as in the usual case, i.e.,

½Mμν;Mρσ� ¼ iðημρMνσ − ημσMνρ þ ηνρMμσ − ηνρMμρÞ;
½Mμν; pλ� ¼ iðημλpν − ηλνpμÞ;
½Mμν; x̄λ� ¼ iðημλx̄ν − ηλνx̄μÞ: ð2Þ

In these equations we have introduced the parameter β,
usually called the noncommutativity parameter, the metric
ημν of Minkowski space and arbitrary functions ψ and ϕμν,
constrained only by the fact that the Jacobi identities should
still be valid.
It is customary to perform an expansion for small β, since

by heuristic arguments its presumed scale is of order M−2
pl .

Under this hypothesis we may propose a realization of
the noncommutative coordinates x̄μ in terms of xμ, the
commutative ones,

x̄μ ¼ xμ þ βðs1xμp2 þ s2x · ppμ þ cpμÞ þ � � � ; ð3Þ

where s1, s2 and c are arbitrary real parameters, while
Mμν ¼ xμpν − xνpμ [12,13].
As a consequence of this expansion the original com-

mutation relations are fixed to be

½x̄μ; x̄ν� ¼ iβðs2 − 2s1ÞMμν þ � � � ;
½pμ; pν� ¼ 0;

½pμ; x̄ν� ¼ −iðημνð1þ βs1p2Þ þ βs2pμpνÞ þ � � � : ð4Þ

The parameter c does not enter in the commutation
relations but is necessary in order to obtain a Hermitian
operator for x̄μ. In particular, in our case this yields
c ¼ −iðs1 þ Dþ1

2
s2Þ.

At this point one may follow one of two paths: to work
with functions of the noncommutative operators or intro-
duce a star product ⋆ that preserves the commutation
relations (4). Following the second path, it is straightfor-
ward to obtain the following definition of the ⋆-product of
two plane waves [12,13]:

eik·x⋆eiq·x ¼ eiDðk;qÞ·xþiGðk;qÞ; ð5Þ

where we have introduced the functions

Dμðk; qÞ ¼ kμ þ qμ þ β

�
kμ
�
s1q2 þ

�
s1 þ

s2
2

�
k · q

�

þ qμs2

�
k · qþ k2

2

��
þOðβ2Þ;

Gðk; qÞ ¼ −iβ
�
s1 þ

Dþ 1

2
s2

�
k · qþOðβ2Þ: ð6Þ
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In particular, one may show that this product is of course
noncommutative and under the integral sign it reduces to
the usual commutative product, i.e.,

Z
fðxÞ⋆gðxÞ ¼

Z
fðxÞgðxÞ: ð7Þ

The latter property is specific of the Hermitian representa-
tion of x̄μ [12,13]. Moreover, it turns out that the ⋆-product
is nonassociative. However, contrary to other instances of
nonassociative ⋆-product of Moyal type that arise in the
context of string models with nontrivial B-field [23], the
Jacobi identities are still satisfied in our case, as can be
explicitly checked, so that the only problem related to the
nonassociativity is the nonuniqueness of the interaction
term.
In the following section we will show how to define the

Snyder scalar ϕ4 field theory and compute the one-loop
correction to its effective action.

III. LINEARIZED SNYDER SCALAR ϕ4⋆ QFT

Consider now a scalar field φ in a D-dimensional
Euclidean spacetime whose action contains a quartic
interaction term,

S½φ� ¼
Z

1

2
∂μφ⋆∂μφþm2

2
φ⋆φ −

λ

4!
φ⋆ðφ⋆ðφ⋆φÞÞ: ð8Þ

As mentioned above, due to the nonassociativity of the
⋆-product, the interaction term may take different forms.
We shall discuss this point later. An alternative but related
approach to this model may be found in [15,16].
As stated in the previous section, one can replace the

⋆-product of two functions under the integral sign with
the usual product, so that the kinetic part of the action is
identical to the usual commutative one. Moreover, the
interaction term can be slightly simplified by removing
one of the ⋆-products. The explicit expression for the
interaction SI after a Fourier transform then becomes

SI ¼ −
λ

4!

Z �Y4
j¼1

d4qj
ð2πÞD

�
ð2πÞDδð4ÞðD4ðq1; q2; q3; q4Þ

× g3ðq1; q2; q3; q4Þφ̃1φ̃2φ̃3φ̃4; ð9Þ

where φ̃k is the Fourier transform of the field φ evaluated at
the momenta qk, and we have absorbed the noncommu-
tative contributions in the functions

Dμ
4ðq1; q2; q3; q4Þ ≔ qμ1 þDμðq2; Dðq3; q4ÞÞ;
g3ðq1; q2; q3; q4Þ ≔ 1þ iGðq2; Dðq3; q4ÞÞ þ iGðq3; q4Þ:

ð10Þ

At this point two differences between (9) and the usual
commutative case are patent. Firstly, the presence of the
g3ð·Þ function which at order β acts as a twist factor.
Secondly, the usual momentum conservation is replaced
by the conservation of the modified composition of the
momenta given by D4ð·Þ.
As next step, we may employ the path integral procedure

to quantize the theory,

e−Γ ¼
Z

DφðxÞe−S½φðxÞ�; ð11Þ

where Γ is the effective action. Once we perform an
expansion of the functional integral around the classical
configuration of the field ϕðxÞ which minimizes the action,
we get the one-loop expansion of the effective action

Γ1-loop½ϕ� ¼ S½ϕ� þ μ−ϵ

2
Tr logA; ð12Þ

where μ is a quantity with mass dimension introduced to
compensate the change in the dimension D ¼ 4 − ϵ, and A
is the operator which has as kernel the second variation of
the action

AfðxÞ ¼
Z

dy
δ2S

δφðxÞδφðyÞ ½ϕ�fðyÞ: ð13Þ

As it could be foreseen from the nonlocality of the product
(5) and the expression for the action (9), this operator is
nonlocal. Indeed, one of the contributions of its kernel is
given by the second variation of the interaction potential

δ2SI
δφðxÞδφðyÞ ½ϕ�

¼ −
λ

2 · 4!

Z �Y4
m¼1

dqm
ð2πÞD

�
ð2πÞDδð4ÞðD4ðq1; q2; q3; q4ÞÞ

× g3ðq1; q2; q3; q4Þ
X

σði;j;k;lÞ
e−iðqlxþqkyÞϕ̃iϕ̃j; ð14Þ

where the sum is performed over all the possible permu-
tations σði; j; k; lÞ of the indices i; j; k; l ¼ 1;…; 4.
However, in order to compute the one-loop contribution
in the WF, it would be enough to show that this operator
can be recast as a local differential operator.
To proceed with our plan, it is useful to simplify the

expression in Eq. (14) in the following way. First of all,
notice that fixing the dependence of g3ð·Þ and D4ð·Þ on the
integration variables and then performing a sum over all the
possible permutations σði; j; k; lÞ of the indices in fields
and exponentials in expression (14) is the same as doing the
other way around—viz. fix the indices in the fields and the
exponential and then perform the sum over all the indices
permutations in the g3ð·Þ and D4ð·Þ functions to obtain
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δ2SI
δφxδφy

¼ −
λ

4!

1

2

Z �Y3
m¼1

dqm
ð2πÞD

�
ϕ̃1ϕ̃2e−iðq4xþq3yÞ

X
σði;j;k;lÞ

g3ðqi; qj; qk; qlÞdet−1ð∂q4D4ðqi; qj; qk; qlÞÞjD4ðqi;qj;qk;qlÞ¼0: ð15Þ

We have chosen to use the Dirac delta function to perform the q4 integral for reasons that will be soon clear, and it is
understood that q4 is to be evaluated at the solution of D4ðqi; qj; qk; qlÞ ¼ 0. This evaluation can be perturbatively
performed by considering the linearized expression of Eq. (10).
After performing the sum over the permutations we obtain the result

δ2SI
δφxδφy

¼ −
λ

4!

1

2

Z �Y3
m¼1

dqm
ð2πÞD

�
ϕ̃1ϕ̃2e−iq3yþiðq1þq2þq3Þx

�
4!þ 4βðs1 þ s2Þ

×

�
−2i

X
k
q2kqk · xþ ð2þDÞ

�
−
X3
i¼1

q2i þ q24

���
q4¼−ðq1þq1þq3Þ

: ð16Þ

Replacing this result in expression (13) for the A operator, it can be seen that the interaction contribution AI acts on an
arbitrary function fðxÞ as

AIfðxÞ ¼ −
λ

4!

1

2

Z
dq1
ð2πÞD

dq2
ð2πÞD ϕ̃1ϕ̃2eixðq1þq2Þe−iðqlxþqkyÞ × ½4!þ βðaμνðxÞð−i∂μÞð−i∂νÞ þ bμðxÞð−i∂μÞ þ cðxÞÞ�fðxÞ;

ð17Þ

i.e., we have reached our goal of recasting it as a local
differential operator. The expressions for the coefficients
aμν, bμ and c, which depend on x but also on q1 and q2, are
left to the Appendix A.

IV. WORLDLINE FORMALISM
IN SNYDER SPACES

Once we have realized that the operator A is nothing but
a local differential operator, we can think of it as the
Hamiltonian of a fictitious particle in quantum mechanics,
with the peculiarity that in this case its potential is
momentum dependent [22]. The trace of A can be con-
sequently computed as a Feynman path integral in phase
space, namely

1

2
Tr logA

¼ −
1

2

Z
∞

0

dT
T

Z
PBC

DpðtÞDxðtÞe−
R

dt½p2−ip _qþm2−VWðx;pÞ�;

ð18Þ

where PBC means that the integral should be performed
over paths xðtÞ that satisfy periodic boundary conditions,
and VW is the Weyl-ordered kernel of the AI operator
defined in Eq. (17), where the derivatives ð−i∂μÞ have been
replaced by momentum operators in a first quantization pμ.
It is important to notice that one must use the Weyl-

ordered potential VW in order for expression (18) to be
valid. In general terms, it means that we should write the
potential in a symmetrized way on the variables x and p,

adding the needed terms coming from the commutations
performed to reach the symmetrization.1

Turning back to Eq. (18) for the trace of A, the Weyl-
ordered potential can be cast as

VW ¼ λ

4!

1

2

Z
dq1dq2
ð2πÞ2D ½4!þ βðαμνpμpν þ βμpμ þ γÞ�ϕ̃1ϕ̃2;

ð19Þ

where the exact expressions for the coefficients of this
potential are written in Appendix A. It is worth to mention
that we will introduce the primed coefficients α0, β0 and γ0,
which correspond to the removal of the x dependence in the
nonprimed coefficients by performing an integration by
parts—their expression can also be found in Appendix A.
The use of both primed and non-primed coefficients has
some advantages, as we will see.
Another comment about Eq. (18) is still in order. The

usual procedure would be to introduce the mean values

hfðx; pÞiPBC ¼
R
PBC DqDpe−

R
1

0
dtðp2−ip _qÞfðx; pÞR

PBCDqDpe−
R

1

0
dtðp2−ip _qÞ

; ð20Þ

which may be easily calculated after the computation of
the generating functional ZPBC½k; j�, with sources k and j

1As a simple example consider the Weyl-ordered expression
for the product ðxpÞW ¼ 1

2
ðpxþ xpÞ þ i

2
. A more detailed treat-

ment of this issue can be found in [24].
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corresponding to the paths p and x respectively. However,
the kinetic operator defined on functions that satisfy
periodic boundary conditions cannot be inverted, since
there exits a zero mode, the constant path x ¼ x0, p ¼ 0.
Our choice is to include an explicit integration over this
zero mode and perform the path integrals over paths that
satisfy Dirichlet boundary conditions (DBC). To this end
we will use the explicit notation xðtÞ ¼ qðtÞ þ x0, to write
every path xðtÞ satisfying PBC, in terms of a path qðtÞ
satisfying DBC. Once more, the computation of mean

values defined for DBC may be performed using the
generating functional ZDBC½k; j�, whose expression may
be found in Appendix B.
Using Eq. (19) and the notation of mean values,

the calculation of the one-loop 2n-point function is
straightforward—we just need to expand the exponential
of the potential VW in expression (18) and collect all the
terms which contain a product of a number 2n of ϕ fields.
The expression for the 2n-point function obtained from
(18) is then the following:

Γð2nÞ
1-loop ¼ −

μ−ϵ

4!ðn − 1Þ!
λn

2nþ1

Z
∞

0

dT

ð4πÞD=2

e−m
2T

TD=2þ1−n

Z
∞

−∞
dx0

Z Y0

j;k;i

dtjdpkψ i

×

�
ei
P

n−1
i¼1

pixðtiÞþiðq1þq2Þxðt0Þ
�
4!

n
þ β

�
1

T
α0μνpμðt0Þpνðt0Þ þ γ0

���
DBC

; ð21Þ

where in order to keep the readability of this expression we
have introduced the compact notation for the integrals

Z Y0

j;k;i

dtjdpkψ i

¼
Z

1

0

Yn−1
j¼0

dtj

Z
∞

−∞

Yn−1
k¼1

dpk

ð2πÞD
dq1
ð2πÞD

dq2
ð2πÞD

Yn−1
i¼1

ψ i; ð22Þ

and the ψ functions, the Fourier transform of the square of
the field ϕ,

F ðϕ2ÞðqiÞ ¼ ψ i: ð23Þ
Now by using the results stated in Appendix B regarding
the generating function with DBC ZDBC, the mean value in
Eq. (21) can be computed to readily obtain our master
formula for the 2n-point function of the effective action,

Γð2nÞ
1-loop ¼ −

μ−ϵ

4!ðn − 1Þ!
λn

2nþ1

Z
∞

0

dT

ð4πÞD=2

e−m
2T

TD=2þ1−n

Z Y0

j;k;i

dtjdpkψ i

× δð4ÞðPÞe−T
2
ðJ;B−1

22
JÞ
�
4!

n
þ β

�
1

T
α0μν

�
B−1
11 δ

μν −
T
4
C½Jμ�C½Jν�

�
þ γ0

�	
; ð24Þ

in terms of the total momentum P, the source J and the C
functional, defined as

P ¼
Xn−1
j¼1

pj þ q1 þ q2;

J ¼
Xn−1
i¼1

δðt − tiÞpi þ δðt − t0Þðq1 þ q2Þ;

C½f� ¼
Z

1

0

dtðB−1
12 ðt0; tÞ þ B−1

21 ðt; t0ÞÞfðtÞ: ð25Þ

Some remarks are now in order. First of all, in spite of
the noncommutativeness, the integral over the zero mode
guarantees the conservation of the momentum for the
n-point function.
Moreover, the expansion (24) has many points of

coincidence with what is called the small proper time

expansion of the heat-kernel of the operator A [25]. In the
latter, one is usually interested in the small T expansion of
the exponential operator e−TA. Additionally, in such an
expansion the coefficients are given by powers of the
potential, its derivatives and invariant quantities obtained
from the metric. In Eq. (24), the β-independent factor gives
the usual commutative contribution to the effective action
in the case of a matrix-valued potential, with the integral
over the temporal t variables reproducing the factors
obtained in the literature for the small T expansion.
It should be noted however, that noncommutativeness

introduces some new features. Indeed, the noncommutative
part contains two contributions: the first one is the term
proportional to α0. In the context of the “regular” heat-
kernel technique such a contribution would not be expected
to arise, because the potential factor is itself proportional to
the proper time. There exists nevertheless one possibility:
that this term could be interpreted as coming from the small
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β expansion of ametric, which in our case should therefore be
proportional to the second power of the field ϕ. This would
imply that theOðT−1Þ term has its origin in the expansion of
the invariant measure

ffiffiffi
g

p
factor, while the OðT0Þ should be

the analogue of the curvature term arising in the study of a
scalar field on a curved background. This is consistent with
the fact that this contribution arises from the p2 factor of the
noncommutative potential VW , verymuch akin to the general
expression for a path integral in curved spaces2Z

DxDpe−
R

dtpigijðxÞpj−ipxþ1
8
ðRþgijΓl

ikΓ
k
jlÞþVðxÞ: ð26Þ

Of course this claim is only valid for our first-order
expansion in β and an all-order generalization cannot be
immediately stated. In effect, were our expansion valid for
any power of β, the n-point function would have shown
contributions that have negatives powers in T for any n and
could spoil the renormalizability of the model.
The second contribution comes from the γ0 factor in (24).

This is the usually called potential contribution.
After having discussed these general aspects of the

n-point function, we now turn our attention to the study
of the renormalization of our β-linearized theory. As can
be seen from Eq. (24) this is only needed for the 2-, 4-and
6-point function.

V. TWO-POINT FUNCTION OF THE
LINEARIZED φ4⋆ THEORY

Let us consider the one-loop contribution to the two-
point function, which in the notation of Eq. (20) corre-
sponds to the mean value of the potential,

Γð2Þ
1-loop¼−

μ−ϵ

2

Z
∞

0

dT

ð4πTÞD=2e
−m2T

×
Z

∞

−∞
dx0

�Z
1

0

dτ1VWð
ffiffiffiffi
T

p
qðτ1Þþx0;rðτ1ÞÞ

�
DBC

:

ð27Þ

The expression gets further simplified by performing the x0
integral. Indeed, it gives a delta function that one can use to
compute the q2 integral. Using the results of the previous
section to compute the mean expectation values, we obtain
the expression

Γð2Þ
1-loop ¼ −

λ

4 · 4!
μ−ϵmD−2

ð4πÞD=2 ½4!þ 8ðs1 þ s2ÞðDþ 2Þβm2�

× Γ
�
1 −

D
2

�Z
dxϕ2ðxÞ: ð28Þ

According to this result, in analogy with the commutative
case, we should renormalize the mass but not the field. The
renormalization process in the minimal subtraction (MS)
prescription in D ¼ 4 − ϵ dimensions is simply as follows:

m2 ¼ m2
0

�
1þ λ0

ð4πÞ2
�
1

2
þ ðs1 þ s2Þβm2

0

�
μ−ϵ

ϵ

�
; ð29Þ

in terms of the bare parameters m0 and λ0. From (29) the
mass beta function can be readily obtained,3

βm2 ≔
∂m2

∂ log μ ¼ −
λ

32π2
ð1þ 2ðs1 þ s2Þβm2Þm2: ð30Þ

VI. FOUR-POINT FUNCTION OF THE
LINEARIZED φ4⋆ THEORY

We may also employ Eq. (24) to analyze the renorm-
alization of the four-point function. Restricting to the terms
giving the divergent contributions and after performing the
proper time integral, we get

Γð4Þ
1-loop ¼ −

1

4!

λ2

23
μ−ϵ

ð4πÞD=2

Z
dx

�
−6βðs1 þ s2ÞDðDþ 2ÞmD−2Γð1 −D=2Þϕ4

þ Γð2 −D=2Þ
m4−D

�
4!

2
ϕ4 − β

�
6ϕ4⋆;ð1Þ þ

8

3
ðs1 þ s2ÞðD − 4ÞðDþ 2Þϕ3∂2ϕ

��	
þ f:t:; ð31Þ

where we have denoted ϕ⋆;ð1Þ the linear contribution in β of the noncommutative quartic interaction under the integral sign
and “f.t.” means finite terms. Some intermediate steps in the derivation of this formula are left to Appendix C.

3In order to avoid confusion with the noncommutative parameter β, we will always write the beta function of a given coupling x as βx.

2The derivation of this formula may be found in [24]. In this formula gij is the inverse metric, R the curvature scalar, Γj
kl the Christoffel

symbols of the metric and Einstein’s convention for summation is used.
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The β-independent contribution in the rhs of (31)
corresponds clearly to the usual commutative contribution.
On the other hand, the terms that we call “metric” terms,
i.e., those depending on B−1

11 and C½·�, sum up with the
potential term to give rise to three kind of contributions:
one proportional to the commutative quartic interaction,
another proportional to ϕ⋆;ð1Þ and the last proportional to a
new nonlocal quartic interaction.
Surprisingly, the last term has an additional factor that

renders it finite in the limit D ¼ 4. Therefore, once we
expand these formulas around D ¼ 4 − ϵ, we see that the
renormalization proceeds by introducing appropriate coun-
terterms which have the structure of the original action,
if one considers the quartic potential split into the
β-independent and β-linear contributions. Indeed, the
divergent contributions in (31) reads

Γð4Þ
1-loop ¼ −

λ2

128π2
μ−ϵ

ϵ

Z
dx

�
½1þ 12ðs1 þ s2Þβm2�ϕ4

−
β

2
ϕ4⋆;ð1Þ

	
þOðϵ0Þ: ð32Þ

In our linear noncommutative expansion we could either
introduce a new coupling constant for the ϕ4⋆;ð1Þ term

or just interpret Eq. (32) as showing the necessity to
proceed to the renormalization of the noncommutative
parameter β. The latter procedure was proved to be
required e.g., in Moyal noncommutative SU(N) gauge
theories [26] in order to save their perturbative renorm-
alization properties. Using this as motivation we can
read the renormalization of the coupling constant λ and
of the noncommutative parameter β, in terms of the bare
parameters m0, λ0 and β0,

λ ¼ λ0

�
1 −

3λ0
16π2

μ−ϵ

ϵ
½1þ 12ðs1 þ s2Þβ0m2

0�
�
;

β ¼ β0

�
1þ λ0

256π2
μ−ϵ

ϵ

�
: ð33Þ

The corresponding beta functions are straightforwardly
obtained and are

βλ ¼
3λ2

16π2
½1þ 12ðs1 þ s2Þβm2�;

ββ ¼ −
λβ

256π2
: ð34Þ

Curiously, the beta function of the noncommutative param-
eter shows that the theory is “asymptotically commutative”
for λ > 0, i.e., it becomes commutative in the limit of large
energy scales in that case. This property has also been
observed in [26].

VII. SIX-POINT FUNCTION OF THE
LINEARIZED φ4⋆ THEORY

The only divergent expression left in the effective action
is the six-point function. The relevant term can be readily
extracted from expression (24) and is

Γð6Þ
1-loop ¼ −

β

4!

μ−ϵ

ð2πÞ3D
λ3

64

Z
∞

0

dT

ð4πÞD=2

e−m
2T

TD=2−1

×
Z

∞

−∞
dp1dp2dq1dq2δð4Þðp1 þ p2 þ q1 þ q2Þ

× ψ1ψ2δ
μνα0μν þ f:t: ð35Þ

Although the α0 coefficient contains derivatives acting
on the field ϕ, it can be shown that all the contributions add
up to a usual commutative ϕ6 interaction that is however
divergent as ϵ tends to zero, for D ¼ 4 − ϵ,

Γð6Þ
1-loop ¼ −

β

4!

μ−ϵ

ð4πÞD=2

λ3

64
ðs1 þ s2Þ

×

�
D−

4

6

�
ðDþ 2ÞΓ

�
2−

D
2

�
mD−4

Z
ϕ6dzþ f:t:

¼ −
5

4!128π2
βλ3

ϵ
ðs1 þ s2Þ

Z
ϕ6dzþOðϵ0Þ: ð36Þ

In order to proceed to the renormalization wewill need to
introduce one additional local term to the original action,
namely a sixth interaction, whose coupling constant would
absorb the divergence present in formula (36). This would
create a domino effect in the renormalization procedure.
In fact, it can be seen that after the introduction of a ϕ6

interaction term in the original action, the presence of the
α0 term in (24) implies the creation of a new divergent
interaction contribution with an eighth power of the field.
Unfortunately this would also force the inclusion of an
interaction term with a power ten and so forth, unless a
fortuitous combination of the parameters enforces the end
of this domino effect.
However, one may also suggest to work with parameters

s1 and s2 such that their sum cancels [15], in which
case this divergent term vanishes. The drawback of this
option, is that the linearized theory then reduces to the
commutative one.

VIII. CONCLUSIONS

Our investigation of the linearization in the noncommu-
tative parameter β of the Snyder ϕ4⋆ quantum field theory
(QFT), in the framework of the worldline formalism (WF),
has lead us to the calculation of the master equation (24),
i.e., a closed expression for the 1-loop n-point functions.
It is worth to notice, that this is the first time calculations on
a noncommutative space different from the Moyal plane are
performed using the WF.
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In this respect, we find it suggestive the fact that we can
interpret the presence of some noncommutative correc-
tions as due to the existence of an effective metric that
explicitly depends on the mean field ϕ. This provides a
hint towards the heuristically claimed strong interplay
between fields and gravity expected to be found in
noncommutative QFTs.
Our results for the 2- 4- and 6-point functions, the only

ones that need to be renormalized, are in accord with those
obtained in [15] using different methods. The renormaliza-
tion of the coupling constants has then been performed in the
MS prescription, with the notable fact that, in the linearized
theory and up to the one-loop order, the renormalization of
the 4-point function could be understood as involving the
renormalization of the noncommutative parameter β. Using
this interpretation, we find that the theory is “asymptotically
commutative” for both positive β and λ, i.e., the non-
commutative parameter decreases as the energy scale
increases. Since this behavior has been also observed in
Moyal noncommutative theories4 [26], we feel tempted to
ask ourselves whether this is a universal property of non-
commutative theories regardless of the specific choice of the
underlying noncommutative space, even if answering this
question is out of the scope of this work.
One of the main outcomes is that the 6-point function

gives rise to divergences that can lead to perturbative
nonrenormalizability, because the addition of a ϕ6 term
on the original action would generate a domino effect, in
the sense that terms with arbitrary high powers of the field
should also be added. An exception occurs when the
parameters of the theory obey the relation s1 þ s2 ¼ 0.
Curiously in this case, in spite of the noncommutativity, the
β-linearized one-loop QFT is identical to the commutative
one, because the corrections to the interaction term vanish,
cf. (16). We are not able to give a physical interpretation of
this special relation between the two parameters. It would
be interesting to study such models to higher orders in β to
see if this property still holds and how the renormalizability
of the theory is affected. In any case, it must be recalled that
the ultraviolet behavior of the full theory is different from
its first-order expansion in β which is studied in this paper,
and it is likely that the full theory be UV renormalizable
[16], although a complete proof of this is still lacking.
We also notice that because of the nonassociativity of the

star product, one may choose some ϕ4 interaction terms
a priori not equivalent to Eq. (8). It can be checked inside
the WF, however, that in the linearized theory they give
rise to the same results as those obtained with the ordering
in (8), as already noticed in [15].
Unfortunately, at this level it is not possible to discuss

the occurrence of UV/IR mixing, which is one of the most

interesting effects associated to noncommutative QFT.
In [16], it has been shown that this effect may occur in
the full theory for some choice of the ordering in the
potential. However, the terms that lead to the UV/IR mixing
vanish at the linearized level, so that it is not possible to
establish from the present calculations whether this effect
takes place or not. A higher order computation in the β
parameter is currently being considered.
As a final remark, we notice that in spite of the fact that the

quantum mechanics of noninteracting particles in Snyder
spacetime has been claimed to be trivial (i.e., equivalent to
that on Minkowski spacetime [28]), the interacting theories,
as our QFT, turn out to be highly nontrivial.
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APPENDIX A: COEFFICIENTS

The aμν, bμ and c coefficients introduced in Eq. (17),
Sec. III, to define the A operator are polynomials in the
position x and the momenta q1 and q2, and their explicit
form reads

aμνðxÞ ¼ 8iðs1 þ s2Þð2xμðq1 þ q2Þν þ ðq1 þ q2Þ · xδμνÞ;
bμðxÞ ¼ 8iðs1 þ s2Þðxμðq1 þ q2Þ2

þ 2ðq1 þ q2Þ · xðq1 þ q2ÞμÞ
þ 8ð2þDÞðs1 þ s2Þðq1 þ q2Þμ;

cðxÞ ¼ 8iðs1 þ s2Þððq1 · xÞð2q1 · q2 þ q22Þ
þ ðq2 · xÞð2q1 · q2 þ q21ÞÞ
þ 8ð2þDÞðs1 þ s2Þq1 · q2: ðA1Þ

On the other side, the Weyl-ordered formula (19)
involves the coefficients αμν, βμ and γ, which can be
expressed in terms of those in (A1),

αμν ¼ aμν;

βμ ¼ bμ þ
i
2
∂μððaμν þ aνμÞeiðq1þq2ÞxÞ;

γ ¼ c −
1

4
∂μ∂νðaμνeiðq1þq2ÞxÞ þ i

2
∂μðbμeiðq1þq2ÞxÞ:

ðA2Þ

From them a straightforward computation gives the follow-
ing result:

4In the case of SU(N) theories it has been shown that they are
also asymptotically free, i.e., the coupling parameter decreases as
the energy scale decreases, cf. [27] for the SU(1) model.
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αμνðxÞ ¼ 8iðs1 þ s2Þð2xμðq1 þ q2Þν þ ðq1 þ q2Þ · xδμνÞeixðq1þq2Þ;

βμðxÞ ¼ 0;

γðxÞ ¼ 4ðs1 þ s2Þð2ðq1 · ixÞð2q1 · q2 þ q22Þ þ 2ðq2 · ixÞð2q1 · q2 þ q21Þ

−
3

2
ix · ðq1 þ q2Þðq1 þ q2Þ2 − ð2þDÞðq21 þ q22ÞÞe−ixðq1þq2Þ: ðA3Þ

After performing an integration by parts to cancel the x dependence in the coefficients listed in (A3) and therefore
simplify the computation of the n-point function, we get the α0μν, β0μ and γ0 coefficients,

α0μν ¼ −8ðs1 þ s2Þð2ðq1 þ q2Þν∂qμ
1
þ ðq1 þ q2Þ · ∂q1δμν þ ðDþ 2ÞδμνÞϕ̃1ϕ̃2;

β0μ ¼ 0;

γ0 ¼ −ðs1 þ s2Þ½4ð2q1 · q2 þ q22Þðq1 · ∂q1Þ þ 4ð2q1 · q2 þ q21Þðq2 · ∂q1Þ
− 3ðq1 þ q2Þ2ðq1 þ q2Þ · ∂q1 − ð2þDÞðq21 − 2q1q2 − 3q22Þ�ϕ̃1ϕ̃2: ðA4Þ

The cost of erasing the x dependence has been to introduce
derivatives with should be understood to act solely on the
fields ϕ̃1;2.

APPENDIX B: THE GENERATING FUNCTIONAL
IN PHASE SPACE

In this Appendix we will briefly review how to compute
the generating functional ZDBC with Dirichlet boundary
conditions on phase space [22]. Using the notation of mean
values, the definition of the generating functional in terms
of arbitrary sources kðtÞ, jðtÞ is

ZDBC½k; j� ≔ he
R

1

0
dtðpkþqjÞiDBC

¼
R
DBCDPe−

1
2

R
1

0
dtPtBPþ

R
1

0
dtPtK

R
DBCDPe−

R
1

0
dtPtBP

: ðB1Þ

In this last expression we have defined the vectors in phase
space

P ≔
�
pðtÞ
qðtÞ

�
; K ≔

�
kðtÞ
jðtÞ

�
; ðB2Þ

and the matrix valued differential operator

B ≔
�

2 −i∂t

i∂t 0

�
: ðB3Þ

We obtain the generating functional in phase space
simply by completing squares and inverting the operator
B—taking into account the Dirichlet boundary condition
qð0Þ ¼ qð1Þ ¼ 0. The result is

ZDBC½k; j� ¼ e
1
2

R
1

0
dtKtB−1K; ðB4Þ

where the kernel of the operator B−1 is given by

B−1ðt; t0Þ ¼
� 1

2
i
2
½hðt; t0Þ þ fðt; t0Þ�

i
2
½hðt; t0Þ − fðt; t0Þ� 2gðt; t0Þ

�
;

ðB5Þ

and we have introduced three auxiliary functions

hðt; t0Þ ≔ 1 − t − t0;

fðt; t0Þ ≔ t − t0 − ϵðt − t0Þ;
gðt; t0Þ ≔ tð1 − t0ÞHðt0 − tÞ þ t0ð1 − tÞHðt − t0Þ: ðB6Þ

In these expressions the sign function ϵð·Þ is �1 if its
argument is positive or negative, respectively, while Hð·Þ
represents the Heaviside function.

APPENDIX C: ADDITIONAL FORMULAS
REGARDING THE FOUR-POINT FUNCTION

The relevant terms in the computation of the divergent
part of the four-point function are obtained by performing a
small proper-time expansion in the general result (24) for
n ¼ 2. These are

Γð4Þ
1-loop ¼ −

μ−ϵ

4!

λ2

8

Z
∞

0

dT

ð4πÞD=2

e−m
2T

TD=2−1

×
Z

∞

−∞

dq1
ð2πÞD

dq2
ð2πÞD ψð−ðq1 þ q2ÞÞ

×

�
4!

2
ϕ̃1ϕ̃2 þ β

�
1

T
α0μν

�
1

2
δμν −

T
4
δμνðJ; B−1

22 JÞ

−
T
4
C½Jμ�C½Jν�

�
þ γ0

�	
: ðC1Þ
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The following formulas involving integrals of the B−1

and the functional C kernels will prove useful in perform-
ing the computation of Eq. (C1):

Z
1

0

dt1dt0ðB−1
22 ðt0; t0Þ − B−1

22 ðt0; t1ÞÞ ¼
1

6
;

Z
1

0

dt1dt0ðCðt0Þ − Cðt1ÞÞ2 ¼ −
1

3
: ðC2Þ

Additionally, since it is sometimes easier to work with an
explicit expression of the ϕ4⋆ interaction in terms of the

fields and their derivatives, the following formulas are
useful:Z

dxϕðϕ⋆ðϕ⋆ϕÞÞ

¼
Z

dxϕ4 þ βðs1 þ s2Þ
Z

dxϕ3
2

3
ððDþ 2Þ þ 2xμ∂μÞ∂2ϕ:

ðC3Þ
An explicit expression of ϕ4⋆;ð1Þ, the linear term in β of the

quartic interaction under the integral sign, can be read
from (C3).
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