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It has been known for a while that there is spontaneous breaking of Lorentz symmetry in the nonzero
charged sectors of quantum electrodynamics due to the infrared problem of soft photons. More recently, it
has also been suggested that similar results hold for color transformations in a non-Abelian gauge theory.
Here, we show that an action where a diffeomorphism has been carried out for the part describing hard
gauge particles and matter fields can be used to analyze these issues. In addition to rederiving old results in
this formalism, we also show that color transformations cannot be unitarily implemented on perturbative
gluon states if gluon fields of arbitrarily low energy are allowed. Implications for confinement and mass gap
are briefly commented upon.
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I. INTRODUCTION

It has long been recognized that the existence of infrared
divergences in a gauge theory leads to subtleties in the
definition of charged states [1,2]. Charged particles are
effectively accompanied by a cloud of soft photons. The
analysis of scattering amplitudes shows that the charged
states become non-Fock coherent states which may be
defined by the action of a “dressing factor”on the Fock
vacuum of soft photons [1,3,4]. The effect of this dressing
on the S-matrix, specifically how it helps to factor out the
infrared divergences, has become standard textbook
material by now [2]. Nevertheless, this subject has seen
a recent revival of interest related to the role of asymptotic
symmetries and their consequences such as soft photon
theorems in electrodynamics [5]. Another curious feature
regarding the non-Fock coherent states which emerged
from the extensive analysis carried out over many years is
the spontaneous breaking of Lorentz symmetry in the
nonzero charge sectors of the theory [6,7]. The dressing
factor which leads to the coherent states is generated by the
asymptotic soft radiation field associated to charged par-
ticles and is characterized by a timelike vector pμ. The
overlap of such coherent states for different choices of this
vector, i.e., for pμ and p0

μ (with p0
μ ≠ pμ) is zero. In other

words, if we think of p0
μ as a Lorentz transform of pμ, the

corresponding transformation of the states cannot be
unitarily implemented. While this spontaneous breaking
must be taken account of in the theoretical set-up of
quantum electrodynamics, its physical implications are
less obvious. There is no such breaking in the sectors with
zero net charge; since this sector is what is adequate for
almost all practical situations (such as laboratory experi-
ments on scattering), there is no easily obtainable observ-
able consequence.
Given this situation, one possibility is to see if operators

which are sensitive to this issue can be incorporated into the
theory [8]. For example, in electrodynamics, one such
operator is given by UðθÞ ¼ expðiQðθÞÞ where

QðθÞ ¼
Z

d3xð−∇θ · ⃗Eþ θj0Þ ð1Þ

If θ is a smooth function on the spatial manifold R3 which
vanishes at spatial infinity, then QðθÞ is just the Gauss law
and hence it will vanish on physical states. For a function θ
which becomes a constant (say θ∞) at spatial infinity, QðθÞ
becomes θ∞ times the charge operator, while for those
functions θ which tend to nontrivial functions on the two-
sphere at spatial infinity, QðθÞ furnish a set of operators
sensitive to the asymptotic behavior of the fields. One can
attempt modifying the theory in a way which depends on
these; e.g., a modified mass term m → mðUðθÞ þU†ðθÞÞ
[8,9]. Interference effects may be another way to detect
consequences of the infrared dressing factor [10].
Another set of questions arises from the familiar con-

sequences of spontaneous symmetry breaking. Is there a
Goldstone mode one can identify? Also, recall that while
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the Goldstone theorem and the Higgs mechanism can be
explained in terms of correlators of operators, there is a
simple action-based description which captures the essence
of the phenomena. One can ask if there is a similar
description in the present case. Finally, in a non-Abelian
gauge theory, where the charge algebra is non-Abelian, the
dressing factor is applied to a specific charged state of a
representation of this algebra. The characterization of the
state by the charge is similar to the characterization of the
state by the vector pμ as regards Lorentz transformations.
Thus, one can ask if, in a similar way to what happens with
Lorentz transformations, the unitary realization of charge
(or color) rotations is vitiated by the infrared properties of
the dressing factor. These are the questions of interest in
this paper. We note that the possibility of breaking of color
rotations has been suggested and arguments in its favor
given previously [9].
In a charged sector of a gauge theory like electrody-

namics, we have a collection of charged particles described
by matter fields. We can construct an action where we
separate out the coupling of the soft photons to these
charged particles. This is explained in the next section. The
action is further justified by showing that it leads to the
dressing factor and the vanishing of the overlap of states
with different Lorentz transforms of the defining timelike
vector pμ. This is carried out in Sec. III. In Sec. IV, we give
the generalization to non-Abelian gauge fields. The color
rotations are constructed, and, in Sec. V, in an approxi-
mation spelled out in detail there, we show the vanishing of
the overlap of color-rotated states. Some of the details
which are technical and not essential to the flow of logic are
relegated to three Appendices.
The problem of color rotations is clearly of import to

the question of color confinement. We end the paper with
a short discussion of this matter. Previous work by
Balachandran and collaborators, including the discussion
of the breaking of Lorentz and color transformations, are
in [8,9]. The present paper has occasional overlap with
those papers.

II. AN ACTION FOR INFRARED DYNAMICS

One approach to the infrared dynamics is via the algebra
of local observables and careful analysis of the asymptotic
behavior, as carried out in many papers, see e.g., [6–8] and
references therein. Perhaps a more physical point of view is
obtained by noting that, basically, in a charged sector of the
theory we have a collection of charged particles (described
by matter fields) with a net charge not equal to zero. We
may think of this cluster of particles as a single composite
particle or as a droplet of charged matter fields. In terms of
coupling to the photon, it is well known that the low energy
photons (withω ∼ j⃗kj → 0) only couple to theoverall charge,
the monopole moment of the charge distribution, while
photons of higher energy couple to the higher moments of
the charge distribution via Fμν and its derivatives. The soft

photons decouple from the higher moments as ⃗k → 0 since
they involve Fμν and its derivatives. Thus, it should be
possible to separate out the overall dynamics of the system of
charged particles and hard photons from the infrared pho-
tons.Wewill nowconsiderwriting the action for the theory in
a form which displays this separation of the infrared
dynamics, starting with electrodynamics.
For clarity, we will use Aμ as the gauge potential for the

hard photons and aμ for the soft photons, with the corre-
sponding field strengths Fμν ¼ ∂μAν − ∂νAμ, fμν ¼ ∂μaν−
∂νaμ. The action is then given by

S ¼ S1 þ S2 þ S3

S1ðΛ; λÞ ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
gacgbdFabFcd þ SmatterðgÞ

S2ðλ; μÞ ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−η

p
ημαηνβfμνfαβ

S3 ¼ −q
Z

aμðZÞdZμ ð2Þ

This action needs a number of explanatory remarks. In (2),
we separate the fields in terms of the range of momenta
involved. S1 consists of modes of photons with wave vectors
⃗k, with λ < j⃗kj ≤ Λ. Thus,Λ is an upper cutoff for thewhole
theory and λ designates the separation between the hard
photons and the soft photons. This action has the standard
form, except that the metric is given by

ds2 ¼ dZ2
0 − ðdxi þ dZiÞ2 ¼ _Z2

0dt
2 − ðdxi þ _ZidtÞ2: ð3Þ

Here Zμ can be viewed as the center of mass coordinate for
the system of hard photons and matter fields which form the
overall composite particle or droplet. If we compare this with
the usual splitting of themetric into the 3-metric σij and lapse
(α) and shift (βi) functions, which is given by

ds2 ¼ α2dt2 − σijðdxi þ βidtÞðdxj þ βjdtÞ; ð4Þ
we see that (3) is equivalent toα ¼ _Z0, _Zi ¼ βi and σij ¼ δij.
Thus, wemay think of S1 as obtained from the standard form
of the action for electrodynamics (but with an upper and
lower cutoff on the range of momenta) by a diffeomorphism
ðx0; xiÞ → ðZ0; xi þ ZiÞ. In other words, S1 has the form of a
parametrized field theory as in [11]. If we carry out such a
diffeomorphism, S1 being the standard QED action, we will
obtain the usual results of QED, as it should, only qualified
by the presence of the cutoffs. (The limit of vanishingly small
λmay be taken at the end for various infrared finite quantities
calculated using this part of the action. The precise matching
between the hard and soft modes will not be important since
we take this limit at the end.) It is alsoworth pointing out that,
if the entire action were just S1, there would be no nontrivial
equations of motion for Zμ since it can be eliminated by a
diffeomorphism. But because of the additional terms
S2 þ S3, the results will depend on Zμ or rather _Zμ as we
shall see below.
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The second part of the action, S2, describes the soft
photons; it has an upper cutoff of λ and a lower cutoff of μ;
eventually we will take μ → 0. (If we take λ → 0 for
infrared finite quantities, the correct order is to take μ → 0
first and then λ → 0.) We consider flat ambient spacetime,
with ημν as the Minkowski metric. The third term of the
action, S3, gives the coupling of the “droplet”of hard
photons and charged fields, treated as single composite
particle, to the soft photons.
We assume that there is some gauge-invariant way of

introducing the cutoffs; the details of this are not relevant
for our discussion. Further, we will take matter fields to be
massive so that there are no additional infrared problems
due to a vanishing mass for the charged particles. S1 is the
term involving the metric gμν, which has Z-dependence. S3,
thus, couples the modes in S1 to the soft photons. However,
if we consider S1 in terms of ðZ0; xi þ ZiÞ, it is just the
standard QED (with a lower cutoff) coupled to charged
particles, so up to a diffeomorphism, the theory of hard
photons and charged particles is standard QED without
infrared divergences. (We also note that lapse and shift
functions are also central to the analysis of the BMS
symmetry and soft modes for gravitons [12–14].)
For facility of calculations, we may note at this point

that the metric tensor appearing in (3) and its inverse are
given by

gab ¼
� _Z2

0 − _Z2
i − _Zi

− _Zi −δij

�
;

gab ¼ 1

_Z2
0

�
1 − _Zi

− _Zi −δij _Z2
0 þ _Zi

_Zj

�
; ð5Þ

with det g ¼ − _Z2
0.

We have given the motivating arguments for the form of
the action in (2). But ultimately, (2) is to be taken as the
starting postulate of our analysis. The real reason for it is
that it reproduces known results for the dressing factor
for charged states in terms of the soft photons and the
spontaneous breakdown of Lorentz symmetry as in [6,7].
To demonstrate this and work out the consequences of (2),
we will analyze the dynamics in a combination of the path-
integral and Hamiltonian approaches. But, as a first step, it
is useful to consider the classical equations of motion for
the soft photons. The variation of Xμ ¼ ðZ0; xi þ ZiÞ or Zμ

gets contributions from S1 (via the induced metric gab)
and S3, while variations in aμ have contributions from S2,
S3. The variational equations are given by

1ffiffiffiffiffiffi−gp ∂a½
ffiffiffiffiffiffi
−g

p
Tabηαν∂bXν� ¼ fαμJμ

∂μfμν ¼ Jν

JνðyÞ ¼ q
Z

dτ
dZμ

dτ
δð4Þðy − ZðτÞÞ:

ð6Þ

Here Tab is the energy-momentum tensor for the matter
fields and the hard modes of the electromagnetic field. Here
we have a coupling of S1 to Zμ via S3, so we do not expect
conservation of Tab. Since Xν is a diffeomorphism of xμ,
for this term, we can go back to the X-coordinates and write

∂bxν
1ffiffiffiffiffiffi−gp ∂

∂ξa ð
ffiffiffiffiffiffi
−g

p
TabÞ ¼ ∂

∂xμ T
μν: ð7Þ

Further, the second equation in (6), which is the equation of
motion for aμ, gives

∂μtμν ¼ −fνμJμ; ð8Þ

where tμν is the energy-momentum tensor for the electro-
magnetic field. It is defined as tμν ¼ fμαfνα þ 1

4
ημνf2.

Conservation of energy-momentum for the whole theory
reduces to ∂μðTμν þ tμνÞ ¼ 0.
Finally, we will consider Zμ such that ðdZμ=dτÞ ¼ pμ,

where pμ is a constant timelike vector. This is what we
expect from the interpretation of the system of charged
particles and hard photons as a composite particle.
Consistency of this choice will require that, if we take
the limit of λ as well as μ becoming zero, the energy loss
due to the radiation of soft photons should go to zero and
we should get ∂μTμν ¼ 0, which ensures that the droplet
has a conserved total momentum. This is indeed the case as
shown in the Appendix.
The key result in this section is the action (2). We will

now use it to construct the dressing factor for charged
states.

III. THE DRESSING FACTOR AND BREAKING
OF LORENTZ SYMMETRY

We start with the action (2) focusing on the dynamics of
the soft photons described by S2 þ S3 since this is sufficient
for deriving the dressing factor. Consider quantizing
this theory using functional integrals. For simplicity, we
use the gauge a0 ¼ 0 and ∇ · a ¼ 0. States can then be
represented by wave functionals of ai (which is transverse).
The transition matrix element between states jαi and jβi is
given by

hαje−iHtjβi ¼
Z

½da�Ψ�
αða0ÞeiS½a�ÞΨβða00Þ; ð9Þ

where ½da� is the appropriate gauge-invariant measure and
the configurations which are integrated over have aðtÞ ¼ a00
at t ¼ 0 and aðtÞ ¼ a0 at the final value of time t. Ψαða0Þ
and Ψβða00Þ are the wave functionals for the final and initial
states, respectively, corresponding to the times t and 0. The
action S½a� ¼ S2 þ S3 with the addition of the needed gauge
fixing.
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Consider now the action where we shift the variable as
a → âþ aðcÞ, where aðcÞ is a background c-number func-
tion. This will be chosen to obey the equations of motion,

∂μðfðcÞÞμν ¼ Jν: ð10Þ
The action S2ðλ; μÞ þ S3ðλ; μÞ simplifies as

S½âþ aðcÞ� ¼ −
1

4

Z
f̂2 −

1

2

Z
ðfðcÞÞμνf̂μν −

1

4

Z
ðfðcÞÞ2

−
Z

âμJμ −
Z

ðaðcÞÞμJμ

¼ −
1

4

Z
f̂2 −

I
âνðfðcÞÞμνdSμ

þ
Z

âνð∂μðfðcÞÞμν − JνÞ þ � � �

¼ −
1

4

Z
f̂2 þ

Z
d3xeðcÞi âi

�
t

0

þ � � � ; ð11Þ

where eðcÞi is the electric field corresponding to aðcÞi and the
ellipsis denotes terms which are independent of â and
hence constants which factor out of the functional integral.
There are gauge fixing terms for the â-fields which are
understood as being added to the expression shown. Using
the result (11), we can simplify (9) as

hαje−iHtjβi ¼
Z

½dâ�½Ψ�
αððâþ aðcÞÞ0; tÞei

R
eðcÞ·âðtÞ�

× eiS0½â�Þ½e−i
R

eðcÞ·âð0ÞΨβððâþ aðcÞÞ00; 0Þ�;
ð12Þ

where S0½â� ¼ − 1
4

R
f̂2. This equation shows that, as far as

the dynamics of the soft photons is concerned, we have a
free Maxwell theory (governed by S0½â�) and hence its
contribution to correlators of hard photons and matter will
factor out. However, the incoming and outgoing states must
be given by

hâjβ̃i ¼ e−i
R

eðcÞ·âΨβðâþ aðcÞÞ
¼ e−i

R
eðcÞ·âei

R
aðcÞ·êΨβðâÞ

¼ VðaðcÞ; eðcÞÞΨβðâÞ ¼ hajVðaðcÞ; eðcÞÞjβi; ð13Þ
where

VðaðcÞ; eðcÞÞ ¼ exp

�
−i

Z
ðeðcÞ · â − aðcÞ · êÞ

�
: ð14Þ

Here we have translated the wave functionals to the
operator language using ΨβðâÞ ¼ hâjβi, using the notation
jβ̃i for the redefined state. This allows us to obtain the
operator expression for the dressing factor VðaðcÞ; eðcÞÞ. In
(13), (14), êi is the operator conjugate to âi, so that
exp½i R aðcÞ · ê� can be used to shift the field âþ aðcÞ to

â in Ψ. There can be normal ordering corrections in going
from the second to last line in (13); this has been absorbed
into the normalization of the wave functionals. VðaðcÞ; eðcÞÞ
gives the dressing factor for the states due to the soft photon
modes. If the initial and final states in (9) are the vacuum
states, we can take them to be the Fock vacua for the soft
photons. But the action of the formally unitary operator
VðaðcÞ; eðcÞÞ converts them to coherent states defined by the

classical functions aðcÞi and eðcÞi . The full computation of the
amplitude now reduces to the computation with the hard
photons and the matter fields with the dressing factor V
included for the incoming and outgoing states. Since the
action for the hard photons has a lower cutoff of λ, we see
that there will be no infrared divergences in the correlations
functions for the hard photons and matter fields as μ → 0.
We now turn to the issues with the unitary implementa-

tion of Lorentz transformations. This result can be seen by
considering the overlap of the coherent states defined
above. The operators âi and êi have the mode expansion

âi ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2ωkV

p ðciðkÞe−ikx þ c†i ðkÞeikxÞ

êi ¼
X
k

ð−iωkÞffiffiffiffiffiffiffiffiffiffiffi
2ωkV

p ðciðkÞe−ikx − c†i ðkÞeikxÞ; ð15Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffi
⃗k · ⃗k

p
and ciðkÞ, c†i ðkÞ are the usual anni-

hilation and creation operators for the photons. (Here we
have used a discrete sum over ⃗k rather than an integral,
because this is convenient for calculations. We take fields
in a cubical volume V ¼ L3 with periodic boundary
conditions for the fields, so that ⃗k ¼ 2πðn1; n2; n3Þ=L,
ni ∈ Z. Eventually, we take the limit L → ∞ in the usual
way.) The summation (or integration as V → ∞) is over
the range μ ≤ j⃗kj ≤ λ. The operator VðaðcÞ; eðcÞÞ in (14)
can be explicitly written out in terms of these operators as
V ¼ eΦ with

Φ¼−i
Z

ðeðcÞ · â−aðcÞ · êÞ

¼ q
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2ωkV

p ½Ωþ
i ð−k;pÞciðkÞ−Ω−

i ðk;pÞc†i ðkÞ�

Ω�
i ðk;pÞ¼

�
pi−ki

k⃗ · p⃗

k⃗2

�
1

pk� iϵ
: ð16Þ

Here, pk ¼ p0k0 − ⃗p · ⃗k. The dressed states are charac-
terized by the vector ⃗p as it appears in Ω�; so we will
designate the dressed state for the Fock vacuum of soft
photons as j⃗pi. Carrying out the normal ordering for V, we
then get
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j⃗pi ¼ exp

�
−
q2

2
ðΩþ;Ω−Þ−q

X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2ωkV

p Ω− · c†
�
j0i

ðΩþ;Ω−Þ ¼
X
k

1

2ωkV
Ωþ

i ðk; pÞΩ−
i ðk; pÞ

¼
Z

d3k
ð2πÞ3

1

2ωk
Ωþ

i ðk; pÞΩ−
i ðk; pÞ: ð17Þ

In the last expression, we have taken the V → ∞ limit.
And, once again, the range of integration is restricted to
μ ≤ j⃗kj ≤ λ. It is easily checked that this state is normal-
ized, h⃗pj⃗pi ¼ 1.
The overlap of states for ⃗p and ⃗p0 is given by

h⃗p0j⃗pi ¼ exp

�
−
q2

2
ðΩþ

p ;Ω−
pÞ −

q2

2
ðΩþ

p0 ;Ω−
p0 Þ

þ q2ðΩþ
p0 ;Ω−

pÞ
�

jh⃗p0j⃗pij2 ¼ exp½−q2ðΩþ
p −Ωþ

p0 ;Ω−
p −Ω−

p0 Þ�: ð18Þ

The integration over the magnitude of ⃗k can be carried out
to write

ðΩþ
p0 ;Ω−

pÞ ¼
1

16π3
logðλ=μÞð⃗v0; ⃗vÞ

ð⃗v0; ⃗vÞ ¼
Z

dΩ
ðv0i − k̂i⃗v0 · k̂Þ
1 − ⃗v0 · k̂þ iϵ

ðvi − k̂i⃗v · k̂Þ
1 − ⃗v · k̂þ iϵ

; ð19Þ

where ⃗v ¼ ⃗p=p0, ⃗v0 ¼ ⃗p0=p0
0, and the remaining integra-

tion is over the angular degrees of freedom in k̂ ¼ ⃗k=j⃗kj.
The bracket ð⃗v0; ⃗vÞ may be viewed as an inner product for
the velocities ⃗v and ⃗v0. It is positive semidefinite. Thus,
from (18), we see that

jh⃗p0j⃗pij2 ¼ exp

�
−

q2

16π3
logðλ=μÞð⃗v − ⃗v0; ⃗v − ⃗v0Þ

�
: ð20Þ

This vanishes as μ → 0 at fixed λ, for any choice of ⃗v ≠ ⃗v0.
Regarding p0

μ as obtained by a Lorentz transformation of
pμ, this overlap is equivalent to calculating the matrix
element of the operator corresponding to the Lorentz
transformation for the dressed soft photon states; i.e., if
p0
μ ¼ Λν

μpν, then h⃗p0j⃗pi ¼ h⃗pjUΛ j⃗pi. The vanishing of this
matrix element is, thus, equivalent to the statement that the
Lorentz transformations cannot be unitarily implemented
on the dressed states. It is also straightforward to show that
the matrix elements of all local operators, such as integrals
of creation-annihilation operators smeared over non-zero
momenta, will also vanish as μ → 0. Together, these state-
ments constitute the spontaneous breaking of Lorentz sym-
metry discussed in [6–8].

The physical meaning of this breaking is also clear from
our derivation. It is simply that the total momentum of
the droplet of charged particles and hard photons is a
superselected parameter, and cannot be changed by any
operator action due to the soft modes. As we remarked
earlier, the correlation functions of local operators do not
manifest this breaking of Lorentz symmetry in the zero
charge sector where q2 ¼ 0. This sector is what is relevant
for the calculation of the S-matrix elements of QED in flat
space for practical applications, so standard experiments
will not detect this. It can only be detected if there are other
forces such as a gravitational field which can affect the
overall motion of the droplet, or in carefully designed
experiments for detecting phase information [10].
To briefly recapitulate, in this section, starting from the

action (2), we have obtained the dressing factor and the
coherent states for soft photons; these are given in (13),
(14). Further, by considering the overlap of such coherent
states, specifically as in (20), we have rederived the known
result on spontaneous breaking of Lorentz symmetry in
electrodynamics.

IV. ACTION AND DRESSING FACTOR FOR
NON-ABELIAN GAUGE THEORY

Generalizing from the electromagnetic case, the action
for the non-Abelian gauge theory, with the coupling to
the lapse and shift functions, can be written down in a
straightforward way as

S ¼ S1 þ S2 þ S3 þ S4

S1 ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
gacgbdFA

abF
A
cd

S2 ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−η

p
ημαηνβfAμνfAαβ

S3 ¼ −
Z

dτQAaAμ
dZμ

dτ

S4 ¼ i
Z

dτ
X
k

wkTrðtku−1 _uÞ ð21Þ

The superscripts A denote the color components, corre-
sponding to a basis of the Lie algebra of the color group G
in which the gauge transformations take values. u is an
element of G and QA ¼ 2

P
wkTrðtku−1tAuÞ, tA being

the generators of the group in the chosen basis for the Lie
algebra. Our choice of normalization for tA is TrðtAtBÞ ¼
1
2
δAB. tk are the diagonal generators in the same basis. The

term S4 leads to a representation of the color group with
highest weight vector ðw1; w2;…; wrÞ upon quantization, r
being the rank of the algebra [15–17].
As in the Abelian case, the wave vectors for the fields are

restricted to be in the range λ ≤ j⃗kj < Λ for S1, and μ ≤
j⃗kj < λ for S2, S3. In the Abelian case, we were able to take
the limit μ → 0, which led to the orthogonality of the
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dressed states for different values of the timelike vector pμ

which characterizes them. In the non-Abelian case, even in
perturbation theory, we have a problem since there are many
self-interactions for the gauge field. If we want to use
perturbation theory, generally because of asymptotic free-
dom, μ must be larger than some scale factor like ΛQCD

which defines the theory. However, from (20), we see that we
need μ → 0 to obtain the orthogonality of states. Therefore,
we do not have an obvious kinematic regime where we can
use perturbation theory and make statements regarding the
orthogonality of states due to the dressing factor, even to the
lowest order in the perturbative expansion. One option is to
consider a theory with sufficient number of matter fields so
that we do not have asymptotic freedom. One can then pose
the question of whether color and Lorentz transformations
can be implemented within perturbation theory in such a
model. We will show that color transformations cannot be
unitarily implemented in such a theory, in the sectors with
nonzero color charges, at least for the case when pi ≠ 0.
Lorentz transformations cannot be unitarily implemented
either, but that is essentially the same as in electrodynamics,
so we focus on the color rotations.
Returning to the action, our focus is on the low energy

modes corresponding to the action S2 þ S3 þ S4. As
before, we will consider the shift

aAμ ¼ âAμ þ ðaðcÞÞAμ ð22Þ

In the Abelian case, aðcÞμ was a c-number field determined
in terms of the source _Zμ. In the present case, because the
source is QA

_Zμ, ðaðcÞÞAμ will involve QA which is the color

charge operator when we quantize u ∈ G. So ðaðcÞÞAμ will
no longer be a c-number function.
We may think of the whole quantization procedure (for

both the fields and for g) in the Hamiltonian formalism with
states described by wave functionals of aAi and g,

Ψα;Aða; gÞ ¼ ha; gjα; ri ð23Þ

corresponding to a state jαi labeling momenta, polarization,
etc. and color state jri. We used a functional integral
approach to identify the dressing factor in the Abelian case.
However, here, because of the ghosts which may not factor
out, there is no particular advantage to the functional integral.
We will use a Hamiltonian approach with aA0 ¼0. (The
previous results will also be easily recovered within this
framework.) The Hamiltonian for S2 þ S3 þ S4 is given by

H ¼ 1

2

Z
ðe2 þ b2Þ þ aAi QA

_Zi

eAi ¼ _aAi ; bAi ¼ 1

2
ϵijkð∂jaAk − ∂kaAj þ fABCaBj a

C
k Þ

ð24Þ

The time-evolution operator is obviously given by
Uðt; 0Þ ¼ T exp ð−i R t

0 dtHÞ.We nowwrite this asUðt; 0Þ ¼
VðtÞ−1Ũðt; 0ÞVð0Þ where

Ũðt; 0Þ ¼ T exp

�
−i

Z
t

0

dtH̃

�

H̃ ¼ VHV−1 þ i
∂V
∂t V

−1 ð25Þ
This factorization, so far, is just a mathematical identity.
The idea now is to chooseV such that the interaction terms are
eliminated in H̃. For the Abelian case, we can take the ansatz

V ¼ exp

�
−i

Z
ðeðcÞi âi − aðcÞi êiÞ

�
ð26Þ

This leads to

H̃ ¼ 1

2

Z
ðê2 þ b̂2Þ þ

Z
½eðcÞi êi þ bðcÞi b̂i þ aðcÞi Ji

þ âiJi − _aðcÞi êi þ _eðcÞi âi� þ c-number terms ð27Þ
where bi ¼ 1

2
ϵijk∂jak is the magnetic field. We can writeR

bðcÞi b̂i ¼ −
R ∇2aðcÞi âi via a partial integration.We then see

that all the mixing terms can be eliminated by setting the
coefficients of êi and âi in the bracketed terms to zero, i.e.,

by choosing aðcÞi and eðcÞi to be solutions of

eðcÞi − _aðcÞi ¼ 0; −∇2aðcÞi þ _eðcÞi þ Ji ¼ 0 ð28Þ
These are the same equations as we had before for the
background field. The splitting of U as VðtÞ−1Ũðt; 0ÞVð0Þ
shows that V is the dressing factor, since the time-evolution
given by jψðtÞi ¼ Uðt; 0Þjψð0Þi translates as

½VðtÞjψðtÞi� ¼ Ũðt; 0Þ½Vð0Þjψð0Þi�: ð29Þ
Thus, the dressed states Vjψi evolve with the Hamiltonian H̃

in which the terms mixing ðâi; êiÞ and ðaðcÞi ; eðcÞi Þ have been
eliminated via (28). The remaining Hamiltonian shows
that the soft photons behave as a decoupled free system.
(The c-number terms are irrelevant for this discussion.)
A similar analysis can be done for the non-Abelian case,

but it is trickier for two reasons: (1) There are gluon-gluon
type interactions due to the cubic and quartic terms in
the action or Hamiltonian. (2) The current JAi ¼ _ZiQA is an
operator (because of the QA) and hence the analogue of

Eq. (28) will not yield c-number functions for aðcÞi , eðcÞi .
We can parametrize V in the form

V ¼ exp

�
−i

Z
ðeAðcÞi âAi − aAðcÞi êAi Þ þ iK

�
: ð30Þ

H̃, defined as in (25), will now contain many additional
terms compared to (27) consisting of the gluon-gluon
interaction terms, commutators between these and the
exponent in V, and commutators of QA with various terms

including aAðcÞi and eAðcÞi . A systematic perturbation series
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for K in (30) can be written down although the calculation
of the terms in the series can reveal infrared divergences.
In the spirit of defining colored states as in perturbativeQCD,
if we neglect these additional corrections, the solutions will
be similar to the Abelian case. Thus, to the lowest order,

âAi ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2ωkV

p ðcAi ðkÞe−ikx þ cA†i ðkÞeikxÞ ð31Þ

We can then write the dressing factor in (30) as V ¼ eΦ,
Φ ¼ iχ̂AQA with

χ̂A ¼ −i
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2ωkV

p ½Ωþ
i ð−k; pÞcAi ðkÞ −Ω−

i ðk; pÞcA†i ðkÞ�

ð32Þ
In the fully interacting case, the expression for V will be

substantially more complicated, but we can still make the
following general argument. V depends on the canonical
variables êAi , â

A
i and onQA; the latter dependence is entirely

from ðeðcÞÞAi and ðaðcÞÞAi . All the variables appear in
combinations such that all color indices are contracted to
form invariants. As a result, we have the following
property: A color rotation of QA can be compensated by
a color rotation of the operators êAi , â

A
i . Further, expectation

values are evaluated by using commutation rules for êAi , â
A
i

which are invariant under color rotations. Writing Q0
A ¼

DABðhÞQB, where DABðhÞ is the adjoint representation of a
constant x-independent h ∈ G, these features tell us that

VpðQ0
A; ê

A
i ; â

A
i Þ ¼ VpðQA; ê0Ai ; â

0A
i Þ ð33Þ

Here we have also indicated, via the subscript, the depend-
ence of V on the timelike vector pμ.
Consider now the overlap of two states given by

Irs ≡ h0; rjV†
pðQA; êAi ; â

A
i ÞVp0 ðQA; êAi ; â

A
i Þj0; si: ð34Þ

We insert hh−1 between V† and V to write this as

Irs ¼ h0; rjV†
pðQA; êAi ; â

A
i Þhh−1Vp0 ðQA; êAi ; â

A
i Þj0; si

¼ h0; rjh½h−1V†
pðQA; êAi ; â

A
i Þh�

× ½h−1Vp0 ðQA; êAi ; â
A
i Þh�h−1j0; si

¼ h0; rjhV†
pðQ0

A; ê
A
i ; â

A
i ÞVp0 ðQ0

A; ê
A
i ; â

A
i Þh−1j0; si

¼ hrr0hss0 h0; r0jV†
pðQ0

A; ê
A
i ; â

A
i ÞVp0 ðQ0

A; ê
A
i ; â

A
i Þj0; s0i

¼ hrr0hss0 h0; r0jV†
pðQA; êAi ; â

A
i ÞVp0 ðQA; êAi ; â

A
i Þj0; s0i

¼ hrr0hss0Ir0s0 : ð35Þ
This shows that Irs is an invariant tensor in the representa-
tion of the color charge algebra. As a result, we should
have Irs ¼ Iδrs. This argument shows that the state of the
color charge is not changed by the dressing factor. Time-
evolution involved is given by the Hamiltonian H̃ which is

invariant under color rotations and hence time-evolution
also will not change the state of the color charge. This is a
reflection of the superselection of color charge.
This result by itself is not sufficient to make any definite

conclusion about the unitary implementation of color
transformations. It is needed but is only part of the
argument. We will now argue that any attempt to carry
out a color rotation on the coherent states will run into
problems. For this, consider the matrix element of a color
rotation operator hðθÞ ¼ expðiθAQAÞ between arbitrary
dressed states given by

Mrs ¼ h0; rjV†ðQ; ê; âÞhðθÞVðQ; ê; âÞj0; si: ð36Þ
We will show, albeit to lowest order in perturbation theory
(i.e., in the limit of neglecting self-interactions of the gluon),
that this matrix element vanishes for any h ≠ 1 as μ → 0, in a
way similar to what happens for Lorentz transformations of
pμ. Thismeans that color transformations cannot be unitarily
implemented on the dressed states in the sector with net
nonzero color. A dressed state like VðQ; ê; âÞj0; si where
j0; si is theFockvacuum for the infraredgluons, but can have
charged particles characterized by the color index s are
precisely what we need as the charged states to be used in
the lowest order in perturbation theory. So the implication of
our result is that color transformations cannot be unitarily
realized on the perturbative states.
To summarize, we have the non-Abelian generalization

of the action (2) given in (21). The dressing factor, in the
approximation of neglecting gluon-gluon interactions was
obtained. We also obtained superselection of color charge
states; this was obtained before in another way in [9]. And
finally, we claim that the matrix element for a nontrivial
color rotation on the coherent states is zero. The argument
for the last statement, because it involves many technical
points, is given below as a separate section.

V. VANISHING MATRIX ELEMENTS FOR
COLOR ROTATION

Consider the matrix element of the color rotation in (36).
Using 1 ¼ hh−1 to the left of V†, where h is an element of
the color group, we can write it as

Mrs ¼ h0; rjhðθÞ½h−1ðθÞV†ðQ; ê; âÞhðθÞ�VðQ; ê; âÞj0; si
¼ hrqh0; qjV†ðQ0; ê; âÞVðQ; ê; âÞj0; si; ð37Þ

where Q0
A ¼ h−1QAh ¼ DABðhÞQB. We have chosen dif-

ferent color states jri, jsi for Mrs. Since

V†ðQ0ÞVðQÞ½V†ðQ0ÞVðQÞ�† ¼ 1; ð38Þ

V†ðQ0ÞVðQÞ is unitary and we see, by the Cauchy-Schwarz
inequality, that the off-diagonal matrix element h0; qjV†ðQ0Þ
VðQÞj0; si does not exceed in magnitude the diagonal
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element h0; rjV†ðQ0ÞVðQÞj0; ri. The vanishing of the latter
is, thus, sufficient to show the vanishing of color rotation
matrix element in (36), (37). So our aim is to show that
the diagonal element h0; rjV†ðQ0ÞVðQÞj0; ri vanishes, for
Q0 ≠ Q, as μ → 0, in the limit of neglecting gluon-gluon
interactions.1

However, establishing the vanishing of h0; rjV†ðQ0Þ×
VðQÞj0; ri is not so straightforward because, even if we
pick Q’s in an Abelian subalgebra, Q0

A can have compo-
nents outside of this subalgebra leading to ½Q0

A;QB� ≠ 0.
Secondly, even though we can write V ¼ eΦ with Φ ¼
iχAQA given as in (32), the normal ordering of this
expression is also not straightforward since

½QAcAi ;QBc
B†
j � ¼ Q2δij þQAc

B†
j ð−ifABCÞcCi ; ð39Þ

and the second term on the right-hand side can generate
further commutator terms in reordering the series for V.
So, towards carrying out the calculation of the matrix

element h0; rjV†ðQ0ÞVðQÞj0; ri, we first consider

h0; rjVðQÞj0; ri ¼ h0; rjeiχ̂AQA j0; ri≡ e−
1
2
W ð40Þ

This is the definition of W. By the general properties of
such expectation values, we can write W in terms of
connected functions of χ̂AQA. For this we note that χ̂A is
a free bosonic field, although it has many components, so it
has only connected two-point functions given by

hχ̂Aχ̂Bi ¼ zδAB ð41Þ

where we use

z ¼ ðΩþ;Ω−Þ ¼ 1

16π3
logðλ=μÞð⃗v; ⃗vÞ ð42Þ

This variable z takes real values from zero to infinity, with
z → ∞ corresponding to μ → 0, so long as ð⃗v; ⃗vÞ ≠ 0.2

Equation (41) shows that we can evaluate W in terms of a
series of Wick contractions on powers of χ. It is easy to see
that W is real, with W ≥ 0. It is also of the form

W ¼ 2Q2z
X∞
0

wn

�
zCad

2

�
n

ð43Þ

where wn are numerical coefficients and Cad is the
quadratic Casimir for the adjoint representation of the
group. We show these properties in the Appendix, where
we also find

w0 ¼
1

2
; w1 ¼

1

4!
; w2 ¼

5

6!
: ð44Þ

Another property of importance to us is that, viewing W
as a function of z, it obeys the inequality

WðzÞ ≥ Wðz1Þ; z ≥ z1: ð45Þ

The reasoning behind this result is that, for z > z1, more
states are included because we are increasing the range of
⃗k-values and hence we should expect some such condition
following from the completeness relation. More specifi-
cally, the required expectation value can be written as

heΦi ¼ heiχ̂·Qi ¼ he−iχ̂·Qi ¼ hcos χ̂ ·Qi
¼ h1 − 2 sin2ðχ̂ ·Q=2Þi ð46Þ

Here we have used the fact that only even powers of χ̂ can
contribute and that the trigonometric relations hold as
operator statements since each expression is defined by
the power series expansion. From (46), 2hsin2 ðχ̂ ·Q=2Þi ¼
1 − e−W=2. We now have

�
sin2

�
χ̂ ·Q
2

��
z
¼

X
α

�
0; rj sin

�
χ̂ ·Q
2

�
jα; s

�

×

�
α; sj sin

�
χ̂ ·Q
2

�
j0; r

�

¼
�
sin2

�
χ̂ ·Q
2

��
z1

þ
X
α0

				h0; rj sin
�
χ̂ ·Q
2

�
jα0; si

				
2

≥
�
sin2

�
χ̂ ·Q
2

��
z1

ð47Þ

In this equation α0 indicates states which involve at least
one value of ⃗k beyond the range given by z1. Using the
inequality (47) in the expression for W, we find the
result (45).
The property (45) of W shows that its derivative with

respect to z is non-negative. (In fact, the derivative will be
positive since we obtainWðzÞ ¼ Wðz1Þ only if there are no
states with ⃗k beyond the range given by z1.) The next
property we need is that WðzÞ does not saturate to a finite
value as z → ∞. In fact

WðzÞ → ∞ as z → ∞ ð48Þ

1For a complete proof of color breaking, we must also show
that the above matrix element vanishes when VðQÞ is replaced by
αVðQÞ where α is any local observable. We will omit this proof
here. An alternative proof of the result of this section is in [9].

2Later we use z → ∞ to argue for the vanishing of the matrix
elements for color rotations. Strictly speaking, this could be
vitiated for ⃗v ¼ 0. However, our result holds for any ⃗v of
arbitrarily small but fixed magnitude.
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For showing this result, we express W as an integral. As
mentioned earlier, χ̂A is a free bosonic field, and hence
the only connected correlators are the two-point ones.
Therefore we can represent it using a Gaussian integral, i.e.,

h0; rjeiχ̂·Qj0; ri ¼ 1

ð2πzÞdimG=2

Z
½dσ�

× exp

�
−

1

2z
σAσA

�
hrjeiσ·Qjri: ð49Þ

(The σ’s are c-number variables.) This is a finite dimen-
sional integral, there are dimG independent variables χA

which are real. The quantity hrjeiσ·Qjri in the integrand is a
function of the σ’s; it is the diagonal matrix element grr of
the group element g ¼ expðiσ ·QÞ in the representation
corresponding to the states jri. However, it should be kept
in mind that the integration is not over the group volume
(i.e., not with the Haar measure), but over all real values of
the group parameters, σA in this case. Now, hrjeiσ·Qjrimust
be a periodic function of the σ’s and so it can be expanded
in a Fourier series as

hrjeiσ·Qjri¼
X
fng

Cn1;n2;…;nd sin

�
n1σ1
l1

�
� � �sin

�
ndσd
ld

�
þ��� ;

ð50Þ

where d ¼ dimG and the ellipsis indicates terms with
cosines and mixtures of sines and cosines. We may not
have the same period for all σ’s; that will depend on the
normalization of the generators, so we include parameters
l1;…; ld. The key point is that, with the Gaussian measure
(49), the average of any periodic function goes to zero as
z → ∞ as seen from

�
sin

�
n1σ1
l1

��

¼ 1

2i
½exp ð−n21z=l21Þ − complex conjugate�⟶

z→∞
0

�
cos

�
n1σ1
l1

��

¼ 1

2
½exp ð−n21z=l21Þ þ complex conjugate�⟶

z→∞
0 ð51Þ

This is equivalent to the statement in (48).
Finally we come to the matrix element of interest,

namely, h0; rjV†ðQ0ÞVðQÞj0; ri, with Q0 ¼ h−1Qh ≠ Q.
From the Cauchy-Schwarz inequality, this obeys

jh0; rjV†ðQ0ÞVðQÞj0; rij2 ≤ h0; rjV†ðQ0ÞVðQ0Þj0; ri
× h0; rjV†ðQÞVðQÞj0; ri:

ð52Þ

Since the right-hand side is 1, we have

jh0; rjV†ðQ0ÞVðQÞj0; rij2 ≤ 1: ð53Þ
Equality is obtained only forQ0 ¼ Q, i.e., for h ¼ 1. We can
now write this matrix element also as an integral over σ’s,

h0;rje−iχ̂·Q0
eiχ̂·Qj0;ri¼ 1

ð2πzÞdimG=2

Z
½dσ�

×exp

�
−
1

2z
σAσA

�
hrje−iσ·Q0

eiσ·Qjri:

ð54Þ

Using Q0
A ¼ h−1QAh,

hrje−iσ·Q0
eiσ·Qjri ¼ h−1rs hpqhsje−iσ·Qjpihqjeiσ·Qjri: ð55Þ

Once again, the product hsje−iσ·Qjpihqjeiσ·Qjri is a periodic
function of the χ’s, not equal to 1 for all σ. In fact, it is easy to
see that this is not identically 1 by considering h near the
identity. Beingperiodic, it can be expanded in a Fourier series
and by the result (51), the averagematrix element in (54) will
give zero. This proves the vanishing of the matrix element
h0; rje−iχ̂·Q0

eiχ̂·Qj0; ri. In turn, this shows that the matrix
elements of the color rotation in (37) will vanish for any
h ≠ 1, as z → ∞, or as μ → 0. And finally, this leads to the
statement given after (36) about the problem with a unitary
realization of color transformations in the sector with net
nonzero color.

VI. THE PROBLEM OF DEFINING COLOR
CONFINEMENT

In this paper, we have analyzed some of the infrared issues
in a gauge theory in terms of a particular splitting of the action
into a part for the hard modes and a part for the soft modes,
with a diffeomorphism for the hard part. This diffeomor-
phism which can be viewed in terms of the lapse and shift
functions for the metric encodes the overall motion of the
collection of charged particles. These functions also char-
acterize the timelike vector which defines the dressing of
the Fock states for the soft fields and hence the coherent
states of soft modes to be used in evaluating amplitudes. Our
results reproduce in a novel way the known results regarding
the spontaneous breakingofLorentz symmetry in the charged
sectors of quantum electrodynamics.
We have also analyzed the question of a spontaneous

breaking of color transformations in a non-Abelian gauge
theory. Our basic result is that the matrix elements for color
rotations cannot be unitarily implemented (for states of
nonzero color charge) if the following premises hold:
(1) Perturbation theory can be used and gluon-gluon

interactions can be neglected as a lowest order
approximation. (Theories where such an approxima-
tion can be valid would include those with sufficient
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number of matter fields so that asymptotic freedom is
not obtained or those which admit a non-Abelian
Coulomb phase.)

(2) The velocity vi ¼ pi=p0 is not zero. Here, pμ is the
timelike vector used to define the coherent states for
the soft modes of the gauge boson. (vi of arbitrarily
small magnitudes are adequate for the argument, so
this is presumably not a serious restriction.)

(3) We take μ → 0 at fixed λ; eventually the latter can be
taken to be zero as well. (This is the same situation
as for showing the spontaneous breaking of Lorentz
symmetry in electrodynamics.)

(4) The gauge bosons are massless.
In this context, we also refer to [8,9] where arguments
based on non-Abelian superselection rules are presented
to show that non-Abelian gauge groups are spontaneously
broken.
Our results do not directly impact standard perturbative

QCD since we do have asymptotic freedom in this case,
and so one cannot justify the use of pertrurbation theory or
premise 4 above, as the we take μ → 0. Also, for QCD
calculations, one can restrict oneself to states with total
charge equal to zero, i.e., to states which are QCD singlets.
Our analysis does show that defining asymptotically

nonfree non-Abelian theories or non-Abelian Coulomb
phases can be problematic. It also calls into question the
definition of color confinement. The standard lore has been
that we should implement the Gauss law with test functions
which vanish at spatial infinity on physical states. Thiswould
still allow for charged states which transform as some
representation of the color group. Thus, a priori there is
no obstruction to defining color transformations on the single
particle states. Confinement is then the statement that, for
dynamical reasons, the spectrumof theHamiltonian does not
contain the charged states. One can use, in some cases where
there are no fields transforming according to the fundamental
representation, the expectation value of the Wilson loop as a
diagnostic for confinement. This is the more conventional
signature one looks for in, say, lattice simulations.
However, our results go further. If, as we have argued,

color transformations cannot be defined on perturbative
gluon states, the theory presumably evades one or more of
the premises to our argument, listed above. One possibility
is that there cannot be gluon states of arbitrarily low energy
(so that we cannot take z → ∞.) It could also be that single
charged excitations carry infinite energy. Another possibil-
ity is that one can have configurations of zero total charge
without the cluster property so that single charged states
cannot be separated off.
These arguments clearly indicate that our analysis has

implications for the mass gap and confinement issues in the
non-Abelian theory. It does raise a somewhat finely nuanced
problem about color rotations. While we are not able, at this
stage, to give a definite answer to what happens in theories
of the type we are considering, it is clear that further analysis
is very important.
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APPENDIX A: REMARKS ON THE CANONICAL
FRAMEWORK FOR Zμ IN (2)

In this Appendix, we will work out some general features
of the action (2). We will also add a Dirac action as the
matter part. The induced metric has frame fields given by
E0 ¼ _Z0dt, Ei ¼ dxi þ _Zidt. These obey dEa ¼ 0, so that
the spin connection may be taken as zero. Thus, the Dirac
action has the form

SDirac ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ψ̄ ½iðE−1ÞμaγaDμ −m�ψ

¼
Z

d4x _Z0ψ̄

�
i
γ0

_Z0

ðD0 − _ZiDiÞ þ iγiDi −m

�
ψ :

ðA1Þ

The electromagnetic part of the action S1 simplifies as

S1em ¼ −
1

4

Z
d4x

�
−2

E2

_Z0

þ 2 _Z0B2 þ 4
_Zið⃗E × ⃗BÞi

_Z0

− 2
ð _Zi

_ZiB2 − ð _ZiBiÞ2Þ
_Z0

�
: ðA2Þ

Notice that vi ≡ _Zi= _Z0 is independent of the spatial
coordinates, so that we have

R
d3x _Zið⃗E × ⃗BÞi= _Z0 ¼ _Zi=

_Z0

R
d3x; ð⃗E × ⃗BÞi ¼ 0, by virtue of rotational invariance.

This will remove one of the terms in (A2). Further, we have
invariance under reparametrization of the variable t; The
action can be written entirely in terms of Z0 and the three
spatial coordinates using d4x _Z0 ¼ d3xdZ0, etc. This invari-
ance will lead to a zero Hamiltonian for the evolution
with respect to t. The evolution with respect to x0 is what is
relevant; equivalently, we can also make the gauge choice
_Z0 ¼ 1. In this case,

S1em ¼
Z

d4x

�
1

2
ðE2 − B2Þ þ 1

2
ðv2B2 − ð⃗v · ⃗BÞ2Þ

�

SDirac ¼
Z

d4xψ̄ ½iγ0∂0 − iγ0⃗v · D⃗þ iγiDi −m�ψ : ðA3Þ

For the infrared modes, we have

S2 þ S3 ¼
1

2

Z
ðe2 − b2Þ − q

Z
aivi; ðA4Þ

where ei ¼ ∂0ai, bi ¼ ð∇ × aÞi. We have also chosen the
A0 ¼ a0 ¼ 0 gauge. The Hamiltonian can now be worked
out as
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H ¼
Z �

1

2
ðE2 þ B2Þ þ 1

2
ðv2B2 − ð⃗v · ⃗BÞ2Þ

− ψ̄ðiγiDi −mÞψ þ 1

2
ðe2 þ b2Þ

�
: ðA5Þ

This is manifestly positive, except for the Dirac term,
which, as usual, is not positive. Upon quantization, the
Dirac Hamiltonian will also be positive after the usual
redefinition of the negative energy states.
It is also useful to look at the dynamics of Zi. Assuming

that
R
B2 is small, or that we can neglect it as a first

approximation, we see that

∂L
∂vi ¼

Z
ψ†ð−iDiψÞ − qaiðZÞ≡ Pi: ðA6Þ

Notice that we cannot solve this for vi in terms of the
momentum Pi. From the equation of motion for Zi, we get

d
dt

Z
ψ†ð−iDiψÞ ¼ qðei þ fji _Z

jÞ: ðA7Þ

As we show in Appendix B, the right-hand side of this
equation vanishes, showing that

R
ψ†ð−iDiψÞ is indepen-

dent of time. This is the total momentum of the particle
system. (If we had kept the contribution for the
Biðv2δij − vivjÞBj-term in the action, there would be some
correction to the total momentum; qualitative features will
not be changed.) To relate Pi to vi, we have to use the
Hamiltonian. Since Pi is conjugate to Zi, we get

½Zi; Pj� ¼ iδij; i _Zi ¼ ½Zi; H�: ðA8Þ

Thus, if the Hamiltonian is expressed using Pi (among
other variables) for some charged particle state, then (A8)
can relate _Zi and Pi.

APPENDIX B: THE CLASSICAL
INFRARED FIELDS

We start by calculating the solution of the equation of
motion for aμ which is needed to evaluate the factor fμνJν
used in Sec. III. This solution is also what is designated as

aðcÞμ in Sec. IV. The source current is given by

Jμ ¼ q
Z

dτ
dZμ

dτ
δð4Þðy − ZðτÞÞ

¼ q
Z

dτpμδ
ð4Þðy − Zð0Þ − pτÞ; ðB1Þ

where pμ ¼ dZμ=dτ. The solution in the gauge a0 ¼ 0,
∇ · a ¼ 0 is given by

aðcÞi ¼−q
Z

dτ
d4k
ð2πÞ4

�
pi−ki

k⃗ · p⃗

k⃗2

�
1

k2þ iϵ
e−ikðx−Zð0Þ−pτÞ

eðcÞi ¼ q
Z

dτ
d4k
ð2πÞ4

�
pi−ki

k⃗ · p⃗

k⃗2

�
ik0

k2þ iϵ
e−ikðx−Zð0Þ−pτÞ:

ðB2Þ

We have used the time-ordered (or Feynman) Green’s
function as this will be what is relevant in the functional

integral in Sec. IV. The electric field is given as eðcÞi ¼ _aðcÞi .
In fμνJν, first consider the term

f0iJi ¼ eðcÞi Ji ¼
Z

dτeðcÞi ðZÞpiδ
ð4Þðx − ZðτÞÞ: ðB3Þ

ZμðτÞ is the world line corresponding to the current or the

overall motion of the droplet. In (B3), the field eðcÞi is
evaluated on this world line. Taking account of the iϵ
prescription,

eðcÞðZÞi¼
q
2

Z
d3k
ð2πÞ3

�
pi−ki

k⃗ · p⃗

k⃗2

�

×

�Z
τ

−∞
dτ0e−ikpðτ−τ0Þ−

Z
∞

τ
dτ0eikpðτ−τ0Þ

�
: ðB4Þ

In the first of the τ-integrals, we change variables to u ¼
τ0 − τ and in the second to u ¼ τ − τ0 to get

Z
τ

−∞
dτ0e−ikpðτ−τ0Þ −

Z
∞

τ
dτ0eikpðτ−τ0Þ

¼
Z

0

−∞
dueikpu −

Z
0

−∞
dueikpu ¼ 0: ðB5Þ

This shows that the electric field evaluated on the world line
itself is zero. Consider now the magnetic field which
contributes to fijJj. Evaluating it on the world line we find

ϵiab∂aa
ðcÞ
b ¼ ð−iqÞϵiabpb

Z
dτ0

d4k
ð2πÞ4

ka
k2 þ iϵ

e−ikpðτ−τ0Þ

ðB6Þ

Other than ka, the only vector we have in this expression is
pa. The integral, evaluated with rotationally invariant
cutoffs λ, μ, will, thus, be proportional to pa and hence
the expression in (B6) will vanish. This confirms the
assertion at the end of Sec. III that the dissipation effect
due to the soft photons will vanish.
There is another way to write down the solution which

will be useful for simplifying V. For this, without loss of
generality, we can take Zμð0Þ, the origin of the world line
of the droplet, to be zero. In the gauge ∂μaμ ¼ 0, the
solution is given by
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aν ¼ −
Z

d4y
d4k
ð2πÞ4

1

k2 þ iϵ
e−ikðx−yÞJνðyÞ

¼ i
Z

d4y
d3k
ð2πÞ3

1

2ωk

�
θðx0 − y0Þe−iωðx0−y0Þþi⃗k·ð⃗x−⃗yÞ

− θðy0 − x0Þeiωðx0−y0Þ−i⃗k·ð⃗x−⃗yÞ
�
JνðyÞ: ðB7Þ

Carrying out the y0-integration, we find, for x0 > y0,

aν ¼ qpν

Z
d3k
ð2πÞ3

1

2ωk

1

pk − iϵ
ei⃗k·

˜⃗x; ðB8Þ

where pk ¼ p0ωk − ⃗p · ⃗k and ˜⃗x ¼ ⃗x − ð⃗px0Þ=p0. The con-
tribution for y0 > x0 is similar except that we have pkþ iϵ

in the denominator and the exponential becomes e−i⃗k·
˜⃗x.

Combining the two and transforming to the gauge a0 ¼ 0
and ∂iai ¼ 0, we get

ai ¼ q
Z

d3k
ð2πÞ3

1

2ωk
ðΩþ

i e
−i⃗k·˜⃗x þ Ω−

i e
i⃗k·˜⃗xÞ; ðB9Þ

where

Ω�
i ðk; pÞ ¼ q

�
pi − ki

⃗k · ⃗p
⃗k2

�
1

pk� iϵ
: ðB10Þ

The corresponding electric field is given by

ei ¼ q
Z

d3k
ð2πÞ3

iωk

2ωk
ðΩþ

i e
−i⃗k·˜⃗x −Ω−

i e
i⃗k·˜⃗xÞ: ðB11Þ

The solutions (B9) and (B11) agree with the results (B2).
To see this one needs to carry out the integrations over k0
and τ in (B2).

APPENDIX C: PROPERTIES OF EXPECTATION
VALUE FOR DRESSING FACTOR

The function W was defined in (40) by

h0;rjVðQÞj0;ri¼ h0;rjeΦj0;ri¼ h0;rjeiχ̂AQA j0;ri≡e−
1
2
W:

ðC1Þ

HereΦ ¼ iχ̂AQA. Wewill now show some of the properties
of W used in Sec. V.
Property 1: W is real and e−

1
2
W ≥ 0. This follows from

the fact that we need even powers of χ̂ to obtain a nonzero
Wick contraction.
Property 2: W is positive semidefinite. The Cauchy-

Schwarz inequality for states jAi ¼ eΦj0i and jBi ¼ j0i and
the fact that ðeΦÞ† ¼ e−Φ, give the result
jheΦij2 ≤ h0je−ΦeΦj0i, which implies jheΦij ≤ 1; this
shows that W ≥ 0. This is important in reconciling (45)
and (48).

Property 3: W has the form

W ¼ 2Q2z
X∞
0

wn

�
zCad

2

�
n
: ðC2Þ

Thus, apart from the overall Q2, the rest of the terms have
the combination zCad=2. This result can be seen as follows.
First of all we carry out a scaling Ω� → aΩ�, QA → QA=a
for some real parameter a ≠ 0. Under this change, Φ → Φ,
so W, defined in terms of Φ as in (C1), is unchanged.
The scaling is equivalent to z → a2z, Q2 → Q2=a2. The
commutations rules for the Q’s become�

QA

a
;
QB

a

�
¼ i

fABC
a

QC

a
: ðC3Þ

Thus, under the scaling, we must have fABC → fABC
a and

Cad → Cad=a2. Therefore, the invariant combinations are
Q2z and zCad=2, and W must be a function of these.
Secondly, consider calculating heΦi by expansion of the

exponential for representations which are of large dimen-
sions compared to the adjoint representation,

heΦi ¼
X
n

1

ð2nÞ! hΦΦ � � �Φi: ðC4Þ

After contracting the cA, cA† in Φ, i.e., after using (32)
and (41), we get products like hQAQB � � �i. The highest
power in this corresponds to ðQ2Þn which is obtained by
neglecting the commutators. This contribution exponen-
tiates to exp ½1

2
hΦΦic�, where the subscript c indicates the

connected component. For large representations, the com-
mutators are subdominant. (This can also be seen by
writing the product of the Q’s using star products.) This
fact shows that higher powers of Q2 are excluded from W.
This can be seen by examining the behavior of a sample of
two terms in the expansion for W; the latter is of the form

W
2
¼ 1

2
hΦΦic þ

1

4!
hΦΦΦΦic þ � � � ; ðC5Þ

where, again, the subscript c denotes the connected
component. In heΦi, the term with 6 Φ’s is, thus,

heΦi ∼ 1

3!

�
1

2
hΦΦic

�
3

þ
�
1

2
hΦΦic

�
1

4!
hΦΦΦΦic þ � � � :

ðC6Þ
The right-hand side corresponds to the 6-point function for
Φ’s, which should be of order ðQ2Þ3. This is already
accounted for by the ð1

2
hΦΦicÞ3 term. Thus, if hΦΦΦΦic is

of any order higher thanQ2, we would have a contradiction.
This shows that we can have only one overall power of Q2

in W. Thus, of the two invariants Q2z and zCad=2, we can
have only one power of Q2z in W. The conclusion is that
we do obtain the result (C2).
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It is instructive to see how this works out for the first
few terms of the expansion of heΦi. We can write this
expectation value out as

heΦi ¼ 1þ 1

2
hΦΦi þ 1

4!
hΦΦΦΦi þ � � � ðC7Þ

For the term with two Φ’s, we get

hΦΦi ¼ −hχ̂Aχ̂BihQAQBi ¼ −zhQ2i: ðC8Þ

For the next term, we have via the Wick contractions

ðC9Þ

The connected part of the 4-point function is, thus,
given by

ðC10Þ

Notice that there is only one power ofQ2z here. Proceeding
in this way to the next order, we find

heΦi ¼ e−W=2 ¼ exp

�
−Q2z

�
1

2
þ 1

4!
ðzCad=2Þ

þ 5

6!
ðzCad=2Þ2 þ � � �

��
: ðC11Þ
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