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We treat an Unruh-DeWitt detector as an open quantum system and evaluate the response of a uniformly
accelerated detector: (i) interacting locally with the derivatives of a massless scalar field and (ii) linearly
coupled to an electromagnetic field. We find that the early-time transition rate of the detector strongly
depends on the type of the interaction between the detector and the quantum field, and may not follow a
Planck distribution. In contrast, the late time asymptotic state is always thermal at the Unruh temperature
and thus provides a more fundamental and persistent characterization of the acceleration temperature:
A uniformly accelerated detector experiences the field vacuum as a genuine thermal bath at the Unruh
temperature and eventually settles at a thermal state, regardless of their intermediate dynamics or the type of

interaction.
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I. INTRODUCTION

Quantum field theory (QFT) implies that every inertial
observer in Minkowski spacetime agrees on the number of
particles in a given field state. However, this is not the case
for noninertial observers. Different noninertial observers
define particles with respect to different field modes [1-3].
The most well-known example is the Unruh effect [4]: an
observer moving with uniform proper acceleration a,
perceives the Minkowski vacuum as a heat bath at the
Unruh temperature Ty = a/(2z). This relation between
acceleration and temperature has strong analogies to the
thermal emission from black holes [5] and cosmological
horizons [6], and as a consequence, Unruh effect con-
stitutes a fundamental ingredient of the theories suggesting
a thermodynamic interpretation of gravity [7] (for a
comprehensive review see [8]).

In the framework of QFT, the Unruh effect is usually
derived by employing mathematical techniques on nonlocal
field modes, as for example Bogoliubov transformations.
The derivation also depends on global spacetime proper-
ties, such as the existence of Rindler horizons [9].
Nevertheless, the Unruh effect can be expressed in terms
of local physics employing the notion of the Unruh-DeWitt
(UDW) detector [4,10]. An UDW detector consists of a
pointlike quantum system that interacts locally through a
monopole coupling with a quantum field and is allowed to
move along any trajectory in Minkowski spacetime. The
relation between acceleration and temperature is then
deduced from the two-point correlation functions of the
field in an entirely local way [4,11-15].
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In most discussions of the Unruh effect, the relation
between acceleration and temperature is demonstrated by
evaluating the excitation rate of a moving UDW detector to
leading order in time-dependent perturbation theory [16].
For a uniformly accelerated detector, the excitation rate
follows a Planck distribution at the Unruh temperature.
This feature of the excitation rate is considered as vali-
dation of the Unruh effect.

However, the perturbative evaluation of the excitation rate
has a restricted domain of applicability. It works best for
macroscopic detectors, i.e., systems that leave a macro-
scopic record every time a particle is detected. For such
detectors, the perturbative evaluated transition rate applies at
all times, provided that the detector’s temporal resolution is
sufficiently large [17]. UDW detectors are not macroscopic
particle detectors [18], but rather microscopic field probes:
localized quantum systems—Ilike for example, elementary
particles or atoms—that interact with a quantum field.
Information about the field is incorporated in the final state
of the probe and is extracted through a suitable measurement
[19]. In the case of quantum probes, the leading-order
perturbative evaluation of the transition rate applies only
during very early times, since it ignores the effect of
spontaneous emission after excitations. It also ignores the
effect of the backaction of the field to the detector. In order to
take these effects into account, the UDW detectors should be
treated as open quantum systems [20], with the quantum
field playing the role of the environment, inducing dis-
sipation and decoherence.

In a previous work [21], we evaluated the response
of a uniformly accelerated two-level UDW detector
linearly coupled to a scalar field in Minkowski spacetime.

© 2018 American Physical Society
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We treated the detector as an open quantum system and
derived the evolution equations of the detector’s reduced
density matrix, invoking neither the Markov approximation
nor the rotating wave approximation (RWA). We demon-
strated that the asymptotic state of the detector is thermal at
the Unruh temperature, even when the non-Markovian
effects are taken into account. In contrast, the early-time
transition rate does not exhibit a thermal behavior when
non-Markovian effects are taken into account. The
Planckian form of the early-time transition rate is valid
only within the Markovian regime, which corresponds to
the limit of high accelerations or ultraweak coupling.

In this paper, we aim to examine to what extent the
conclusions of our previous work apply for different type of
detectors and fields. To this end, we address the response of
a uniformly accelerated detector: (i) coupled to the deriv-
atives of a scalar field and (ii) interacting with an electro-
magnetic (EM) field.

We find that the early-time transition rate strongly
depends on the type of interaction between the detector
and the field, and is not Planckian, even in the Markovian
regime. In contrast, the asymptotic state of the detector is
always thermal at the Unruh temperature, regardless the
internal characteristics of the detector or the interacting
field. These results reinforce the conclusions made in our
previous work [21]: the asymptotic state of an UDW
detector provides a more fundamental and persistent
characterization of the acceleration temperature. A uni-
formly accelerated detector experiences the field vacuum as
a genuine thermal bath at the Unruh temperature and
eventually settles at a state of thermal equilibrium, regard-
less of their intermediate dynamics or the type of
interaction.

The structure of the article is the following. In Sec. II, we
treat an UDW detector as an open quantum system and
derive the time evolution equations of the reduced density
matrix of the detector. In Sec. III, we solve the evolution
equations for a uniformly accelerated UDW detector
linearly coupled to a scalar field, reviewing the results of
our previous work [21]. In Sec. IV, we evaluate the
response of a uniformly accelerated detector derivatively
coupled to a massless scalar field. In Sec. V, we address the
response of a detector interacting with a quantized EM
field. Finally, in Sec. VI, we summarize and discuss our
results.

We work with units 2= c = kg = 1.

II. TIME EVOLUTION OF UDW DETECTORS

We model an UDW detector by a two-level system (2LS)
of frequency w. The detector interacts through a monopole
coupling with a massless scalar field (,iA) and moves along a
trajectory x*(7) in Minkowski spacetime, where 7 is the
proper time of the detector. The Hamiltonian of the
combined system is

Iq:ﬁ0®i+i®ﬁ¢+lflmt, (21)
where
Ay =25, (2.2)
2
is the 2LLS Hamiltonian,
N s (1o 1,oa0
Hy= [ dx Eﬂ —&—E(Vqﬁ) (2.3)
is the Hamiltonian of the scalar field,
Hiy = gin ® $(x) (2.4)

is the interaction Hamiltonian, g is the coupling constant,
and /1 = &, is the detector’s monopole moment operator.
We note that the Hamiltonian (2.1) is a special case of the
spin-boson Hamiltonian [22].

The evolution equation of the density matrix p of the
total system in the interaction picture is

@) =il pa]. (25)
where
Hin(7) = gin(7) ® Pl (7)), (2.6)
with the monopole moment
() = e 6, + e 6 (2.7)

being expressed in terms of the SU(2) ladder operators 6.

For a weak coupling between the system and the
environment, we solve Eq. (2.5) using the Born approxi-
mation: we assume that the state of the total system at time
7 approximates a tensor product

Pr(7) & () ® py(0), (2.8)
where p is the reduced density matrix of the 2LS.

Then, Eq. (2.5) becomes an integrodifferential for the
reduced density matrix p = try[p,,] [20]. Tracing out the
degrees of freedom of the field and assuming that the field

is initially in its ground state p,(0) = |0)(0|, we obtain

pe) =g [ e l(o-p(@sa e

5.0 (T/ 6+ _ 6_+6__ﬁ(1./))eim(‘r—r’)

A

(6:p(7)5,e¥" + 6, p(7)5_

—6_6.p(7))e” =" At (;7) + Hc., (2.9)
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where A*(7;7)=(0|¢[x(7)]p[x()]|0) is the positive-
frequency  Wightman function and A~ (5;7) =
(0|@[x(¢")]@[x(2)]|0) is the negative-frequency Wightman
function. Equation (2.9) is a non-Markovian time evolution
equation: the evolution of the p(7) depends on its past history
(memory effects) through the integration over p(z’). Thus,
Eq. (2.9)is valid at all times, for any trajectory followed by the
detector and takes into account the backaction of the field to
the detector. It is derived using only the Born approximation.
We used neither the Markov approximation (which neglects
the memory effects) nor the (posttrace) RWA [23] (where
rapidly oscillating terms in the interaction picture evolution
equation are ignored).

For stationary Wightman functions, i.e., A*(7;7)) =
A*(z—7), Bq. (2.5) is easily solved employing the
Laplace transform method and the convolution theorem
[21,24]. This is possible for a specific class of spacetime
trajectories [25,26], which includes, for example, trajecto-
ries with constant proper acceleration and with rotation at
constant angular velocity.

III. UNIFORMLY ACCELERATED DETECTORS

For a uniformly accelerated detector following the
hyperbolic trajectory
x*(t) = (a~'sinh(ar), a”! cosh(az),0,0), (3.1)

where a is the proper acceleration, the corresponding
Wightman functions are

2

a
A*(r—7) = —li :
(=) = - I A s fac = 7 T i0)/2]

(3.2)

For the stationary Wightman function (3.2), Eq. (2.5) are
analytically solved (for more details see [21]), and we
obtain for the reduced density matrix elements

1 r I 1 2T
=5 (1) 3 =g s

w
% (P00 (0) =p11(0)). (3.3)
poo(7) =1 =pn(2), (34)
® . r
po(z) = 56_"”_5710(0) - Eosz(wé a;7)p10(0)
2 I
+ =283 (w34 7)p10(0) — = S5 (w3 a3 7)oy (0)
w w
e cos(@1)pg1 (0)
w
r .
+%e 7 sin(@7)po; (0). (3.5)

In the above expressions,

I =T, coth (@> (3.6)
a

is a thermal decay constant, expressed in terms of the decay
constant of a static 2LS

I'y= gzz—:: (3.7)
We have defined a shifted frequency as
®=w+ (Cg+ Aw), (3.8)
where
Cr = Dlog(erem) (3.9)

T

is an acceleration independent frequency renormalization
term that diverges logarithmically as € — 0", and

Aw = % {log(a/a)) 4 Re{w<%‘"> H (3.10)

is the finite Lamb-shift of the frequency due to acceleration;
w(z) is the digamma (psi) function. The frequency shift
(3.10) vanishes when a — 0, since lim__ gy (z) ~ log(z).

The divergent renormalization term C added to the bare
frequency @ appears due to the interaction of the system
with the infinite modes of the environment. We absorb this
divergent term into a redefinition of the two-level system’s
frequency. In a complete QFT treatment of the total system,
one needs to include a second-order to the coupling counter
term in the total Hamiltonian (2.1), in order to compensate
for the renormalization [20,22].

The functions S,(w;a;7), Sy(w;a;7) and S3(w;a;7)
incorporates the non-Markovian effects. They do not appear
in the solution of Eq. (2.9), when the Markov approximation
is employed. To leading-order in ¢* they read

1 © —nart
Sl(a);a;r):—Re{ ne ,wz}, (3.11)
T n=1 (}’l - ’Z)
S( ) li —nart n d
w,a,t) = — e ———— an
? ﬂn:l I’l2 + (%))2

(o]

1
Sy(w;a;7) = —Z e~ nar

n=1

n*(n+iw/a)

A. Implications

At early times (z of order w™") and for a close to w or
smaller, the non-Markovian terms induce strong oscilla-
tions and dominate over the Markovian terms [21]. This
behavior is depicted in Fig. 1. At later times and for a < T’
convergence to equilibrium is also dominated by the
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FIG. 1. Time evolution of the p;; () element (3.3) of the detector’s density matrix for different values of w/a. The detector is initially

found in its ground state pyo(0) = 1. Evolution at early times is shown in the inserted plots.

non-Markovian terms, and the relaxation time is of the order
of a~! rather than I'"!. Non-Markovian effects become
absent in the regime of high accelerations a > w [21].

In the Markovian regime of high accelerations, the term
S1(w; a;7) in (3.3) vanishes. Then, at early times (I't < 1),
and for p;;(0) = 0, Eq. (3.3) implies that

T

p11(7) =l
ea —1

(3.13)

and the transition rate (transition probability per unit time)
to the excited state is

o
210

: 3.14
T (3.14)

w =
This is identical to the transition rate of a static 2LS in a
thermal bath at the Unruh temperature. When a — 0, the
transition rate vanishes. There are no excitations in the case
of an inertial UDW detector. The rate (3.14) coincides with
the rate commonly obtained through first order perturbation
theory [10,16] and is invoked in most discussions of

acceleration temperature. For a < w, non-Markovian
effects imply a non-Planckian transition rate.

In the long-time limit (I'r > 1), the density matrix
approaches the equilibrium value

2w

e~"a
wrn 0
N e"a +1

0 _ 1

21w
a +1

(3.15)

which is a Gibbs thermal state at the Unruh temperature
Ty = a/(2x). Equation (3.15) applies even when we keep
the contribution of the non-Markovian terms. The accel-
erated detector experiences the field vacuum as a genuine
thermal bath and eventually settles at a thermal state.

IV. DERIVATIVE COUPLING DETECTOR

We consider a 2LS detector of frequency @ interacting

with the derivative of a massless scalar field $ [27-29]. The
interaction Hamiltonian in the interaction picture reads

~

Hin(7) = gitt"(7) ® 0,9[x(2)], (4.1)
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where g is a coupling constant and 9, = 9/0x*. The dipole
moment operator /1#(7) can be orientated in different ways.

Next, we study the following alternatives of the
derivative coupling UDW detector: (i) a detector coupled
to the proper time derivative of the scalar field, (ii) a
detector coupled to the derivative of the spatial component
parallel to the direction of acceleration and (iii) a detector
coupled to the derivative of the spatial component
perpendicular to the direction of acceleration. We examine
the above situations both in the two-dimensional and
four-dimensional Minkowski spacetime.

A. (1+1)-dimensional Minkowski spacetime

For a massive quantum scalar field with mass m in
(1 + 1) dimensions the Wigthman function reads [16,30]

AS(r—7) = %Ko(m\/—(r—r’ T ie)? + (x — x’)2>,

(4.2)

where K, is the modified Bessel function of the second
kind [31] and € — 0T. Taking the massless limit m — 0 we
obtain

At(r—7) = —%log<\/—(r—r’ F ie)’ + (x —X’)z)

1 lim 1 e'm
— — 11m 10 —
27 m—0 g 2 ’

where 7 is the Euler-Mascheroni constant. We note that the
Wightman function (4.3) for a massive scalar field diverges
as m — 0. To deal with these infrared ambiguities of the
correlation functions, a detector coupled to the proper time
derivative of a scalar field was employed in [32].

When the detector is coupled to the derivative of a scalar
field the Wightman functions for a uniformly accelerated
detector become

(4.3)

0,0, A (t—7') = 0,0, A (r—7')
a? 1
im )
e—0* 8zsinh?[a(z — 7' F i€) /2]

(4.4)

where x stands for the spatial component. The correlation
functions (4.4) for a uniformly accelerated derivative
coupling detector has the same form with the Wigthman
functions (3.2).

Thus, the basic results of Sec. III are straightforwardly
applied in the case of a uniformly accelerated detector
derivatively coupled to a massless scalar field in (1 + 1)-
dimensional Minkowski spacetime: the transition rate to the
excited state within the Markovian regime is

1
w = 27Z'FO P
e —

(4.5)

where 270y = g’ is the decay constant of a static
derivative coupling detector. The transition rate follows a
Planck distribution at the Unruh temperature 7';;. However,
when the full non-Markovian solution of the detector’s
reduced density matrix is considered, the transition rate at
early times is non-Planckian. On the contrary, the late time
asymptotic state of the detector is thermal at the Unruh
temperature even when non-Markovian effects are taken
into account.

B. (3 +1)-dimensional Minkowski spacetime

In Sec. III, we demonstrated that in the regime of small
accelerations (or equivalently high frequencies) a < w,
non-Markovian effects are particularly pronounced and
render the early-time transition rate non-Planckian. Similar
to Sy(w;a;7), S>(w;a;t) and S3(w; a;7) non-Markovian
terms in Eq. (3.3)—(3.5) appear also in the case of the
derivative coupling detector, affecting its evolution in
exactly the same way (as illustrated in Fig. 1). The only
difference is the form of the expressions for the emission
rates Iy and I'. To find these expressions we focus, from
now on, on the Markovian time evolution of the derivate
coupling UDW detector.

The Markov approximation is obtained, if in Eq. (2.9) we
replace the density matrix p(s) by p(z) and take the upper
limit to infinity [20,33]. We note that the Markov approxi-
mation is justified only if the correlation functions of the
environment decay very rapidly compared to the time scale
on which p(7) changes. Expressing the density operator in a

matrix form
) = (Pu(’f) P10(7)>
Poo(7)

poi(7)
and performing the Markov approximation we obtain

(4.6)

pui(5) =—gon, (7) /0 ® dife W (1) + e W (1)

+pole) [l W)+ W), (@)

poo(®) =~ pole) [ dre W () + e w(0)

+92p11(f)Aoodt[€"‘”’W+(t)+€"'”’W‘(t)]7 (4.8)

Pro() =~ pro() / ™ dt]e W (1) + e W (1)

+ 92,001 (T) eZiwr/ dt[e—iwtw—([) + e—ia)tw+<t>].
0

(4.9)
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In Egs. (4.7)-(4.9) we represent by W the Wightman
functions of a derivative coupling detector.

For the various cases of the derivative coupling detector
presented in the following sections, the Laplace transform-
like integrals involved in Eqs. (4.7)—(4.9), are analytically
evaluated in the Appendix.

1. Proper time derivative

We first consider a detector coupled to the proper time
derivative of a massless scalar field. The detector follows
the trajectory (3.1). The corresponding Wightman func-
tions reads

Wii(z —7) = 0,0,A%(t - ')

B 3a* 1
 322%sinh*[a(r — 7 — Fie)/2]
at 1

. 4.10
T sinh?[a(t — 7 — Fie) /2] (4.10)

Inserting the correlation functions (4.10) into the evolution
equations (4.7)—(4.9), we evaluate the integral transforms
of the Wightman functions (see the Appendix) and solve
the set of equations to obtain

1 s | S
Pll(T)——<1 O)+ e

2\ ret) Tore
e () = p(0)), (411)
poo(t) =1 —=p1(7), (4.12)

o 0D —
—l(l)T—r—T w w

w
pio(t) = e 27p10(0) —
(0]
Fpt bt

e F cos(@1)pg1 (0)

+%€_TT sin(cbf)pm (0) (413)
In the above expressions,
S ) ()
27 a a a
=T} coth <@> (4.14)
a
is a thermal decay constant and
2.3
=LY 4.15
0 20 ( )

is the decay constant in the static case. To calculate I'™* we
used the relation y(z) — w(—z) = —1/z — wcot(nz) for the
digamma functions y(z). We also defined the shifted
frequency

pt
& = o + 0*(Cy + Aw) +r70% (4.16)
where Cp is the renormalization term (3.9) and Aw the
Lamb shift due to acceleration (3.10). Compared to (3.8),
in (4.16) appears an extra divergent term Cj =
(a/2)sin~?(ea/2) that depends on the acceleration. To
compensate for this infinite term, a suitable counterterm
should be added to the total Hamiltonian.

At early times (I't < 1), and for p;;(0) = 0, the tran-
sition rate to the excited state reads

pt
w,, = I
pt = Zm :
e« —1

(4.17)

The transition rate follows a Planck spectrum at the Unruh
temperature 7.

2. Direction parallel to acceleration

We next consider a detector coupled to the derivative of
the spatial component parallel to the direction of accel-
eration. The correlation functions are [30]

WﬂE(T—T/) = 0,0y A% (z=7)

G 1
 32#%sinh* [a(t — 7' — Fie) /2]
at 1
~ 16x%sinh? [a(t— 7' — TFie) /2]

1 442
= 30,000 (r=7) —%Ai(f—a),

(4.18)
where x is the spatial direction parallel to acceleration and
A*(7 —7’) is given in (3.2). In the second line of (4.18), we
write the correlation functions in an appropriate form so
that we can exploit the calculations of the Laplace trans-
formlike integrals in the Appendix.

Inserting the correlation functions (4.18) into Eqgs. (4.7)—
(4.9), we solve the set of equations to obtain

I 2 I 2
[, Ty, 4a Ty 4a*\ i,
mﬁ%@@‘ﬁ@*@ﬂ}%ﬁ@*;ﬁe

=3¢ oo (0) = pu 0). (4.19)
Poo(f) =1 _,011(7)’ (4-20)
maﬂ:geﬁw%mam—@;“e%wm@mmmm
FH rll

+%€_TT sin(&n)pm (0), (421)

where the thermal decay constant
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(4.22)

4 2
rl=r) <1 + iz) coth (@)
(0] a

is expressed in terms of the decay constant in the static case

g2 (1)3

6

r)= (4.23)

The shifted frequency is

2 4 2 FH
@ :a)+% <1 +a2>(CR+Aa)) +0C. (4.24)
w VA

Evaluating the early-time transition rate for p;;(0) = 0,

we obtain
4a? 1
WH = F(‘l <1 + F) 270

€a —

(4.25)

The transition rate (4.25) is non-Planckian. A Planck
spectrum is obtained either when the acceleration a is about
equal to the detector’s frequency w or in the regime of small
accelerations a < w. In this regimes, however, we have
demonstrated that the non-Markovian effects are really
significant, rendering the transition rate nonthermal [21].

3. Direction perpendicular to acceleration

We finally consider a detector coupled to the derivative
of the spatial component perpendicular to the direction of
acceleration. The Wightman functions are [30]

Wi(r—7) =0,0pA (1 =) = 0,0,A* (= 7)

a* 1

~ 3272 sinh? [a(z — 7 — Fie) /2]
2
= %a,a,/Ai(T -7) + %Ai(r —7). (4.26)

Inserting the correlation functions (4.26) into Eqgs. (4.7)—
(4.9), we solve the set of equations to obtain

1 s a’ s a®\ i,

1
- Ee_r “(Poo(0) = p11(0)), (4.27)

poo(7) =1 =py(7)

(O
/’10(7) = 56 e 27!’10(0)’

— 2 e cos(@1)pon (0)

rt rl B
+ 75°¢ 27 sin(@7)po; (0), (4.28)

where the thermal decay constant reads

2
rt=ri(1+2) coth( Z2), 429
0 ( + a)2> coth| — (4.29)

and the decay constant in the static case is

Por
Iy = . 4.30
0 61 ( )
The shifted frequency is

o’ a’ It

c?)za)—i-?(l—i—E)(CR—ﬁ—Aw)—l—?oC’R. (4.31)

Evaluating the early-time transition rate for p;;(0) = 0,
we obtain

re(144) (4.32)
w, = — |- .

+ 0 w?) -1

Again, the transition rate is non-Planckian, except the
regimes where the acceleration is equal or much smaller
than the detector’s frequency. In these regimes, however,
non-Markovian effects are significant and cannot be
neglected.

4. Asymptotic states and thermal behavior

We demonstrated that in the cases of a uniformly
accelerated detector coupled to the spatial derivatives of
a scalar field, the early-time transition rate to an excited
state does not obey a Planck distribution, even in the
Markovian regime of high accelerations. However, the
thermality of the Unruh effect should not be identified
with the Planckian form of the transition rate. In every
alternative of the derivative coupling detector presented
previously and in the long-time limit (I'f > 1), the density
matrix of the detector approaches the equilibrium value

27w

“m— 0

P = | ¢! , (4.33)

0

e~ a +1
which is a thermal state at the Unruh temperature
Ty = a/(2z). The asymptotic state is thermal even if
we keep the contribution of the non-Markovian terms in
the solutions of the evolution equations. This is a much
stronger manifestation of the thermal behavior than the
transition rate. The accelerated detector experiences the
field vacuum as a genuine thermal bath and eventually

settles at a thermal state.

In Fig. 2 we illustrate how the density matrix approaches
its equilibrium value for the different alternatives of the
derivative coupling detector and for different values
of w/a.
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FIG. 2. Time evolution of the p;;(z) elements (4.11), (4.19) and (4.27) of the density matrix of the derivative coupling detector for

different values of @/a. The evolution is plotted versus a dimensionless time in units of (I}")

t - ..
I where T g is the spontaneous emission

rate of the detector coupled to the proper time derivative of a scalar field at zero temperature. The detector is initially found in its ground

state poo(0) = 1.

V. DETECTOR COUPLED TO AN
ELECTROMAGNETIC FIELD

We consider a 2LS detector coupled to a quantized
electromagnetic field [12,34-36]. The interaction
Hamiltonian, given in the dipole approximation,
reads [20,37]

A

H, =-D-E, (5.1)

where D is the dipole operator and E is the electric field
operator in the Schrodinger picture

A 2wy A A
E =i K)[b,(k) —by(k)T]. (5.2
;A;Z\/ v ek)bi(k) = b (k). (5.2)

Here, e; is the unit polarization vector, V is the volume
space and bjl b, are the field creation and annihilation
operators. Working in the interaction picture we have

= _zbi(T>Ei(T) = _Zdiﬁ’l(f)ﬁi(f)v (5.3)

i

I:Iint(f)

where d is the transition matrix element of the dipole operator,
i(z) is the monopole moment operator (2.7) and E;(z)
denotes an electric field component in the interaction picture.
For convenience, we have assumed that d = d*.
Employing the Born-Markov approximation, the time
evolution equations of detector’s reduced density matrix read

pu(r) = Zdidjﬂll(f)/o df[eiw[A;;(t) + E‘iw‘Ai‘j(t)]
iJ
— Zdldjpoo(’l') ‘/0 dl’[e_ith;;([) + eier;]-(t)],
LJ
(5.4)
Poo(7) = Zd,djpoo(r)/o dte™ ! [A;;(t) + ei“”Ai_j(t)]
ij
_Zdld]pll(f)/(; dl{einAz;(l)+€_ithl-_j(l)],
ij

(5.5)
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prolz Zd iP10(T /0 di[e' A (1) + " Ay(1)]
- Zdidjﬂm 7)e
iJ

« / ® Al A (1) +
0

(OIE(D)E;(7)[0) or Aji(z—7) =
(01B:(2)B ( )10) and A7(z —7') = (0| Ey(7')E;(7)[0) or
An(r—7) = (0|B,(7')B;(z)|0) are the correlation functions
of the electric or the magnetic field components.

For a uniformly accelerated detector following the hyper-
bolic trajectory (3.1) the correlation functions read [30]

;(7)10) = (01B:(2)B;(«))]0)
B a46,»j 1
~ 162% sinh* [a(z — 7' — i€) /2]

et AL (1)], (5.6)

where A+(T -7) =

(OIE(0)E

(5.7)

The spatial components of the electric and magnetic field
operators are those parallel to the direction of motion of the
detector. The same applies to the transverse direction to the
direction of motion.

The derivative coupling detector model has some fea-
tures in common with the model of a detector coupled
to an EM field. The correlation functions (5.7) are similar to
the correlation functions (4.26) obtained for a UDW
detector coupled to the derivative of a spatial component
perpendicular to the direction of acceleration. The solutions
of the evolution equations of the detector’s reduced density

matrix are
1 rem a? rgm A
pll(T):E[l—Fem <1+;):|+2Fem 1"‘; er
1 em
- Ee_r “(Poo(0) = p11(0)), (5.8)
poo(7) = 1= pn(2), (5.9)
—iwr-Cnr
pu(r)=e 77p10(0)
em sin(@z) _rem
+[Fr-ito-0)| 0 o 01 (5.10)
2 @
where the thermal decay constant reads
rem —en (14 %) coth (™ (5.11)
0 ’? a)’ '
and the decay constant in the static case is
on |d|20)3

The shifted frequency is

em

0 (1 +Z—22> <10g(e7€w) + log(a/w)

T

(2] 5

Evaluating the early-time transition rate we obtain

. a’ 1
Wem = F?) <1 +0)2> e2rw/a _ 1’

which is in a non-Planckian form. The transition rate (5.14)
is identical to that of a static 2LS interacting with an EM
field that is in thermal equilibrium at 7', [38]. In the long-
time limit (I't > 1), the density matrix of the detector
approaches the equilibrium value

w=w-+

(5.13)

(5.14)

27w

e a
_2nw O
P e a +1
poo - 1 ’
O ,m
a +1

(5.15)

even in the non-Markovian regime.

VI. DISCUSSION AND CONCLUSIONS

Employing the notion of an Unruh-DeWitt detector, the
Unruh effect can be expressed entirely in terms of local
physics. The transition rate of a uniformly accelerated
detector is evaluated to leading order in perturbation theory
and is found to obey a Planck distribution at the Unruh
temperature. This feature of the transition rate is usually
considered as validation of the Unruh effect.

However, the perturbative evaluation of the transition rate
has a restricted domain of applicability. For quantum field
probes, such as the Unruh-DeWitt detectors, it applies only
during very early times. This is because it ignores the effect
of spontaneous emission after excitations. Perturbative
evaluation also ignores the backaction of the field to the
detector. In order to take these effects into account, the
Unruh-DeWitt detectors should be treated as open quantum
systems.

Open quantum systems are generally described by
a second order master equation, which is derived imple-
menting the Born-Markov approximation and RWA. The
second-order master equation is an excellent approximation
to a large class of problems, but it turns out that the Markov
approximation has some limitations. For example, the
Markovian master equation is not valid for low temper-
atures of the environment [33]. Indeed, when studying the
response of moving detectors interacting with quantum
fields, non-Markovian effects are particularly pronounced
at early times and for small accelerations [21,39]. Thus, the
Markov approximation cannot be presupposed as in [40]
and is applied only for high accelerations.

In this paper, we treated an Unruh-DeWitt detector as an
open quantum system, with a quantum field playing the
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TABLE 1.

Comparison between transition rate and asymptotic state of accelerated detectors for different types of interaction between

the detector and the field, within the Markovian regime of high accelerations. When non-Markovian effects are taken into account the

transition rate is non-Planckian in all situations.

Accelerating detector coupled to

Transition rate

Planckian form Thermal asymptotic state

Scalar field

Proper time derivative g’ 1

Direction parallel to acceleration

Direction perpendicular to acceleration Fw

EM field @(]Jri) 1

4 v

xX X X N

4
v
v
4

role of the environment, and evaluated the response of a
uniformly accelerated detector for different types of inter-
action between the detector and the field. We found that the
early-time transition rate strongly depends on the type of
the interaction and may not be Planckian, even in the
Markovian regime of high accelerations. In contrast, the
asymptotic state of an accelerated detector is always
thermal at the Unruh temperature, regardless the internal
characteristics of the interaction or the interacting field. The
detector’s density matrix at late times is thermal even if we
take into account non-Markovian effects. Our results are
summarized in Table 1.

Our work strongly implies that the asymptotic state of an
Unruh-DeWitt detector provides a more fundamental and
persistent characterization of the acceleration temperature: a
uniformly accelerated detector experiences the field vacuum
as a genuine thermal bath at the Unruh temperature 7;; =
a/(2r) and eventually settles at a thermal state, regardless
their intermediate dynamics or the type of interaction.
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APPENDIX: INTEGRAL TRANSFORMS
OF WIGHTMAN FUNCTIONS

In this appendix, we evaluate the Laplace transform
integrals of the Wightman functions that are used in our
calculations. First, we calculate the integral

© —IT 1 T
_/0 ¢ sinhz[a(f—iG)/z]d
_ _%/oo e~ d{coth[a(z — i€)/2]}

ajo

_ _2 {coth[(iae) 2]+ 2 A ® e~ cothla(z — ie) /2]df}.
(A1)
The integral
I, = /oo e ¥ coth[a(z — i€)/2]dr
0

is evaluated as

0
Il:/
0

+ /oo e—a(r—ie)e—zr[l _ e—a(f—ie)]_]df
0

eiue 1. )
/ A1 = eiveq-1dr
a Jo

e—zr[l _ e—a(r—ie)]—ldT

1 /1, )
= —/ t 1 — et dr +
0

a

1 .
:—2F1<1,5,5+1;em>
Z a a

iae
e

+ 2F1<1,£+1,E+2;ei"€>, (A3)
z+a a a

where ,F(a, b, c;w) is the Gauss hypergeometric function

[31,41]. We used the integral representation of the hyper-

geometric function

2Fi(a,b,c;w)
DO i
_mA P (A=) (1 —w)™dr. (A4)

Thus, the integral (A1) is

2 )
[=—— {Coth[(iae)/Z] +,F, <1,£,E + l;e’“)
a aa
iae
R (1,5+ 1,2+ 2;6"16) } (A5)
Z+a a a
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The hypergeomertic series ,Fi(a,b,c;w) is analytic
everywhere in the complex plane except for the branch
points at w =0, 1, co. When w — 1, the zero-balanced
hypergeometric series, i.e., the series that c —b —a =0,
behave as

['(a)['(b)
I'(a+ D)
= -2y —y(a) —w(b) —log(l —w) + o(1).

ZFi(a,b,a+ b;w)
(A6)

where y is the Euler-Mascheroni constant and w(z) =
d%log I'(z) is the digamma (psi) function [41]. Expanding
around the branch point w =1, we write the integral
(AS) as

I = L{sinh~?[a(z —i€)/2]}(z)

2 ] 2 j
—-2{oom (") =1-2 rogterea) 1 (£ + 51,
a 2 a a a

where we used w(1) =—y and w(1 +2z) =1/z+ w(2).
The logarithm is taking values in the principal branch. We
also have

I=L{sinh~?[a(z+i€)/2]}(z)

_ —%{—coth (%) —1 —% {log(e’ea) +y <§>} —%Z}

The correlation function in the case of UDW detector
coupled to the proper time derivative of a scalar field reads
1
sinh?[a(r — 7 F ie)/2]
d? 1

T T alsinh’[a(r F ie)/2] (A9)

WE(r—7) = 9,0,

Taking the Laplace transform we have

LW (D)} (2) :f{coth (’“;) 1
—% {log(eyea) +W(Z>] +’%Z

a
n z acosh(iea/2)
sinh?(iea/2) sinh’(ica/2)

}, (A10)

where we have used the Laplace transform identity
L{f"(1)}z2)=22L{f}(z)—zf(0)—f(0). Similarly, we have

LW (1)}(z) = 27Z2 {—coth(%) -1

) .
it [log(ﬂea) +w <£>} =
a a a

z acosh(iea/?2)
+ sinh?(iea/2) = sinh?(iea/2) }

(A11)
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