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We study the behavior of a massless, quantized, scalar field on a two-dimensional cylinder spacetime
as it responds to the time-dependent evolution of a Mamaev-Trunov potential of the form V(x,7) =
2£5(x)0(—t). We begin by constructing mode solutions to the classical Klein-Gordon-Fock equation with
potential on the whole spacetime. For a given eigenmode solution of the IN region of the spacetime (¢ < 0),
we determine its evolution into the OUT region (¢ > 0) through the use of a Fourier decomposition in terms
of the OUT region eigenmodes. The classical system is then second quantized in the canonical quantization
scheme. On the OUT region, there is a unitarily equivalent representation of the quantized field in terms of
the OUT region eigenmodes, including zero-frequency modes which we also quantize in a manner which
allows for their interpretation as particles in the typical sense. After determining the Bogolubov coefficients
between the two representations, we study the production of quanta out of the vacuum when the potential
turns off. We find that the number of “particles” created on the OUT region is finite for the standard modes,
and with the usual ambiguity in the number of particles created in the zero-frequency modes. We then look
at the renormalized expectation value of the stress-energy tensor on the IN and OUT regions for the IN
vacuum state. We find that the resulting stress tensor can violate the null, weak, strong, and dominant
energy conditions because the standard Casimir energy density of the cylinder spacetime is negative.

Finally, we show that the same stress tensor satisfies a quantum inequality on the OUT region.

DOI: 10.1103/PhysRevD.98.065004

I. INTRODUCTION

A. Quantum inequalities

In quantum field theory (QFT), it is well known that the
renormalized expectation value of the energy-density oper-
ator for a free, quantized field can be negative. Epstein,
Glaser, and Jaffe [1] demonstrated this to be a generic
property of QFTs under relatively weak assumptions. Also,
negative energies seem to be a generic property for the
vacuum state of a QFT in many curved spacetimes, and
additionally, for the vacuum state in both flat and curved
spacetimes with boundaries. The effect of a nonzero value
for the renormalized expectation value of the vacuum state
is often referred to as vacuum polarization, vacuum energy,
zero-point energy, or the Casimir energy [2].

Negative energy densities also occur for multiparticle
states where interference terms arise in the expectation
value of the stress-energy tensor with sufficient magnitude
to overpower any positive terms. (See [3] for an example
and [4] for a thorough discussion.) It was noted by
Ford [4] that unrestrained negative energies can be used
to violate the second law of thermodynamics. He also
argues that no breakdown would occur in two dimensions if
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a negative-energy flux F obeys an inequality of the form
|F| <772, where 7 is the duration over which the flux
occurs. In a subsequent paper [5], Ford was able to derive
such an inequality constraining negative-energy fluxes
directly from QFT which applies to all possible quantum
states for the massless scalar field in flat spacetimes.

A few years later, Ford and Roman [6] extended their
analysis to the energy density observed along the worldline
of a geodesic. They begin with the derivation of a difference
quantum inequality on the two-dimensional, spatially com-
pactified, cylinder spacetime (R x S'). Consider a timelike
geodesic y(r) parametrized by proper time 7, whose tangent
vector is denoted by u/(7). Letting |y) be an arbitrary
quantum state and |0) be the Casimir vacuum state on the
cylinder spacetime, they define the difference in the expect-
ation value of the energy density between these states as

D(Tu'u’) = (w|T,uu’ly) = (Oc|Tyu'u”|0c). (1)

On their own, each of the two terms in the difference
are divergent, but both have the same singular structure;
thus, the difference is finite. In the specific case of an inertial
observer, and again using a Lorentzian weighting function
with characteristic width z,, they derive the lower bound
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The important thing to note, which is true for most all forms
of inequalities, is that the lower bound is on the difference
between the expectation values between two different states.
The difference quantum inequality can be converted to
bounds on the renormalized value of the energy density by
noting that

D<leu”1/tl’> = <W|Tﬂuu”uD|W>Ren - <0C|Tﬂuuﬂuy|OC>Ren'
(3)
Thus, an absolute quantum inequality takes the form
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In the same paper, Ford and Roman go on to derive
a quantum inequality in four-dimensional Minkowski
spacetime;
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Here, the colons denote normal ordering with respect to the
standard Minkowski space vacuum; in other words, it is
again a lower bound on the difference between expectation
values between two states.

Since their initial discovery, quantum inequalities have
been developed for an assortment of QFTs in a variety
of spacetimes. Additionally, they have been proven for a
large class of weighting function beyond the Lorenzian;
first by Flanagan [7] for the scalar field in two-
dimensional Minkowski spacetime, and followed by
Fewster and Eveson [8] for the massive scalar field in
(n 4+ 1)-dimensional Minkowski spacetime.

Significant improvements in the mathematical rigor
for the derivation of quantum inequalities were made by
Fewster [9] by employing microlocal analysis in the
context of algebraic QFT in curved spacetime. The pairing
quantum inequality now serves as an umbrella term, of
which the most frequently studied type is the quantum
weak energy inequality (QWEI), which typically takes
the form [9,10]

/ (@] Tt 0) f(2)de > ~ Qo 7. f).  (6)

Here, f is a smooth, compactly supported test function, @
and w, are Hadamard states, and the colon with the
subscript denotes normal ordering with respect to wy; thus,
these are again a form of difference inequality, with @,

serving as the reference state. Finally, the functional Q is
independent of the state @, and microlocal analysis is used
to prove that it is finite. These can again be recast in terms
of the renormalized expectation values to obtain absolute
inequalites. In applications, it is commonplace for the
reference state @ to be the Casimir vacuum state, although
this is not a requirement.

B. Claims of violations of quantum inequalities

In two papers, Solomon [11,12] puts forth models of a
massless, quantized, scalar field in two-dimensional
Minkowski spacetime with the presence of an external,
time-dependent potential of the form V (x,1) =6(—1)V¢(x).
Here, 6 is the Heaviside unit-step function and ¢ is the
coupling constant between the potential and the field. The
scalar field obeys the wave equation

O®(x. 1) + V(x. )®(x, 1) = 0. (7)

Such models can be interpreted as a quantum field that
transitions from a field interacting with the potential to
being a free field at the + = 0 Cauchy surface. We call the
causal past/future of this Cauchy surface the IN and OUT
regions, respectively.

The classical wave equation associated with the equation
above can be solved independently in both regions using
standard PDE techniques. For the IN region, the positive-
frequency modes are given by

1 A
)(f] ()C) e—lwg,jt’
V20,

where the y; ;(x)’s are a complete set of orthonormalized
eigenfunctions to the equation

¢IN(X, t) — (8)

[=0% 4+ Ve ()] e j(x) = 0F e j(x) )

and j is a label for uniquely identifying an eigenfunction.
The transition across the + = 0 Cauchy surface is then
handled by assuming C' continuity conditions in time, i.e.,

d™(x,0) = pOVT(x,0) and 9,9p™(x,0) = 9,¢°VT(x,0).
(10)

From a physical standpoint, this is reasonable; one evolves
a solution to the wave equation with potential up to the
t =0 Cauchy surface, at which point ¢™(x,0) and
9,¢™ (x,0) serve as the Cauchy data for the continued
evolution of the wave into the causal future of the t =0
Cauchy surface. In two-dimensional Minkowski spacetime,
the future evolution is determined using d’Alembert’s
solution to the wave equation. Thus, we have mode
solutions to the classical wave equation on the whole
spacetime of the form
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for t <0,
for t > 0.

™ (x. 1)
$OVT (x, 1)

e = { (1)

Using canonical quantization, one then [ifts the general
solution to the classical wave equation to a self-adjoint
operator,

anz/wumﬁww+@@mm,<m

where du(j) is an appropriate measure for the labeling
set of the j’s, a; and a; are the standard creation and
annihilation operators, respectively, with the usual com-
mutation relations, and we use the standard QFT
Fock space on which these operators act. In particular,
the IN vacuum state |0) is defined such that a;|0) =0
for all j.

The stress-tensor operator associated with the quantized
scalar field for the wave equation can be separated into two
parts, where, using the terminology of Solomon, the kinetic
tensor is defined as the portion of the stress tensor that is
explicitly free of the potential, i.e.,

K., = (V,®)(V,®) ~ 34, (V@)(V, @), (13)

while the potential tensor is everything in the stress tensor
explicitly involving the potential, i.e.,

1
v, = EgWV(x, 1)@ (14)
In regions where the potential vanishes, the stress tensor
equals the kinetic tensor.' Solomon’s kinetic energy density
is just the K,y component of the kinetic-tensor.” Solomon
calculates the expectation value of the kinetic energy
density for the IN vacuum state |0;) on the IN region,
finding

100 (5) = [ D02 e P+ 1 )

J

(15)

where the prime denotes differentiation of the function with
respect to the argument. After a lengthy calculation, the

'Because of the potential, all three of the tensors defined
above have nontrivial traces and nontrivial divergences. The
traces are given by K*, = (1-2)(V9)(V,9), U*, =3V (x,1)¢?,
and T¢, = (1-2)(Ve)(V,0) +5V(x.1)*, where n is the
dimension of the spacetime. The divergences are V/K,, =
—V(x,0)p(V,p), V*U,,=5(V,V(x.1))p*+V (x,0)p(V,¢), and
VAT, =3 (V,V(x,1))¢?.

Solomon uses the letter 7 to represent both the stress tensor
and the kinetic tensor. We choose the alternate notations of 7" and
K to avoid any unintended confusion between them.

expectation value of the energy density for the IN vacuum
state on the OUT region is

(OATI0:) (x, 1) = 3 {OIKA0:) (x + 1
KN =), (16)

where the basis eigenfunctions are chosen to be real
valued.® In regions of the spacetime where the potential
is zero, Solomon conjectures that we may use any of the
standard renormalization schemes to determine the renor-
malized values of both of these expressions. Thus, if there
is a stationary Casimir effect due to the potential in any
portion of the IN region of the spacetime, this will become a
left and right moving pulse of energy on the OUT region of
the spacetime. For example, one model that Solomon
presents is that of a double-delta function potential of
the form

Ve(x) = E[6(x —a/2) + 6(x + a/2)], (17)

for which Mamaev and Trunov [13] have shown that there
is a constant, negative-valued, Casimir effect for the
vacuum expectation value of the energy density in the
region of space between the two delta functions and
vanishing outside;

(0|K310z) gen (x) = —n[0(x + a/2) = O(x —a/2)]. ~ (18)

where 7 is a positive function of the coupling constant £ and
separation a. Mamaev and Trunov are silent on what the
renormalized expectation value of the energy density is at
the locations of the delta-function potentials (x = 4a/2).
They do state in [14] that additional renormalization terms
are required that depend on the potential and its derivatives
to determine (0|77 [0)gen(£a/2).

Solomon uses the Mamaev and Trunov double-delta
function potential on the IN region of his spacetime. For the
OUT region of the spacetime, he posits

(0|TVT|02) e = —g[@(x Ft+aj2)—0(x+1—a/2)]

_g[g(x —t4a/2)—0(x—t—a/2)).

(19)

As was the case with Mamaev and Trunov, Solomon is
silent about the value of the renormalized kinetic tensor on
the IN region at x = +a/2, and consequently for the

3If the basis of eigenfunctions is not real valued, then the
expression for the energy density in the OUT region would be
OITRUTI0) (x, 1) = 5 [(O[KI|0) (x + 1) + (OIKIN|0)(x = 1)] =

3 J Al (et 0) ey (x + 0]+ § [ du(i)Im g ;(x = 1) %
e j(x = 1)].
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renormalized stress tensor at points along the future-
pointing null rays emanating from the points (¢,x) =
(0,£a/2) on the OUT region. Solomon then goes on to
show that this particular expression for the vacuum expect-
ation value of the energy density would indeed violate the
quantum inequalities of Flannagan [7] on the OUT region
of the spacetime.

However, Solomon’s conclusions are incorrect, as
Egs. (18) and (19) are incomplete expressions for both
the IN-region kinetic energy density and the OUT-region
energy density, respectively. For a time-independent double-
delta-function potential, it has been shown by Graham and
colleagues [15], in the context of a massive scalar field, that
the renormalized energy density has nonzero contributions at
the points x = *+a/2. Unfortunately, there is no straightfor-
ward way to take the m — 0 limit of the results of Graham
et al. and then separate the renormalized kinetic energy
density out of the expression for the renormalized energy
density. However, for the massless field we can conjecture
that the renormalized OUT-region energy density is of
the form

OITT|0)gen = =3 [00x + 1+ a/2) = O(x + 1 = a/2)
+26(x+1-a/2)
—g[@(x—t—f—a/Z) —0(x—1—a/2)]
+26(lv— 1~ a/2), (20)

where g = q(&,a) is another function of the coupling
constant £ and separation a. Physically, this describes two
square-wave pulses of negative energy with amplitude —#/2
traveling outward at the speed of light from the initial
location of the potential; one moving to the left and one
moving to the right. Additionally, on the leading and trailing
edges of the square-wave pulses are delta-function spikes of
energy, with magnitude ¢/2, which, as we will see below for
a related model, are positive. The positive energy comes
from the creation of particles out of the vacuum by the
quantum field in response to the shutting off of the potential.

Using this new expression for the renormalized energy
density, we can again consider Flanagan’s quantum
inequality on the OUT region. To do this, we use unit-
area test functions with the constraint that they only have
support on the OUT region of the spacetime. Then,
substituting the above energy density into the quantum
inequality, and using a geodesic parametrized by
y*(7) = (z,xp), where xy > a/2 and 7 € [0, ), results in

27t =ar2) + s+ a2 =4 [ piopa
L fel)P
> =5 b e (21)

To determine if the quantum inequality is violated will
depend on the relative strength of the delta-function
contributions to the negative-energy contribution of the
square-wave part of the energy density.

We will put off definitively settling whether or not
Flanagan’s quantum inequality is violated for a follow-
up paper. Instead, for the remainder of this paper, we
determine the renormalized kinetic tensor on the IN region
and the renormalized stress tensor on the OUT region of a
the two-dimensional cylinder spacetime with a single delta-
function potential that is abruptly shut off at r = 0. We find
that particle creation in our model causes a left- and right-
moving delta function of positive energy in the OUT-region
stress tensor. We also show that all of the classical point-
wise energy conditions fail on this spacetime because of a
negative-energy Casimir effect, but that the positive-energy
pulses are sufficiently large enough to ensure that the
quantum inequality for this spacetime is satisfied for all
inertial observers on the OUT region of the spacetime, and
for all values of the coupling constant ¢.

C. Outline

We consider a massless, quantized, scalar field
coupled to a scalar potential on the spatially compact,
two-dimensional, cylinder spacetime R x S'. The quan-
tized scalar field obeys the wave equation, Eq. (7), with a
Mamaev-Trunov potential of the form

V(x,1) = 2£6(x)0(=1), (22)

where £ is a positive coupling constant and 6(x) is the Dirac
delta function. The factor of 2 is included solely for
convenience. The Mamaev-Trunov potential breaks the
spacetime into two regions: a static IN region for t < 0
where the scalar field is coupled to a nonzero delta-function
potential, and a static OUT region for ¢ > 0 where the scalar
field is free from the potential. A graphical representation
of this spacetime with the potential is presented in Fig. 1.

In Sec. II, we determine the orthonormal, positive-
frequency mode solutions to the wave equation. On the
whole spacetime, there exist antisymmetric mode solutions
given by Eq. (61). Because these modes vanish at x = 0,
they do not interact with the potential. There also exist
symmetric mode solutions given by Eq. (69), which are
sensitive to the potential. The IN portions of these mode
solutions, given by Eq. (40), have a corner at the location of
the delta-function potential, while the OUT portions have
corners that propagate outward from the origin of the
spacetime at the speed of light. Negative-frequency mode
solutions are given by the complex conjugate of either type
of mode.

The OUT portion of the symmetric mode solution is
given by a Fourier series, Eq. (68), in terms of the
“standard” basis of symmetric modes for the potential-free
wave equation, of which there are two kinds: a) an infinite
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FIG. 1. A graphical representation of the spacetime R x S',
with time increasing in the vertical direction. The dashed circle
midway up the cylinder shows the 1 = 0 Cauchy surface. The
thick vertical line ending in an open point shows the location of
the delta-function potential that is turned off at r = 0.

family of time-oscillatory mode solutions, with the
positive-frequency solutions given by Eq. (48), and b)
two topological, zero-frequency mode solutions given by
Eq. (49) and its complex conjugate. The topological modes
exist because the spatial sections of the cylinder spacetime
are compact, and they are necessary to have a complete
basis set to represent a solution to the Cauchy problem for
all initial data.

To determine the Fourier coefficients for the OUT
portion of the symmetric mode solution, we require C'
continuity in time across the t = 0 Cauchy surface. The
resulting Fourier series has nonzero Fourier coefficients,
Egs. (62) and (64), for both the topological modes and the
positive- and negative-frequency even mode solutions. The
antisymmetric mode solutions do not appear in the Fourier
representation for the OUT portion of the symmetric mode
solutions.

In Sec. III, we second quantize our system, following the
standard canonical quantization scheme in the literature
(see, e.g., Birrell and Davies [16]). In this scheme, one
promotes the real-valued classical field @ to a self-adjoint
operator @ on a Hilbert space of states. The typical Hilbert
space is given by a standard Fock space. For a Bosonic field
theory, the field operator and its conjugate momenta II also
satisfy a set of equal time commutation relations.

On the IN region of the spacetime, the Fock space
associated with the field algebra has the usual form, and we
define the IN vacuum state |0, ) to be the state destroyed by

all of the annihilation operators of the field algebra,
Eq. (77). The subscripted L is included in the notation
to remind us that this is the ground state on a spatially
closed spacetime of circumference L, and not the standard
Minkowski-space vacuum state, which we will denote by
|0). States with higher particle content can be constructed in
the usual way by acting with the creation operators.

On the OUT region of the spacetime, there exists an
unitarily equivalent field algebra based upon the ““standard”
mode solutions to the potential-free wave equation. So we
also present the second quantization of this equivalent
system. However, we do make one modification to the
standard quantization procedure; along with the time-
oscillatory modes, we also second quantize the topological
modes using the method developed by Ford and
Pathinayake [17]. At the classical level, the topological
modes given by Eq. (49) have nonzero conjugate momenta;
therefore, they can be included in the classical symplectic
form that gets lifted to the commutator relation of the field
algebra. It has been found that such a process produces an
algebra with a nontrivial center [18].

Because the OUT region had two equivalent field
algebras and Fock spaces, we determine the Bogolubov
transformation between the elements of the algebras. Since
the OUT portion of the symmetric mode solutions is
already given by a Fourier series in terms of the “standard”
modes, determining the explicit form of the Bogolubov
coefficients is simply a task of identifying the correct
Fourier coefficient.

Working in the Heisenberg picture, we then calculate the
number of “standard” quanta created on the OUT region of
the spacetime for the IN vacuum state [0, ). We find that
(a) no quanta are created in the odd modes, (b) a finite,
nonzero number of quanta are created in the topological
modes, Eq. (95), (c) a finite, nonzero number of quanta are
created in the time-oscillatory even modes, Eq. (96), and
(d) the total number of quanta created is finite. All the
quanta created in this model come into existence at the
moment the potential is shut off, i.e., at t = 0.

In Sec. IV, we determine the renormalized expectation
value of the stress tensor for the IN ground state |0;) on
both the IN and OUT regions of the spacetime. For the IN
region of the spacetime, we find

T B-C
<OL|TMIJ|0L>RCH = <_6L2 + Lz) 6;41/’ (23)
which holds everywhere except at the location of the delta-
function potential. The —z/6L? part of this expression is
the standard Casimir energy density for the cylinder
spacetime. The (B — C)/L? is the correction to the ground
state energy density due to the presence of the potential.
Here, both coefficients B and C are positive functions of
x = EL/2, given by infinite summations over the transcen-
dental eigenvalues—Eqs. (115) and (129), respectively—

and are plotted in Fig. 2. We prove that both are convergent,

065004-5



MICHAEL J. PFENNING

PHYS. REV. D 98, 065004 (2018)

A(X)
20}

15 ¢

1.0+

0.5t

1 1 1 1 1 X
1 2 3 4 5

B(x), C(x)
20}

15+

1.0

0.5+t

. \ \ . Lox
1 2 3 4 5

FIG. 2. Plots of the coefficients A (left graph), B (right graph, upper curve), and C (right graph, lower curve) as a function of the
dimensionless variable y. The plots were generated in Mathematica by calculating the partial sum for the first 2! terms of each infinite
series. The plots seem to indicate that .4 = B. The analysis in Appendix C shows that C = y/x, i.e., it is a straight line.

and we determine that the difference between them always
satisfies 0 < (B—C) < z/6.

We also determine the renormalized expectation value of
the stress tensor on the OUT region for the same state;

<0L|T;w|0L>Ren

_J_ =  B-C
1 eL? L2

C & t+x t—x
+ﬁn;x,[5< 7 —n>+5< i —n>]}5,w

C & t+x t—x 0 1
+anm[5< L _">_5< L _">]<1 0>'

(24)

It is covariantly conserved, and we find the standard
Casimir energy density for the cylinder spacetime followed
by a correction given by the (B—C)/L? term. The
remaining terms are the contributions due to the quanta
excited (i.e., particle creation) from the shutting off of the
potential. The simple expression of two classical, pointlike
particles moving outward from the origin to the left and
right with equal amplitude C/2 is the result of a detailed
analysis of the properties of the Bogolubov coefficients and
identities, and their application to the expression for the
“moving” parts of the stress tensor given by the Fourier
series in Eq. (117).

In Sec. V, we evaluate the energy conditions from
general relativity on the OUT region of the spacetime,
using the expression above for the renormalized stress
tensor. For a timelike geodesic, the renormalized expect-
ation value of the energy density is given by Eq. (170), and
for a null geodesic worldline by Eq. (175). We find that
the null energy condition (NEC), weak energy condition
(WEC), the strong energy condition (SEC), and the
dominant energy condition (DEC) all fail on some region
of the spacetime for the OUT-region stress tensor because
the difference B — C < /6, and is therefore insufficient to

overcome the usual —z/6L> term of the Casimir energy.
We then calculate the total energy in a constant-time
Cauchy surface on the OUT region, Eq. (185). Because
of the dependance of 3 on the value of y, the total energy in
the Cauchy surface is negative for values of y <0.82,
positive for values of y > 0.83, and it passes through zero
somewhere in the range 0.82 < y < 0.83.

In the final part of Sec. V, we use our normal-ordered
expectation value of the energy density for the IN vacuum
state on the OUT region in an absolute QWEI for the two-
dimensional cylinder spacetime without potential, given by
Eq. (186). The derivation of this QWEI, with the inclusion
of the topological modes, is contained in Appendix E. We
can use this inequality on the OUT region of our spacetime
if we restrict the set of test functions to only those which
have compact support to the future of the + = 0 Cauchy
surface.

Evaluating the left-hand side of the QWEI for the IN
vacuum state |0;) on the OUT region yields Eq. (189).
Only the first of the four terms in the result is negative, and
it is identical to the first term on the right-hand side of the
QWEL The remaining terms on the right-hand side are
negative. Thus, the QWEI is satisfied by the stress-energy
tensor of the IN vacuum state on the OUT region of the
spacetime for all allowed test functions g(¢) with support to
the future of the + = 0 Cauchy surface, and for all values
of &

The main body of the paper concludes with some
comments and conjectures in Sec. VI. There are also five
appendices containing technical information necessary for
the paper to be complete. They include: a proof of the
equivalence of the IN and OUT region mode functions on a
bow-tie shaped domain surrounding the ¢t =0 Cauchy
surface; the construction of the advanced-minus-retarded
Green’s function on the cylinder spacetime when topologi-
cal modes are included; the convergence and properties of
certain summations over the eigenvalues of the transcen-
dental equation; notes on an alternative way to determine
the IN vacuum stress tensor on the IN region and why it
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fails; and the derivation of the QWEI on the cylinder
spacetime.

D. Mathematical notation

We use units in which 7%, ¢, and G are set to unity
throughout the paper. The complex conjugate of a complex
number z € C is denoted by z, and similarly for functions.
For complex-valued functions u(x) and v(x), we use the
standard 1.2 inner product,

(u,v)2 = /s‘ u(x)v(x)dx. (25)

The normalization for mode solutions of the wave equation
is chosen such that the modes are pseudo-orthonormal with
respect to the standard bilinear product used in QFT [16],

(L2 —
o= [ 1415 00F(.1)
= (0y¢p1 (x. 1)) s (x. 1)]dx. (26)
Operators will be typeset in bold face to distinguish them
from variables and functions. The Hermitian conjugate of
an operator a will be denoted by a'.

II. THE CLASSICAL FORMALISM

Let M be an n-dimensional, globally hyperbolic
Lorentzian spacetime with smooth metric g of signature
(+,—,+-+,—). On this spacetime, we have a real-valued
scalar field ¢: M — R, which interacts with a scalar
potential V(x). This situation is described by the action

1

o8- 9) =5 [ 19(0,8)(0.0) - V(a)?) /=5

(27)

where g, is the spacetime metric, g = detg,,, ¢ is the
inverse of the metric, and d, is the partial derivative.
Variation of the action with respect to the scalar field yields
the standard Klein-Gordon-Fock wave equation

1
=0/ 0+ V=0, (28)

or, more succinctly, Ul + V¢ = 0. Similarly, the stress
tensor is found by varying the action with respect to the
inverse metric. When considered with the gravitational
action [19], the stress tensor for minimal coupling has
the form

T = O)08) = 39l O D) = VIF). (29

We now make two choices so that the mathematics
which follows is more tractable. First, we choose to work

on the standard two-dimensional cylinder spacetime
R x S'. This is done for two reasons: a) the spactime is
boundaryless so there are no boundary conditions to
consider, and b) the spectrum of the Laplace operator on
S', with and without the potential, is discreet. We use the
standard Minkowski space (t,x) coordinates with the
identification of points such that (z,x) = (f,x +L).
Here, L is the circumference of the spatial sections of
the universe. Secondly, on this spacetime we have a
Mamaev-Trunov potential given by Eq. (22).

The classical mode functions to the wave equation can be
solved for independently in both regions. To determine
mode functions on the whole spacetime, we take each mode
function from the IN region and require that the function
and its first derivative match across the + =0 Cauchy
surface to a general Fourier decomposition of the wave
function in the OUT region, i.e., we require C! continuity in
t of the wave functions. This matching is used to determine
the Fourier coefficients for the OUT solution of the wave
solution. We now present the details of this process.

A. Mode solutions on the IN region, # < 0

For our spacetime, and upon substitution of the potential,
the wave equation for the IN region is

D?p — 02 + 2E5(x)¢p = 0. (30)

Using the standard techniques for separation of variables,
we assume a solution of the form ¢(x, t) = u(x)T(¢), such
that the time dependence solves

T,(t)+AT(t) =0, (31)

while the space dependence leads to the Schrodinger-like
equation

=ty (x) 4 2E5(x)u(x) = Au(x). (32)

Here, A is the separation constant, playing a role akin to the
energy in ordinary quantum mechanics. The operator

d2
0 = - +2£6(x) (33)

is Hermitian, i.e., (u,0v);2 = (Ou, v);2, with respect to
the standard L? inner product on S'.

The spatial sections of the universe are compact; there-
fore, the eigenvalues A are discrete. Furthermore, the
eigenvalues are real-valued and greater than or equal to
zero. A convenient L?-orthonormalized basis of eigenfunc-
tion to Eq. (32) is given by (a) a family of antisymmetric
eigenfunctions,

u*¥(n, x) = \/%sin(k,,x), (34)
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where k, =2zn/L, A, = (k,)* and n=1,2,3, ..
(b) a family of symmetric eigenfunctions,

., and

usven(j, x) = \/%Aj {cos(zcjx) +§Sin(’<j|x|) ) (35)

J

where «; = 2Z;/L, 4; = (x;)* and Z; is the jth positive
root of the transcendental equation
L

Z= %cot(l). (36)
For any value of j, the value of Z; lays in the interval
between (j — 1)x and (j —3)x. For (j —1) > £L/2x, the
values of the Z;’s approach the poles of the cotangent
function from above. A good approximation for Z; using

the first two terms in the Taylor series of the cotangent
function is

: 1 2\
ij(]—l)zr+§<1 +—)

3
x l\/(j— 1)2ﬂ2+4)(<1+§> -(j- 1)77;|
===
+2y (j—l)ﬂ+\/(j—1)2ﬂ2+4)((1+§> .

(37)

where y = £L/2. The exact value of Z; is always less that
the value of the approximation above.

The normalization constant for the symmetric eigen-
functions is

sin(Z;) cos(Z;)]~/?

Z;

A; =cos(Z;) |1+

(38)
There do not exist any eigenfunctions with eigen-
value 4 = 0.

From the above L2 eigenfunctions, we can define
positive-frequency mode solutions to the wave equation
on the IN-region,

¢°Y(n,x, 1) = (2k,) " 2u*Y(n, x)e Tkt (39)
and

P (j,x, 1) = (2K.j)—1/2ueven(j’ x)e~ixit, (40)
The normalization for these mode solutions has been

chosen such that the modes are orthonormal with respect
to the standard bilinear product used in QFT, Eq. (26).

Negative-frequency mode solutions are given by the com-
plex conjugate of the above expressions.

B. Mode solutions on the OUT region, ¢ > 0

The OUT region is simply the spacetime R x S! with no
potential, i.e., it is the standard cylinder spacetime.
Assuming a solution of the form w(x, ) = v(x)T(z), we
find that the time dependence again solves Eq. (31), while
the space dependence leads to

—,(x) = Av(x). (41)
Here, A is again the separation constant. The eigenvalues
and eigenfunctions to the spatial equation are well known;
There are (a) antisymmetric eigenfunctions

v"dd(n,x) _ u"dd(n, x), (42)

(b) symmetric eigenfunctions

2
peen(n, x) = \/;cos(knx), (43)
and (c) a zero-eigenvalue topological solution
vtop(x) — L (44)
VL

Both the symmetric and antisymmetric eigenfunctions have
k, = 2zn/L with 1, = (k,)*>. A generic function on the
circle can be represented as a Fourier series in this basis as

f(x) = cv'°P(x) + 3

n=1

(a,v°%(n, x) + b,v**"(n, x)),
(45)

where ¢,{a,}, and {b,} are all Fourier coefficients.
In particular, the Dirac delta function on S! has the
representation

o0

S(x —x') = v'P(x)v'"P(x) + Z(v‘)dd(n,x)v(’dd(n,x’)

n=1
+ o™ (i, x) vV (n, X')). (46)
The positive-frequency mode solutions to the wave
equation on the OUT region for the antisymmetric and
symmetric eigenfunctions are
w4 (n, x,t) = (2k,) /2004 (n, x) ekt (47)

and

wcven(n’x’ [) — (2kn)—1/21}even<n’x)e—ik,,t’ (48)
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respectively. The negative-frequency solutions are given
by the complex conjugate of the above expressions. The
topological eigenfunction leads to an often neglected
solution of the wave equation,

w@@g:%?@@@-é): %O—%)

where 7 is an arbitrary constant that sets a length scale [17].
Unlike the time-oscillatory solutions, the topological sol-
ution is not an eigenfunction of the energy operator i0,. The
complex conjugate of the topological solution is also a
|

(49)

[Se]

linearly independent solution of the wave equation. All
three types of solutions are orthonormal with respect to the
bilinear product Eq. (26), i.e., they satisfy

W wi)orr = 9jjs (W5, ¥j)qrr = —0j;,  and
V. Wj)orr = 0, (50)

where the labels j and j’ specify both the type of mode and
the value of n.

A generic, complex-valued, classical solution to the
wave equation in the OUT region is given by the
Fourier series

p(x. 1) = ap' P, 1) + by (x 1) + Y [ay™(n,x,1) + byy*(n,x. 1) + ™ (n,x, ) + dyy™ @ (n,x, )], (51)

n=1

where a, b, {a,},{b,}, {c,},and {d,} are complex-valued
constants.

C. Mode solutions on the whole spacetime

Next, we determine mode solutions on the whole of the
spacetime for the time-dependent potential. Let ¢(x, ) be
any solution to the wave equation on the IN region. We
know that a general solution in the OUT region is given by
|

$(x,0) = \/gtop a+b) i

:1

and

9,p(x.0) =

Next, we apply Fourier’s trick: put the above expressions
into the first slot of the L? inner product with one of the
OUT basis functions in the second slot. Permuting through
all the basis functions results in

1 : to
6= (Pl 0) + 0 5.0). 87 (59
] ; to
b= (0 = 00 s (56)
= \2(#0.0) - 0.0 0n)) L (50

Odd )(aﬂ + bn) + veven(n’

[

Eq. (51) above. At the t = 0 Cauchy surface where the
potential abruptly turns off, we require continuity of the
wave function and its first time derivative, 1.e.,

$(x.0) =y(x.0) and 0,¢(x.0) = Oy(x.0). (52)

Upon substitution, we find

x)(cy + dy)] (53)

: top - —ioo ﬁUOd“‘nxa— ¥ (n, x)(c, —
_\/iv (X)(Cl b) ;\/:[ ( ’ )( n bn)+ ( ’ )( n dn)] (54)

S0 °dd<n,x>) )

12

¢ = —(qb(x,O)—%atqﬁ(x,O),ve"e“(n,x)) . (59)

12

kn 1 even

We now determine these coefficients for the basis of IN
mode solutions:

Odd Mode Solutions: If ¢(x,t) = ¢°¥(m,x, 1) for
t <0, then ¢(x,0) = (2k,,)~"/?v°%(m, x) and 9,¢(x,0) =
—ik,, (2k,,)~"/>v°%(m, x). Upon substitution into the above
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expressions, we find a = b =b, = ¢, =d, =0 for all n,
and a, = ,,,- So the antisymmetric, positive-frequency
mode solutions to the wave equation on the whole
spacetime are given by

®°Y(n, x, 1) = (2k,) " 2u% (n, x)e~* " with
2
kn:%" and n=123,.. (61)

This family of solutions, as well as its complex conjugate,
are ignorant to the presence of the potential.

Even Mode Solutions: If ¢(x,1) = ¢**"(j, x,t) for
t <0, then ¢(x,0) = (2k;)~"2ucv*"(j, x) and 9,¢(x,0) =
—i(k;/2)"2u®**(j, x). Because both of the preceding
expressions are even functions in the variable x, it is
immediately obvious that a,=0b,=0 for all n.

Additionally,
3 (10 and b L1k
a = K an e —K; ,
2, /K 0 2\ /K'jf / 70
(62)
where the coefficient
ELA;
Y.n = even x top x — J . 63
0 = (U (j, x), v'P(x)),2 iz (63)

The remaining two sets of coefficients are found to be

1 k K; 1 k K
=2 14+2)Y; d d,=—=/2(1--L)7,,,
A Kj< +kn> j ANE =1 Kj< kn) in

(64)
where

LA
= @), 15 (0, 0)) 2 = =l (65)

) 2
Z; — (zn)

Note, ¥ is not the n = 0 expression of ¥ ,; the two differ

by a factor of v/2. The Y;,’s turn out to be the Fourier
coefficients for the Fourier series of u®*"(j,x) when
written in the OUT eigenfunctions, i.e.,

even(] X) Ovtop(x) + Z Yj’nyeven(n’ X). (66)
n=1

From the Bogolubov identities below, Eq. (99), one can
demonstrate that the Y; , coefficients satisfy

Z Yj,ij,n = Opns (67)

J=1

where the allowed m and n also include zero.

Substituting the coefficients back into the Fourier
decomposition of y(x, t), we have that the time evolution
of an IN mode solution into the OUT region is

[Se]

000 = 5 e 2.0) + A 1)
n=0

(68)

Here we are abusing our notation a bit with w¥"(0, x, ) =
WP (x,1), ¢y = a, and dy = b. We also wish to alert the
reader that all of the Fourier coefficients given above are
dependent upon the value of j for the mode in question,
although we have not explicitly written it that way. This
notational deficiency will be rectified when the Bogolubov
coefficients are defined below.

On the whole of the spacetime, we have that the sym-
metric mode solutions to the wave equation are of the form

ven(j,x,t) fort <0,
q)cven(j’ X, t) = { ¢even (] ) (69)
oo (j.x. 1) for t>0.

The symmetric modes start out as purely positive fre-
quency; however, the shutting off of the potential at t = 0
causes them to develop topological and negative-frequency
components.

There is one more important property of the symmetric
mode solutions to the wave equation; we prove in
Appendix A below that

(s x 1) = PGt (s . 1) (70)

on the domain DU {(0,0)}, where the open, bow-tie-

shaped domain
L L L L
D= {(X,t) (S |:—E,§:| X |:—§,§:| | - |X| <tr< |X|}
(71)

In other words, we can extend the IN mode solutions to the
future of the t = 0 Cauchy surface, and likewise extend the
OUT mode solutions to the past of the same Cauchy
surface. This is because of causality in the spacetime, i.e.,
the mode solutions do not alter their behavior until
information has had time to propagate outward from the
location of the shutting off of the potential. Thus, physi-
cally and mathematically we have

¢V (j,x,1) for t < |x|,
YN (j,x,1) =14 ¢"(4,0,0) = 8’8‘}(}',0,0) fort=x=0,
ooT(/.x,1) for 1> —|x|.
(72)

A generic complex-valued classical solution to the wave
equation on the whole spacetime is given by the Fourier
series
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= Z[and)Odd(n,x, 1) + a;®Y(n, x, t)]

n=1

D(x,1)

o]

+ Z[ﬂjd)eve“(j, x, 1)+ ﬁfm] (73)

=1

where {a,}, {ai}, {B.}, {B;} are complex-valued
constants.

We have seen that the odd mode solutions are unaffected
by the delta-function potential, and therefore remain
monochromatic with the same positive frequency. On the
other hand, the even mode solutions change behavior when
the delta function is turned off, so even classically, the
initially monochromatic positive-frequency solution devel-
ops polychromatic positive- and negative-frequency com-
ponents in the OUT region. Also, notice that the mode
solutions contain a contribution from the topological mode.
In the quantum treatment of this problem, we will see that
both of these give rise to particle creation at the moment the
potential turns off.

III. CANONICAL QUANTIZATION

To second quantize our system, we will follow the
standard canonical quantization scheme in literature (see,
e.g., Birrell and Davies [16]). In this scheme, one lifts the
real-valued classical field ® to a self-adjoint operator @ on
a Hilbert space of states. The typical Hilbert space is
usually given by a Fock representation. For a Bosonic field
theory, the field operator and its conjugate momenta Il
must also satisfy a standard set of equal time commutation
relations. This process works well for our spacetime
because it has a convenient timelike Killing vector.

A. Quantization of the field operator
on R x S! with potential

For real-valued fields based on Eq. (73), we must require
a: =da, and B =, Next, we promote the Fourier
coefficients to operators on a Hilbert space, i.e., a, >
a, and b; — b;, to form a self-adjoint field operator

[@,®°(n, x, 1) + @, ®*Y(n, x, 1)]

NgE

D(x,1) =

n=1

+) b (jx. 1) + bLON(f x 1)].  (74)
j=1

Here, { specifies the Hermitian conjugate. The field
operator must also satisfy the equal time commutation
relations

[@(x, 1), P(x,1)] =0 = [(x,7),I(x',7)] and

[@(x, 1), II(xX,1)] = id(x — X)L, (75)

where II(x, 1) = 0,®(x, ) and I is the identity operator.
These commutation relationships hold if the operators a,,
and b; are required to satisfy

(@,,a}] = 8,,1 and [b;,bl] =51,  (76)
with all other commutators vanishing.

The vacuum state for the IN region, which we will denote
by |0, ), satisfies

a,|0,) =0= bj|0L> (77)

for all n and j. One-particle states are created by acting on
the vacuum state with the creation operators a), and bJr ie.,

pn) = aIt|OL> and |1L.j> = b;|OL>' (78)

One can construct higher number particle states by repeated
action of the creation operators.

The positive-frequency Wightman’s function is the
vacuum expectation value of the point-split field-squared
operator,

G (x,,x',1") =

(0L|®(x, )P (¥, 7)|0,)

_ %Z k’—ll uodd(n’ x)uodd(n’ x/)e—ik,,(z—t’)

+ Z q)even<j’ X, t)q)even(j’ ¥, l‘/). (79)
=

The form of the Wightman’s function varies depending on
the time coordinates, i.e., if # and ¢ are on the IN or OUT
regions of the spacetime. In particular, for the IN region, the
Wightman’s function has the form

©_ S /
G(x, ;1) [Zk_ odd (1, x)uoM (1, ')~ ikn(1=1)

+ ZKL even

J=1

X (e =) |

(80)

The form for the Wightman function for the OUT region
will be given after the definition of the Bogolobuv
coefficients below. [See Eq. (101) for the explicit form.]

B. Unitarily equivalent representation of the field
operator for the OUT region

For the OUT region of the spacetime, we have seen
above that there is a second complete set of orthormal mode
solutions to the wave equation given in terms of the odd
modes [Eq. (47)], the even modes [Eq. (48)], and the
topological modes [Eq. (49)]. As in the preceding
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subsection, we can promote Eq. (51) to a real-valued, self-
adjoint field operator, with

w(x, 1) = ay'(x, 1) + @'y (x, 1)

odd(p x,1) + d,T,l//"dd(n, X, 1)

Ms

+ ) la.w

1
+ bnweven(n’x’ t) + I;ZW]’ (81)

[
Il

where we assume the commutation relations [17]
@.a'l =1 and |[a,.a)) =6,,0=[b,.bl,]. (82)

with all other commutators vanishing.

It is straightforward to show that this yields the correct
equal time commutation relations for the field operator and
its conjugate momenta m(x,7) = Oy(x,1). Substituting,
we have

5020 = | 72(012(0) + 3 (1280

+ Ueven(x)veven(x/)):| . (83)

By Eq. (46) above, this expression reduces to the standard

w(x, 1), m(x',1)] = i6(x — X)L It is also straightforward to
demonstrate that

w(x. 1),y (¥, 0)] = [=(x, 1), #(¥',1)] =0 and
wx,t),w(x' )] =iE(x,t;x, 1)L, (84)

where E(x,t;x',¢) is the advanced-minus-retarded two-
point function on R x §' constructed in Appendix B.
The Hilbert space on which these operators act is given
by the conventional Fock space used in QFT; the ground
state with respect to this field operator is |0, ), such that

a0,) =0 and @,0,)=0=5,0,) Vn (85
The positive-frequency Wightman function is found to be

G (x.tix 1') = (O, |y (x. )y (. 7)]0.)

z,” 1 N4

1 -1 —ik, (t—t
+Z;k,, cos[k, (x —x')] e k(=) (86)

f ot N

- 1— —i2z(Ar=Ax)/L 1
il - I
where Ax =x—x' and At =¢t—¢.
One final note before we leave this section. With the
specification and properties of the Bogolubov coefficients

_ e—i2n’(Ar+Ax)/L]} (87)

below, it is a straightforward exercise to check that for the
OUT region (0;|®(x,1)®(x',7)|0.) = GT(x,1;x',7), as
expected.

C. Bogolubov transform and particle creation

For the OUT region, we have two representations for the
field operator, one given in terms of the mode solutions on
the whole spacetime, Eq. (74), and one given by the
standard modes on R x S', Eq. (81). It is obvious that
the odd mode solutions are common to both representa-
tions, i.e., ¢°%(n,x,t) = y°%(n, x,1); therefore, a, = a,
and dz = aj;. In keeping with the notation of Birrell and
Davies [16], one can read the remaining Bogolubov
coefficients from Eq. (68). We have

@; = a (88)
o = = (89)
T =c, (90)
fry = ~d, 1)

Therefore, on the OUT region, it is possible to express
the R x S! annihilation and creation operators in terms of
the annihilation and creation operators on the whole
spacetime, i.e.,

d:ZaOJJ ﬂOjj and Bn:Z( ”]J

Jj=1 Jj=1

:an /)
(92)

If the quantum state of the system is initially in the IN
vacuum state, ), then observers in the OUT region will
observe the creation of field quanta with an expectation
value per mode given by

(0 W0|OL> (0 |aTa|OL

Z Bojl> (93)

for the topological modes, and

<0L|Nn|OL> = <0L|51;5H|OL> = Z |ﬁnj|2 (94)
j=1

for the even modes. No quanta are created in the odd
modes. By definition, the number of quanta created is a
strictly positive quantity. Substituting the expressions for
the Bogolubov coefficients and using Eq. (67), we find
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TABLE I. Expectation values for the number of quanta excited
per mode when the potential is turned off for various values of the
coupling constant £. The values were generated using L = 1 and
summing the first 500 terms in the series using Mathematica. The
n = 0 values were determined with £ = L.

<0L|Nn|0L>
n E=1 E=5 E=10 &= 100
0 0.023987 0.255469 0.416834 1.082297
1 0.003875 0.024742 0.047086 0.198755
2 0.000665 0.005465 0.011781 0.070152
3 0.000231 0.002154 0.004975 0.036841
4 0.000108 0.001091 0.002639 0.022904
5 0.000059 0.000637 0.001594 0.015659
6 0.000036 0.000408 0.001048 0.011386
7 0.000024 0.000277 0.000731 0.008647
8 0.000017 0.000200 0.000533 0.006782
9 0.000012 0.000149 0.000402 0.005455
10 0.000009 0.000114 0.000312 0.004477
OuNol0s) =2+ 13 (L )2
= —— — _ K:
FEOTE T e \ge T )0
1 AR AR L\2] A?
LBV (D 2+ (R) ]2
27 \2) ) =7 \) | 7
1 ¢ 1L
———+°F “ZFs(x). 95
s+ +55Fs(0) (95)

DD D @y (3,

where the function F,(x) is defined in Appendix C, and

N oy ) y?
2+4Z<K~+k> ’
j=1 J n
2 2 ) &n = [Z? — (an)?)? Z;

(0,|N,0.) =

(96)

Both (0, |No|0,) and (0,|N,|0,) are absolutely conver-
gent. Furthermore, the sum formed from the upper bound of
these two sums is also absolutely convergent. Therefore,
the total number of particles created at the shutting off of
the potential is finite. Numerical values found using
Mathematica for the first ten coefficients are presented
in Table I. The dominant pathway for particle creation is
into the topological mode.

With the definition of the Bogolubov coefficients com-
pleted, we now give the expression for the Wightman’s
function of the IN ground state on the OUT region of the
spacetime. Making use of the series expansion of

oGt (J.x, 1) in terms of the conventional modes on the
OUT region, i.e.,

o0
SR, x, 1) = > [y (n, x, 1) = B (n, x, 1)),
n=0

97)

we have

even(m,x/’ l‘/) _ Wjﬂ—mjl//eveno/l’ X, t)l//even(m’xl’ t/)

_ ﬁnjamjl//even(na X, t) l//even(m,x/, t/) 4 ﬂnj:ﬁj weve“(n,x, [) Weven(m’x/’ t/)}.

(98)

Swapping the order of the j summation with the n and m summations and using the properties of the Bogolubov

coefficients,

s

1

J

we can simplify the above expression to

Ghurlx.1:.1)

(amj@ - ﬁm]ﬂ_n]) = 5nm and Z (amjﬁnj - /ijanj) =0, (99)
j=1
— iwodd(n“x’ t)l//Odd(}’l,x/, t/) + i Weven(n’ X, t)weven(n’ )C/, l/)
n=1 n=0
+ 2Re{z Z |:<Zﬂnjﬂm]> even(n X, t)weven(m’x/’ l‘/)
n=0 m=0
(Z 5 B 0 . .0 | (100)
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However, the first two summations are the definition of the
positive-frequency Wightman function for the OUT ground
state given by Eq. (87); thus,

Goyr(x, 12, 1) =G (x,1:x', 1)
_2RC{ZZ KZ i ﬂm,> Y e e
n=0 m=0 j=1

(Zan]ﬂm]) even I’l X, t even(m’x/’t/):| } (101)

We will determine the renormalized expectation value
of the stress-energy tensor in the OUT region using
this expression in the next section. Two final notes: first,
both of the summations over j in the above expression
are absolutely convergent, and second, on the domain
DuU{(0,0)} the IN and OUT Wightman functions can
be used interchangeably, i.e.,

Goup(x, 6: X, 1) = Giy(x, X', 7). (102)
This second property follows from the mode solutions
being equal on the domain D U {(0,0)}.

IV. STRESS-ENERGY TENSOR

With the second quantization of the field now completed,
we address the expectation value of the stress tensor. The
classical stress tensor, Eq. (29), is promoted to the self-
adjoint operator

_ %{(aﬂcp)(aycp) +(0,9)(9,®)

~— 9w [gaﬂ(aaq)) (aﬂq)) - V(I)(I)]} (103)
For any normalized state | y; ) in the Fock space, it is well
known that the expectation value of the stress tensor is
divergent. For free fields in Minkowski spacetime, the
divergences are removed by the normal ordering process,
but in curved spacetimes and flat spacetimes of nontrivial
topology, we are required to employ renormalization to
obtain finite results. For a quantum field interacting with a
potential, as here, further local renormalization counter-
terms are required which are dependent upon the potential.
Mamaev and Trunov discuss this in their paper and the
references therein [14]. Further work has been carried out
by others, including Graham, Jaffe, and colleagues [15,20],
working primarily in Minkowski spacetime.

This leaves us in an awkward position. Progress has been
made on the two fronts, but we are unaware of both
renormalizations being combined to treat the problem at
hand. To do so here would be beyond the intent of this
paper, so we follow the path of Mamaev and Trunov who
calculate the renormalized stress tensor in regions of the
spacetime where the potential is zero. For such localized

potentials, the potential-dependent counterterms are not
necessary outside of the support of the potential. This is the
same path that Solomon takes, which gives rise to his
notion of the kinetic tensor. Thus, outside the support of the
potential, we define

<)(L|T/w|)(L>Ren = <}(L|T/w|)(L> - <0|T/w|0>’ (104)

where |0) is the Minkowski vacuum state. The rigorous
mathematical interpretation of this renormalization scheme
is discussed by Kay [21].

The renormalized expectation value of the stress tensor
for the OUT vacuum state on the OUT region of the
spacetime is identical to the determination of the Casimir
effect in the standard R x S' spacetime that is found in
literature. (For example, see Chapter 4 of Birrell and
Davies, or Kay [21] and the references therein.) With
the inclusion of the topological modes [17], we have the
simple expression

~ ~ 1 T
<OL|T/41/|OL>Ren = (M‘@)b}w. (105)

Notice that the topological modes add a positive-constant
term to the renormalized stress tensor. The additional term
is dependent upon the arbitrary constant #.

For the calculation to follow below, we define normal
ordering of the unrenormalized stress tensor in any allow-
able state |y;), with respect to any other allowable state

lpL), as

<)(L‘ :T/w:pL|)(L> - <)(L‘T,uv|)(L> - <pL‘T/w|pL>' (106)

It is useful to combine this with the renormalization scheme
defined above, yielding

/w|pL>Ren'
(107)

<)(L‘T;w|)(L>Ren = <)(L|:TMD:/)L‘XL> + <pL‘T

The remainder of this section is dedicated to determining
expressions for each of the terms above when | y;) = |0.)
and |p,) = |0, ). Because the mode decomposition of the
field changes at the + = 0 Cauchy surface, the expression
for the stress tensor can be written as

<0L|Tﬂl/|0L>RCH

B { (OL: T} :5,10L) + (OL|T )10, )gen  for £ <0,
<OL| TOUT 0L|OL> <(~)L|Tﬂv|(~)L>Ren for ¢ 2 0.
(108)

065004-14



PARTICLE CREATION AND ENERGY CONDITIONS FOR A ... PHYS. REV. D 98, 065004 (2018)

A. Renormalized stress tensor for [0;) on the OUT region

For the OUT region, we can make progress toward an explicit expression if we first look at the ingoing ground state’s
normal-ordered, point-split, field-squared operator,

AG* (x, ;2. 1') = (0 |: @(x)@(x') 15, [0,) = (0| @(x)@(x')[0,) — (0, |@(x)P(x')[0,). (109)

However, the right-hand side is the difference of the positive-frequency Wightman functions we determined above in
Eq. (101). Recall that the n = 0 topological mode is unique from the rest of the even modes, so we expand the products out;

AGT(x,1;x,7) 2m{<zw%@thowxz (Z%M%)Wxﬂ“ﬂﬂﬂ}

S o Yo T .1 (o o .1

S ot T (ot )|

+ 35S (S o et )

_ (i@%) e (1, x, Oy (m, t,)] } (110)

The expectation value of the normal-ordered energy density for the IN ground state on the OUT region can be found from
this expression by

O Ti00) =5, im (2,0, +0,0¢)AG* (x, 52, 7). (111)

1
2(1)=(x
Evaluating the derivatives and taking the limit as the spacetime points come together yields

OTI00) = T {30 DA+ 573+ Relauo)f +Replr =)+l +.0)

= 4;L+§+Re@(t—x)+p(t+x)], (112)

where we have made use of the properties of the Bogolubov coefficients to simplify the summation,

) 1 1 & o
> [1Bos P + Re(ag;po))] = §+§Z|ﬂ0j+a0j|2’ (113)
=1

Jj=1

in order to define the positive constant

(s (9] ] (6]
_ 2 =2
B=L<;kn;|ﬂnj| +E;|ﬁ0j+a0j| ) (114)

Upon substitution of the expressions for the Bogolubov coefficients, we find
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LS A (EL)> A7
5= 2 ;;zj(szrnn)z 4 ;zj
(EL)? gn A zZj\, =
=52 Z—f{%”(H;’) +2—ZJ (115)

where (! (x) is the polygamma function of order one (p. 260 of [22]). (! (x) is a positive, strictly decreasing function on
the interval x € (0, 00), with a pole of order-2 at x = 0. (We have no interest in the polygamma function for values of

x < L) Also, w1 (1) = ¢(2) = #%/6; thus,
n2/6zw<1><1+5) >0 (116)
T

on the interval z € [0, o0). One remarkable fact to note is that the constant 5 is independent of .
The coordinate-dependent function p is given by

I—I

1 ) 1/2|: - ) - )
p(Z) = k" e ﬁn ﬁ() +an ﬂO +aO ﬁn )+el
2L\/2_; = JEY) J Y ] J ;

_'_imio:kk 1/2|: nm —zk —k)z io: —|—€

n=1 m=1

AN

1
2
+
:
i Ms
S
&
=
g

_} (117)

For this particular case, the Bogolubov coefficients are all real-valued and we find

1 [Se] (s

1/2
2L\/2fz;k ? cos(kyz Z} 2PnjPoj + aniPoj + 0;Pnj)
n =

1 [ee] [ee]
+Zzgknk 1/2{<1—5nm)cos[< ki) Zﬂn,ﬁm,+008 (K + Kyn) Zan,ﬁm,} (118)

n=1

Rep(z)

The double summations of n and m over the above range can be reorganized to simplify our expression.
Upon substitution for the Bogolubov coefficients, we have

Rep(z) = {Zcoskz [21 i(zxj . ) Y;oY;. }

Jj=1

[\)

IS 1
—FZCOS(an |:§Z ZK_ K _k VH—m) Jj.m /n+m:|
n=1 m=1 j=1"J
0 ln—l 00 1
+ Z COS(an |:Z ZK_ Kj + k kn—m)Yj,ij,n—m:| } (119)
n=2 m=1 j=1"J

The first j summation may be simplified by using the orthogonality relation, Eq. (67), which eliminates two of the terms;

(9] 1 o0 (s
Z <2K > jOan = 22 jOYj,n - <kn +E> ZYJIOY/JI = 2ZKIY/~OYJ~H' (120)
J=1 J=1

j=1

Making the further substitutions to obtain an expression in terms of Z;, we find
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7w

AZ
Z,(z; +nm><z,-+n<n+m>>]

oo 1 n—1 o AZ
+ > cos(k,z) {— ] } (121)
2 ek Z @ =wm)Z, + #tn =)
Interchanging the order of the m and j summations in the second and third terms gives
A2
Rep(z {Zcos (k,z {Z }
Z,(Z; = (an)?)
o [+ 2 0 1
k _J
# 3 eost) 37/ D TR
(k,, A4S : 122
+ZCOS ‘ { EZ »—ﬂm)(Zj—Hr(n—m))]} (122)
Next, we use two facts,
- 1 1 & 1
= 123
;Z—i—ﬂm WZ; + n(n+ m)) ﬂn’;Zj—i—er (123)
|
and A?
-—=| =0 127
m ZZ [ij m)? Zz} (127)
1 ”z_f 1 1 ”z_f m
244(Zj—am)(Z; + n(n —m)) ~an “— Zf — (zm)*’ Both of the above terms in the summation are individually
(124) convergent; therefore, we conclude that for all m

Upon substitution, one finds that it is possible to combine
the three summations into a single compact expression,

" 1
2
Rep ZCOS k Z |: EA ;m}
2 n o Af
:—Zcos (k,z) { IZlZz — (”m)z} (125)
Jj= J
Next, consider Eq. (67) when m#0 and n =0.

Substituting the definition of the Y;,’s, we find

A2

; 27— (o] ! ol = 0. (126)

The summation itself is convergent; therefore, we can write
the above as

(128)

To simplify the expression for the moving part of the
energy density, we define the positive constant

_ELP AT (LN
T Zi_ 2r ZZ? (zm)?

Jj=1

(129)

C is dependent upon the product of the coupling constant &
and the size of the universe L, but it is independent of the
free parameter 7. It is shown in Appendix C that the series
of the form above for even powers of the Z; in the
denominator often result in a simple analytic expression
in terms of the variable y = £L/2, such that

2 L
C:;F2<)() :f_

= (130)
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Substituting C into Eq. (125) yields

= C
Rep(z Zcos(k z [ (z/L)—1], (131)
!
1 B-C C
(O]:T):5,100) = —M+T+

£ b7

n=-—oo

207

where we have made use of the definition of the delta
function, Eq. (46). Finally, this yields a simple expression
for the normal-ordered energy density of the IN vacuum
state in the OUT region of the spacetime,

(132)

Although not immediately obvious, the summation over n is necessary in the above expression to account for the spacial
periodicity of the spacetime.* A similar analysis yields the expectation value of the remaining components of the stress
tensor. Combining leads to the complete expression for the expectation value of the normal-ordered stress-tensor,

1 B-C
(OL]:T,,25,10.) = {_41,’1+Lz

2L2 Z { <t+x

n=—0oo

C & t+x
o Zm[‘s( L~

)=o) o)

)

(133)

Adding the Casmir energy for the OUT region of the spacetime leads to the renormalized stress tensor on the OUT region,

B-C ¢C
<0L|T,w|OL>Ren = {— ud

2L2 Z { (H—x

n=—oo

The first term in the stress tensor is the “standard” expression
for the Casimir energy on the spacetime. Further, since both
positive constants B and C are independent of #, the
expectation value of the stress tensor is also independent
of . The trace of this stress tensor vanishes.

Finally, the energy-density and pressure terms for the
OUT region depend on the difference between the constants

(EL)> SN A3 W Z o
p— —_— 1 —_— ——— .
27 sz v\ T +222 Z,

J=1 !

(135)

To show that this is positive, we begin by defining the
function

f(y)zw<l><1+y>+2iy2—— (136)

“The expression %, cos(k, (7 = x)) is inherently periodic
in the t coordinate on R x S'. However, the expression
5[(t £ x)/L] — 1 is not periodic at all. While Eq. (131) is correct
on the circle, to lift it to the cylinder spacetime requires a
restoration of the time periodicity. This can be accomplished in a
number of ways, e.g., with the modulo operator or as an infinite
series as given here.

o2 17 "oz

£ b))
)z )

(134)

[
over the domain y € [0, o). By the recurrence formula for
polygamma functions, f(y) can also be written as

1 1
) =5 5=

fly) = 7y

(137)

We now use two facts:
polygamma function,

the integral definition of the

| o te™V!
W0 = [T (138)
0 —e
and the relation
1 1 / ©
—=— "~te™dr. 139
T (13
Substituting both into the definition of f(y) yields
o0 t 1
= ! —=t—1)dt
0= [ e (Em-30-1)
o e 1 1
= —r—1 —t+1)e"|dtr.
[ () (b Yo
(140)
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It is straightforward to see that the integrand is positive when
t > 2. To show that the integrand is always positive, it is
sufficient to demonstrate that

g(1) = Gt— 1) + <%[+1>e—t

is positive over the remainder of the domain of integration,
ie, re0,2].

The real-valued function ¢(¢) is continuous on [0, 2];
thus, by the extreme value theorem in calculus, we know
that ¢(¢) achieves both a minimum and a maximum on
[0, 2]. The extrema can occur at either endpoint of the
interval or at critical points of the function. For the end
points, we have g(0) = 0 and g(2) = 2¢% > 0. Checking
for critical points using the first derivative test, we need to
determine the root(s) of the equation

(141)

1
——(t+1)e" =0.

5 (142)

Rearranging, we have t + 1 = ¢’. This is only satisfied at
t = 0; therefore, we conclude the minimum of ¢() on the
interval [0, 2] occurs at ¢ = 0. Combining this with the
straightforward positivity for ¢ > 2, we can deduce that
the integrand in Eq. (140) is always positive, thus implying
that f(y) > 0. So far we can conclude that
B—-C=>0. (143)
To find an upper bound on our expression, we define the
function

12 + 6t + 12

h(t _—
() 12— 6t+ 12

for t > 0. (144)

A straightforward calculation shows that 2(0) = 1 and

P
h(t) =W (t) = —————5520. 145
(1) = H(2) (12—-61+1)>~ (145)

This is equivalent to the set
Inh(0) =0 and [Inh(r)] <1. (146)

Integrating this equation with respect to ¢ over the range of
0 to ¢ yields
h(r) <e'. (147)

Substituting the definition of 4(¢) and rearranging the terms
yields

t 1 1
——t—1<—7.
l—e' 2 12

(148)

This is an upper bound on the integrand of Eq. (140); thus,

1 [ 1
<— Vdt = —. 149
When applied to Eq. (135), we have
” 0o 2
<37 Z g:—n (150)
Jj=1 Z;

Consulting Appendix C, we find F4(y) = 1/2; therefore,
we can conclude that the difference between B and C
always satisfies

<(B-0) < (151)

O‘\Ikl

B. Renormalized stress tensor for |0, )
on the IN region

For a moment, let us consider the static cylinder
spacetime R x S' with the potential V(x,t) = 2&5(x).
From the time independence of the potential, and the
symmetry of the potential along the x direction, we can
expect that the renormalized vacuum expectation value of
the stress-energy tensor to be time-independent, and a
symmetric function in the x variable,” i.e

(OLIT 1 |0L )Ren (x5 1) = (OL|T 1|01 )gen(X)
= <0L|TﬂV|OL>Ren(_x)'

If we now consider our time-dependent potential, for
times ¢ < 0 we expect the renormalized expectation value
of the IN-state stress tensor to be of the same functional
form as above, i.e., a time-independent, symmetric function
in x. Additionally, on the open, bow-tie-shaped region D,
causality enforces the condition

(OLITIN10L ) gen (6) = (0TS0, )gencr. 1)
n B-C
= (‘@+7)%-

The above expression is missing the moving delta-function
terms of Eq. (134) because they have support on the

(152)

(153)

>For a free field in a static spacetime, we would also expect
that the renormalized stress tensor is conserved. The addition
of the background potential complicates the conservation equa-
tlon before renormalizing we have V#(0,|T,, |0L>(x, 1) =
(Y, V(x)){0,|®@(x, 1)®(x.1)[0,). This equation gives insight
mto the comment by Mamaev and Trunov [14], “In the presence
of an external field, in addition to normal ordering it is necessary
to carry out renormalizations which depend locally on the
potential and its derivatives.” Therefore, to enforce conservation
of the renormalized stress tensor everywhere, we would need to
have one or more renormalization counterterms that would cancel
the right-hand side of the above equation.
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boundary of D, i.e., on the future and past light cone of the
origin, and not on D itself. Therefore, on D, the expectation
value of the stress tensor for the IN vacuum state is a
position-independent constant. However, it is a function of
the parameter y.

Because of the static nature of the ¢ < O portion of the
spacetime, we can then extend the above expression back to
t = —oo for all spacetime points except those along the line
x = 0, where the delta-function potential exists. In other
words, Eq. (153) is the renormalized expectation value of
the stress tensor for the IN vacuum state on the IN region,
outside of the support of the potential.

We now confirm that the above analysis yields the
correct expression by deriving the renormalized stress
tensor directly. From Sec. III A above, we already know
the IN mode-solution representation of the IN-region

AGK(x, 14X, 1) = Gy (x, 1%, 1)

Wightman function, Eq. (80). One can substitute the
explicit form of the eigenfunctions, Eqs. (39) and (40),
and then proceed to take the appropriate derivatives
to calculate the unrenormalized stress tensor. The
details of this approach are given in Appendix D.
Unfortunately, this method is fraught with the technical
difficulties of having to explicity determine the differ-
ence between two divergent sums to obtain a renor-
malized answer. Furthermore, this approach seems to
yield only one of the two terms of the Casimir energy
on the IN region.

Instead, we proceed by first substituting the Fourier
expansion of the IN-region, even-parity eigenfunctions in
terms of the OUT-region eigenfunctions given by Eq. (66).
We then define the difference between the Wightman
functions on the IN region as

-Gt (x.t:;x, 1)

4 .t .
——i(l—z?><l+z—

1 e—ix_/-(t—tj) Y?O
s> Ay

1 & emikalt=1)
) _ EZ k ,Ueven(n’x),ueven(n’xl)

Z jl’l even n x)+veven(n x)]

j=1 J
+ Z Z Y, Y v (n, x) vV (n x’)} (154)
n=1 m=1

Next, to determine any of the normal-ordered components of the kinetic tensor, we act with the appropriate point-split
derivative operator on the difference of the Wightmen’s functions and then take the limit as the spacetime points come
together. For example, the 7# component of the kinetic tensor is given by

2 Vi
_4fL_Z;kn +H2K/Y/’O+2\/nge e“(n,x)ngonYj’n

o0 1 &) &)
E _E E Y]anm ZUeven(n x)veven(m x) +k k UOdd(l’l )C) odd(m x)}
K;

j=1"J n=1 m=1

<OL|:Ktt:(~JL|OL> =

" (155)

&l

Our goal now is to pull out of the final triple summation a divergent piece that cancels the second term of the expression.
This is accomplished by separating out a term proportional to

Kj(ky 4 ki) [02° (1, X) 05V (m, x) + 0°% (n, x)0°% (m, x)] (156)
such that the final triple summation can be rewritten as
0 :K,:50) === ky+-—) k;Y2,+— vV (n, x K;Y:oYi,
< Ll 1t 0L| L> 4/[{ 2L”:1 4LJZI J .],0 2\/1_,; ( )JZ] ] j,O Js
l [Se] [Se] [Se]
+ gz Z Y0¥ (2K = kyy — ki )Y (n, x) 0" (m, x)
j=1 n=1 m=1
I o o 2k, k,,
+§ZZZY]JIYJWI( P _kn _km> vOdd(nvx)UOdd(mﬂx)
Jj=1 n=1 m=1 J
1 (5] [Se] (5]
+3 SN N Yk 4 ) [ ()05, x) + 024 (n, )0 (m, X)) (157)

~
Il
3
Il
3
I

-
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Notice, in the final triple-summation term, that the only j dependence is in the Y ,; thus, we can use Eq. (67) to eliminate
both the j summation and the m summation. Recalling the property of the modes that

2
v® (n, x)? + 1v°%(n, x)? = I (158)
we find that this final term cancels the second term of the kinetic energy density, yielding a fully regularized expression,

(0L]: K 15,10L) = —M+EZKjY§,0 +EZCOS(knx) ZKij,OYj,n
= prm =

cos(k,x) cos(k,,x) Z Kj—=bky=kp)Y;,Y;m

=1

. (2k,k,,
sin(k,x) sin(k,,x) Z( .=k, >anY]m (159)

1 j=1

+
P
[M]s

+

A=

e

M i
~.

n=1

U

The next step is to use the product rule for sine and cosine to rewrite the summations;

1 o0

1 | — o 1 S (k;—k )2
‘K. A -4 Y2 - Y..Y. _ 2 y2
(O] :Kyig,10.) = 4LﬂL+4L;‘K,Yj,0+ﬁL;cos(knx);x,Y,,oY,,n+4L;;‘ o

1 & n—-1 oo 1
+ EZ cos(knx) Z Z |:_ (Kj + km)(Kj - kn—m) - km + kn—m:| Yj,m Yj.n—m
n=2 m=1 j=1 LKj
1 o0 [s+] o0 1
o7 D 008(ka) D> (k5 = ki) (65 = Kun) Vjon ¥ (160)
n=1 m=1 j=1"J

Because of Eq. (67), we note that

3
|

Z(_km + kn—m)Yj.ij,n—m =0, (161)

J

3
I
I

because the only value where the Kronecker delta is nonzero occurs when m = n/2, but for this value of m, the
ky_m — k,, = 0. Reorganizing our terms leads to

o I ® & (k; — k,)?
001K, 00 = =+ g | Lot Y-,

=) 1 n—1 oo 1
+ Z COS(kn.X') |:Z Z K_ (Kj + km)(Kj - kn—m)Yj,m Yj.n—m:|

n=2 m=1 j=1"J
+ZCOS(an) |:§ Z;(Kj_km)(Kj_kn+m)ijY]n+m:|}' (162)
n=1 m=1 j=1"J
Comparing with Egs. (119) from the preceding subsection, we can identify the three cosine series terms with 2Rep(x); thus,
(0,]: K,y [0,) = ——— 4 1 i,c.yz +iiwﬂ + 2Rep(x) (163)
LBy, VL a7L 4L = Jj1j.0 e K; Jon PX).

After substituting the explicit form «;, k,,, and the Fourier coefficients into the remaining summations and comparing with
Eq. (115), we find
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1 B- C C
<0L|:Ktt:()L|OL> ==t

4L L2 ( /L> (164)

From the definition of the kinetic tensor and the fact that we
are working in two dimensions, we have that

(O] K2, 100) = (O] Ky 25, 10L)- (165)
A similar calculation can be performed for the remaining
components of the kinetic tensor.

Finally, recalling that the Mamaev-Trunov potential
V(x,t) only has support at x =0 for times ¢t <0 and
adding the Casimir energy for the cylinder spacetime yields
the almost-everywhere renormalized stress tensor on the IN
region;

T B-C
(OL|T, 01 ) Ren = (‘@‘FT)@W (166)

This expression does not hold along the half line where the
potential is nonzero.

V. ENERGY CONDITIONS ON
THE OUT REGION

On the covering space of this spacetime, a timelike
geodesic can be parametrized as

1

1-vw

> (7, 07) 4 (19, X0), (167)

where v is the speed of the observer, y = (1 — v?)~/2, and

(29, xo) is the location in spacetime of the geodesic at proper
time 7 = (. At every point along the geodesic, we have the
tangent

1
u(t) = (1,v) (168)
1 -
and the orthogonal spacelike vector
P (1), (169)
1 -2

Both of these vectors can be extended to vector fields on the
whole of the manifold, which we will denote as 11’6 =u
and v} = r*. For a given (7, x,), the geodesic is contained
within the IN region for 7 € (oo, —y~'#y), on the t = 0
Cauchy surface when 7 = —y~'¢,, and contained within the
OUT region for 7 € (—y~'t,, o).

The renormalized expectation value of the energy den-
sity along the worldline of any timelike geodesic observer
on the OUT region is

(0L1p|0L)Ren(7)
= <0L | T;n/ ‘OL > Ren w'u®

1+v 2v

- 1 — <0L|Ttt‘OL>Ren 1— 1]2 <0L‘Ttx|0L>Ren

_1—|—v ﬂ+B—C
1=\ eL* L2
L+ov _[(tog+xg+ (1 +0v)yz
2LQZ{1—U ( L "

Il—v _[to—xo+ (1 =0)yr
o - .
+1—|—1j ( L "

The interpretation of this expression is straightforward.
The geodesic observer “measures” that the universe is filled
with (a) a static, uniform cloud of negative energy density

given by
1+ 02 r B-C
<pcloud>Ren = m <_m + 7) (171)

(170)

and (b) two Dirac-delta-function pulses of particles that were
created by the shutting off of the potential which circle
around the Universe, one moving in the +x direction and the
other moving in the —x direction, and that repeatedly cross
with the observers worldline with fixed periods of

1+wv 1-w
Tiigh = \/mL and Ty = T UL7 (172)

respectively. Both pulses have positive energy density.
Similarly, the renormalized expectation value of the momen-
tum density in the r¥ direction [19] is

(0.1P|02)ren ()
_<OL|Tﬂv|OL>Ren”ﬂrU

B 20 L+B_C
1=\ 6L L2

= l—l—v fo+xo+ (1 +v)yr
a2 [ 5

< 1—w L
n=—0oo

+1—05<t0—x0+(1—v)y7_n>}
1+ L

For a right-going (4) or left-going (—) null geodesic
parametrized by the variable A, such that

ne(4) = (t0, Xo)
d
= Eﬂ’i(ﬂ) =

(173)

(A £2) + with

(1,+£1), (174)
we determine that the renormalized energy density along
the worldline of a null geodesic observer on the OUT
region of the spacetime to be
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<0L|Tuv|0L>RenKiK;(T)
= 2<0L|Ttt|OL>Ren + 2<0L|Ttx|0L>Ren

T B—C ad 2&'}‘1‘0:‘:)(0

n=—oo

(175)

Notice that the null observer only picks up a contribution
from the positive-energy delta-function pulse that is mov-
ing in the opposite direction to that of the observer. The
comoving delta-function pulse never crosses the null
observer’s worldline.

A. Classical energy conditions on the OQUT region

With the expressions for the renormalized energy density
along the worldline of both a timelike and null observer, we
can now evaluate whether the stress tensor for our scalar
quantum field obeys or violates each of the point-wise
classical energy conditions of general relativity on the OUT
region of the spacetime:

(a) Null Energy Condition: A stress tensor is said to
satisfy the null energy condition from general rela-
tivity if it obeys

T,,K'K* >0 (176)
at all points in the spacetime. From Eq. (175), the
renormalized expectation value of the stress-energy
tensor for the IN vacuum state on the OUT region
fails to satisfy the NEC for all values of y because
B—-C < /6.

(b) Weak Energy Condition: A stress tensor is said to
satisfy the weak energy condition from general rela-
tivity if it obeys

T

i’ >0

(177)
at all points in the spacetime. From Eq. (170), the
renormalized expectation value of the stress tensor for
the IN vacuum state on the OUT region fails to satisfy
the WEC for all values of y. This was the same
situation as for the NEC.

(c) Strong Energy Condition: A stress tensor is said to
satisfy the strong energy condition from general
relativity if it obeys

1
<T/w ~3 Tgﬂv) utu? >0 (178)

at all points in the spacetime. The renormalized
expectation value of the stress tensor for the IN
vacuum state on the OUT region, Eq. (134), is trace-
less; thus, the SEC is equivalent to the WEC for our
problem and will fail under the same circumstances.

(d) Dominant Energy Condition: A stress tensor is said to
satisfy the dominant energy condition from general
relativity if, for every future-pointing causal vector
field Y# (timelike and null), the vector

VH=TH, Y (179)
is also a future-pointing and causal. Using the
above definition of V¥ and the expectation value

of our normalized stress tensor, the future-pointing
condition is

<OL|TII|OL>RenYI + <0L|Ttx|OL>RenYX >0 (180)

and the causal condition is
((OLIT 401 ) Ren = (OLIT 12 |OL)Ren) [(Y*)* = (Y¥)?] 2 0.
(181)

If Y* is everywhere null, then the causal condition is
satisfied. As for the future-pointing condition, setting
Y# = K, reduces the condition to

[Se]

_é B c.c =3 <[ix—n>>0. (182)

n=—o0

However, B —C < z/6, so the above inequality fails
on large regions of the spacetime. We can therefore
conclude that the DEC is also violated under the same
condition as all the other energy conditions.

B. Total energy in a constant-time hypersurface

Let ¢, > 0 determine a constant time Cauchy surface
on the OUT region of the spacetime. The unit normal to
the Cauchy surface is given by n* = (1,0). Contracting
Eq. (134) with the unit normal twice yields the energy
density contained in the Cauchy surface,

= _<OL|Tﬂv|0L>Rennﬂnv
T B-C C

- = t,—x
st +Enz_:m[5( L ‘”)

)

To determine the “total” energy contained in the Cauchy
surface, we integrate the above expression over the spatial
direction; thus,

5(%):—£+u C/ Z (ty—x—nL)

n=—oo

PL (xv ts)

(183)

+ 6(ty + x — nL)]dx. (184)
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Only two of the delta functions in the infinite sum
give nontrivial contributions to the integral. They occur
when n = IntegerPart(z,/L), and the positions x =
Remainder(#,/L) for the right-moving pulse and x =
L — Remainder(#,/L) for the left-moving pulse. The result
for the energy in the Cauchy surface is

£) =240,

a1 for ¢, > 0.

(185)

This expression is a time-independent constant; thus,
energy is conserved on the OUT region of the spacetime
by the scalar field. From the numerical simulations of B as a

|

[t 25 () [
+1_1;/ da
l+vjo =

where |o) is any Hadamard state on the spacetime R x ',

g (a + k,

1—-v
1+wo

g(7) is a smooth, real-valued, compactly supported test function

function of y, the total energy in the Cauchy surface is
negative for values of y < 0.82, positive for values of
x > 0.83, and it passes through zero somewhere in the
range 0.82 < y < 0.83.

C. Quantum weak energy inequality
on the OUT region

In Appendix E, we derive a QWEI for the quantized
scalar field on the cylinder spacetime with no potential that
includes the contributions from the topological modes. For
a timelike geodesic observer moving through the space-

time, the QWEI is
1 2
oo rii5)
11—

2] , (186)

1 & 1+ da
— k
ZLZ:1 ”{1—1}/ T

n

on the real line, §(«) is the Fourier transform of ¢(z), and normal ordering is done with respect to the OUT ground state |0, ).
We emphasize that the above form of the QWEI is a difference inequality. To convert the above inequality into one for the
renormalized energy density, we must include the energy density due to the Casimir effect, which adds to both sides of the

inequality a term of the form

U 1+0* /1 7
[ 0o o =5 (5= 52 [ st (187
Thus, the absolute QWEI for the scalar field on the cylinder spacetime with no potential is
1+ 0? T I & I+ da 1+ 0\
d 2> (- d 2o — Mk k,
[ aetwplotuneloto 2 75 (~g7s) [ arioer 3>k 8 [ o ki)
1—v [~da 1—v\|?
—19 ky\| —— . 188
+1+UA ﬂg<a—|—n 1—|—v> ] (188)
I
All the terms on the right-hand side of our QWEI are  with a potential, or just some highly prepared state of a
negative. quantum field that never interacted with the potential. So by

To apply this QWEI to states of the quantized scalar field
living on the OUT region of the cylinder spacetime with
potential, we appeal to the causal isometric embedding
arguments of Fewster and Pfenning [23]. The OUT region
of our spacetime is causally isometric to the ¢ > 0 portion
of the cylinder spacetime without potential. (It is assumed
we maintain the time orientation in the isometry.) By the
principle of local causality, an observer who performs local
experiments in the ¢ > 0 portion of either of these space-
times should not be able to discern which spacetime they
actually inhabit. An observer whose experiments do not
extend back in time beyond the ¢ = 0 Cauchy surface is not
able to determine that the stress tensor they are measuring is
due to the IN vacuum state of a field that used to interact

this locality argument, quantum inequalities on the OUT
region of our spacetime should be the same as those on the
quantum inequalities on the ¢ > O portion of the standard
cylinder spacetime. Thus, to apply the QWEI above to
states on the OUT region of our spacetime, all we have to
do is restrict the space of allowable test functions to only
those which have support to the future of the t = 0 Cauchy
surface, i.e., our test function space for g(7) is a subspace of
the full test function space on R x S'.

Next, we evaluate the left-hand side of the QWEI when
the state of interest is the IN ground state |0,) with g(7)
being any test function from the restricted space of test
functions. Substituting the expression for the renormalized
energy density on the OUT region, Eq. (170), we find
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LHS — / dz(0,1p10L) ren () [o(0)]

_ % (_ 6_22> / delg()] + llfij <%) / dzlg(o)}

. % nim Ej; /dT[g(T)]26<to+xo +L(1—|—v)y1_n>

il / dalg(z)? <t0 - jLL(1 e ")} ‘ )

1+v

Only the first term of this expression is negative and it is
identical to the first term on the right-hand side of the
absolute QWEI above. As we pointed out above, all the
remaining terms on the right-hand side of the QWEI are
negative; therefore, we conclude that the IN state |0;)
obeys the QWEI on the OUT region of the spacetime for all
9(7) in the restricted space of test functions.

VI. CONCLUSIONS

In this paper, we studied the behavior of a quantized
scalar field coupled to an external, time-dependent,
Mamaev-Trunov potential on the cylinder spacetime
R x S'. We found for a quantum field that begins in
the IN vacuum state that the shutting off of the potential at
time ¢ = O causes the field to respond with the creation of
particles out of the vacuum on the OUT region of the
spacetime. We determined analytic expressions for the
number of particles created and showed that the number of
particles in each mode is finite, and that the total number
of particles is also finite. We then determined the renor-
malized stress tensor on both the IN and OUT regions of
the spacetime. For the IN region, we found the almost-
everywhere expression, Eq. (166), consisted of the stan-
dard Casimir effect of —z/6L? and an additional term of
(B(y) = C(y))/L? that is due to the potential. This result
was valid on the IN region away from the location of the
potential. For the OUT region, we found that the stress
tensor, Eq. (134), consisted of the same two parts as the IN
region, plus additional terms that describe the positive
energy density and flux of the particles created out of the
vacuum. We went on to show that all of the point-wise
energy conditions of general relativity are violated by this
stress tensor. However, we also found that the stress tensor
for the IN vacuum state satisfies a quantum inequality for
all timelike geodesic observers on the OUT region of the
spacetime, with the constraint that the compactly sup-
ported test functions have support only to the future of the
t =0 Cauchy surface. The quantum inequality was
satisfied because of the positive-energy contributions to
the stress tensor from the particles created out of the
vacuum.

With regard to Solomon’s claims of violations of the
quantum inequalities for the double-delta function poten-
tial of Mamaev and Trunov, we see from the analysis of
this paper that the particle creation and their resulting
positive-energy contributions to the renormalized stress
tensor cannot be ignored. In all likelihood, if these
contributions could be determined and added to the partial
results of Solomon, we would find that the quantum
inequalities hold. This is a topic we will return to in the
future.

Finally, a great deal of the research work of this
paper was directed toward determining the behavior
of infinite series over the positive solutions of the tran-
scendental equation Z = y cot Z. This includes B(y) and
C(y) in the main body, and F,(y) and A(y) in
Appendices C and D, respectively. From Eq. (C26) below,
the functions F,(y) look like the derivative of a some
form of generalized Riemann zeta function. This pro-
bably explains why it was possible to determine analytic
expressions for F,(y) when p > 1 was an even integer.
We have two conjectures about the functions A(y) and
B(y) which are based on the numerical simulation of
each in Mathematica: that A(y) = B(y) and that B is a

hyperbola of the form B(y) = (z)~'\/ x(x — 2b) where

0 < b < 7?/6. The Mathematica plots seem to indicate that
b~ 12/7” is a good fit.
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APPENDIX A: EQUIVALENCE OF IN-MODE In other words, the explicit form of the IN-region mode
FUNCTIONS WITH THE FOURIER TIME functions can be used to the future of the r = 0 Cauchy
EVOLUTION ON THE BOW-TIE SHAPED surface, i.e., to the portion of the IN-region where

REGION - x| <t < x| 0 <7 < |x|. Similarly, the explicit form of the OUT-region

solutions can be used to the past of the r =0 Cauchy
surface, i.e., to the portion of the IN-region where
—|x| < # <£0. On this domain, one can use the expressions
for the IN and OUT forms of the mode solutions

In this Appendix, we show that ¢<V"(j,x, 1) =
oGt (J. x, 1) on the region D U {(0,0)}, where the open,
bow tie—shaped domain

interchangeably.
D= {(x 1 e _E L] « {_L L} -l <t<| x|} Substituting the definitions of the mode functions and
' 2°2 2°2 Fourier coefficients into the above expression, we need to
(A1) show that
|
& ikt §L cos(k Kj .
|:COS(K X) + = o sin(k;|x|) | e™™" = 5 22 5 |cos(k,t) — lk—”sm(k,,t) (A2)

on the specified region. It is easier to handle the real and imaginary parts separately; thus, the above expression breaks into
two conditions which we must prove,

{cos(lcjx) —l—K—gjsm( /|x|)] cos(x;f) = 52L [zz i cos(ky ’C)(C;;)(k ’q (A3)

for the real part, and

_ [cos(lcjx) + Kéjsin(lc ,|x)} sin(x;f) = ‘fZL [’;2 12 i (Z—f) “’Sé’;f)%] (A4)

for the imaginary part.
To begin, it is a straightforward exercise of Fourier analysis on the circle of circumference L to show that

£(x) = cos(x, x)+§sm( |x|)—5L [zz 22%} (AS)

From this, it is easy to see that Eq. (A3) holds when ¢ = 0, while Eq. (A4) is trivially true along the same line. Next, using
the product identities for cosines, it is possible to rewrite the right-hand side of the real-part equation as

fx )COS(M)lE%{%HZCZ{ (( )2)}} §L{22 zzcos J(x 1) }) (A6)

n=1

|
or more simply, sin[k;(|x| — )] + sin[x; (|x| + )]

, L sin(k;|x — #]) 4 sin(k;|x + 7]). (A8)

fx)cos(k;r) = S[f(x =)+ fx+1)]. (A7)

| =

This equation is satisfied if we can meet either of the

Using the product identities of the trigonometric functions following conditions:

on the left-hand side of this equation, substituting the

compact definition of f(x) on the right-hand side, and a) |x[—t=|x—1 and |x|+1=
simplifying results in us having to determine the domain of

validity of the equation or

(A9)
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b) x| —t=|x+1¢ and |x|+t=|x—1. (A10)
However, for both cases, it is always true that |x + ¢| > 0,
which implies that we would simultaneously need
|x| —7>0 and |x| + 7> 0. These are compatible condi-
tions which hold on the nontrivial domain —|x| <7 < |x|.

X+t 5 .
/ [cos(lcjx’) + . sm(Kj|x’|)} dx'

—t j

resulting in

2
Kj

2Zlcoskx sin

where we have simplified using trigonometric identities and
the definition

Ot (x, 1) = % [sign(x + 7) £ sign(x — 7)]  (A13)
with the sign function being the numerical sign of the
argument, i.e., it equals +1 for positive arguments, equals
—1 for negative arguments, and is undefined at zero. Notice
that the right-hand side of Eq. (A12) is, up to a factor of
k;/2, identical to the right-hand side of Eq. (A4).
The final step is to determine if there exist any regions
where
Of(x,1) =sign(x) and O (x,7) =0. (A14)
The second of these two conditions is equivalent to
sign(x 4 ) = sign(x — ¢), which is satisfied within the
bow-tie region D. Furthermore, for all x < O inside of D
we have O®T (x, ) = —1, and for all x > 0 inside of D we
have ®" (x, ) = 1. Therefore, we have ®* (x, r) = sign(x)
on D. Because both relations hold within D, we have that

2

Kj

[COS(K/-)C) + <,<_§,> Sin(Kj|x|)] sin (k1)
(D)t s

holds within D. Multiplying both sides of this equation by

k;/2, we can conclude that Eq. (A4) indeed holds on D.

Recall from above that Egs. (A3) and (A4) also hold for all

values of x when 7 = 0, which includes the origin point

(0,0). Because the real and imaginary parts hold on

DU {(0,0)}, we can finally conclude that ¢*'*"(j, x, 1) =
oGt (J. x, ) on this region.

EL /X+ cos( k x')
= +2 dx’,
2 )iy ZZ Z

[COS(K].,C) i (é) 0" (x.1) sin(Kjx)} sin(i1) 25
(knt)

RO AR e

Therefore, this implies that the real part, Eq. (A3),
holds on the domain D, and on the boundary of the
domain.

We now turn our attention to proving that on the domain
D the imaginary part, Eq. (A4), is true. We begin with
Eq. (AS) and integrate it in x from x — ¢ to x + ¢, i.e.,

(Al1)

: O (x, 1)[cos(k;x) cos(k;t) — 1]

], (A12)

APPENDIX B: CONSTRUCTION OF THE
ADVANCED-MINUS-RETARDED GREEN’S
FUNCTION ON M ~R x S!

In this Appendix, we derive the advanced-minus-
retarded Green’s function for the scalar wave equation
on M ~R xS' without a potential. We use the con-
ventions of Fulling [24]. Let J € CP(M;R) be a
smooth, compactly supported function on M; then by
spectral theory, the advanced-minus-retarded operator

E:Cy (M) - C*(M) is given by
= (_k)j 2j
(EJ)(x, 1) /dt’ ————(t =) T (x,1),
; (2 +1)!
(B1)
where the operator K = —0? is Hermitian under integration

on the circle. The completeness theorem for functions on !
tells us

J(x. 1) (54T (#) v (n. x)

[]s

= (VPT)(¢)vigp (x) +

n

+ (vivenj)(t/)veven(n7x

~—

] (B2)

where we define

(0P 7)(1) = A (T (LY. (B3)
(091 T7)(F) = /gl °Y8(n, X )T (¥, ¢)dx',  (B4)
(v 7)(1) = /S ()T (. ). (BS)
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The advanced-minus-retarded Green’s function smeared in both slots by J, J, € C(M;R) is defined as

E(J\,.TJ,) = /thl dxJ 1 (x, t)(ET>)(x,1). (B6)
Substituting into this expression yields
BT T2 == [ di [ at(e= )T )T 0)
—/m/wsz%;QMWmmw%%mw<wnxxww>my (B7)
The kernel of this expression is seen to be
E(x,t;x', 1) = —(t = 1')v"°P(x)v'"P (x')
im%’]wmmwmww%wwwm,
2,
R ij>m% (1=1) = (=)} +sin k(=) + (=)} (BS)

It consists of a smooth topological part, a purely “right”-
moving part and a purely “left’-moving part, both moving
parts propagating at the speed of light. Also, from the above
expression we see that the kernel is antisymmetric under

the interchange of the coordinates, i.e., E(x',7;x,t) =
—E(x,t;x', 1), which in turn implies E(7,,J;) =
_E<k717 '-72)

By elementary Fourier analysis, it is straightforward to
show that the function below, constructed from the modulo
operation, has the Fourier representation

(5]

1
= Z . sin(k,x),

n=1""

L

n {1 —%(x mod L)] (B9)

whereby, we may express the kernel of the advanced-
minus-retarded Green’s function as

(=7 1 1

E(x,t;x, 1) = 7 —54—% [(t=1) = (x—x)]
xmod L+ [(t—7)+ (x—x")] mod L}.
(B10)

For the Cauchy problem, where the initial data is
given by ¢(x,0) = f(x) and 9,¢(x,0) = g(x), the unique
classical solution is given by

#a) == [ @B 63, 0)5)

+ E(x,1;x',0)g(x)]dx’. (B11)

|
APPENDIX C: CONVERGENCE OF SERIES

In this Appendix, we are interested in the properties of
series of the form

(C1)

where x € [0, ), p is a positive real number greater than

\Nw‘\ [

one, Z; is the jth positive root of the transcendental
equation
Z = xcot(2), (C2)
and
,  cos’Z; z;
Aj sinZ; cosZ 2 (C3)
1 S Z +x*+x

We remind the reader that Z; is an implicit function of x.
The transcendental equation implies the trigonometric
relations

X

sinZ; = (-1))' —— and
,/Zf + x?
) Z;
cosZ; = (—1)/7! L (C4)

\/Z7 +x*

which were used to obtain the final equality of Eq. (C3).
For the main body of the paper, we had x = £L /2. Also, the
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Bogolubov relations imply, via Eq. (67) with m =n =0,
that F4(x) = 1/2. (Numerical simulation in Mathematica
seems to confirm this fact.)

We wish to demonstrate that such sums are convergent
for p > 1. First, note that every term in the summation
above is positive; therefore, the summation is bounded
below by zero. Next, we determine an upper bound. Using
the definition of A; and separating out the first term in the
summation, we have

iA_? _ cos*(Z;)
= 7 zP7 [z, +sin(Z;) cos(Z,)]
® cos?(Z;
+) , ) . (c5)
= Z)[Z; +sin(Z;) cos(Z;)]
Recall from above that the Z;’s always satisfy
. .1
(]—I)HSZJ-S<J—§>7T. (C6)

On each of these intervals, the product of the sine and
cosine functions is a positive number; thus,

cos*(Z;) - 1
-] . S -
Z87(Z; +sin(Z;) cos(Z;)]  Z77[Z; + sin(Z;) cos(Z;)]

=) 2 =)
ZA—j < COSZ(Zl) —|—LZ : 1 '
j=1 Zf Zf_l Z, +sin(Z;) cos(Z,)]  #° j=2 (=17

The summation over j is the series definition of the
Riemann zeta function; thus,

o 2
>

The zeta function is convergent for all p > 1, and the value
of Z;, which may be very small as the product £L tends
to 0, is strictly greater than zero; thus, our summation is
convergent for all p > 1.

We now wish to show that the functions F,(x) and
F,.»(x) are related to one another. Beginning with defi-
nition (C1), we have

cos*(Z,) ¢(p)
7Pz, + sin(Z;) cos(Z,))] M (©9)

(C10)

It is a simple matter of algebra to demonstrate that

A2
u1+ﬂ2%:1—A} (C11)
J

=3 (7 2) ©n)

Each of the terms under the summation are individually
convergent for p > 1; therefore,

(¥ +X)Fpn(x) + F (C13)

1
N =x)
=1 %)

Next, take the derivative of this expression with respect
to x,

(% +X)F o' (x) + (2x + 1)F 0 (x) + F )/ (x)
:2x;?_ 2ZZP+1< >

Similarly, differentiation of the transcendental equation
with respect to x yields

(C14)

dz. A?
—4 =] (C15)

dx Z;

Substituting, we arrive at

( +X)F 0/ (x) + (p = DF pa(x) + F)'(x)

2
—;Fp(x) =0. (C16)
We already know that F,(x) = 1/2; therefore, let us set
p = 2 in the above expression, which yields the ordinary
differential equation

1
xFy'(x) = 2F,(x) = —5% (C17)
whose general solution is
1 2
F)(x) =5xtex (C13)

where c is a constant of integration. Because all the terms of
the series form of F,(x) are positive for all values of the
allowed range of x, we have the constraint ¢ > 0.

We obtain an upper bound on ¢ by returning to Eq. (C13)
and separating the first term out of the summation on the
right-hand side,
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(2 4+ D)F s (x) + F,(x) = 22 (sz N i%) (19)

Next, we recall that Z; > (j — 1)x; thus, employing the
series definition of the Riemann zeta function ¢(p), we find

(¥ +X)Fpia(x) + Fp(x) < 2<le+§7(5)). (C20)

Setting p = 2 and substituting the expressions for F,(x)
and F4(x) leads to the upper bound

< 1 1 1

€= 72 <x * 3)’
which must hold for all positive values of x. The strongest
bound occurs when x — 0; a condition under which Z; is
also going to zero, but they approach zero at different rates.
We may use the transcendental equation to put the entire

expression in terms of Z;, and then use the series expansion
for cot Z, about zero to obtain

z: 274
=1 75 .
(45 + 945 ;T OE + )

In the limit of Z; — 0, we find that ¢ < 0. Combining this
bound with the lower bound implies that ¢ = 0.
So far, we have found

(C21)

(C22)

co % ) 00 A2 1
=x Z::Z——x and Fyu(x)=x 224 3
(C23)

An identical analysis can be use to determine

< A 1/1 1
F =x2) L=—(-4+=2). C24
w=ed =3 (i) @
Substituting back into Eq. (C13), we also find
=1 1 4 6
Z?:5+; and 224 <+ + >
j=1"J
(C25)

Numerical simulations in Mathematica appears to confirm
(23) through (26) over a wide range of x. Finally, for p > 1
we note the relationship

(C26)

)C
F 2 - -
rt+ p

d 31
527

\":

APPENDIX D: A FLAWED DERIVATION
OF THE IN-REGION STRESS-TENSOR

In Sec. IV B, we determined the renormalized stress
tensor for the state |0, ) on the IN region of the spacetime,
with a final result of Eq. (166). The derivation used the
Fourier representation of the IN-region even-parity eigen-
functions in terms of the OUT-region eigenfunctions, given
by Eq. (66). The strength of this approach is that one can
cancel all of the divergent terms in the OUT-region mode
expansion of the normal-ordered kinetic tensor early in the
calculations. It is natural to ask if the same result is found
by using the explicit form of the IN-region eigenfunctions
u®*"(j, x), instead of its Fourier representation. We explore
this approach in this Appendix.

For the IN vacuum state |0, ), we know from Eq. (103)
that the unrenormalized expectation value of the compo-
nents of the stress tensor on the IN region is given by

<0L|T D|0L>

(D1)

The derivative in x can be evaluated everywhere except at
x =0, where it is indeterminate for the even modes.
Looking at the kinetic part separately from the potential
part, and substituting the modes, we have that the unrenor-
malized expectation value of the kinetic tensor is

LS sl (]

(D2)

<0L | 1/|OL

which has support everywhere on the IN region except at
the support of the potential. The unrenormalized potential
tensor, which only has support on the support of the
potential, is

© A
I/ZZ_

J=1

~.

(0.U,[0,) = (D3)

Similarly, the unrenormalized expectation value of the
stress tensor for the OUT ground state on the OUT region
is given by

OITul00) = (g7 D k) (D)
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By subtracting this expression from the kinetic tensor, and
then adding the renormalized OUT ground state expect-
ation value, we find

T A
< LD

A= }:zm< > 3 (j—1zx
j=1

is implicitly a function of the product y = £L/2.
A bit of algebra and substituting the transcendental
equation allows us to rewrite the above equation as

2 )
;‘3] -y (-1=

where

(Do)

AZi[ —tanZ; +(y+1)x

=1 =1
(D7)
Next, let us define €; by the relation
e=7Z;—(j—-1)m (D8)
thus, ¢; satisfies the transcendental equation
(j—])ﬂ+ej:)(cotej (D9)

and its value lies in the interval from O to /2 for all j.
Substituting into the first two terms, we find

© A2
Z []—l)ﬂ—l—ej tane; + (x + 1) x> =%

z3
-0 s

J

We now have to make sense of this expression. Let p be

any integer that is much greater than y/z, and define the
partial sum

(D10)

P A2
A= {(i — D +e;—tane; + (y + 1))(22—4
=1

-> (==

=1

(D11)

such that A = lim,,_,,.A,,. Because partial sums are con-
vergent, we can write this as

p p A?
A, = Z € —tane;) ;(222—; (D12)
J= =

which we can interpret as a mode-by-mode difference of
the first p energies. Notice, the second summation is
proportional to the partial sum of the function F3(y) as
defined in Appendix C, and where we show that it is
convergent. Considering the limit of p — oo, we have

P
A= lim > (ej—tane)) + (x + DF;3(x).  (D13)
J=1

We now show that the remaining summation in ¢; is
convergent. First, the tangent function is greater than or
equal to it argument on the interval (0, z/2). Every term in
the summation is negative, so the sum is bounded above by
zero. Next we show that the sum is also bounded from
below by recalling the Taylor series for the tangent

function, from which we find

7260 17€]
tane; = ¢ =315+ 55

+- (D14)

Next, there exists a j* such that ¢; < 1 for all j > j*. For

these €;’s, we know €j3 > e? > e} > ...: therefore,
tane; —¢; < (tan 1 — 1)e; (D15)
which results in
lim —tane;)
WZ i)
J -1
— —t —_
> (¢ ane)—l—gl_gloZe tane;)
j=1 J=I*
j=1
Z e; —tane;) + (1 —tanl)hm Ze (D16)
Jj=1 J=J*
From the text following Eq. (37), we know
-1
€; < 2;({(]’— )7+ \/(j— )72 —1—4;((1 +%>
< £ (D17)

(j— D=
Upon substitution, we find

P

]~

14 -1
lim E (ej—tane;) > E €;—tane;)
oo b=

j:

J=1

A |
+(1—tanl){ =] lim —_—
=) (£) tim 3

(D18)
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The first sum of the above expression is bounded because
there are a finite number of terms. The second sum we
recognize as the majority of the series for the Riemann zeta
function; thus, we find the bounds

p—0o0 <

0> lim zp:(ej —tane;)
j=1
> (e;—tane;) + (1 —tan 1) @)Sg(s). (D19)

J=1

Therefore, we conclude that A is convergent.

A plot of A as a function of y is given in Fig. 2. The plot
was generated in Mathematica by calculating the first 21
terms in the partial sum of A for each value of y.
Comparing the plot of A with the plot of B, we conjecture
that the two functions are the same, i.e., A = B. Presently,
we have no way of proving this assertion.

Unfortunately, Eq. (D5) does not yield the complete
expression for the stress tensor on the IN region of the
spacetime. In Sec. IV B above, we saw that the Fourier
representation of the even-parity modes allowed for the
derivative to be taken at the point x = 0, which gave rise to
the delta-function contributions in the renormalized stress
tensor. On the circle, the Fourier representation of the delta
function, Eq. (46), has a constant term, which results in an
additional constant term of —C/L? in the renormalized
stress tensor. The approach used in this Appendix does not
allow the derivative to be evaluated at x = 0. Therefore, it
fails to give rise to a delta-function portion of the stress
tensor and its associated constant term.

APPENDIX E: QUANTUM WEAK ENERGY
INEQUALITY ON M ~R x S!

In this Appendix, we sketch the proof of a QWEI that we
can use on the OUT region of our spacetime. We will be
brief, as most of the technical details for the rigorous
derivation have been worked out by Fewster [9]. All we are
seeking here is the contribution to the QWEI due to the
topological modes. Note, we define the Fourier transform
pair on a Schwartz class function f € S(R), as

JAC(a)Z/_oof(x)eiaxdx and f(x):%/_oojf(a)e—iaxda.
(E1)

Consider the complete cylinder spacetime M ~ R x S!
with no potential. On this spacetime, we have the space of
smooth, compactly supported, complex-valued test func-
tions, which we denote by C*(M). For f € CF (M), we
define the smeared quantum field operator by

w(f) = /M w(x)f (x)dVol,, (E2)

where w(x) is given by Eq. (81). By the properties
described in the main body of the paper, we have that
the smeared quantum field operator satisfies the following
relations:

(1) Linearity, y(cif) + c2f2) = ayp(f1) + ey (f2)

for all ¢; € C and f; € CP(M),

(2) Hermiticity, w(f)" = w(f) for all f € C(M),

(3) Field equation, y(CJf) = 0 forall f € CP(M), and

(4) Canonical commutation relations, [y (f;),y(f>)] =

iE(fy, f>)I for all f; € C§ (M),
where the smeared advanced-minus-retarded Green’s func-
tion E(f, f») is defined in Appendix B.

These four properties look identical to the relations used
by Fewster to quotient a free, unital, * algebra in the
framework of algebraic QFT. The first three relations are
indeed the same. The fourth relation looks identical, but it
has a subtle difference: the advanced-minus-retarded
Green’s function used by Fewster does not include the
topological modes, so the resulting * algebra has a trivial
center. The advanced-minus-retarded Green’s function
above does include a contribution from the topological
modes, and thus the resulting * algebra has a nontrivial
center. The quantization of the topological modes within an
algebraic field theory and the resulting nontrivial center has
been discussed by Dappiaggi and Lang [18].

In Sec. V, we saw that a timelike geodesic can be
parametrized by Eq. (167) and that there exist vector fields
vy and v} of unit length, which are parallel and perpen-
dicular, respectively, to the tangent vector of the geodesic.
On M x M, we define the unrenormalized, point-split,
energy-density operator as

1., ,
p(t’ X5 t/’ x/) = 5 [(1)68”)(1}6 61/)
+ (10,) (v 8, lw (x, i (', 1),

where 0,/ is understood as taking the derivative with respect
to the primed variables and ¥ is also in the primed
variables. It has been shown [9] that the energy density
along the geodesic of an observer is given by the pullback
of the above expression onto the observer’s geodesic y(z),
ie.,

(E3)

(E4)

Let w; and o, be any Hadamard state on the * algebra
for our spacetime, and g € CF(R) be a smooth, real-
valued, compactly supported test function on the real line.
Then, we have the smeared, normal-ordered energy density
along the worldline given by

[ detonl:p(e):aog(e) (ES)

The derivation of the quantum inequality on this expression
now follows the steps found in Fewster. In fact, the entire
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derivation is identical, including his Theorem 4.1 which
yields the quantum inequality

A de{wy ) :p(0) |01} 9(22)

> 1 / " dalwolplon) (7u ® 9).  (E6)

7 Jo

where g,(7) = g(r)e'®* and the energy-density operator on
the right-hand side is still point-split along the proper time.
All of this comes about because the topological modes only

contribute a smooth function piece to the two-point
functions of the Hadamard states. This contribution can
be seen directly as the (¢ —¢)/L term in the advanced-
minus-retarded Green’s function above. Therefore, the
topological modes do nothing to alter the wavefront set
of any of the distributions we work with in the derivation of
the quantum inequality.

We now wish to evaluate the right-hand side of this
expression for our spacetime. Upon substitution of the
explicit form of the vector fields vf, and v/, the expectation
value of the point-split energy-density operator is

11+ 2? 2v
{wolplewo) (. x: 1, x') = 51575 (0,0 + 0x0¢) + 15 (0,00 + 0.:0y) | {wo|¥(x. ) ¥(x', 1) @) (E7)
Next, we choose our reference state for normal ordering to be the OUT vacuum state |0, ), such that
(0¥ (x, )WP(¥,1)|0,) = GT(x,1;x, 1) (E8)

is the positive-frequency Wightman function, whose series representation is given by Eq. (86) above. Upon substitution,

we find
1 I+wv —ik, (1—t")
3L <1_U {21/” ZZk coslk,(x — x)]e

div & ; /
1 v . Z k, SlIl )] —ik, (t—t )) .
-0

For the above point-split energy density, the topological modes contribute a constant of 1/2Z.
Next, pulling back onto the worldline of the observer, still point split in the proper time used to parametrize the geodesic,

we find
1 1+ 0?
T2L 1=
Therefore, the right-hand side of the QWEI, Eq. (E6), becomes
RIS — 1[1+22/1 /oodA( (@)
T m|1=0?\4rL) ) AN
1—-v /1 e - 1—v 1—v
— d k,g| — kot —— | g kot | ——
+1+v<2L)A az:: ”g(“ "\/1+v)g<a+ "\/1+y)
140 /1 1+ 1+v
d k k, .
i (o) [y oo 155

This expression can be further simplified by recalling that for real-valued test functions, the Fourier transforms satisfy

9(—a) = g(a), whereby, we can then use Parseval’s theorem on the first term. Finally, swapping the order of summation and
integration, we arrive at Eq. (186).

(Op|pl0,) (2. x; 7, x') =

(E9)

(011010, (2)): () () + Sk [t /B L e

n=1

f>'<n\/‘%_lf} } (E10)

(E11)
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