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We work in the Heisenberg picture to demonstrate the classical-quantum correspondence (CQC) in
which the dynamics of a quantum variable is equivalent to that of a complexified classical variable. The
correspondence provides a tool for analyzing quantum backreaction problems which we illustrate by a toy
model in which a rolling particle slows down due to quantum radiation. The dynamics found using the
CQC is in excellent agreement with that found using the much more laborious full quantum analysis.
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A large class of physical systems involve classical
dynamics that is coupled to quantum degrees of freedom
(d.o.f.) that get excited as the classical system evolves.
Examples of such systems include particle production
during cosmological evolution, Hawking radiation during
gravitational collapse and Schwinger pair production in an
electric field. The key question we address in this paper is:
how do we account for the backreaction of the quantum
excitations on the classical background? The question is of
fundamental interest as its solution may hold the key to
many problems of current interest including the black hole
information paradox.
Past work on the backreaction question is usually framed

as a perturbative-iterative process; the radiation is calcu-
lated in perturbation theory, the backreaction is then
calculated semiclassically, which then leads to modified
radiation, and so on. In the present work, we instead
develop a classical-quantum correspondence (CQC) using
which we can transform the quantum radiation problem
into a classical radiation problem. Then the entire problem,
including backreaction, can be cast as a set of classical
equations with definite initial conditions [1,2]. These
equations can then be solved numerically. (Other work
on classical-quantum connections includes [3–7].)
The system we have in mind consists of a classical

background variable that couples to a free quantum field.
Expanding the field in modes, the mode coefficients behave
like an infinite set of simple harmonic oscillators with time-
dependent mass and frequency. By redefining variables, it is

possible to eliminate the time-dependence of the mass. Thus
the field theory problem can be mapped into a quantum
mechanics problem consisting of an infinite set of simple
harmonic oscillators with time-dependent frequencies deter-
mined by the dynamics of the background variable.
The quantum simple harmonic oscillator (qSHO) with a

time-dependent frequency has been solved in terms of a
two-dimensional classical SHO (cSHO) in early work
[8–10] and more recently [11]. In Ref. [2], we have used
this connection in the Schrödinger picture to show the
equivalence of the quantum and classical systems, and we
have discussed the excitations produced due to the time-
dependence of the frequency. This result can be applied to a
mode by mode analysis of a free quantum field to show that
the quantum field dynamics can be described in terms of the
classical dynamics of a corresponding system with pre-
scribed initial conditions [12]. However, particle produc-
tion is usually discussed in the Heisenberg picture using the
method of Bogoliubov transformations (e.g., [13]) while
functional Schrödinger derivations are less familiar. In this
paper we first close this gap by demonstrating the classical-
quantum correspondence (CQC) in the Heisenberg picture.
The production of particles due to the time varying

background will cause dissipation in the time variation. The
CQC provides a simple tool to study this backreaction
because quantum dynamics can be replaced by classical
dynamics. To assess the validity of the CQC approach to
backreaction, we construct a toy model in which we can
find the backreaction using the CQC and also in the full
quantum theory. The results are in excellent agreement and
the accuracy of the CQC approach increases as the back-
ground becomes more classical.
This paper is organized as follows. We first show the

CQC between a qSHO and two cSHOs in the Heisenberg
picture when the frequency of the SHOs is an arbitrarily
varying function of time. This is done in three steps. First,
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in Sec. I A we derive the Heisenberg equations of motion
for the ladder operators with a time-dependent frequency.
Then in Sec. I B we find the energy radiated in particles by
the method of Bogoliubov transformations. In Sec. I C we
show that the dynamics of the radiation and, in particular,
the energy in quantum radiation, can be found by a purely
classical calculation that involves doubling the radiative
d.o.f., or equivalently complexifying these d.o.f. Having
thus established the CQC, we turn to the quantum radiation
backreaction on the dynamics of the classical variable. We
find the results obtained using the CQC and compare them
to the full quantum dynamics that are found by using novel,
though laborious, numerical methods described in the
Appendix. Our conclusions are given in Sec. III.

I. CQC IN HEISENBERG PICTURE

A. Heisenberg equations

The Hamiltionian for a simple harmonic oscillator with
time-dependent frequency is

H ¼ p2

2m
þmω2

2
x2 ð1Þ

where ω ¼ ωðtÞ is an unspecified function. We define
ladder operators in the usual way

a ¼ p − imωx
ffiffiffiffiffiffiffiffiffiffi

2mω
p ; a† ¼ pþ imωx

ffiffiffiffiffiffiffiffiffiffi

2mω
p ð2Þ

It is straightforward to check that ½a; a†� ¼ 1 even for a
time-dependent ω. Then,

H ¼ ωðtÞ
�

a†aþ 1

2

�

ð3Þ

and

∂a
∂t ¼ −

_ω

2ω
a†;

∂a†
∂t ¼ −

_ω

2ω
a ð4Þ

We now go to the Heisenberg picture. Then the equation
of motion for a is

da
dt

¼ −i½a;H� þ ∂a
∂t

¼ −iωa −
_ω

2ω
a† ð5Þ

and similarly

da†

dt
¼ þiωa† −

_ω

2ω
a ð6Þ

B. Bogoliubov transformation

To obtain the excitation of the simple harmonic oscillator
due to the time-dependence of ω, we write

aðtÞ ¼ αðtÞa0 þ βðtÞa†0; a†ðtÞ ¼ α�ðtÞa†0 þ β�ðtÞa0
ð7Þ

where a0 and a
†
0 are the annihilation and creation operators

in Eq. (2) at the initial time, t ¼ 0. The commutation
relation ½a; a†� ¼ 1 leads to the constraint

jαj2 − jβj2 ¼ 1: ð8Þ

and Eqs. (5), (6) lead to

_α ¼ −iωα −
_ω

2ω
β� ð9Þ

_β ¼ −iωβ −
_ω

2ω
α� ð10Þ

These equations also lead to the constraint

β _α − α _β ¼ _ω

2ω
: ð11Þ

The expectation value of the energy in the vacuum state is

EqðtÞ≡ hHi ¼ ωðtÞ
�

jβj2 þ 1

2

�

: ð12Þ

C. The CQC

Here we show that the quantum dynamics of the time-
dependent simple harmonic oscillator is given by the
classical dynamics of two classical simple harmonic
oscillators if we impose certain initial conditions.
In contrast to the earlier derivation in the functional
Schrödinger picture [2,14,15], here we show this corre-
spondence in the Heisenberg picture. Particle production is
then given by the Bogoliubov transformation method, and
the energy in quantum excitations, Eq, is also identical to
the energy of two classical simple harmonic oscillators.
We rewrite Eqs. (9) and (10) as a single second order

equation by doing the change of variables

α ¼
ffiffiffiffiffiffi

m
2ω

r

ð_z� − iωz�Þ; ð13Þ

β ¼
ffiffiffiffiffiffi

m
2ω

r

ð_z − iωzÞ; ð14Þ

where
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z≡ ξþ iχ ð15Þ

is complex and ξ and χ are its real and imaginary parts. The
overall factor of

ffiffiffiffi

m
p

in Eqs. (13) and (14) ensures that α
and β have the correct mass dimensions equal to zero when
z has dimensions of length.
The expressions for α and β are identical to the definition

of the annihilation operator a in Eq. (2) if we think of z and
m_z as representing the complexified position and momen-
tum operators for one dynamical variable and similarly z�
and m_z� for a second dynamical variable. Similarly the
complex conjugates α� and β� then correspond to the
expression for the creation operator a† in Eq. (2).
Inserting Eqs. (13) and (14) in Eqs. (9) and (10) we find

the equation of motion satisfied by z,

̈zþ ω2ðtÞz ¼ 0; ð16Þ

which describes the dynamics of a two-dimensional cSHO
(e.g., a point mass attached to a rotating spring on a plane)
with time dependent frequency, or equivalently, two
such one-dimensional cSHOs. Hence ξ and χ (the two-
dimensional Cartesian coordinates of the point mass)
satisfy the classical equations of motion

ξ̈þ ω2ðtÞξ ¼ 0; χ̈ þ ω2ðtÞχ ¼ 0: ð17Þ

The initial condition, að0Þ¼a0, corresponds to: αð0Þ¼1,
βð0Þ ¼ 0, which imply

zð0Þ ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffi

2mω0

p ; _zð0Þ ¼
ffiffiffiffiffiffiffi

ω0

2m

r

; ð18Þ

and are equivalent to

ξð0Þ ¼ 0; _ξð0Þ ¼
ffiffiffiffiffiffiffi

ω0

2m

r

;

χð0Þ ¼ −1
ffiffiffiffiffiffiffiffiffiffiffiffi

2mω0

p ; _χð0Þ ¼ 0 ð19Þ

where ω0 ¼ ωð0Þ. (The expressions slightly differ from
those in [2] because of different conventions.) The initial
conditions and Eq. (17) imply that the Wronskian is
conserved,

W ≡ ξ_χ − χ _ξ ¼ 1

2m
ð20Þ

which can also be written as

z�pz − p�
zz ¼ i: ð21Þ

where pz ≡m_z.
The initial conditions have the simple interpretation that

the two-dimensional cSHO initially has the same energy as

the qSHO in its ground state. This is easy to see because
βð0Þ ¼ 0 in Eq. (12) gives Eqð0Þ ¼ ω0=2. What is more
novel is that the initial conditions are such that the two-
dimensional cSHO also has angular momentum
L ¼ mW ¼ 1=2. Furthermore, the angular momentum,
equivalently the Wronskian, is conserved during the
evolution. If we think of the qSHO as the mode coefficient
of a free scalar quantum field, the initial conditions imply
that each mode of the corresponding classical complex
scalar field must carry a conserved nonzero global charge.
The quantum dynamical problem has thus transformed

into a classical evolution problem for any time-dependent
frequency ωðtÞ. To emphasize this point we write the full
time-dependent annihilation operator in terms of classical
solutions,

aðtÞ ¼ ðp�
z − imωz�Þ

ffiffiffiffiffiffiffiffiffiffi

2mω
p a0 þ

ðpz − imωzÞ
ffiffiffiffiffiffiffiffiffiffi

2mω
p a†0 ð22Þ

where z denotes a classical solution with the initial
conditions given above. Thus we have a mapping between
the quantum solution and the classical solution.
Finally we re-express the quantum energy in Eq. (12) in

terms of the ξ and χ variables,

Eq ¼
jpzj2
2m

þmω2

2
jzj2

¼
�

m
2
_ξ2 þmω2

2
ξ2
�

þ
�

m
2
_χ2 þmω2

2
χ2
�

≡ Eξ þ Eχ : ð23Þ

To summarize: to find the energy in quantum excitations,
we simply have to solve the classical problem in Eq. (16)
with the initial conditions in (18) and then calculate Eq

using (23). This is the CQC, earlier derived in the func-
tional Schrödinger picture [2], but derived here in the
Heisenberg picture via Bogoliubov transformations.
We should insist on the fact that Eq. (16) along with the

initial conditions (18) is simply a rewriting of Eqs. (9) and
(10) (with the associated initial conditions αð0Þ ¼ 1 and
βð0Þ ¼ 0). Hence there is no leeway to map the quantum
problem to a different classical problem, say that of only
one cSHO, or two cSHOs with different initial conditions.
In other words the mapping requires the existence of a
conserved quantity (the angular momentum of a two-
dimensional cSHO) whose value is set by the constraint (8).

II. BACKREACTION

In the quantum problem, the time-dependent frequency
produces quantum excitations and must backreact on the
source responsible for the time dependence. In many
situations, especially in gravitational settings, the quantum
backreaction is difficult to calculate. However, the back-
reaction in the corresponding classical problem is in
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principle straightforward to evaluate because the classical
equations of motion are known. If the classical equations
are difficult to solve analytically, we can always, in
principle, solve them numerically. We will now illustrate
such a backreaction calculation for a toy problem that can
be solved completely. This will tell us if the solution using
the CQC is a good approximation to the full quantum
solution.
Our toy model consists of two quantum d.o.f., x and z,

where x represents a particle rolling down a linear potential
and z represents a simple harmonic oscillator that couples
to the rolling particle. (The model has similarities to field
theories used in inflationary cosmology and to the “bottom-
less” potentials considered in Ref. [16].) The Hamiltonian
for the system is

H ¼ p2
x

2M
−Maxþ p2

z

2m
þ 1

2
mω2

0z
2 þ λ

2
x2z2 ð24Þ

which we shall rescale and write with redefined a, ω0

and λ as

H ¼ p2
x

2
− axþ p2

z

2
þ 1

2
ω2
0z

2 þ λ

2
x2z2: ð25Þ

Here a corresponds to the constant classical acceleration
while rolling, ω0 is the simple harmonic oscillator fre-
quency in the absence of any coupling to the rolling
particle, and λ is the coupling.
We are mainly interested in the dynamics of the rolling

particle and how the presence of the simple harmonic
oscillator backreacts on the dynamics. So we will first solve
the classical rolling problem, then find the simple harmonic
oscillator solution in the “fixed background” approxima-
tion. Next we will solve for the full dynamics using the
CQC described above. Finally we will solve the full
quantum problem and compare with the result obtained
using the CQC.

A. Classical solution

The classical equations of motion are

ẍ ¼ a − λxz2; ̈z ¼ −ðω2
0 þ λx2Þz ð26Þ

If the initial conditions (at t ¼ 0) are

xð0Þ¼0; _xð0Þ¼0; zð0Þ¼0; _zð0Þ¼0 ð27Þ

then the solution is

xðtÞ ¼ 1

2
at2; zðtÞ ¼ 0: ð28Þ

That is, the rolling particle continues to roll with constant
acceleration while the simple harmonic oscillator d.o.f. is
not excited.

B. Fixed background analysis

In the fixed background of the rolling particle, the CQC
is exact and the Hamiltonian for the simple harmonic
oscillator is

Hz ¼
p2
z

2
þ 1

2
ω2ðtÞz2 ð29Þ

where z ¼ ξþ iχ and

ω2ðtÞ≡ ω2
0 þ

λ

4
a2t4: ð30Þ

Then the energy of the simple harmonic oscillator can be
found from Eq. (23) where we need to solve the classical
equations of motion in Eq. (17) with the initial conditions in
Eq. (19). With ω0 ¼ 0, Eq. (17) can be solved in terms of
Bessel functions but for ω0 ≠ 0 we have to resort to a
numerical computation. The result for EqðtÞ with ω0 ¼ 1,
a ¼ 1, λ ¼ 1 is shown in Fig. 1. Note that total energy is
not conserved in the fixed background analysis: initially the
energy is ω0=2 ¼ 0.5 while at t ¼ 20 we see that it has
grown to ∼25.

C. Backreaction with CQC

To obtain dynamics with backreaction with the CQC, we
need to solve the classical equations

ẍ ¼ a − λxðξ2 þ χ2Þ; ð31Þ
̈ξ ¼ −ðω2

0 þ λx2Þξ; ð32Þ

χ̈ ¼ −ðω2
0 þ λx2Þχ; ð33Þ

with initial conditions

xð0Þ ¼ 0; _xð0Þ ¼ 0; ð34Þ

FIG. 1. Eq vs t in “fixed background approximation” for
ω0 ¼ 1, a ¼ 1. The energy of the background is conserved
but the total energy is not conserved.
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ξð0Þ ¼ 0; _ξð0Þ ¼
ffiffiffiffiffiffi

ω0

2

r

; ð35Þ

χð0Þ ¼ −1
ffiffiffiffiffiffiffiffi

2ω0

p ; _χð0Þ ¼ 0: ð36Þ

This system of equations is solved numerically.
In Fig. 2 we show how the energy in the simple harmonic

oscillator grows with time and that in the rolling particle
decreases with time. The total energy is conserved. We will
show the solution for xðtÞ using the CQC below, after we
have discussed the solution of the full quantum problem.

D. Full quantum treatment

To solve for the full quantum dynamics, we have to solve
the time-dependent Schrödinger equation

Hψðx; z; tÞ ¼ i
∂ψ
∂t ð37Þ

with H given in Eq. (25). The initial wavefunction is taken
to consist of Gaussian wavepackets in both the x and z
variables,

ψðt¼0;x;zÞ¼
�

1

πσ2x

�

1=4
e−x

2=ð2σ2xÞ
�

ω0

π

�

1=4
e−ω0z2=2 ð38Þ

The parameter σx is a free parameter in the full quantum
problem and we shall study the dynamics for several values
of σx.
With the initial condition in Eq. (38), we have hxi ¼ 0 at

t ¼ 0 for all σx. Ehrenfest’s theorem in the absence of
backreaction (λ ¼ 0) gives the classical result for the
evolution of the expectation value of x,

hxiλ¼0 ¼
1

2
at2: ð39Þ

We are interested in determining the effect of backreaction
on this evolution.
Standard algorithms to solve the Schrödinger equation

numerically, such as the explicit Crank-Nicholson method
with two iterations, were found to be unstable. After some
experimentation we found that Visscher’s algorithm
described in the Appendix is stable, provided we use a
very small time step for the evolution. This limited the
duration for which we could evolve the system, though it is
sufficiently long to test the CQC. The numerical solution
yields the wavefunction from which we then calculate the
expectation value of the position of the rolling particle, hxi.
(Symmetry under z → −z gives hzi ¼ 0 at all times.)
In Fig. 3 we show the dynamics of the rolling particle in

all the different treatments: first the evolution ignoring
backreaction, then the full quantum calculation for several
values of σx where backreaction is automatically included,
and finally the evolution with backreaction evaluated using
the CQC. It appears that the fully quantum treatment and
the CQC agree to better and better accuracy as σx grows
larger. To quantify this phenomenon, we also plot the
difference of quantum and CQC evolutions at a fixed time
(t ¼ 5) for different values of σx (Fig. 4). The fit to the line
gives

hxit¼5 ≈ xcqðt ¼ 5Þ þ 2

σx
: ð40Þ

Therefore the full quantum result goes to the CQC result in
the limit of large σx.
Since the wave packet spreads during time evolution,

we would also expect the agreement between CQC
and fully quantum treatment to become exact at late times.

FIG. 2. The energy in the simple harmonic oscillator versus
time (upper curve) as calculated with the CQC. The lower curve
shows the energy in the rolling particle. The interaction term
x2z2=2 is included in the energy of the simple harmonic oscillator
(upper curve). The total energy is conserved.

FIG. 3. Rolling as calculated in the different analyses for a ¼ 1,
ω0 ¼ 1 and λ ¼ 1. The dashed curve shows the classical solution,
xcðtÞ ¼ at2=2, and ignores backreaction. The gray curves show
the rolling in the full quantum treatment with σx ¼ 0.5, 1, 1.5,
2.0, with the curves getting lower with increasing σx. The lowest
(red) curve shows the rolling found using the CQC.
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To understand why this would be a reasonable expectation,
we consider the time-dependent wave packet solution for a
free particle,

ψðt; xÞ ¼ Aðt; xÞ exp
�

−
x2

2σ2x

1

1þ t2

m2σ4x

�

; ð41Þ

where Aðt; xÞ is a complex number whose modulus does
not depend on x. Note that the parameter σx quantifies the
initial width of the wave packet and is proportional to the
standard deviation on the initial position x of the free
particle. At late times the width of the wave packet grows as

σðtÞ ∼ t
σxm

: ð42Þ

So the rate of wave packet spreading is ðσxmÞ−1. This wave
packet spreading is a completely quantum effect. For a
rolling particle to behave classically, the rate of spreading
should be much less than the rate at which it rolls,

1

σxm
≪ at; ð43Þ

where a is the constant acceleration of the particle. Thus a
rolling particle behaves more classically at late times, and
the time at which it starts behaving classically occurs earlier
if the initial width of the initial wave packet is larger. Based
on this behavior of a free particle, as the rolling becomes
more classical, the CQC should become more exact, and at
late times it should match the quantum evolution.
It is therefore instructive to study the late-time scaling

behavior of the dynamics with backreaction of the rolling
particle in the CQC (Fig. 5). After an early transient phase
where the particle’s dynamics is damped and xðtÞ ∝ t1.75,
the acceleration asymptotically approaches a constant
(xðtÞ ∝ t2), albeit different from a. More precisely, the
corresponding asymptotic solution is

xðtÞ ¼ 1

2

�

a −
ffiffiffi

λ
p

2

�

t2; ð44Þ

ξðtÞ2 þ χðtÞ2 ¼ 1
ffiffiffi

λ
p �

a −
ffiffi

λ
p
2

�

t2
: ð45Þ

Notice the peculiar fact that the latter equality requires the
coupling to be bounded in order for this asymptotic
solution to exist. (For λ > 4 we find bound state solutions
[16].) This renormalization of the acceleration suggests that
the vacuum effectively provides a “quantum friction” force
of magnitude −

ffiffiffi

λ
p

=2. In principle, this scaling behavior
should also be recovered at late times in the full quantum
treatment and this can be tested numerically in our toy-
model. It turns out however that integrating the Schrödinger
equation for longer periods of time will require a lot of
computational power, or a more efficient and stable
numerical algorithm. For this reason we have only plotted
the scaling behavior of the fully quantum hxi (for σx ¼ 2)
up to t ¼ 7 in Fig. 5 and see good agreement with the CQC.
We leave a more thorough numerical analysis of the
Schrödinger equation for future work.

III. CONCLUSIONS

We have derived the CQC in the Heisenberg picture.
This shows that the dynamics of a quantum simple
harmonic oscillator with a time-dependent frequency is
given by the dynamics of two classical simple harmonic
oscillators with the same time-dependent frequency and
prescribed initial conditions. Equivalently, the quantum
dynamics can be recovered by complexifying the phase
space variables of the classical simple harmonic oscillator.
Since the modes of a free quantum field in a background
can be treated as an infinite set of simple harmonic
oscillators with time-dependent frequencies, the CQC
can be extended to field theory. Then the dynamics of a

FIG. 4. Log-log plot of hxi − xcq at t ¼ 5 showing that the CQC
becomes more exact for larger σx. FIG. 5. Log-linear plot of the scaling index ns ¼ d lnðfÞ=

d lnðtÞ for f ¼ xcq (in black) and f ¼ hxiσx¼2 (in gray). At late
times the scaling index of xcq approaches 2.
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quantum real scalar field is given by the dynamics of a
classical complex scalar field, again with prescribed initial
conditions.
The CQC provides a tool to study the backreaction of

quantum radiation on classical dynamics. We have inves-
tigated the backreaction in a toy model that involves a
particle rolling down a linear potential and coupled to other
simple harmonic oscillator d.o.f. We solved this toy
problem using the CQC and compared it to the full
quantum solution. The dynamics in the two approaches
agree remarkably well, especially as the initial quantum
state in the full treatment is taken to be more classical
(i.e., larger σx). Furthermore, the analysis using the CQC is
trivial to implement numerically, whereas the full quantum
treatment is a nontrivial numerical task.
We can also compare the CQC with the iterative semi-

classical approach to calculate the radiation and back-
reaction. There the radiation is calculated in a fixed
background, then the background equations are solved
using the radiation solution. This modifies the background
and the procedure can be repeated in the modified back-
ground. In practice only a few iterations are performed and
it is assumed that the procedure will converge. To assess the
effectiveness of this procedure, we plot the semiclassical
background xNðtÞ after N iterations of this procedure
(Fig. 6) as well as the fractional error when compared to
the CQC result (Fig. 7). (Analogous plots can be obtained
for the radiated energy.) We thus see that the iterative
procedure converges quickly for t ≤ 10, the fractional error
being at the level of the working numerical precision after
only 3 iterations. However as the time increases, more
iterations will be needed to provide a good approximation
to the full quantum problem (note that the relative error is
∼100% after only one iteration). The CQC is therefore
superior since it bypasses this iterative semiclassical
procedure and gives the exact result for all times.
We expect the CQC to have wide applicability since

quantum excitations on classical backgrounds occur in

many physical systems. The approach could prove invalu-
able in the gravitational context where one considers
quantum fields in curved spacetime. There the common
approach is to work with “semiclassical gravity” [13], i.e.,
with the Einstein equation modified to

Gμν ¼ 8πGhTren
μν i ð46Þ

where Gμν is the Einstein tensor. The right-hand side is the
expectation value of the renormalized energy-momentum
tensor of the radiation fields in a suitable quantum state—
this is the energy-momentum tensor after the vacuum
energy has been subtracted out and other bare couplings
have been adjusted to reduce the equation to the above
form. In principle semiclassical gravity and extensions may
provide an iterative scheme for calculating the backreaction
of quantum fields on the spacetime. The CQC approach
however is to solve the classical equations

Gμν ¼ 8πGTμν
0 ð47Þ

where the prime on the right-hand side denotes that it is the
classical energy-momentum tensor for the corresponding
classical fields minus the vacuum energy contribution.
(Depending on the physical situation of interest, we could
include a cosmological constant term.) This modified
Einstein equation would then be solved together with
the classical field equations

∇νTμν0 ¼ 0 ð48Þ

with suitable initial conditions as discussed in this paper.
The solution would provide the complete time dependence
of the fields as well as the spacetime. A successful analysis
in the case of gravitational collapse promises to shed light
on black hole formation and the information paradox as
already indicated in Ref. [2].

FIG. 6. Background xN vs t for increasing number N of
iterations of the semiclassical procedure (gray curves) approach-
ing the CQC result (black curve) from above.

FIG. 7. Fractional error ðxN − xcqÞ=xcq at time t ¼ 10 vs
number of iterations N.
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APPENDIX: NUMERICAL METHOD

Although our toy model Hamiltonian appears simple,
standard numerical algorithms led to severe numerical
instabilities. We eventually found the simple but effective
algorithm due to Visscher in Ref. [17] which worked for
our problem, even though we had to use very small time
steps in the evolution. The idea is to write the Schrödinger
equation in terms of the real and imaginary parts, ψR and
ψ I , of the wavefunction

∂tψR ¼ Hψ I; ∂tψ I ¼ −HψR: ðA1Þ

The novelty is that ψR is taken to be at integer time steps
while ψ I is taken to be at half-integer time steps. The

equations are then discretized in the usual way by replacing
spatial derivatives by central differences. The time deriva-
tive is also central which is seen e.g., by

ψRðtþ 1; xÞ − ψRðt; xÞ ¼ dt ×Hψ Iðtþ 1=2; xÞ ðA2Þ

As the right-hand side is evaluated half way between the
times at which the differences on the left-hand side are
evaluated, this gives second order accuracy in dt and
stability if dt is small enough [17].
The probability density at any integer time step t is

given by

Pðt;xÞ¼ðψRðt;xÞÞ2þψ Iðt−1=2;xÞψ Iðtþ1=2;xÞ: ðA3Þ

A good numerical check of the code is that the total
probability should be unity at all times and the total energy
should be conserved. Expectation values of x are calculated
using this expression for the probability density.
An estimate of the numerical error is obtained by

evolving the Schrödinger equation forward and then back-
ward in time. The final result should give hxi ¼ 0
(the initial condition). Half the deviation gives an estimate
of the numerical noise error and was negligible (∼10−7) in
our check.
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