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In gravitational collapse leading to black hole formation, trapping horizons typically develop inside
the contracting matter. Classically, an ingoing trapping horizon moves toward the center where it
reaches a curvature singularity, while an outgoing horizon moves toward the surface of the star where it
becomes an isolated, null horizon. However, strong quantum effects at high curvature close to the center
could modify the classical picture substantially, e.g., by deflecting the ingoing horizon to larger radii,
until it eventually reunites with the outgoing horizon. We here analyze some existing models of regular
“black holes” of finite lifespan formed out of ingoing null shells collapsing from I−, after giving
general conditions for the existence of (singularity-free) closed trapping horizons. We study the energy-
momentum tensor of such models by analyzing Einstein’s tensor, which describes the geometry and
give an explicit form of the metric to model a Hawking radiation reaching Iþ. A major flaw of the
models that aim to describe the formation of black holes (with a Vaidya limit on I−) as well as their
evaporation is finally exhibited: they necessarily violate the null energy condition up to I−, i.e., in a
noncompact region of spacetime.
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I. INTRODUCTION

The usual theoretical tool for describing a black hole
geometry is the Schwarzschild metric, which is still widely
used a hundred years after its discovery. It represents a
static and eternal black hole. Already at the classical level,
this static geometry does not address all the complexity of
black hole formation. In general collapse to form a black
hole, marginally outer trapped surfaces (MOTS) form
inside the contracting matter, at the location where the
expansion of outgoing null geodesic congruence θþ
changes sign, from positive to negative. These MOTS
develop into marginally outer trapped tubes (MOTT), under
regularity conditions and strict stability of the MOTS [1,2],
which moreover must persist in subsequent Cauchy slices if
the null energy condition holds [3]. In spherically sym-
metric collapses (which are our only interest here), a first
MOTS forms inside the matter and then develops into a 3D
hypersurface, a MOTT, in two directions: an outgoing
component, which moves toward the surface of the
collapsing cloud and becomes a null, isolated horizon once
it reaches it, and an ingoing component, which moves
toward the center, where the classical singularity forms

[4,5]. This general dynamical picture is observed in a
number of known analytic solutions to Einstein equations,
such as the Oppenheimer-Snyder, Vaidya, and Lemaître-
Tolman-Bondi solutions, where the first MOTS forms at the
surface, at the center, or in the bulk, respectively.
However, even these more refined dynamical geometries

remain purely classical, and cannot be fully satisfying.
Indeed the central singularity they display can be seen as an
incompleteness of general relativity and should be resolved
by a quantum theory of gravity. Moreover, the back-
reaction of Hawking radiation should be taken into account
in a fully dynamical description of black holes. It should be
noted that avoiding the classical singularity requires vio-
lating at least one of the assumptions of the Penrose
singularity theorem [6], namely global hyperbolicity, the
weak energy condition or the existence of a trapped surface.
The approach we will be taking in this article, dealing with
dynamical geometries, consists of violating the weakest of
energy conditions, the null energy condition (NEC).1

How to proceed? In the absence of a quantum theory of
gravity, we can build toy models for the formation and
evaporation of nonsingular “black holes” with resolved
singularity through the use of effective metrics, which
include quantum effects.

*Deceased.
†frederic.lamy@apc.in2p3.fr 1See Eq. (33) for a definition of the NEC.
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It may be useful to consider some potential effective
descriptions of these quantum effects, in preparation for the
day we find a quantum theory of gravity, as pointed out in
[7]. We usually work with the outgoing horizon, and the
semiclassical Hawking radiation that goes with it, but we
most often completely overlook the role of the ingoing
horizon (see, however, [4,5]), because it is thought to be
hidden behind the outgoing horizon. But what if the
shrinking dynamics of the evaporating outer horizon were
to reveal the inner regions of the black hole, making the
ingoing horizon an observable part of the collapse [8,9]?
And what if unknown quantum effects in the high curvature
region close to the center were sufficient to modify the
trajectory of the ingoing horizon, preventing it from
reaching the center and making it bounce toward the outer
horizon [10]? This last scenario would give a new per-
spective on black hole evaporation, with an effect coming
from inside the black hole and not from the emitting outer
horizon. In the present paper, we study the shrinking of the
outer horizon due to Hawking radiation, as well as the less
common quantum bounce of the inner horizon in the high-
curvature region.2

We will here be working in spherical symmetry. In this
context, the classical singularity lies at the center R ¼ 0,
where R is the areal radius of the 2-spheres of symmetry.
We also have a notion of gravitational energy, the Misner-
Sharp mass MðRÞ, which denotes the mass and gravita-
tional energy enclosed in a sphere of radius R. Although
there is no preferred foliation to define our trapped surfaces
[11], we here choose to use the symmetry of the spacetime
[12] and follow the standard approach, which consists of
working with the spherically symmetric horizons (see also
[5] for motivations). We then denote a “quasilocal horizon,”
the locus where R ¼ 2MðRÞ (a MOTS, θþ ¼ 0), and a
“trapped region,” the connected part of spacetime where
R < 2MðRÞ [13].3
When trying to regularize the black hole central singu-

larity, a first approach is to modify the Schwarzschild
metric while conserving its asymptotic structure and event
horizon in order to get a static and eternal, but singularity-
free, black hole. A possibility is to ask for a de Sitter
behavior close to the center [14,15] interpreted as an effect
of a Planckian cutoff [16], or to use nonlinear electrody-
namics as a source [17] (see also [18] and references
therein).
Another possibility is to focus on the quasilocal horizon—

which is better suited for dynamical situations such as
gravitational collapse—and see if one could use its dynamics
to regularize the singularity. Hawking [19] expressed the

possibility that a true event horizon may never form, only
“apparent horizons which persist for a period of time,” and
that therefore “there are no black holes,” in the sense of
causally disconnected regions of spacetime. This idea is
not new, having been pioneered by Frolov and Vilkovisky
[20,21], Roman and Bergmann [22], and Hajicek [23,24],
in the 1980s. More recently, Hayward applied this idea to
his trapping horizons [16,25]. He obtained a regular black
hole4 with closed trapping horizons, i.e., two trapping
horizons forming from the first MOTS and merging
together into a last MOTS, in an asymptotically
Minkowski spacetime without any event horizon (see also
[27] for a variation on this idea). Around the same time,
Ashtekar and Bojowald also proposed a similar model
[28]. Even more recently, these ideas attracted new
interest: Frolov presented other models with closed trap-
ping horizons [29–31], as well as Bardeen [10,32]. In this
paper, we will give examples of explicit metrics for the
Hayward, Frolov and Bardeen spacetimes and discuss
these various models.
Rovelli et al. suggested using the same bounce as in

Loop Quantum Cosmology—which resolves the Big Bang
singularity—but applied to black holes, calling the result-
ing regular objects “Planck stars” [33,34]. This is a similar
idea, but it adds the assumption that the matter should
bounce at critical density, therefore turning the black hole
region into a white hole region. Finally, a related, recent
idea suggests that the underlying causality of spacetime
should become nondynamical (Minkowski-like) at
Planckian energy-scales, allowing for regular bouncing
between black-hole and white-hole behaviors of the stellar
object [35,36].
The present article is organized as follows. In Sec. II,

we study general conditions to obtain singularity-free
spacetimes with closed trapping horizons, and give some
examples taken from the literature. In Sec. III, we focus
on the behavior of null geodesics in these models, and
define some relevant regions to investigate their phenom-
enology. Finally, in Sec. IV, we use Einstein’s equations
to obtain the expression of the energy-momentum tensor
(EMT) for these models and analyze the weakest of
energy conditions, the null energy condition (NEC). We
find an explicit metric that recovers a null outgoing fluid
mimicking Hawking radiation on Iþ, without having to
make junctions. We ultimately show that all models
based on the collapse of ingoing null shells—hence
(asymptotically) described by a Vaidya metric on I−,
and willing to describe Hawking’s evaporation—are
doomed to violate the energy conditions in a noncompact
region of spacetime.

2Another motivation for studying these models is the impli-
cation of the absence of singularity on the so-called black hole
information paradox. This will not be studied in detail in the
present paper.

3We use the convention G ¼ c ¼ 1.

4For an analysis of the static version of Hayward’s regular
black hole using the tools of the so-called Horizon Quantum
Mechanics (HQM), see [26]. For a general introduction to the
HQM, see [7].
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II. SINGULARITY-FREE SPACETIMES WITH
CLOSED TRAPPING HORIZONS

A. Trapping horizons in classical analytic collapse

A general feature of collapses leading to black holes is
the formation of trapping horizons [37]. These are foliated
by 2D marginally outer trapped surfaces (MOTS), which
are also called apparent horizons.5 In the course of the
collapse, a first MOTS will appear, and trapped surfaces
will then develop. In the usual, analytic black hole space-
times, the location of this first6 MOTS is known. It appears
at the surface in the Oppenheimer-Snyder (OS) homo-
geneous dust collapse (see middle panel of Fig. 1), in the
bulk of the collapsing matter for some classes of Lemaître-
Tolman-Bondi (LTB) spacetimes, and at the center in
Vaidya null-dust collapse (left panel of Fig. 1), as well
as in some other classes of LTB spacetimes [4,5]. When it is

not formed at the center, it immediately separates into an
ingoing apparent horizon and an outgoing one, where
ingoing/outgoing refers to the motion with respect to the
collapsing matter (this is a hydrodynamical concept, not to
be confused with the geometrical concept of inner/outer
trapping horizons).

B. Closed trapping horizons

The idea of closed apparent/trapping horizons was
studied in [22], where it was given the general form of
Fig. 1 (right panel). This horizon is null at four points A, B,
C, and D. Portion CB can occur in classical situations
where, for instance, a black hole receives infalling matter
for some time before becoming isolated for all subsequent
times. In such a case, the apparent horizon is spacelike
when matter is infalling, i.e., only a portion of CB. B is the
point at which infalling matter stops and the apparent
horizon becomes null, and thus indistinguishable from the
event horizon. Note, however, that an apparent horizon has
a local meaning very different from the global concept of an
event horizon, and the coincidence should stop were any
matter to fall into the black hole again. The causal behavior
of the outer horizon has been studied in the general case in

FIG. 1. Penrose-Carter diagrams for Vaidya null dust collapse (left), Oppenheimer-Snyder homogeneous dust collapse (center) and
Roman-Bergmann closed trapping horizons [22] (right). The outer horizon is represented in blue while the inner one is shown in yellow.
These are defined from [37] using the Lie derivative, along the ingoing null direction, of the expansion of outgoing null geodesic
congruence θþ: L−θþ < 0 for outer trapping horizons, L−θþ > 0 for inner trapping horizons. The horizons are drawn as a solid line
when the NEC is satisfied, and as a dashed line when it is violated.

5Concerning the nomenclature of quasilocal horizons, we will
here follow [38,39] in not making the distinction between the 3D-
trapping horizon of [37], where R ¼ 2M, and the 2D-apparent
horizon [40] that foliates it (see [5] for details). As a result, the
term “trapping horizon” will be mainly used in the following.

6Using the time-slice of the comoving observer [5].
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[1–3]: under regularity of spacetime and of a given
foliation, and strict stability of the MOTS, the outer horizon
is achronal (spacelike or null) if the Null Energy Condition
(NEC) holds. In some situations, one can also have a
timelike inner horizon, i.e., a portion of CA [4,5]. The
reason a classical black hole cannot produce a horizon on
portion ADB is the following: in spherical symmetry, when
the NEC is satisfied, an outer horizon is achronal while an
inner horizon is timelike or null (see Theorem 2 of [37], as
well as [4,25]). Therefore we must have a violation of the
NEC on portion ADB. Considerations of this portion
seldom appear in the literature, although it is inherent to
the widely discussed Hawking radiation of the outer
horizon, which produces a timelike horizon of type BD
(see Fig. 2 of [8]). Having a spacelike inner horizon of the
type AD is even less frequently considered (see, however,
Fig. 2 of [32]), but it is a way to avoid the conclusions of the
Penrose singularity theorem [6] by violating the NEC.
Wewant to stress here, in accordance with [16,20,22,32],

that one should not a priori discard any of the above
behaviors for the trapping horizon. As we still do not know
what happens (beyond general relativity) when the inner
horizon reaches the center of the configuration, or at the
end of black hole evaporation, we think it is worth
investigating these possibilities, which display a very
different phenomenology from the usual classical and
semiclassical pictures.
In the following, we will investigate the conditions

needed to achieve a regular spacetime with closed trapping
horizons of the Roman-Bergmann type. In the remainder of
this section, we will study the phenomenology of some
examples of this general class that have already been
proposed in the literature.

C. Existence of singularity-free spacetimes
with closed trapping horizons

Let us study the general conditions for the existence of a
nonsingular spacetime containing closed trapping horizons.
We will work in advanced Eddington-Finkelstein coordi-
nates, in which the metric reads

ds2 ¼ −Fðv; RÞdv2 þ 2dvdRþ R2dΩ2; ð1Þ

where R is the areal radius, dΩ2 ¼ dθ2 þ sin2 θdϕ2, F is a
function of v and R which is not yet specified. This is not
the most general spherically symmetric metric, whose
expression will be used later [Eq. (27)]. However, as
Eq. (39) will illustrate, the additional degree of freedom
(d.o.f.) of the general metric does not affect the shape of the
horizons given by the metric (1) used in the present section.
We will assume that F can be written in the following

way:

Fðv;RÞ≡ 1−
2Mðv;RÞ

R
¼ 1− 2mðvÞ

×
Rα−1 þ aα−2ðvÞRα−2 þ � � � þ a1ðvÞRþ a0ðvÞ
Rα þ bα−1ðvÞRα−1 þ � � � þ b1ðvÞRþ b0ðvÞ

;

b0ðvÞ ≠ 0: ð2Þ

Assuming that F − 1 can be written as a ratio of polynomial
functions, this is the most general form one can use to
recover Vaidya’s limit when R → þ∞. The function mðvÞ
plays the role of the Misner-Sharp mass for an observer at
infinity.

1. Conditions for the existence of closed
trapping horizons

The existence of closed trapping horizons requires the
presence of two horizons, i.e., of one marginally outer and
one marginally inner trapped surface, whose coordinates
R1ðvÞ and R2ðvÞmatch for at least two different values of v.
As mentioned in the Introduction, the locus of the

marginally trapped surfaces is defined via the expansion
of null outgoing geodesic congruence

θþ ≡ hab∇akb ¼ 0; ð3Þ
where hab is the induced metric on the 2-spheres of
symmetry and kb an outgoing radial null vector.
For the metric (1), the expansion along the null vector

ka ¼ ð1; F
2
; 0; 0Þ is θþ ¼ F

R, and thus the locations of the
horizons RðvÞ are defined by

θþ ¼ 0 ⇔ Fðv; RðvÞÞ ¼ 0: ð4Þ
Since the existence of a closed trapped region requires the
presence of two horizons, the equation Fðv; RðvÞÞ ¼ 0
should thus be at least of degree 2 in R. In this minimal case
of degree 2, one has

Fðv; RÞ ¼ 1 − 2mðvÞ Rþ a0ðvÞ
R2 þ b1ðvÞRþ b0ðvÞ

; ð5Þ

and

Fðv; RÞ ¼ 0

⇔ R2 þ ðb1ðvÞ − 2mðvÞÞRþ b0ðvÞ − 2mðvÞa0ðvÞ ¼ 0

⇔ RðvÞ ¼ mðvÞ − b1ðvÞ
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1ðvÞ − 2mðvÞÞ2 − 4ðb0ðvÞ − 2mðvÞa0ðvÞÞ

q
:

ð6Þ

Another condition is that there must exist two different v at
which R1 ¼ R2, so that the trapping horizons will be
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closed. It is thus entirely possible to choose a0ðvÞ, b1ðvÞ,
and b2ðvÞ in order to construct closed trapping horizons.
However, such a spacetime cannot be singularity free, as we
shall now see.

2. Conditions for the absence of singularities

In order to investigate the presence of a singularity in our
spacetime, we need to verify that no curvature scalar
diverges at any one point in spacetime. We will thus
compute the Ricci and Kretschmann scalars, which will
give us constraints on the parameter α in Eq. (2). They read8>>>>>>>><
>>>>>>>>:

R ¼ gμνRμν ¼ −
R2∂2F

∂R2þ4R∂F∂Rþ2Fðv;RÞ−2
R2

K ¼ RμνρσRμνρσ

¼ R4ð∂2F∂R2Þ2 þ 4R2ð∂F∂RÞ2 þ 4Fðv; RÞ2 − 8Fðv; RÞ þ 4

R4
:

ð7Þ
Let us focus on the Ricci scalar first. One has to ensure that
the expression

R2

2

∂2F
∂R2

þ 2R
∂F
∂R þ Fðv; RÞ − 1

is of at least degree 2 in R to avoid the presence of a
singularity.
First of all one notices that b0ðvÞ ≠ 0 so that F does not

diverge when R → 0. This implies that ∂2F
∂R2 will contain no

divergence, and R2

2
∂2F
∂R2 will be at least of degree 2.

Then, one can show that

2R
∂F
∂R þ Fðv; RÞ − 1

¼ −2mðvÞ
ðRα þ � � � þ b0Þ2

½� � � þ R2ð5a2b0 þ a1b1 − 3a0b2Þ

þ Rð3a1b0 − b1a0Þ þ a0b0�; ð8Þ
where the dots denote higher-order terms inR. Since b0 ≠ 0,
one must have a0 ¼ 0 and a1 ¼ 0 so that the expression in
brackets will be of at least degree 2. This means that the first
nonzero coefficient must be a2, which implies

α ≥ 3: ð9Þ
A similar reasoningwith theKretschmann scalar leads to the
same result, α ≥ 3.

3. Minimal form of F

This draws us to the conclusion that the simplest form of
F describing a spacetime without singularities and con-
taining closed trapping horizons, as well as allowing to
recover Vaidya solution when R → þ∞, will have the
general, minimal form

Fðv; RÞ ¼ 1 − 2mðvÞ R2

R3 þ b2ðvÞR2 þ b1ðvÞRþ b0ðvÞ
:

ð10Þ

Since we are interested only in the asymptotic behaviors,
we can choose for simplicity b1ðvÞ ¼ b2ðvÞ ¼ 0. Then, by
writing b0ðvÞ as b0ðvÞ ¼ 2mðvÞb2, we get

Fðv; RÞ ¼ 1 −
2mðvÞR2

R3 þ 2mðvÞbðvÞ2 ; ð11Þ

where we recover Hayward’s metric [16] when we set
bðvÞ ¼ b ¼ cst. This metric has the interesting property of
exhibiting a de Sitter limit when R → 0, on top of the
Vaidya limit when R → þ∞. The constant parameter b
plays the role of a de Sitter radius, and is interpreted as a
Planckian cutoff [16,32].

D. Examples of closed trapping horizons

For now, we have argued that the form of F given by
Eq. (11) is the most simple way of building a singularity-
free spacetime with closed trapping horizons while recov-
ering Vaidya and de Sitter limits [provided bðvÞ ¼ cst for
the latter one]. Let us then get more specific and obtain the
coordinates of the horizons from Eq. (11), before discus-
sing the details of specific models.

1. Obtaining the horizons

The location of the horizons is by definition

θþ ¼ 0 ⇔ Fðv; RðvÞÞ ¼ 0; ð12Þ

which, with our expression (11) of F, boils down to a
polynomial equation in R

R3 − 2mR2 þ 2mb2 ¼ 0: ð13Þ

Using Cardan’s method, one gets the discriminant
Δ ¼ 4m2b2ð16m2 − 27b2Þ. The equation admits at least
two distinct real solutions ifΔ > 0, and two degenerate real
solutions if Δ ¼ 0. One has

Δ ≥ 0 ⇔ m ≥
3

ffiffiffi
3

p

4
b: ð14Þ

The starting point and endpoint of the trapping horizons in

a ðR; vÞ diagram are thus defined by m ¼ 3
ffiffi
3

p
4
b. Provided

m ≥ 3
ffiffi
3

p
4
b, one finally gets three solutions for a given value

of v
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Rj ¼
4m
3

cos

�
1

3
arccos

�
1 −

27b2

8m2

�
þ 2ðj − 1Þπ

3

�
þ 2m

3
;

j ¼ 1; 2; 3: ð15Þ

R1 and R3 are the only positive solutions, describing the
outer and inner trapping horizons respectively. In the case
where b ≪ m (e.g., when b is a Planckian cutoff),
expanding these solutions in terms of b=m leads to

�
R1 ¼ 2m − b2

2m þ oðb2mÞ;
R3 ¼ bþ b2

4m þ oðb2mÞ:
ð16Þ

2. Hayward-like model

Hayward presented in [16] a simple model describing the
formation and evaporation of a trapped region, relying on
the form (11) of the metric with a constant Planckian cutoff
b. He chose a symmetric function mðvÞ containing a
plateau that describes similarly the formation and the
evaporation phases. We have here used the following form
for mðvÞ and b:

mðvÞ ¼ R0 exp

�
−
ðv − v0Þ2

σ2

�
; ð17Þ

b ¼ R0

5
; ð18Þ

which is plotted on Fig. 2 (left) and where R0 ¼ 100,
v0 ¼ 1000, and σ ¼ 400. Here we chose a macroscopic
value for b solely for pedagogical reasons, so that the inner
horizon would be distinguishable from the horizontal axis
on Fig. 2 (right). This model, although it displays closed
trapping horizons and no singularity, suffers from certain
limitations in its physical interpretation.
First of all, let us consider the NEC along the ingoing

radial null direction lμ:

Tμνlμlν ¼ −
1

32πR
∂F
∂v ¼ 1

16π

m0ðvÞR4

ðR3 þ 2mðvÞb2Þ2 ≥ 0; ð19Þ

whereTμν is the energy-momentum tensor (EMT).We see that
the NEC is violated when m0ðvÞ < 0, which happens along
lines of constant v ≥ v0, v0 being the time when the outer
horizon starts shrinking. This is problematic, since it would
imply a violation of the NEC in regions arbitrarily far from the
collapsed body (e.g., v ¼ cst,R → þ∞). In Sec. IV, we show
that this limitation is inherent to the black-hole models
asymptotically constructed using ingoing Vaidya shells.
Another limitation in the physical interpretation is the

symmetry in the outer trapping horizon growing and
shrinking. The increase in horizon radius physically comes
from the inflow of matter or radiation into the trapped
region, while its decrease must come from Hawking
radiation. There is no reason why these two effects should
show the same scaling, which they do in Hayward’s model
[see Fig. 2 (right)].
Moreover, the reason why the inner trapping horizon is

quantum mechanically held at a fixed distance from the
center is not clear, and this feature appears to be quite
artificial. Last, as noticed in [34], this model does not allow
for a time delay between the center of the cloud and infinity
since F → 1 when R → 0 as well as R → þ∞.
We will call Hayward-like models those that exhibit

symmetric phases of formation and evaporation while their
inner horizon’s radius remains at a Planckian distance from
the center R ¼ 0.

3. Frolov’s model

Frolov’s construction [30] aims at modeling the
Hawking evaporation, and thus introduces a dissymetry
between the formation and the evaporation phases. F has
the same form as in Hayward’s model, but here the mass
function is defined by parts

8>>><
>>>:

−∞ < v < v0 ∶mðvÞ ¼ 0;

v0 < v < 0 ∶mðvÞ=b ¼ ðm0=bÞ3 þ v=b;

0 < v < v1 ∶ðmðvÞ=bÞ3 ¼ ðm0=bÞ3 − v=b;

v1 < v < þ∞ ∶mðvÞ ¼ 0;

ð20Þ

where v, mðvÞ and m0 ¼ 4 are expressed in units of b. The
form of mðvÞ during the evaporation phase (0 < v < v1) is

FIG. 2. Hayward-like model. The mass function (left), as well as the outer and inner apparent horizons (right) are plotted.
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chosen so that one recovers the correct scaling for the mass
loss _m due to Hawking radiation, i.e.,

_m ∼ −C
�
mPl

m

�
2

; ð21Þ

where C is a coefficient depending on the details of the
emitted particles, and mPl is the Planck mass. This gives a
more realistic description of the evaporation process than
Hayward’s symmetric model. The obtained shapes for the
parameter functions and for the horizons are shown
in Fig. 3.
However, this model still displays some important

limitations from the point of view of the physical inter-
pretation: the violation of the NEC at infinity when the
outer trapping horizon starts shrinking, the constancy of the
inner trapping horizon radius, and the absence of time delay
between the center and infinity.

4. Bardeen-like model

In the two previous models, we have noticed that the
inner horizon stays at a nearly constant and small radius R.
This results directly from the expansion (16), which implies
that the inner horizon radius is essentially given by the
constant Planckian cutoff b.
However, one of Bardeen’s main points in [32] depends

on giving a dynamics to the inner horizon. More precisely,
Bardeen argues that some Hawking pairs will be created at
the inner horizon, which will begin to grow due to Bousso’s
covariant entropy bound [41] and finally reach the outer
horizon at macroscopic scales. We will thus call Bardeen-
like models those that exhibit such a property of the inner
horizon [Fig. 4 (right)]. We have tried to explicitly recover
this model with the following parameter functions, plotted
on Fig. 4 (left):

mðvÞ ¼ R0 exp

�
−
ðv − v0Þ2

σ2

�
; ð22Þ

bðvÞ ¼ R0 exp

�
−
ðv − v00Þ2

σ02

�
þ b0; ð23Þ

where R0 ¼ 100, v0 ¼ 1000, v00 ¼ 800, σ ¼ 400,
σ0 ¼ 200, b0 ¼ 5.
Once again, this model possesses important limitations

in its physical interpretation: the NEC is violated in a
noncompact region as soon as the outer trapping horizon
starts shrinking, and the time delay between the center and
an asymptotic clock is absent.
Another model of nonsingular black hole, based on the

metric (1) with a function Fðv; RÞ given by Eq. (11) and
known as a Planck star, is free from some of these
limitations: the NEC is violated in a compact neighbour-
hood of the source and the time delay in the core is present
[34]. However, this model is static, with fixed values for the
radii of the outer and inner trapping horizons, and therefore
cannot describe the dynamics of the formation and evapo-
ration of a closed trapped region.
Before presenting in Sec. IV our attempt to answer the

aforementioned limitations of the models that are found in
the literature, let us investigate in more detail in Sec. III
some properties shared by all these models.

III. BEHAVIOR OF NULL GEODESICS IN
MODELS WITH CLOSED TRAPPING HORIZONS

The above models do not possess any event horizon
since they are dynamic and aim to describe a trapped region
that will eventually be fully evaporated, leaving no region
of spacetime causally disconnected from future null infin-
ity. It is nonetheless of interest to study the relevant
geodesics of such spacetimes.

A. Null geodesic flow

The radial null geodesics for metric (1),

ds2 ¼ −Fðv; RÞdv2 þ 2dvdRþ R2dΩ2; ð24Þ

are given by

ds2 ¼ 0 ⇔

� dv ¼ 0;
dR
dv ¼ Fðv;RÞ

2
:

ð25Þ

FIG. 3. Frolov’s model. The mass function (left), as well as the outer and inner apparent horizons (right) are plotted.
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In the case of Minkowski spacetime, F ¼ 1 and the radial
null geodesics are trivial since the lightcone is the same at
each point of spacetime. In a ðv; RÞ diagram, ingoing radial
null geodesics are v ¼ cst lines, while outgoing radial null
geodesics are lines of slope 1=2; this is the behavior we will
recover far from the trapped region.
When the metric is not trivial, the outgoing radial null

geodesics will differ from straight lines in the ðv; RÞ
diagram. This can been seen in Fig. 5 (left), where we
have plotted these geodesics for a Schwarzschild metric
(with M ¼ 1). Visualizing the outgoing geodesics reveals
the existence of an event horizon: the light cone prevents
any matter or light from the region R < 2 from escaping,
and this is the case for all v. Therefore there exists a region
of spacetime that cannot communicate with Iþ, and this
region is by definition bounded by an event horizon.
In our models [e.g., the Hayward-like model, Fig. 5

(right)], no event horizon appears. However, trapping
horizons develop, and are not necessarily tangent to the
light cones. Indeed, trapping horizons are dynamical and
can be spacelike, null, or timelike [37].

B. Frolov’s separatrix and quasi-horizon

In spite of the absence of a region causally disconnected
from future null infinity, there is still a nontrivial behavior
of the radial null outgoing geodesics due to the trapped
region, which is interesting to investigate. In particular,
since the apparent horizon can now be timelike and
therefore traversable, we may want to look for an alter-
native surface that would not be traversable from the inside.
This surface is easily found to be that generated by the
radial null outgoing geodesic, which passes through the last
trapped sphere, i.e., point D of Fig. 1. It is the last radial
null outgoing geodesic to leave the trapped region (in terms
of time v, see Fig. 6), and we may call it the D-geodesic.
This boundary of the no-escape region (a region which has
a finite lifetime here) is dubbed “quasi-horizon” in [29]: it
traps all the matter it contains until the final evaporation of
the trapped region.
It was also suggested in [29] to use the separatrix of the

null outgoing radial vector field, defined by the vanishing
of d2R

dv2 for the geodesics of Eq. (25), dR
dv ¼ F

2
. This yields

FIG. 4. Bardeen-like model. The mass function (left), as well as the outer and inner apparent horizons (right) are plotted.

FIG. 5. Plot of the outgoing (in red) and ingoing (in green) null vectors depicting the lightcone of Schwarzschild (left) and Hayward-
like (right) spacetimes. In Schwarzschild’s case there is only one horizon (in blue), which is a null hypersurface for all v hence called
event horizon. As regards the Hayward-like geometry, the outer (in blue) and inner (in yellow) trapping horizons are successively
timelike, null, and spacelike.
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∂vF
2

þ dR
dv

∂RF
2

¼
_F
2
þ FF0

4
¼ 0 ⇒ 2 _F þ FF0 ¼ 0;

ð26Þ
where a dot (resp. prime) denotes a derivative with respect
to v (resp. R). This surface characterizes the strength of the
trapping of light rays inside the trapped region: on one side
of the separatrix the light rays are more and more trapped,
whereas they are less and less so on the other side. When
this surface is a null outgoing geodesic in the trapped
region, it is not possible for light rays to cross it from inside
to outside, and they are doomed to become ever more
trapped. This is the case with the Schwarzschild black hole,
where F ¼ 1–2M=R and M is a constant. Then Eq. (26)
yields R ¼ 2M and the separatrix coincides with the
apparent horizon which, in this case, is also an event
horizon (and of course also a quasi-horizon).
However, in general, the separatrix is not lightlike but it

can be timelike, and therefore null outgoing geodesics may
traverse it. This is visible in Fig. 6, where all the solutions

to Eq. (26) have been plotted in red. In this case it cannot
coincide with the D-geodesic (or “quasi-horizon”), and
consider the latter notion to be the relevant one in the study
of the region of nonescaping matter and radiation.
In [29], closed trapping horizons are built, with the

separatrix and D-geodesic taken as synonymous, most
certainly because the separatrix is close to being null in
this particular case. We nevertheless stress the fact that in
general, the two notions are distinct.

C. Relevant null geodesics for closed trapping horizons

We defined above the D-geodesic, called quasi-horizon
by Frolov, which enables us to divide all particles (massive
or massless, radial or not) located in the trapped region into
two categories: those exiting this region through the outer
horizon, and those exiting through the inner one.
Other regions are relevant for the study of models of

closed trapping horizons, and can be defined by using

FIG. 6. Example of separatrix (in red) and D-geodesic (in green) for Frolov’s model with b ¼ 1, m3
0 ¼ 4. The field of outgoing null

vectors (blue arrows) illustrates that the separatrix is traversable by outgoing null or timelike matter, while the D-geodesic is not.

FIG. 8. Frolov’s model. There is no point B since mðvÞ is not
differentiable.FIG. 7. Hayward-like model.
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radial null outgoing geodesics that go through not only D
but also points A, B, and C of Fig. 1. Some of these
geodesics are plotted on Figs. 7–9. The A-geodesic goes
through the last point (in terms of v) at which the inner
horizon is null. This curve thus bounds from above the
region of spacetime whose content is causally prevented
from going into the trapped region. The B-geodesic goes
through the first point (in terms of v) at which the outer
horizon is null. It represents the first geodesic (in terms of
v) able to escape from the trapped region. Finally, it may
also be interesting to define the C-geodesic as the geodesic
that goes through the point of formation of the two
horizons. It divides massless outgoing particles located
in the trapped region into two categories: those which
entered via the outer horizon, and those which entered via
the inner horizon.
These geodesics allow us to define (at least) two zones of

spacetime that have a physical significance: (i) all massless
outgoing particles of the trapped region that do not exit by
the outer horizon must belong to a zone bounded by the A-
geodesic and theD-geodesic; and (ii) all Hawking particles
emitted from the outer horizon must belong to a zone
bounded by the B-geodesic and A-geodesic.
The A and D-geodesics are plotted below for the three

different models. In each model these two geodesics
quickly tend toward those of Minkowski’s spacetime (slope

1=2) after the disappearance of the trapped region. They
delineate a corridor whose largest version is associated with
the Bardeen-like case.

IV. ENERGY-MOMENTUM TENSOR

Until now we have provided a geometry describing the
formation and evaporation of closed trapping horizons
without singularity, while requiring solely that we recover
the appropriate Vaidya and de Sitter limits. It is now
necessary to study the associated energy content, given
by the Einstein tensor via Einstein’s equations, in order to
ensure that this content is physical. A first hint can be
provided through analysis of the energy conditions, and
particularly of theweakest of all: the NEC. This will indicate
us that an extra d.o.f. is needed in the metric in order to
describe all phases of the formation and evaporation of the
trapped region. We will then obtain an explicit form of F
describing the formation of a trapped region from an ingoing
null shell and its evaporation into an outgoing null shell.

A. Form of the energy-momentum tensor

Let us start with the most general spherically symmetric
metric in advanced Eddington-Finkelstein coordinates,
encoding a new d.o.f. through function ψ :

ds2 ¼ −Fðv; RÞe2ψðv;RÞdv2 þ 2eψðv;RÞdvdRþ R2dΩ2:

ð27Þ

This form will prove to be useful later on, since we will
show that no evaporation can occur with a constant ψ . By
virtue of Einstein’s equations, the energy-momentum
tensor can be written as

T ¼ Tvvdv ⊗ dvþ TvRðdv ⊗ dRþ dR ⊗ dvÞ
þ TRRdR ⊗ dRþ Tθθðdθ ⊗ dθ þ sin2 θdϕ ⊗ dϕÞ;

ð28Þ

with

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

8πTvv ¼ − 1
R2

�
RFðv; RÞe2ψðv;RÞ ∂F∂R þ Fðv; RÞ2e2ψðv;RÞ þ Reψðv;RÞ ∂F∂v − Fðv; RÞe2ψðv;RÞ

�

8πTvR ¼ 1
R2

�
Reψðv;RÞ ∂F∂R þ Fðv; RÞeψðv;RÞ − eψðv;RÞ

�

8πTRR ¼ 2
R
∂ψ
∂R

8πTθθ ¼ e−ψðv;RÞ
2

�
2R2Fðv; RÞeψðv;RÞ

�
∂ψ
∂R
�

2

þ 2R2Fðv; RÞeψðv;RÞ ∂2ψ∂R2 þ R2eψðv;RÞ ∂2F∂R2 þ 2Reψðv;RÞ ∂F∂R þ 2R2 ∂2ψ
∂v∂R

þ
�
3R2eψðv;RÞ ∂F∂R þ 2RFðv; RÞeψðv;RÞ

�
∂ψ
∂R
�

FIG. 9. Bardeen-like model.
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In the following, we will attempt to compare our energy
content to the one of a pure Vaidya spacetime. Indeed, the
collapse of an ingoing null shell described by an ingoing
Vaidya metric is a natural candidate for the formation
phase of the trapped region written in ðv; RÞ coordinates.
Moreover, the Hawking radiation associated with the
evaporation phase can be described at first order by a flux
of outgoing photons, hence the use of an outgoing Vaidya
metric. To that purpose, let us write our energy-momentum
tensor as follows:

T ¼ Tkkk ⊗ kþ Tlll ⊗ lþ Tklðk ⊗ lþ l ⊗ kÞ
þ Tθθðdθ ⊗ dθ þ sin2θdϕ ⊗ dϕÞ; ð29Þ

where l and k are two independent null covectors, respec-
tively ingoing and outgoing. Notice that it is always
possible to write the energy-momentum tensor under this
form under the assumption of spherical symmetry; the
coefficients Tkk, Tll and Tkl depend solely on the non-
spherical components of the metric.
To get to the form (29), one needs the expressions of the

outgoing and ingoing radial null covectors k and l

�
k ¼ − F

2
e2ψdvþ eψdR;

l ¼ −2dv;
ð30Þ

where the normalization k · l ¼ −2 has been chosen.
One then obtains

�
dv ¼ − 1

2
l;

dR ¼ e−ψk − Feψ
4
l:

ð31Þ

Plugging (31) into (28) finally leads to8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

8πTkk ¼ 8πTRRe−2ψ ¼ 2e−2ψðv;RÞ∂ψ∂R
R ;

8πTll ¼ 8π

�
Tvv
4
þ Feψ

4
TvR þ F2e2ψ

16

�

¼ Fðv;RÞ2e2ψðv;RÞ∂ψ∂R−2eψðv;RÞ∂F∂v
8R ;

8πTkl ¼ 8π

�
− e−ψ

2
TvR − F

4
TRR

�

¼ − RFðv;RÞ∂ψ∂RþR∂F∂RþFðv;RÞ−1
2R2 :

ð32Þ

B. NEC violation

As we have already mentioned in Sec. II B, models of
trapped region with closed horizons require a violation
of the NEC on the interval ADB of Fig. 1. When the NEC
is violated, so are all the energy conditions. It is thus of
interest to verify that this violation occurs in a region of
finite size, i.e., that the violation is confined to a compact
region of spacetime.

Recall that the NEC is expressed as follows: for all null
vector nμ,

Tμνnμnν ≥ 0: ð33Þ

Using the covectors l and k as long as Eqs. (29) and (32),
the NEC then reads

(
Tμνkμkν ¼ Tkk ¼ 2e−2ψðv;RÞ∂ψ∂R

8πR ≥ 0;

Tμνlμlν ¼ Tll ¼ Fðv;RÞ2e2ψðv;RÞ∂ψ∂R−2eψðv;RÞ∂F∂v
64πR ≥ 0:

ð34Þ

Let us now focus on the cases of the models developed
above, namely the Hayward, Frolov, and Bardeen-like
models. In this case, ψðv; RÞ ¼ 0 and the NEC condition
boils down to

�
Tkk ¼ 0 ≥ 0;

Tll ¼ − 1
32πR

∂F
∂v ≥ 0:

ð35Þ

A necessary condition for the NEC to be satisfied is
∂vF ≤ 0. Considering the form of F (11) and taking
R → þ∞, one recovers the standard ingoing Vaidya metric

F ¼ 1 − 2MðvÞ
R . This means that the NEC is violated at

infinity as soon as M becomes a decreasing function of v.
Using the previous calculations for various models, one
sees in fact that there exists a line dividing the whole
spacetime into a NEC-satisfying and a NEC-violating
region (in Fig. 10, the NEC line represents ∂vF ¼ 0).

C. Explicit EMT for the formation and evaporation
of a nonsingular trapped region

1. Conditions of the EMT

The requirements of the EMT for obtaining a transition
from the collapse of a null ingoing Vaidya shell to a
Hayward-like nonsingular trapped region, which then
evaporates forming a null outgoing Vaidya shell on Iþ,
are the following:

FIG. 10. NEC violation in Bardeen-like model.
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Tll ≫ Tkk; Tkl; Tθθ on I−;

Tkk ≫ Tll; Tkl; Tθθ on Iþ: ð36Þ

We also demand that the NEC be satisfied up to infinity,
thus

Tll; Tkk ≥ 0 on I− and Iþ: ð37Þ
The Iþ and I− limits are characterized by v → þ∞ and
u → −∞, where u ¼ v − 2R. We can define all functions in
terms of u and v, which gives

8>>><
>>>:

Tkk ¼ − e−2ψðu;vÞ∂uψ
2πðv−uÞ ;

Tll ¼ − Fðu;vÞ2e2ψðu;vÞ∂uψþeψðu;vÞ∂F∂v
32πðv−uÞ ;

Tkl ¼ Fðu;vÞ∂uψþ∂uFþFðu;vÞ−1
v−u

8πðv−uÞ :

ð38Þ

In order to obtain an explicit energy-momentum tensor
describing the formation and evaporation of a nonsingular
trapped region, we will have the freedom to choose ψ .
Indeed, this function will not affect the form of the horizons

θþ ¼ Fðv; RÞeψðv;RÞ
R

¼ 0 ⇔ F ¼ 0: ð39Þ

We can thus look for a function ψ to model the gravitational
collapse and Hawking radiation while keeping the horizons
of the Hayward, Frolov, or Bardeen cases; this is the
purpose of the next two subsections.

2. Choice of ψ on I +

Let us start by describing the phase of evaporation of the
trapped region, mimicking the Hawking radiation by the
energy-momentum tensor of an outgoing Vaidya metric.
The component that must dominate all others is

Tkk ¼ −
e−2ψðu;vÞ∂uψ

πðv − uÞ : ð40Þ

It is thus clear that ψ must not be a constant in order to
obtain a flux of Hawking radiation on Iþ. For simplicity
we can choose ψ of the form ψ ¼ ψðuÞ. This allows us to

avoid a violation of the NEC on Iþ, as well as to recover
Minkowski’s metric there (up to a rescaling of the advanced
time v). Furthermore, with the intensity of the Hawking
flux being driven by Tkk, hence by ∂uψ, we are looking for
a function ψ with an important slope for a given interval of
u (the phase of Hawking radiation) and that tends toward a
constant value for large u. The following function meets all
the above criteria:

ψðuÞ ¼ arctan ð1000 − uÞ: ð41Þ

This leads to

Tkk ¼
expð−2 arctanð1000 − uÞÞ
πð1þ ðv − uÞ2Þðv − uÞ ;

Tll ¼ −
expðarctanð1000 − uÞÞ

32πðv − uÞ

×

�
∂vF −

expðarctanð1000 − uÞÞF2

1þ ð1000 − uÞ2
�
: ð42Þ

On Iþ, v → þ∞, and we immediately have Tkk → 0þ. As
concerns Tll, ∂vF → 0 and the second term thus dominates
in the bracket. Hence, Tll → 0þ on Iþ as well.
In Fig. 11, one can see that for large positive values of v,

the biggest values of Tkk are centered on u ≈ 1000.
Finally, it can be seen in Fig. 12 that abruptly after u ¼

1000 and at large v, Tkk dominates the other components of
the energy-momentum tensor. This outgoing Vaidya-like
behavior mimics the beginning of Hawking’s radiation.

3. Choice of ψ on I −

We will now focus on the choice of ψ on I−, giving
three conditions that must be fulfilled in order to recover
Vaidya’s metric without a NEC violation on I− [Eq. (46)].
As explained in Sec. IV B, choosing ψ ¼ 0 leads to a
violation of the NEC on all v ¼ cst slices as soon as m
begins to decrease (v > 1000 in the Hayward-like model).
In order to avoid this violation of the NEC on I−, one has to
carefully study the sign of the following components of the
EMT:

FIG. 11. Plots of Tkk as a function of v for u ¼ 500, 700, 900, 1100, 1300, 1500.
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(
Tkk ¼ − e−2ψðu;vÞ∂uψ

πðv−uÞ ;

Tll ¼ − eψðu;vÞ
32πðv−uÞ ½F2eψðu;vÞ∂uψ þ ∂vF�:

ð43Þ

First, choosing a function ψ such that ∂uψ ≤ 0 for u → −∞
ensures that Tkk is nonnegative on I− [this translates into
condition (ii) in Eq. (46)]. As concerns Tll, the term inside
the brackets must be negative for u → −∞. Let us study the
sign of ∂vF, assuming a form for F boiling down to an
ingoing Vaidya metric near I−:8<

:
Fðv; RÞ ¼ 1 − 2Mðv;RÞ

R ;

lim
v¼cst
R→þ∞

Mðv; RÞ ¼ mðvÞ: ð44Þ

Since R ¼ ðv − uÞ=2, the leading term of ∂vF on I− is

∂vF ≃
4∂vmðvÞ

u
: ð45Þ

Therefore, as long as mðvÞ is increasing, Tll → 0þ on I−,
assuming that we keep ψ such that ∂uψ ≤ 0.
However, as soon as mðvÞ begins to decrease, this leads

to ∂vF → 0þ on I−. Since ∂uψ ≤ 0, we have to study
carefully the sign of Tll. On I−, F → 1 and we require that
eψðu;vÞ → cst so that we recover Vaidya’s metric there: this
is our condition (i) in Eq. (46) below. Hence, the study of
the sign of Tll comes down to the comparison of the

dominant terms of ∂uψ and ∂vF ≃ 4∂vmðvÞ
u [condition

(iii) below]. Ultimately, finding ψðu; vÞ boils down to
satisfying simultaneously the three following conditions:

ðiÞ lim
u→−∞

ψðu; vÞ ¼ a; a ∈ R:

ðiiÞ lim
u→−∞

∂uψðu; vÞ ¼ b; b ∈ R−:

ðiiiÞ ∂uψ ≤
1

u
for large enough juj; with u < 0:

ð46Þ
It appears that conditions (i) and (iii) are incompatible.
Indeed, after integrating (iii) we get

c0 − ψðu; vÞ ≤ c1 − logð−uÞ; ð47Þ
where c0 and c1 are integration constants. Hence,

ψðu; vÞ ≥ logð−uÞ þ c0 − c1 →
u→−∞

þ∞: ð48Þ

ψðu; vÞ can thus be made arbitrarily large in absolute value,
in contradiction with (i).
Finally, we have shown that every spacetime equipped

with a metric of the ingoing Vaidya form (44) near I−,
hence satisfying (i), will violate condition (iii) and thus the
NEC in a noncompact region as soon as mðvÞ decreases.
This applies, in particular, to the models of Hayward,
Frolov, and Bardeen, which mimic the Hawking evapora-
tion through a decreasing function mðvÞ.

V. CONCLUSION

In gravitational collapse forming black holes, the first
MOTS usually forms inside the contracting matter, and
then evolves into inner and outer trapping horizons.
Classically, a singularity forms when the inner horizon
reaches the center of the cloud, while the outer horizon
asymptotes to the usual event horizon. In other words, the
appearance of a singularity stops the evolution of the inner
trapping horizon, while the outer one eventually becomes
isolated and null when all neighboring matter has fallen in.
It is usually thought that it is this horizon that has to be
monitored in order to understand the behavior and fate of
the black hole, especially through the quantum emission of
Hawking radiation; but the outer horizon is certainly not the
only place to look for significant quantum effects.
It is clear that the status of the singularity is not

well defined when quantum effects are taken into
account: they may very well regularize the classical
singularity. In this case, there is currently no way to tell
whether the inner horizon would still be stopped, or what
subsequent evolution it would have; it could even be the
locus of instabilities [42]. The possibility is therefore
completely open for the evolution of the inner horizon
to be greatly affected by these quantum effects, for instance
to experience a bounce around the Planck scale as in the

FIG. 12. Plots of Tll
Tkk

(left) and Tkl
Tkk

(right) as a function of v for u ¼ 999, 1000, 1001.
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Bardeen-like model and be rejected to larger radii, even-
tually reaching the outer trapping horizon. This would lead
to the vanishing of all spherically symmetric trapped
surfaces in the spacetime, and to a very different picture
from the usual black-hole paradigm and the related infor-
mation-loss paradox. There would only be an asymptoti-
cally flat spacetime, with contracting matter forming a
trapped region that would last for some time before
disappearing. This would also be the case with the
Hayward-like model where the outer horizon shrinks due
to Hawking radiation before joining the inner horizon at
microscopic values. These scenarios of closed trapping
horizons cannot be dismissed and have to be examined.
After exposing this idea, we derived the minimal con-

ditions for obtaining a nonsingular spacetime with closed
trapping horizons. We obtained a minimal form of the
metric corresponding to a generalization of Hayward’s
metric [16]. We then reviewed some important existing
models [16,29,32] within this framework, listing their
advantages and limitations. In particular, they all display
the physical limitation of having a violation of the NEC in a
noncompact region up to null infinity as soon as the mass
starts decreasing. We then studied the behavior of radial
null geodesics in such spacetimes, trying to identify the
most relevant hypersurfaces in the study and characteriza-
tion of these models. Finally, we endeavored to build a
spacetime of the above kin but without the physical
limitations previously listed, and analyzed the physical
content of the energy-momentum tensor by analyzing the
Einstein tensor. We derived the conditions for avoiding a
violation of the NEC in a noncompact region, and the
requirements of the EMT at past and future null infinities
for having a physical fluid satisfying the NEC. We found
that while it is possible to have the desired behavior on Iþ

via the introduction of a suitable function ψ , it is not on I−.
Therefore, it is not possible to construct a nonsingular
spacetime with closed trapping horizons, asymptotically
originating from a Vaidya collapse, that violates the NEC in
a compact region only. In particular, the numerous pro-
posals based on a Hayward-like metric will all share this
limitation. Therefore, one would have to look for a more
complicated collapse than the one starting from I− with an
ingoing null fluid in order to achieve the goal of having
closed trapping horizons with a localized violation of
the NEC.
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