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We consider extended covariant teleparallel ðfðTÞÞ gravity whose action is analytic in the torsion scalar
and which is sourced by an suð2Þ valued Yang-Mills field. Specifically, we search for regular solutions to
the coupled fðTÞ-Yang-Mills system. For fðTÞ ¼ T, not surprisingly, the Bartnik-McKinnon solitons of
Einstein Yang-Mills theory are recovered. However, interesting effects are discovered with the addition of
terms in the action which are nonlinear in the torsion scalar, which are specifically studied up to cubic order.
With the addition of the nonlinear terms the number of regular solutions becomes finite. As well, beyond
critical values of the coupling constants it is found that there exist no regular solutions. These behaviors are
asymmetric with respect to the sign of the nonlinear coupling constants and the elimination of regular
solutions turns out to be extremely sensitive to the presence of the cubic coupling. It may be possible,
therefore, that with sufficiently high powers of torsion in the action, there may be no regular Yang-Mills
static solutions.
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I. INTRODUCTION

It is well known that general relativity, with its curvature
description of the gravitational interaction, is a highly
successful theory of gravity. Interestingly there is an
equivalent theory which is purely torsion based, and
therefore possesses no curvature. This other theory has
become known as the teleparallel equivalent of general
relativity (TEGR). This torsion theory of gravity, along
with its extensions, known as extended teleparallel gravity
or fðTÞ gravity has gained much interest in the past few
decades within the realm of modified gravity theories.
Arguably the greatest amount of work has been performed
in cosmology [1–6] and it has been shown that fðTÞ gravity
may be able to naturally yield dark matter and dark energy
effects [7–10]. As well, fðTÞ gravity has been applied to
the study of relativistic stellar structure [11–14] and, to a
lesser extent, black holes [15–19]. In relevance to electro-
magnetism, teleparallel gravity has been used in a number
of interesting studies [20,21,22].
To date, we are unaware of any studies dealing with non-

Abelian fields coupled to teleparallel gravity. In the realm
of general relativity the Einstein Yang-Mills (EYM) system
possesses some fascinating features [23]. There are, e.g.,
the famous discrete regular solutions of Bartnik and
McKinnon [24] where it is found that an infinite family of

regular magnetic solutions exist to the static spherically-
symmetric EYM system but only for discrete values of the
“tuning parameter” [25,26], chosen by Bartnik and
McKinnon to be the second derivative of the Yang-Mills
potential. This sort of behavior was found earlier in the
Einstein-Maxwell-Klein-Gordon system by Das and
Coffman [27]. Since then work has been extended to
include Higgs fields [28–30], and symmetries relaxed to
the more general axial symmetry as well as non asymp-
totically flat solutions [31–34]. Some studies have also been
done regarding Einstein Yang-Mills black holes [35–38].
Some work has also been done within certain theories of
quantum gravity [39] as well as in curvature basedmodified
gravity [40].
We wish here to bring the study of non-Abelian Yang-

Mills fields to the realm of teleparallel gravity. Specifically
we consider an fðTÞ action which may either be considered
exact, or a representation of low-order terms in a more
general action analytic in torsion. To this an SUð2Þ Yang-
Mills field is minimally coupled and regular static solutions
to the resulting system of equations are sought. By regular
we mean that there is no singularity in the Yang-Mills
electric and magnetic fields, and no singularity in the
spacetime. We also do not consider cases with horizons. In
TEGR the regular solitons of Bartnik-McKinnon are
recovered, which is to be expected given its equivalence
to general relativity. However, some interesting differences
manifest when the theory deviates from TEGR: The infinite
family of regular solutions becomes finite and, beyond
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critical values of the nonlinear coupling constants there
are no regular solutions. This feature seems to be particu-
larly sensitive to the presence of higher order terms in the
action.

A. Covariant f ðTÞ gravity in brief

The extended teleparallel action is given by1

S ¼
Z �

1

16π
fðTÞ þ Lmatter

�
detðhα̂μÞd4x; ð1Þ

where hα̂μ represents the tetrad, which must meet the metric
compatibility condition

hα̂μhα̂ν ¼ gμν: ð2Þ

The quantity fðTÞ is some function of the torsion
scalar, which is constructed out of the torsion tensor,
Tα

βγ . This, in turn, is defined from the commutator of
the flat Weitzenböck connection Γσ

βγ , supplemented with
spin connection, ωα̂

β̂σ via

T α̂
μν ¼ hα̂σðΓσ

νμ − Γσ
μνÞ ¼ ∂μhα̂ν − ∂νhα̂μ

þ ωα̂
β̂μh

β̂
ν − ωα̂

β̂νh
β̂
μ: ð3Þ

Explicitly, the torsion scalar itself is constructed as:

T ≔
1

4
TαβγTαβγ þ 1

2
TαβγTγβα − Tαβ

αTγβ
γ . ð4Þ

Before continuing, the perhaps unfamiliar presence and
role of the spin connection above requires some discussion.
Without the spin connection one has the “traditional” form
of teleparallel gravity. As long as one is limited to the action
linear in T there is no harm in ignoring the spin connection
and working within the traditional form of the theory.
However, it was soon realized that if one wishes to extend
the Lagrangian to include terms nonlinear in T, forming
what is known as extended teleparallel gravity, one runs
into the issue of violation of local Lorentz covariance
[41–44]. That is, the equations of motion, along with
physical observables, cannot generally be formulated in a
Lorentz covariant manner. This then requires one to search
for a particular tetrad, which obeys the condition (2) but
which is also compatible with a vanishing spin connection.
These are known as “good” tetrads [41]. This presents a
serious drawback to the traditional theory in that metric
compatibility [via (2)] is an insufficient criterion for the
tetrad and one runs into the possibility of having a metric

compatible tetrad which does not yield Lorentz covariant
equations of motion. It has been generally realized that to
restore full covariance to the theory, the spin connection
cannot be ignored and must play a role [42,43,44]. Some
interesting progress has been made on this front in the last
few years [45–47].
As we will be working with extended teleparallel

Lagrangians, the spin connection will be utilized so that
we may use a simple tetrad, and therefore the requirement
of the concern for whether it is a “good” or “bad” tetrad
is eliminated. The method introduced in [45] to restore
covariance is robust in static spherical symmetry in
curvature coordinates, and hence we will utilize the scheme
in [45] in order to calculate the spin connection. In brief, if a
line-element is used of the form

ds2 ¼ −A2ðrÞdt2 þ B2ðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2; ð5Þ

with r the usual radial coordinate, then one can calculate the
appropriate spin connection (see [45,48,14] for details) as:

ωr̂ θ̂
θ ¼ −ωθ̂ r̂

θ ¼ 1;

ωr̂ ϕ̂
ϕ ¼ −ωϕ̂ r̂

ϕ ¼ sin θ;

ωθ̂ ϕ̂
ϕ ¼ −ωϕ̂ θ̂

ϕ ¼ cos θ: ð6Þ

With the above spin connection one may choose any metric
compatible tetrad for static spherical symmetry without the
worry of losing local Lorentz covariance. We therefore
choose the following diagonal tetrad:

½hα̂μ� ¼

0
BBBBB@

AðrÞ 0 0 0

0 BðrÞ 0 0

0 0 r 0

0 0 0 r sin θ

1
CCCCCA
: ð7Þ

Using the spin connection (6), the torsion scalar is

T ¼ 2ðB − 1ÞðA − ABþ 2rA0Þ
r2AB2

: ð8Þ

Again it should be stressed that the torsion scalar (8) in the
case where one properly calculates the spin connection,
ωμ̂ ν̂

σ , is the proper Lorentz invariant torsion scalar for static
spherical symmetry in the coordinate system (5). If one
ignores the spin connection, then one must be sure to use a
tetrad which yields zero spin connection, in which case one
would obtain the same torsion scalar as (8). That is, the
tetrad must be properly “parallelized.” If one uses an
improperly rotated tetrad one will find that the spin
connection, calculated via the method of [45], is not zero,
and cannot be ignored. If it is ignored one will get a
different torsion scalar than (8) which will depend on

1The index structure in this paper is such that unadorned Greek
letters are utilized for spacetime indices, hatted Greek letters for
orthonormal indices, and Latin letters for SUð2Þ group indices.
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Lorentz frame. Examples of properly rotated tetrads may be
found in [11,45,49].
In the following section we will use tetrad (7) in order to

create the gravitational sector of the equations of motion.
The Yang-Mills sector will also be constructed and, with
appropriate Yang-Mills ansatz, we will solve the equations
for an fðTÞ consisting of several nonlinear terms which
comprise the lowest order terms in an analytic (in T)
Lagrangian density. This will be followed with an in depth
analysis of the system of equations, subject to conditions of
regularity, and comments on several interesting results
which are found. We do not study the stability of these
solutions, due to the obstruction of incorporating time
dependent perturbations in extended teleparallel gravity.
This difficulty arises from the fact that at present there is no
straightforward method of obtaining a spin connection
which allows for proper time-dependent equations in the
spherical coordinate chart within extended teleparallel
gravity, although some progress is being made [45–47].
Finally we will make some concluding remarks.

II. THE f ðTÞ YANG-MILLS SYSTEM

We wish to study here SUð2Þ Yang-Mills fields coupled
minimally to fðTÞ gravity. Specifically, the action taken is

S ¼ 1

16π

Z
ðfðTÞ þ FiμνFiμνÞdetðhα̂μÞd4x; ð9Þ

with

fðTÞ ¼ T þ α1
2
T2 þ α2

6
T3: ð10Þ

The non-Abelian field strength tensor, Fi
μν, is given in

terms of the SUð2Þ potential, Wi
μ, as:

Fi
μν ¼ ∂μWi

ν − ∂νWi
μ − eϵijkWj

μWk
ν: ð11Þ

Here e is the self-coupling charge of the non-Abelian field.
Before proceeding we should comment on a possible

confusion with (11). Strictly speaking, the partial deriva-
tives in (11) should be spacetime covariant derivatives,
which in turn introduce the connection into the field
strength tensor. If the connection is not symmetric, a
torsion term will appear in the resulting field strength
tensor. However, in teleparallel gravity it is known that
gauge invariance of the field-strength and its equations of
motion require the use of the Fock-Ivanenko derivative
[50,51], which in turn yields a field strength tensor
equivalent to the one calculated with the Christoffel
connection. Therefore the field-strength tensor (11) is
actually identical to the one in Einstein Yang-Mills theory.
For the field potential we adopt a slight variation of

Witten’s spherically symmetric SUð2Þ ansatz [52,53],
which after gauge fixing may be written as:

W ¼ Wi
μτidxμ

¼ VðrÞdtτr þWðrÞ½dθτθ − sin θdϕτϕ� þ
1

e
cos θdϕτr:

The τj generators are proportional to the (spherical pro-
jection) Pauli matrices obeying the algebra

½τj; τk� ¼ iϵjklτl: ð12Þ

From the action (9) one may calculate the gravitational
equations of motion via variation of the tetrad as

h−1hα̂μ∂σ

�
h
dfðTÞ
dT

Sα̂νσ
�
−
dfðTÞ
dT

TαβμSαβν þ
1

2
fðTÞδμν

þ dfðTÞ
dT

Sα̂σνhβ̂μωα̂
β̂σ ¼ 8πT μ

ν; ð13Þ

with h the determinant of the tetrad and T μ
ν the usual

symmetric stress-energy tensor

T μ
ν ¼ 1

4π

�
FiμαFiνα −

1

4
δμ

νFiαβFiαβ

�
: ð14Þ

In (13) the quantity sometimes known as the superpotential
is present:

Sαβγ ≔ Kβγα þ gαβTσγ
σ − gαγTσβ

σ; ð15Þ

where Kβγα is the contorsion tensor:

Kαβγ ≔
1

2
ðTαγβ þ Tβαγ þ TγαβÞ: ð16Þ

As well, variation with respect to the Yang-Mills
potential yields the Yang-Mills equations of motion2

DνFi
νβ ¼ 0: ð17Þ

where the operator D is the gauge covariant derivative

DμFiνλ ≔ Fiνλ;μ − eϵbciWb
μFc

νλ: ð18Þ

Here the semi-colon denotes a covariant derivative with
respect to the Christoffel connection (again due to the Fock-
Ivanenko derivative).
Explicitly for the case studied here, Eqs. (17) are

W00 ¼ −
A0W0

A
þB2W

�
e2W2 − 1

r2
−
e2V2

A2

�
þB0W0

B
; ð19aÞ

2In teleparallel gravity the stress-energy tensor turns out to be
conserved with respect to the Christoffel connection. It can be
shown that this conservation law and the Yang-Mills equations of
motion, under mild assumptions, imply each other.
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V 00 ¼
�
A0

A
−
2

r

�
V 0 þ B0V 0

B
þ 2e2B2VW2

r2
: ð19bÞ

The gravitational equations of motion are rather compli-
cated and are therefore presented in the Appendix. From
(14) the quantities ρ, p and q may be acquired, which are
the energy density, radial, and transverse pressure respec-
tively of the Yang-Mills field:

ρ ¼ 1

8πe2r4A2B2
½A2ðB2ðe2W2 − 1Þ2 þ 2e2r2W02Þ

þ 2e4r2B2V2W2 þ e2r4V 02� ð20aÞ

p ¼ −
1

8πe2r4A2B2
½A2ðB2ðe2W2 − 1Þ2 − 2e2r2W02Þ

− 2e4r2B2V2W2 þ e2r4V 02� ð20bÞ

q ¼ 1

8πe2r4A2B2
½A2B2ðe2W2 − 1Þ2 þ e2r4V 02�: ð20cÞ

At this stage one has all the quantities required in order to
solve the equations, save for the boundary conditions. We
next concentrate on obtaining these conditions as well as
the solutions.

III. SOLUTIONS

In order to obtain computational solutions to the pre-
vious equations, we require a system of independent
equations from which the highest derivative of the quan-
tities to be evolved can be extracted. Below the assumption
is made that all quantities are Laurent expandable.

A. Initial conditions and asymptotics

At this stage we require initial conditions for the
evolutions. The evolutions cannot start exactly at r ¼ 0
due to the non-essential singularity present there. However,
we can start the evolution slightly away from r ¼ 0. This
then requires that we have initial values at this point. Since

the starting point is near r ¼ 0, accurate values for these
initial conditions may be obtained from an expansion to
some appropriate order in r about r ¼ 0. Then all initial
data simply requires knowledge of the various functions at
r ¼ 0, and we have sufficient criteria to restrict these
values. There is a rather large number of conditions
required (both at r ¼ 0 and, as well, required at “infinity”
in order to have a physically reasonable solution). Due to
the number of different requirements, we refer the reader to
Table I for an overview. A number of these conditions are
actually redundant, but are included to ensure that all
reasonable criteria are considered. The various criteria and
their motivation are explained as follows:

(i) All equations solved near r ¼ 0: This is a requirement
that near r ¼ 0 (close towhere the evolution starts) the
left-hand side of all equations of motion equal, to
sufficient order in r, the right-hand side. This is done
by considering equality of the l.h.s. to the r.h.s. up to
sufficiently high order in the expansion of the equa-
tions of motion. By setting the expansion coefficients
of the l.h.s. at fixed order equal to the corresponding
expansion coefficient on the r.h.s. one may determine
what the relationship between various quantities
appearing in the expansion coefficients are. Since
expansion coefficients of any quantity near r ¼ 0 are
constructed from r ¼ 0 data, we can use r ¼ 0 data to
form these coefficients. The r ¼ 0 data required is
determined from some of the criteria listed below.

(ii) Finite T μ̂ ν̂ð0Þ: This is a requirement that the
physical observables ρ, p, and q do not become
infinite at the origin. These conditions are satisfied
by demanding that the coefficients of negative
powers of r in the expansions of ρ, p and q vanish.
This is both a physical requirement as well as a way
to determine initial conditions.

(iii) T μνðr ≠ 0Þ ¼ 0: This condition can be used as
r → ∞ and demands that the stress-energy of the
Yang-Mills field vanishes as one approaches infinity.
This is a physical condition and not related to
regularity nor directly related to initial conditions.

TABLE I. Restrictions on various quantities.

Condition A0 A00 B B0 B00 W W0 W00 V V 0 V 00

All equations solved
near r ¼ 0

0 V02
A þ AW002 1 0 V 02

A þW002 �1=e 0 0 0

Finite T μ̂ ν̂ð0Þ �1=e 0 0
�T μ̂ ν̂ðr ≠ 0Þ ¼ 0 �1=e 0
Finite Fi

μ̂ ν̂ð0Þ �1=e 0 0
�Fi

μ̂ ν̂ðr ≠ 0Þ ¼ 0 �1=e 0 0 0
Finite Rα̂

β̂ γ̂ δ̂ð0Þ 0 1 0
�Rα̂

β̂ γ̂ δ̂ðr ≠ 0Þ ¼ 0 0 0 1 0 ie VW
A

iA
er2 ðe2W2 − 1Þ

Finite T α̂
β̂ γ̂ð0Þ 1

�T α̂
β̂ γ̂ðrÞ ¼ 0 0 1 Wðe2W2−1

r2 − e2V2

A2 Þ þ B0W0 0

�These conditions are sufficient (but not always necessary) to make the quantity vanish as r → ∞.
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(iv) Finite F i
μ̂ ν̂ð0Þ: This is a requirement that all electric

and magnetic fields (which are not gauge invariant
by themselves in the non-Abelian case, but are used
in constructing some observables) be finite at the
origin. We satisfy these conditions by demanding
that the coefficients of negative powers of r in the
expansions of the components of Fi

μ̂ ν̂ vanish. This
is both a physical requirement as well as a way to
determine initial conditions. This condition also
implies the earlier condition of regularity of the
stress-energy tensor.

(v) F i
μ̂ ν̂ðr ≠ 0Þ ¼ 0: This condition can be used as

r → ∞ and demands that the electric and magnetic
fields vanish as one approaches infinity. This is a
physical condition and not related to regularity nor
directly related to initial conditions.

(vi) Finite Christoffel Rα̂
β̂ γ̂ δ̂ð0Þ: It may seem peculiar

that in a theory with no curvature one makes
demands on the Riemann-Christoffel tensor. How-
ever, in fðTÞ gravity it can be shown that the force
equation on test particles is identical to the geodesic
equation calculated with the Christoffel connection
[51]. Therefore, particles subject to the force of
gravity in fðTÞ theory are subject to the Riemann-
Christoffel geodesic deviation equation. This there-
fore is a condition of demanding finite tidal forces
even in fðTÞ gravity.

(vii) Christoffel Rα̂
β̂ γ̂ δ̂ðr ≠ 0Þ ¼ 0: For the analogous

reason as in the previous item we consider the
Riemann-Christoffel tensor as r → ∞. Here, this
is a requirement demanding tidal forces vanish there.

(viii) Finite T α̂
β̂ γ̂ð0Þ: In fðTÞ gravity the torsion tensor

(via the contorsion) plays the role of the gravitational
force [51]. We therefore demand that the gravita-
tional force not be infinite.

(ix) T α̂
β̂ γ̂ðr ≠ 0Þ ¼ 0: This condition can be used as

r → ∞ and demands that the gravitational force
should vanish there.

The above restrictions allow us to search for regular
solutions to the fðTÞ-Yang-Mills system of equations. It is
interesting to note that even when the conditions are written
utilizing the equations of motion (e.g., when using the
equations of motion to rewrite the tetrad components in the
Riemann-Christoffel and torsion tensor in terms of poten-
tials) the conditions are all independent of α1 and α2, and
are therefore shared with TEGR and general relativity.
Another related issue in common with general relativity is
the fact that if one wishes the gravitational effects to vanish
at infinity (and of course not be imaginary) then the
vanishing of Rα̂

β̂ γ̂ δ̂ and T α̂
β̂ γ̂ as r → ∞ can be satisfied

with the condition that V 0ðr → ∞Þ ¼ 0 with some suffi-
ciently high power. This may be seen from the correspond-
ing conditions in Table I. One can conclude from this that if
the gravitation is localized then one way to achieve this is

with solutions which possess no global electric charge, as
such a charge, QE, is defined by

QE ∝
I
r→∞

k�Fk ¼ lim
r→∞

r2V 0: ð21Þ

The norm here is taken with respect to the Cartan-Killing
form constructed of the structure coefficients of the suð2Þ
algebra.
Similarly, the vanishing (and reality) of gravitational

effects at infinity also may be satisfied, from Table I, by the
condition Wðr → ∞Þ ¼ 1

e, which in turn implies that there
is no global magnetic charge, QM, via

QM ∝
I
r→∞

kFk ¼ lim
r→∞

ð1 − e2W2Þ: ð22Þ

Of course, one does not need to limit the solutions to those
whose gravitational effects vanish as one approaches
infinity, and admittedly the criteria used at ∞ in Table I
are sufficient, but not necessary conditions. However, we
find that the successful magnetic solutions having this
gravitational vanishing criterion at infinity turn out to
indeed meet the condition of no global magnetic charge,
as defined by (22). Electric solutions are studied separately
below, and will turn out to possess a global electric charge
dictated by (21).
Utilizing the restrictions discussed above, the following

set of mutually compatible conditions are chosen in order to
proceed with the asymptotically vanishing evolutions in the
next section:

A0ð0Þ ¼ 0; Bð0Þ ¼ 1; B0ð0Þ ¼ 0;

Vð0Þ ¼ 0; Wð0Þ ¼ 1

e
; W0ð0Þ ¼ 0: ð23Þ

The Yang-Mills coupling will also eventually be set
as e ¼ 1.

B. The solutions

Wewill use as our free control parameter the quantityW00
at r ¼ 0. When solutions are analyzed which also possess
V the free parameter V 0 will also be present. These are the
quantities which one is allowed to set freely. In other words,
all quantities required for the evolution must either be set to
specific values at the starting point near r ¼ 0, as dictated
by Table I, or if they cannot be fully fixed, must be written
as functions of W00 and V 0 only, again with the aid of
Table I. In order to make clear the method used to generate
the solutions we will present the scheme in some detail
here. We set V 0ð0Þ ¼ 0 in the first set of evolutions, and the
resulting equations then turn out to yield that V ¼ 0
throughout the evolution. Hence the first set of solutions
concentrated on are purely magnetic.
Our problem involves two unknown metric profile

functions, A and B, and two unknown potentials, W
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and V. We must therefore choose four independent differ-
ential equations. We found it convenient to use the t

t and
φ
φ-components of the equations of motion (13), together

with the two equations of motion for the Yang-Mills field
(19a), (19b), as this particular choice allows for simple
extraction of the highest order derivatives of the unknowns.
The resulting system of four coupled ordinary nonlinear
differential equations is second order in A, W, and V, and
first order in B.
In order to perform numerical integration of the equa-

tions, we first map the problem onto a compact domain by
introducing the dimensionless radial variable

x ≔
r

r0 þ r
∈ ½0; 1Þ; ð24Þ

where r0 ¼ 1 is set. At this stage all equations are to be
rewritten in terms of x instead of r. Just as the original
equations are singular at r ¼ 0, the resulting equations are
manifestly singular at x ¼ 0 (center), and also at x ¼ 1
(spatial infinity). This means that the initial conditions
for numerical integration must be specified at some
intermediate point. The usual strategy, which we adopt,
is to start integrating from a point near the center, e.g.,
x ¼ x0 ¼ 0.001. The initial conditions at that point can be
derived using the power expansion of the unknown
functions. The overall scheme is somewhat complicated
and therefore summarized in point form as follows:

(i) The four differential equations are written in the
form

0 ¼ fiðx; A; A0; A00; B; B0;W;W0;W00; V; V 0; V 00Þ;
i ¼ 1;…; 4; ð25Þ

where the primes now denote differentiation with
respect to x.

(ii) Assuming the unknown functions A, B, W, and V,
are analytic, they are expanded in a Taylor series,
and the resulting series are plugged into (25).

(iii) The right-hand sides of (25) are expanded into
powers of x up to a sufficiently high order (see
below). The coefficients in the resulting power
expansion of fi now involve the coefficients of
the Taylor expansions of the unknown functions.
That is, they consist of the functions at x ¼ 0.

(iv) As fi, i ¼ 1;…; 4, must vanish at all x, all coef-
ficients in the power expansions of these equations
are required to vanish individually. The resulting set
of conditions, together with the conditions in (23)
allow us to determine the coefficients in the power
expansions of the unknown functions up to the
desired order (provided that the fi are expanded
up to sufficiently high order).

The coefficients in the expansion of the unknown
functions, derived through the above procedure, allow us
to approximate the solution to the equations as follows

AðxÞ≃1þ1

2
x2
�
4b2

r20
þE2

r

�
þx3

�
4b2

r20
þE2

r

�

−
1

40r80
½x4ð4b2þr20E

2
rÞð240α1b4þr40ð15α1E4

r−44b2Þ

þ120α1b2r20E
2
rþr60ð8be−11E2

r−60ÞÞ�; ð26aÞ

BðxÞ≃1þ1

2
x2
�
4b2

r20
þE2

r

�
þx3

�
4b2

r20
þE2

r

�

−
1

40r80
½x4ð4b2þ r20E

2
rÞ

× ð480α1b4þ r40ð30α1E4
r −60b2Þ

þ240α1b2r20E
2
r þ r60ð16be−15E2

r −60ÞÞ�; ð26bÞ

WðxÞ≃1

e
−bx2−2bx3

−
x4ð8b3þbr20ð−3beþ2E2

rþ30Þþer40E
2
rÞ

10r20

−
2x5ð8b3þbr20ð−3beþ2E2

rþ10Þþer40E
2
rÞ

5r20
;

ð26cÞ
VðxÞ ≃ −xEr − x2Er

−
x3Erð8b2 þ r20ð−2beþ 2E2

r þ 5ÞÞ
5r20

−
x4Erð24b2 þ r20ð−6beþ 6E2

r þ 5ÞÞ
5r20

; ð26dÞ

where for the control parameters we have used the notation

d2

dr2
WðrÞ

����
r¼0

≕ − 2b; ð27Þ

and

d
dr

VðrÞ
����
r¼0

≕ − Er; ð28Þ

which corresponds to the electric fields at the center. The
derived expressions (26a)–(26d) are used to compute the
initial values of A, A0, B, W, W0, V, and V 0, at the starting
point x ¼ x0.
Typically, during the numerical integration of the initial

value problem, the potentialW diverges and the integration
fails to reach infinity (x ¼ 1). This means that a solution for
those particular values does not exist. However, it is
possible to find the set of values of parameters α1, α2,
b, and Er, for which the integration reaches much closer to
infinity than for the nearby values of the parameters. Also,

ANDREW DEBENEDICTIS and SAŠA ILIJIĆ PHYS. REV. D 98, 064056 (2018)

064056-6



around these values of the parameters the divergence of W
reverses its direction (sign). This is a common occurrence in
numerical evolutions, where if the initial parameter is
slightly above the value for which a solution exists, the
divergence in the evolution is in one direction, and if the
initial parameter is slightly too small from the correct value,
the divergence is in the opposite direction. Careful tracing of
the direction of the divergence ofW, and of the x-coordinate
value beyond which the numerical integration is no longer
possible (the length of the run, denoted as xmax), reveals the
precise values of parameters for which the solution that
satisfies boundary conditions at infinity may exist.
Some of our results are shown in Figs. 1 and 2 for various

values of the dimensionless quadratic coupling e2α1. In the
figures, the smaller the value of the graph along the vertical

axis, the closer to infinity the integrator was able to reach to
solve the equations subject to the initial conditions. The
hollow dots on the graph indicate the value of b ¼ W0=2
(horizontal axis) at which regular solutions exist to the
fðTÞ-Yang-Mills system. It is important to note that the
variable plotted on the vertical axis is a logarithm of
(1 − xmax), and hence at these low points the integration
actually reached very closely to x ¼ 1. Each curve repre-
sents a different value of e2α1, including e2α1 ¼ 0 (TEGR).
The results are summarized here:

(i) Setting α1 ¼ α2 ¼ Er ¼ 0 we are dealing with the
TEGR equations and our procedure fully reproduces
the results of Bartnik andMcKinnon. This means that
one can obtain solutions with one or more nodes inW
and with increasing resolution one can in principle
resolve infinitely many successful evolutions. A
countable infinity of solutions indexed by the number
of nodes inW is known to exist in this case [24–26].
These are the famous Bartnik-McKinnon solitons of
EinsteinYang-Mills theory. The correspondingvalues
of b are 0.453615, 0.651601, 0.696915, 0.704753.
However, atmore than five nodes, the reliability of the
numerical procedure becomes doubtful and therefore
we do not present them. Also, no solutions exist for
b > 0.72. These values are all in full agreement with
general relativity [24].

(ii) With e2α1 < 0 and α2 ¼ Er ¼ 0, our results reveal
that only a finite number of solutions exists (see
Fig. 1). As well, for e2α1 < −4.4 no solutions exist,
regardless of the value of the tuning parameter b.

(iii) Solutions with positive α1, and α2 ¼ 0 ¼ Er are
illustrated in Fig. 2. The values of b for which the
solutions exist are becoming larger. Another inter-
esting phenomenon is noticed here. For small
positive e2α1 the maximum value of b for which
solutions exist initially grows very quickly, going
from the TEGR value of bmax ≈ 0.72, to approx-
imately bmax ¼ 21.5 for e2α1 ≈ 0.3 (not shown).
(Although the number of solutions at this value of
α1 is finite. Seven solutions were found in this
vicinity.) As e2α1 increases from approximately 0.3,
the maximum value of b for which a solution exists
drops off. For example, from Fig. 2 it may be seen
that for e2α1 ¼ 0.8 one has a solution at the value
bmax ≈ 7.5, whereas for e2α1 ¼ 1.6 the maxi-
mum solution occurs at bmax ≈ 4.5. Here again for
e2α1 ≠ 0 only a finite number solutions exist.

Next we consider the scenarios where α1 ¼ 0 ¼ Er and
α2 ≠ 0, so that the cubic term in the action contributes. The
equations here are rather complicated, and therefore the
numerical solutions are time consuming to obtain, so a
more limited number of α2 values are evolved. As well, the
evolutions suffer from more numerical noise than their
quadratic counter-parts. The results are illustrated in Fig. 3.
We noted that for a magnitude of e4α2 somewhere between

FIG. 1. Solutions with e2α1 ¼ 0, −0.1, −0.2, −0.3, −0.4, −0.5,
α2 ¼ 0. Here, in the horizontal axis label the derivatives ofW are
with respect to r. The solid dots indicate the value of b beyond
which the integrator fails almost immediately. Regular solutions
are indicated with hollow circles. The black line indicates
W → −∞ and the gray line indicates W → þ∞ as x → xmax.
See main text for explanation.

FIG. 2. Solutions with e2α1 ¼ 0.2, 0.4, 0.8, 1.6, 3.2, 6.4,
α2 ¼ 0.
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0.02 and 0.025 there exists a value beyond which there are
no solutions if the magnitude of e4α2 is increased.
Therefore, similar to the case with α1 there exists a cutoff
value of α2 of the solutions as the nonlinear coupling
increases in magnitude. It is interesting to note that this
cutoff occurs for much smaller values than for the quadratic
coupling, hinting that the existence of solutions is much
more sensitive to higher power nonlinear torsion terms. We
conjecture that there may exist some sufficiently high
power of the torsion scalar in the Lagrangian such that
no regular magnetic-only solutions will exist.
Finally, for completion, solutions whose voltage, V, does

not vanish everywhere are considered. For these, we must
relax the previously chosen condition of V 0ð0Þ ¼ 0 and
now this allows for Yang-Mills electric fields. One issue to
note with nonzero V 0ð0Þ is that one possesses a “kink” in
the voltage at the origin. It turns out that this kink implies
the presence of a point charge at the origin via the
gravitational junction conditions of fðTÞ gravity [54], as
the quantities demanded to be continuous in [54] are not all
continuous at r ¼ 0 when V 0ð0Þ ≠ 0. Mathematically this
charge is manifest in (21), and Figs. 4–8 where the graph
insets indicate that r2V 0jr→∞ does not go to zero, and hence
an electric charge is present according to (21). One other
issue to note is that the effective mass of these solutions, as
defined by the integral of ρ, the energy density of the Yang-
Mills field, does not converge as strongly as in the purely
magnetic counterparts. This is an interesting issue of study
in general relativity [55,56].
We note here that the family of regular solutions is no

longer discrete, and that one may continuously deform the
initial value of Eð0Þr to yield successful integrations,
although if the value of Eð0Þr is too large in magnitude
one runs into a regime with no solutions. There is therefore
a critical value of V 0ð0Þ separating a region of solutions and
no solutions. What is surprising here is how insensitive to
the value of α1 the solutions are in the positive sector. It is
found that for positive α1 the evolution proceeds almost

exactly as in TEGR even for very large values of positive
α1. In Figs. 4 and 5 we show the solutions for the TEGR
case as well as for e2α1 ¼ 500 and note that the figures are
almost identical. In fact, in order to lose the solutionwe found
that one had to set e2α1 to a value of approximately 1050.
Any higher value than approximately this and there exists no
solution. In the negative α1 sector the critical value beyond
which there are no solutions is only −3.3. A representative
solution is shown in Fig. 6, where e2α1 ¼ −1.
The α2 dependence is again surprisingly sensitive to the

existence of solutions. In this case, if e4α2 is very small in
magnitude, the solution is also very similar to the TEGR
case, perhaps not unexpectedly. Representative solutions
are shown in Figs. 7 and 8, for positive and negative α2
respectively. However even a very modest increase in the
magnitude of α2 will destroy the solution. In the represen-
tative case the values of α2 which generated solutions

FIG. 3. Solutions with e4α2 ¼ −0.016, 0 (TEGR), and 0.016,
α1 ¼ 0.

FIG. 4. A representative TEGR scenario with electric field. For
larger magnitude of Er the oscillations in W become more
damped, and for sufficiently high magnitude of Er there are
no solutions.

FIG. 5. A representative scenario with electric field with
e2α1 ¼ 500 and e4α2 ¼ 0. Note that this plot is essentially
identical to the TEGR (e2α1 ¼ 0 ¼ e4α2) case.
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restricts e2α2 to the range 0.00026 > α2 > −0.00026. For
all other values of initial conditions tested the range of α2
was also highly restricted to values in the close vicinity of
the TEGR scenario.
Finally, if b at the origin is also not equal to zero we

found that the qualitative behavior remains as in the plots
4–8 shown but the curvature of the oscillations in W is
softened.

IV. CONCLUDING REMARKS

In this manuscript the system of equations comprising
of Lorentz covariant fðTÞ gravity sourced by an SUð2Þ
Yang-Mills field was considered. Specifically for fðTÞ we
chose fðTÞ ¼ T þ α1=2T þ α2=6T3, which could re-
present either an exact Lagrangian density, or else the
low-order terms in a Lagrangian density analytic in T. In
the purely magnetic sector we recover the Bartnik-
McKinnon infinite family of soliton solutions for the case
α1 and α2 equal to zero, as expected. When the nonlinear
coupling constants are not zero the number of solutions
becomes finite. We find that there are critical values of α1
and α1 beyond which there are no regular solutions. The
domains where there exist regular solutions are given by
4.2 > e2α1 > −4.4 and 0.025 > e4α2 > −0.025. It there-
fore turns out that the higher order torsion term in the action
are actually rather more destructive to the presence of
regular Yang-Mills solutions.
Scenarios with electric fields were also studied, and were

found to possess similar asymptotic mass issues as in
general relativity. For the electric field scenarios the family
of solutions becomes continuous. There is a value of the
tuning parameter, V 0ð0Þ, above which there are no sol-
utions. As well, there exist critical values of the coupling
constants beyond which there are no solutions. In this case
the restrictions for solutions were 1050 > e2α1 > −3.3 and
0.00026 > e4α2 > −0.00026. As with the magnetic sol-
utions, the sensitivity of existence to the cubic coupling is
much stronger than with the quadratic coupling.
We also tested scenarios with both α1 and α2 simulta-

neously not equal to zero and qualitatively similar results
held. It may be possible therefore that in general, with a
sufficiently high power of the torsion scalar present in the
Lagrangian, one would find that there are no regular
solutions to static fðTÞ-Yang-Mills theory.
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FIG. 6. A representative scenario with electric field with
e2α1 ¼ −1 and e4α2 ¼ 0.

FIG. 7. A representative scenario with electric field with
e4α2 ¼ 0.0001 and e2α1 ¼ 0. If e4α2 is larger than approximately
this value, no solution exists.

FIG. 8. A representative scenario with electric field with
e4α2 ¼ −0.0001 and e2α1 ¼ 0. This solution is very similar to
α2 ¼ 0.0001, but close inspection reveals that it is not exactly the
same.
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APPENDIX: THE GRAVITATIONAL EQUATIONS OF MOTION

The terms in the equations of motion (13) due to the presence of only T in the action, in terms of our metric profile
functions A and B, are

Gt
t ¼

−B3 − 2rB0 þ B
B3r2

; Gr
r ¼

2rA0 − AB2 þ A
AB2r2

; Gφ
φ ¼ BðrA00 þ A0Þ − B0ðrA0 þ AÞ

AB3r
: ðA1Þ

As we are using fðTÞ ¼ T þ α1
2
T2 þ α2

6
T3, if we set α2 ¼ 0, apart from the above terms on left-hand side of the fðTÞ

equations of motion we have the following terms proportional to α1:

G̃t
t ¼

α1
A2B5r4

ðB−1ÞðAðB−1ÞðBðAðB2−6Bþ5Þ−8r2A00Þþ12ArB0Þþ8AðB−3Þr2A0B0 þ4ðB−1ÞBr2ðA0Þ2Þ; ðA2aÞ

G̃r
r ¼

α1ðB − 1ÞðA2ðBþ 3ÞðB − 1Þ2 − 4ðB − 3Þr2ðA0Þ2 − 12AðB − 1ÞrA0Þ
A2B4r4

; ðA2bÞ

G̃φ
φ ¼ α1

A3B5r4
ð−A2ðB − 1Þ2ðBð6r2A00 þ AðB2 þ 2B − 3ÞÞ − 6ArB0Þ þ 4Að3 − 2BÞr3ðA0Þ2B0

−4ðB − 1ÞBr3ðA0Þ3 þ 2AðB − 1ÞrA0ðBð4r2A00 þ Að2B2 − B − 1ÞÞ þ 3AðB − 3ÞrB0ÞÞ; ðA2cÞ

while if we set α1 ¼ 0 and include α2, we have terms proportional to α2:

G̃t
t ¼ −

2α2
3A3B7r6

ðB − 1Þ2ðAðB − 1Þ − 2rA0ÞðAðB − 1ÞðBðAðB2 − 20Bþ 19Þ − 24r2A00Þ þ 30ArB0Þ
þ 2ArA0ðBðB2 þ 4B − 5Þ þ 6ð2B − 5ÞrB0Þ þ 16ðB − 1ÞBr2ðA0Þ2Þ; ðA3aÞ

G̃r
r ¼ −

2α2ðB − 1Þ2ðAðB − 1Þ − 2rA0Þ2ð2ð2B − 5ÞrA0 þ AðB2 þ 4B − 5ÞÞ
3A3B6r6

; ðA3bÞ

G̃φ
φ ¼ 2α2

3A4B7r6
ðB − 1ÞðAðB − 1Þ − 2rA0ÞðA2ðB − 1Þ2ðBð15r2A00 þ 2AðB2 þ 4B − 5ÞÞ − 15ArB0Þ

− 2Ar2ðA0Þ2ðBð2B2 − 7Bþ 5Þ þ 3ð5 − 3BÞrB0Þ þ 12ðB − 1ÞBr3ðA0Þ3
− AðB − 1ÞrA0ðBð18r2A00 þ Að8B2 þ 5B − 13ÞÞ þ 15AðB − 3ÞrB0ÞÞ: ðA3cÞ
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