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In this paper, we study the local observational consequences of a violation of the Einstein equivalence
principle induced by models of light scalar dark matter (DM). We focus on two different models where
the scalar field couples linearly or quadratically to the standard model of matter fields. For both these
cases, we derive the solutions of the scalar field. We also derive from first principles the expressions for
two types of observables: (i) the local comparison of two atomic sensors that are differently sensitive to
the constants of nature, and (ii) the local differential acceleration between two test masses with different
compositions. For the linear coupling, we recover that the signatures induced by DM on both
observables are the sum of harmonic and Yukawa terms. For the quadratic coupling, on the other hand,
the signatures derived for both types of observables turn out to be the sum of a time-independent term
and a harmonic oscillation, whose amplitudes both depend on the position. Such behavior is new and
can make experiments in space more sensitive than terrestrial ones. Besides this, the observables present
some interesting nonlinear behaviors that are due to the amplification or to the screening of the scalar
field, depending on the parameters of the theory, and on the compactness of the source of the
gravitational field. Finally, we infer the various limits on the DM coupling parameters by using existing
frequency comparisons on the one hand and tests of the universality of free fall on the ground (torsion
balances) or in space (MICROSCOPE mission) on the other hand. We show that in the quadratic case,
so-called natural parameters are still allowed by observations.

DOI: 10.1103/PhysRevD.98.064051

I. INTRODUCTION

While thoroughly tested experimentally [1], the theory
of general relativity (GR) is currently challenged by
galactic and cosmological observations that may require
the introduction of so-called dark matter (DM) and dark
energy (see, e.g., Refs. [2,3]). Besides this, several theo-
retical developments of a quantum theory of gravitation and
of a theory that would unify GR with the standard model of
particle physics also challenge GR. Motivated by the
unsuccessful searches for a dark-matter particle at high
energy, models of light scalar DM have recently gained a
lot of attention in the scientific community (see, e.g.,
Refs. [4–26] and references therein). In those models, a
light scalar field is introduced in addition to the standard
space-time metric and the standard-model fields. Such
scalar fields are also ubiquitous in theories with more than
four dimensions, and in particular in string theory with the
dilaton and the moduli fields [27–30].

In the simplest models, the scalar field has a regular
quadratic kinetic term and a standard quadratic potential
from which it gets its mass. In the most general
scenario, this scalar field couples nonuniversally to
the standard-model fields, which leads to a violation
of the Einstein equivalence principle (EEP). Such
models have been shown to produce nice galactic and
cosmological predictions for very low masses of the
scalar field ranging from 10−24 to 10−22 eV [6,10,11,
19–21,23,24,26]. Because of the high occupation num-
bers in galactic halos, the scalar field can be treated as a
classical field for masses ≪ eV [6,18].
A convenient microscopic modeling for the coupling

between the scalar field and standard matter has been
introduced by Damour and Donoghue [31,32]. In this
seminal work, the scalar-matter coupling is assumed to
be linear in terms of the scalar field, whereas a quadratic
generalization is also often used [13,14,17,33,34]. The
main property of this model lies in the fact that the
constants of nature [like the electromagnetic fine structure
constant αEM, the masses of the fermions, or the quantum*aurelien.hees@obpsm.fr
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chromodynamics (QCD) energy scale Λ3] become
directly linearly or quadratically dependent on the scalar
field [31,32].
If the scalar field is massive and if its mass is larger

than mφ ≫ ℏH=c2 ∼ 1.5 × 10−33 eV=c2 (where H is the
Hubble constant) [12], it will oscillate in time at its
Compton frequency, causing the constants of nature to
oscillate as well. This is one characteristic of a violation of
the EEP [1,35] that can be searched for with various local
experiments—in particular, with atomic sensors [33,36].
Another consequence induced by a violation of the EEP is a
violation of the universality of free fall (UFF), which can
also be constrained by different measurements.
In this paper, we first recover that, in the case of a linear

coupling between the scalar field and standard matter, the
scalar field is made of two contributions: an oscillating
solution which can be identified as DM, and a Yukawa
solution generated by standard matter. We recover that
this leads to two different types of signatures that can be
searched for in measurements: (i) an oscillatory signature,
for which atomic sensors are particularly adapted, and
(ii) a fifth force, for which UFF measurements are
particularly powerful. However, we show that this sit-
uation is dramatically different in the case of a quadratic
coupling for which no classical Yukawa solution for the
scalar field is allowed [37]. In that case, the scalar field
exhibits a harmonic behavior whose amplitude can be
enhanced or screened by standard matter, a mechanism
that is similar to the scalarization [38]. This new behavior
is fundamentally different from the one arising with a
linear coupling.
We then use several existing measurements to constrain

the various coefficients that parametrize the coupling
between the scalar field and standard matter for both the
linear and quadratic couplings. The measurements used in
this paper are the ones from torsion balances [39–41] and
from the MICROSCOPE space experiment [42], as well as
from local comparisons of atomic clocks [43,44]. The
constraints obtained in the linear case summarize existing
results, while most of the constraints obtained in the
quadratic case are new.
First, in Sec. II we thoroughly present the scalar DM

model considered in this paper, as well as the microscopic
interactions between the scalar field and matter. In Sec. III,
we detail what are the macroscopic modelings of observ-
ables that derive from the microscopic Lagrangian intro-
duced in Sec. II. We then discuss the solution for the scalar
field around a spherical body in both the linear and
quadratic cases in Sec. IV, while the detailed calculations
are developed in Appendix C. The solutions for the scalar
field are then used to derive the observable signatures
induced by a violation of the equivalence principle in
Sec. V. Finally, the constraints on the various parameters
that are obtained by using different experimental data are
presented and discussed in Sec. VI.

II. ACTION AND FIELD EQUATIONS

In the present paper, we consider the following action:

S ¼ 1

c

Z
d4x

ffiffiffiffiffiffi−gp
2κ

½R − 2gμν∂μφ∂νφ − VðφÞ�

þ 1

c

Z
d4x

ffiffiffiffiffiffi
−g

p ½LSM½gμν;Ψi� þ Lint½gμν;φ;Ψi��; ð1Þ

where κ ¼ 8πG=c4, R is the Ricci scalar of the space-time
metric gμν, φ is a dimensionless scalar field (note that a
dimensional scalar field ϕ is sometimes used; see
Appendix A), LSM is the Lagrangian density of the
standard model of particles depending on the standard-
model fields Ψi, and Lint parametrizes the interaction
between matter and the scalar field. In this paper, we
consider linear and quadratic couplings between matter and
the scalar field. Following Refs. [14,31,32], we consider
two phenomenological microscopic modelings for the
coupling between the scalar and matter fields: (i) a linear
coupling parametrized by

Lð1Þ
int ¼ φ

�
dð1Þe

4μ0
F2 −

dð1Þg β3
2g3

ðFAÞ2

−
X

i¼e;u;d

ðdð1Þmi þ γmj
dð1Þg Þmiψ̄ iψ i

�
; ð2aÞ

and (ii) a quadratic coupling parametrized by

Lð2Þ
int ¼

φ2

2

�
dð2Þe

4μ0
F2 −

dð2Þg β3
2g3

ðFAÞ2

−
X

i¼e;u;d

ðdð2Þmi þ γmj
dð2Þg Þmiψ̄ iψ i

�
; ð2bÞ

with Fμν being the standard electromagnetic Faraday
tensor, μ0 the magnetic permeability, FA

μν the gluon strength
tensor, g3 the QCD gauge coupling, β3 the β function for
the running of g3,mj the mass of the fermions (electron and
light quarks),1 γmj

the anomalous dimension giving the
energy running of the masses of the QCD coupled

fermions, and ψ j the fermion spinors. The constants dðiÞj
characterize the interaction between the scalar field φ and
the different matter sectors. Note that another convention
for the coupling coefficients is sometimes considered using
dimensional Λi coupling constants (see Appendix A), and
that some authors [48] consider a more general case of
coupling which takes the form of djðφ − φjÞ2 and corre-
sponds to a linear combination of both linear and quadratic

1Following the most recent literature [45], we do not take into
account the effects of the strange quark, although they have been
estimated in the past for atomic clock measurements [46,47].
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Lagrangians. This Lagrangian leads to the following
effective dependency of five constants of nature:

αEMðφÞ ¼ αEM

�
1þ dðiÞe

φi

i

�
; ð3aÞ

mjðφÞ ¼ mj

�
1þ dðiÞmj

φi

i

�
for j ¼ e; u; d; ð3bÞ

Λ3ðφÞ ¼ Λ3

�
1þ dðiÞg

φi

i

�
; ð3cÞ

where αEM is the electromagnetic fine structure constant,
mj are the masses of the fermions (the electron and the up,
down, and strange quarks), Λ3 is the QCD mass scale Λ3,
and the superscriptsðiÞ indicate the type of coupling
considered (linear for i ¼ 1 and quadratic for i ¼ 2).
Note that, following Damour and Donoghue [31,32], we
introduce the mean quark mass m̂ ¼ ðmu þmdÞ=2 and the
difference of the quark masses δm ¼ md −mu,

2 which
depend also on the scalar field through

m̂ðφÞ ¼ m̂

�
1þ dðiÞm̂

φi

i

�
; ð4aÞ

δmðφÞ ¼ δm

�
1þ dðiÞδm

φi

i

�
; ð4bÞ

with

dðiÞm̂ ¼ mud
ðiÞ
mu þmdd

ðiÞ
md

mu þmd
; dðiÞδm ¼ mdd

ðiÞ
md −mud

ðiÞ
mu

md −mu
:

We also consider a quadratic scalar potential

VðφÞ ¼ 2
c2

ℏ2
m2

φφ
2; ð5Þ

where mφ has the dimension of a mass.
The field equations deriving from action (1) are

Rμν ¼ κ

�
Tμν −

1

2
gμνT

�
þ 2∂μφ∂νφþ 1

2
gμνVðφÞ; ð6aÞ

□φ ¼ −
κ

2
σ þ V 0ðφÞ

4
; ð6bÞ

with

Tμν ¼ −
2ffiffiffiffiffiffi−gp δ

ffiffiffiffiffiffi−gp
Lmat

δgμν
; ð6cÞ

σ ¼ 1ffiffiffiffiffiffi−gp δ
ffiffiffiffiffiffi−gp

Lmat

δφ
¼ ∂Lint

∂φ : ð6dÞ

III. MATTER AND CLOCK MODELING

A. Test masses

Damour and Donoghue have shown that the action used
to model matter at the microscopic level including the
scalar field interaction from Eq. (2) can phenomenologi-
cally be replaced at the macroscopic level by a standard
point mass action

Smat½gμν;φ;Ψi� ¼ −c2
X
A

Z
A
dτmAðφÞ; ð7Þ

where dτ is the proper time interval defined by
c2dτ2 ¼ −gαβdxαdxβ. Each mass A has its own composi-
tion such that the function mAðφÞ will be different. The
effects produced by the coupling of the dilaton to matter are
encoded in the coupling function

αAðφÞ ¼
∂ lnmAðφÞ

∂φ : ð8Þ

Damour and Donoghue [31,32] have derived a semian-
alytical expression for the coupling αAðφÞ. These expres-
sions are given in Appendix B. It is convenient to
separate these couplings into composition-dependent and
-independent parts, which leads to (see Appendix B for
further details)

αð1ÞA ¼ d�ð1Þg þ ᾱð1ÞA for a linear coupling ¼ α̃ð1ÞA ; ð9aÞ

αð2ÞA ¼ d�ð2Þg φþ ᾱð2ÞA φ for a quadratic coupling ¼ α̃ð2ÞA φ;

ð9bÞ

where we introduce

α̃ðiÞA ¼ d�ðiÞg þ ᾱðiÞA : ð10Þ

The universal part of the coupling between matter and the

scalar field d�ðiÞg is expressed in terms of the fundamental
scalar field and matter coupling constants that enter the
interaction part of the Lagrangian from Eq. (2) as (see
Refs. [31,32] and Appendix B)

d�ðiÞg ¼ dðiÞg þ 0.093ðdðiÞm̂ − dðiÞg Þ þ 2.75× 10−4ðdðiÞme − dðiÞg Þ
þ 2.7× 10−4dðiÞe : ð11Þ

2Besides this, note that the assumption mu ¼ md is often used
in the nuclear physics calculations that must be used in the
interpretation of the atomic sensors’ phenomenology [45–47].
Therefore, in the present paper, one implicitly has m̂ ¼ mu ¼ md
when considering clock measurements.
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On the other hand, the composition-dependent part of αA is
given by

ᾱðiÞ ¼ ½Q0
m̂�AðdðiÞm̂ − dðiÞg Þ þ ½Q0

me
�AðdðiÞme − dðiÞg Þ

þ ½Q0
e�AdðiÞe þ ½Q0

δm�AðdðiÞδm − dðiÞg Þ; ð12Þ

where the coefficients ½Q0
j�A are the dilatonic charges for the

body A. The values of these coefficients depend only on the
composition of each body. Semiempirical expressions for
these coefficients have been derived in Refs. [31,32]; their
expressions are given in Appendix B [Eq. (B6)], while the
important values for the present work are summarized in
Table I.

B. Atomic clocks

Atomic clocks are sensitive to a hypothetical variation
of the constants of nature from Eq. (3). A standard way to
parametrize a possible variation of any atomic frequency X
to variations of the constants of nature is to use the
following parametrization (see, e.g., Refs. [49,50]):

d lnX ¼ ½kα�Xd ln αEM þ ½kμ�Xd ln μþ ½kq�Xd lnmq=Λ3;

ð13Þ

where μ ¼ me=mp is the ratio of the electron mass over the
proton mass,mq is the mass of the light quarks (assumed to
be equal), and the ki’s are the sensitivity coefficients of the
specific transition X. The atomic and nuclear calculations
to derive these sensitivity coefficients have been achieved
in Refs. [45,47,49,51], and the obtained numerical values
can be found in Table I of Ref. [50].
While the parametrization in Eq. (13) is widely used,

another equivalent parametrization is useful since it is
closer to the form of the interaction Lagrangian from
Eq. (2):

d lnX ¼ ½kα�Xd ln αEM þ ½kμ�Xd lnme=Λ3

þ ½k0q�Xd lnmq=Λ3; ð14Þ

with k0q ¼ kq − 0.049 [52]. These sensitivity coefficients
play a role equivalent to those of the dilatonic charges
introduced in the previous section.
The coupling of the scalar field to a clock working on the

transition X is then encoded in the coupling function κX,
which is defined by

d lnX ¼ κðiÞX dðφiÞ ð15Þ

and can be expressed as

κðiÞX ¼ 1

i
½kα�XdðiÞe þ 1

i
½kμ�XðdðiÞme − dðiÞg Þ

þ 1

i
½k0q�Xðd

ðiÞ
m̂ − dðiÞg Þ: ð16Þ

IV. SOLUTIONS FOR THE SCALAR FIELD

The space-time evolution of the scalar field depends
on the distribution of matter. In this manuscript, we will
consider spherically symmetric extended bodies that will be
characterized by a radius RA and by a constant matter
density ρA. The case of a two-layer spherical body is also
considered in Appendix C.
At first order, we model standard matter as a pressureless

perfect fluid whose stress-energy tensor is given by
Tμν ¼ c2ρuμuν, where ρ is the matter density and uν the
4-velocity of the fluid.3 For this matter modeling, the source
term in the Klein-Gordon equation (6b) is written as

σ ¼ −αðφÞρc2; ð17Þ

where α is given by Eq. (8).
At the Minkowskian order, the equation for the scalar

field (6b) is

1

c2
φ̈ðt; xÞ − Δφðt; xÞ ¼ −

4πG
c2

αAðφÞρAðxÞ −
c2m2

φ

ℏ2
φðt; xÞ;

ð18Þ

where the dot denotes a derivative with respect to the
coordinate time t and Δ is the three-dimensional flat
Laplacian. In this equation, we have neglected terms that
are of the order of OðjhμνjÞ (with hμν ¼ gμν − ημν). Indeed,
a linearized version of the Einstein equation (6a) shows
that the metric will be generated by sources that will

TABLE I. Values of the dilatonic charges for different materials.

Material
−Q0

m̂
½×10−3�

Q0
e

½×10−3�
−Q0

me½×10−5�
Q0

δm
½×10−4�

H/He [70:30] 45.51 0.36 −18.9 −11.7
Fe 9.94 2.32 1.89 1.17
SiO2 13.70 1.26 0.027 0.02

Be 17.64 0.45 3.05 1.91
Al 12.30 1.47 1.00 0.62
Ti 10.42 2.01 2.24 1.38
238U 7.63 4.28 6.24 3.86
Cu 9.63 2.46 2.18 1.35
Pb 7.73 4.06 5.82 3.60

Pt/Rh [90∶10] 7.83 3.92 5.30 3.28
Ti/Al/V
[90∶6∶4]

10.52 1.98 2.17 1.34
3Corrections due to the pressure will arise at the post-

Newtonian order and can safely be neglected here.
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contribute as ∼ GMA
c2r ≪ 1 and by terms that are proportional

to φ2
0 (φ0 being the typical amplitude of the scalar field).

If the scalar field is associated with the local galactic
DM abundance, one can show that φ0 ∼ 7 × 10−31 eV=mφ

[43,44], which shows that φ2
0 ≪ 1 for scalar field masses

above 10−30 eV. Under this assumption, the space-time
behavior of the scalar field will be governed by Eq. (18),
whose solution will be given in this section. Nevertheless,
the explicit limit at which this assumption breaks down has
been carefully taken into account when deriving the
constraints on the parameters di in Sec. VI.

A. Linear coupling

In the case of a linear coupling, the function αAðφÞ ¼
α̃ð1ÞA appearing in Eq. (18) is independent of the scalar field,
and the general solution is a sum of free waves and a
Yukawa-type scalar field generated by the central body.
Details about the derivation of the results are given in
Appendix C. The general expression of the scalar field is
given by

φð1Þðt; xÞ ¼ φ0 cos ðk:x − ωtþ δÞ − sð1ÞA
GMA

c2r
e−r=λφ ; ð19Þ

where jkj2 þ c2m2
φ=ℏ2 ¼ ω2=c2 and

λφ ¼ ℏ
cmφ

ð20Þ

is the reduced Compton wavelength of the scalar field. The

constant sð1ÞA is the effective scalar charge of the extended
body and is given by

sð1ÞA ¼ α̃ð1ÞA I

�
RA

λφ

�
; ð21Þ

with the function IðxÞ given by

IðxÞ ¼ 3
x cosh x − sinh x

x3
:

Note that this result, valid only for a homogeneous sphere,
is generalized to a two-layer sphere in Appendix C. The
only difference is related to the expression of the effective
scalar charge sA, which would be given by Eq. (C16).

B. Quadratic coupling

In the case of a quadratic coupling, the function αAðφÞ ¼
α̃ð2ÞA φ that appears in the Klein-Gordon equation (18) is now
linear in φ. This linear dependency changes drastically the
form of the solution. In particular, in the classical limit, it is
easy to show that there exists no static solution beyond the

trivial one.4 The time-dependent solution contains several
modes, but only one is nonvanishing at infinity and can
be interpreted as DM (see Appendix C for details). Its
expression is given by

φð2Þðt; xÞ ¼ φ0 cos

�
mφc2

ℏ
tþ δ

��
1 − sð2ÞA

GMA

c2r

�
; ð22Þ

with the effective scalar charge

sð2ÞA ¼ α̃ð2ÞA J
sign½α̃ð2ÞA �

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jα̃ð2ÞA jGMA

c2RA

s !
; ð23Þ

which depends on the sign of α̃ð2ÞA through

JþðxÞ ¼ 3
x − tanh x

x3
; ð24aÞ

J−ðxÞ ¼ 3
tan x − x

x3
: ð24bÞ

Jþ corresponds to the cases such that α̃ð2ÞA > 0, while J−
corresponds to the cases such that α̃ð2ÞA < 0. In the limit of
weak gravitational fields and small coupling constants (i.e.,

x ≪ 1), J�ðxÞ ≈ 1 and sð2ÞA ≈ α̃ð2ÞA . In this case, note that the
expression of the scalar field is similar to the one derived
in Ref. [37]. The behavior of the scalar field around a

body A—through the effective scalar charge sð2ÞA —depends
only on the dimensionless parameter

εA ¼ α̃ð2ÞA
GMA

c2RA
; ð25Þ

as illustrated in Fig. 1.

In particular, the sign of α̃ð2ÞA (or of εA) plays an important
role, and two different nonlinear mechanisms can arise:
a screening mechanism for εA > 0 and an amplification
mechanism for εA < 0 (see Figs. 1 and 2). This behavior is
similar to that arising for massless scalar fields, for which
both amplification and deamplification nonpertubative
mechanisms have been studied since the seminal work
of Damour and Esposito-Farèse [38]. In particular, in

metric theories, the amplification mechanism for α̃ð2ÞA <0

has been known as the scalarization of compact objects.

For positive values of the coupling coefficient α̃ð2ÞA > 0

and for very large couplings (εA ≫ 1), one gets JþðxÞ≈
3=x2. In that case, sð2ÞA ≈ RAc2

GMA
, and the scalar field at the

4Quantum one-loop corrections are expected to produce an
additional 1=r3 potential at distances 2mφr ≪ 1; see, e.g.,
Ref. [48].
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surface of the body [r ¼ RA in Eq. (22)] tends to vanish.
Indeed, the scalar field solution in that limit reduces to

φð2Þðt; xÞ ¼ φ0 cos

�
mφc2

ℏ
tþ δ

��
1 −

RA

r

�
: ð26Þ

Similarly, the interior solution tends to 0 when the coupling
constant increases (see Sec. II of Appendix C for its
expression, and see the top of Fig. 2). This means that
the scalar field only penetrates a thin shell at the surface of
the body. A detailed analysis of the interior solution given
by Eq. (C24) shows that the typical length over which
the field is not constant inside the body is given by

l ∼ RA=ð3α̃ð2ÞA GMA=c2=RAÞ1=2. Figure 2 illustrates this
behavior, which has similarities with the chameleon
mechanism [53]. Conceptually, the situation can be com-
pared to the case of an insulator located in an external
electric field: the electric field inside and at the surface will
vanish. This property has an interesting consequence:
experiments located at the surface of the Earth are less
suitable to detect or constrain such a scalar field in this
regime, while space-based experiments are better suited.

On the other hand, for the cases where α̃ð2ÞA < 0, the

scalar field diverges in the limit where jα̃ð2ÞA j GMA
c2RA

→ π2

12
, as

illustrated in the bottom of Fig. 2 and in Fig. 1. The
Minkowskian approximation used to solve for the scalar
field breaks down when φ ∼ 1 (see the beginning of
Sec. IV). For couplings that lead to φ > 1, one needs to
self-consistently solve numerically all of the field equa-
tions, including the backreaction from the metric, in order
to fully take into account nonlinear behavior.

On top of that, when dð2Þi φ2=2 < −1, the fundamental
constants from Eq. (3) would change their sign, which
would be an unacceptable behavior.

The amplification mechanism for α̃ð2ÞA < 0 in metric
theories has been known as the scalarization of compact
objects [38]. It is a fully nonperturbative effect that requires
us to solve for both the scalar and the metric field equations
numerically. Recently, several works extended the work
from Ref. [38] to the case of massive scalar fields [54–58].
However, those studies only focus on stationary solutions
of the field equations, preventing them from finding
oscillating dark-matter candidate solutions to the problem.
The solutions presented in this section, although only valid
for weak gravitational fields, indicate that a nonstationary
scalarization may also occur for light scalar DM. In other
words, DM as a light scalar field may also lead to a
potential scalarization of compact objects. A detailed
investigation of such effects which would include the
nonpertubative resolution of the scalar and the metric field
equations without the stationarity assumption is beyond the
scope of this paper.

C. Identification as dark matter

In order to identify the scalar field as DM, one has to
consider its asymptotical behavior. For both solutions
computed in the previous section, the scalar field oscillates
at spatial infinity. It can be shown that this scalar field gives
rise to the following cosmological energy density ρφ and
pressure pφ:

ρφ ¼ c2

8πG

�
_φ2 þ c2VðφÞ

2

�
;

pφ ¼ c2

8πG

�
_φ2 −

c2VðφÞ
2

�
:

FIG. 2. Evolution of the scalar field around a homogeneous
spherically symmetric body. The different curves show the impact
of the values of α̃ð2Þ. In particular, in the limit of large positive
couplings, the scalar field tends to vanish inside the body, and the
scalar field diverges for negative values of α̃ð2Þ.

FIG. 1. Evolution of the effective scalar charge sð2ÞA that appears
in the solution of the scalar field from Eq. (22) as a function of εA
from Eq. (25). For large positive values of εA, a deamplification
mechanism occurs, and the scalar field at the surface of the body
tends to vanish. On the other hand, for negative values of εA, the
scalar field is amplified, which leads to nonperturbative effects.
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After averaging over one period, a coherently oscillating
scalar field gives a vanishing pressure and an energy
density [43,44]

ρφ ¼ c6

4πGℏ2

m2
φφ

2
0

2
: ð27Þ

Assuming that all DM is made of one light scalar field,
this relationship fixes its amplitude for a given mass.
Using a value for the local galactic DM energy density
of ρφ ¼ 0.4 GeV=cm3 [59], one gets that the amplitude of
the scalar field oscillation at infinity is given by [43,44]

φ0 ∼
7 × 10−31 eV

mφ
: ð28Þ

Considering that cosmological observations put a lower
limit on the scalar field mass at the level of 10−24–10−22 eV
(assuming that these scalar fields saturate the observed DM
content) [6,11,19–21,23,24,26], φ0 is always smaller than
7 × 10−7, justifying the Minkowskian approximation used
in this section.

V. OBSERVABLES

A. Comparison of two atomic clocks

One way to search for a violation of the EEP is to
measure the frequency ratio between two clocks working
on different atomic transitions and located at the same
position. The observable is then Y ¼ XA=XB, where XA and
XB are the specific transitions for each clock. It follows
from Eq. (15) that the relative variation of Y (Y=Y0) takes
the form of

d ln
Y
Y0

¼ ðκðiÞXA
− κðiÞXB

ÞdðφiÞ: ð29Þ

If we assume that the variations are small (i.e.,
jY=Y0 − 1j ≪ 1), then the evolution of the observable is
given by

Yðt; xÞ
Y0

¼ K þ ðκðiÞXA
− κðiÞXB

Þφiðt; xÞ; ð30Þ

where K is a constant that is unobservable.

1. Linear coupling

Using the expression of the scalar field solution of the
Klein-Gordon equation with a linear coupling from
Eq. (19) leads to

Yðt; xÞ
Y0

¼ K þ Δκð1Þφ0 cos ðk:x − ωtþ δÞ

− Δκð1Þsð1ÞA
GMA

c2r
e−r=λφ : ð31Þ

The first part corresponds to the coupling of the clocks to
the oscillating DM field. This signature has already been
searched for in several measurements [34,43,44]. The
second part corresponds to the coupling of the clock to
the scalar field generated by the central body and has been
considered in data analysis in Ref. [60].

2. Quadratic coupling

The signature produced by the scalar field in the case of a
quadratic coupling between the scalar field and matter is
richer. Using the scalar field solution from Eq. (22), it reads

Yðt; xÞ
Y0

¼ K þ Δκð2Þ
φ2
0

2

�
1 − sð2ÞA

GMA

c2r

�
2

þ Δκð2Þ
φ2
0

2
cos ð2ωtþ 2δÞ

�
1 − sð2ÞA

GMA

c2r

�
2

;

ð32Þ

where ω ¼ mφc2=ℏ. This signature is quite unique and is
the combination of two distinct terms. The first one is space
dependent and could be searched for by comparing spatial
and terrestrial clocks located at various positions, or by
monitoring the evolution of the frequency of a given clock
orbiting in an eccentric orbit around Earth. The second term
is an oscillating term whose amplitude depends on the
location in the gravitational field as well. In particular, if
one considers two clocks located at the surface of the Earth
(r ¼ R⊕), the oscillating part of the signal becomes [from
Eqs. (C21), (C26), and (C27c)]

ỸðtÞ ¼ Δκð2Þ

α̃ð2Þ⊕

c2R⊕

6GM⊕
φ2
0tanh

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α̃ð2Þ⊕

GM⊕

c2R⊕

s !

× cos ð2ωtþ 2δÞ ð33Þ

for a positive α̃ð2Þ⊕ .

B. Tests of the universality of free fall

The motion of a test mass can be derived from the
action (7), or equivalently from the Lagrangian

LT ¼ −mTðφÞc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dt
dxν

dt

r
: ð34Þ

In this section, we are interested in UFF experiments for
which the acceleration of two test masses located at the
same location are compared. Therefore, we are only
interested in the first-order part of the acceleration that
is composition dependent. We can therefore use the
following approximation for the Lagrangian:

LT ≈ −mTðφÞc2
�
1 −

v2

2c2

�
; ð35Þ
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where, as for the Klein-Gordon equation, we neglect terms
that are of the order of OðjhμνjÞ. A simple Euler-Lagrange
derivation gives the first-order contribution to the violation
of the UFF:

½aT �EEP ¼ −αTðφÞ½c2∇φþ v _φ�; ð36Þ

where αT is the coupling defined by Eq. (8). The differ-
ential acceleration between two bodies A and B located at
the same position is therefore given by

½Δa�A−B ¼ aAðt; xÞ − aBðt; xÞ
¼ −ðαAðφÞ − αBðφÞÞ½c2∇φþ v _φ�: ð37Þ

1. Linear coupling

In the case of a linear coupling, the differential accel-
eration between two bodies A and B located in the same
location, in the gravitational field generated by a central
body C, can be determined from Eq. (19) and is given by

½Δa�A−B ¼ Δᾱð1Þφ0ðc2k − ωvÞ sin ðk:x − ωtþ δÞ

− Δᾱð1Þsð1ÞC e−r=λφ
�
1þ r

λφ

�
GMC

r3
x; ð38Þ

whereΔᾱð1Þ ¼ ðᾱð1ÞA − ᾱð1ÞB Þ, with ᾱð1Þ given in Eq. (12) and
where sð1ÞC is defined in Eq. (21) and depends linearly on

ᾱð1ÞC . The first line represents an oscillating variation of the
differential acceleration of the two bodies. This oscillation
is induced by the oscillating DM. The amplitude of this
UFF violation is linearly proportional to the coupling

constant dð1Þi . The second line is a regular fifth-force
differential acceleration that is due to the coupling of the
two bodies to the scalar field generated by the central body.
The amplitude of the violation of the UFF is proportional

to the square of the dð1Þi coefficients. This term can be
identified from standard UFF measurements by using the
Eötvös parameter η, defined as

η ¼ 2
jaA − aBj
jaA þ aBj

ð39Þ

by (see also Ref. [41])

η ¼ Δα̃ð1Þsð1ÞC e−r=λφ
�
1þ r

λφ

�
: ð40Þ

2. Quadratic coupling

The differential acceleration between two bodies in the
case of a quadratic coupling can be determined from
Eq. (22) and is given by

½Δa�A−B ¼ Δᾱð2Þ
φ2
0

2

�
1 − sð2ÞC

GMc

c2r

��
−
GMc

r3
xsð2ÞC

−
GMc

r3
xsð2ÞC cos ð2ωtþ 2δÞ

þ
�
1 − sð2ÞC

GMc

c2r

�
ωv sin ð2ωtþ 2δÞ

�
; ð41Þ

whereΔᾱð2Þ ¼ ðᾱð2ÞA − ᾱð2ÞB Þ, with ᾱð2Þ given in Eq. (12) and
sð2ÞC defined in Eq. (23). The first line corresponds to a
differential acceleration proportional to the Newtonian
acceleration and arises from the gradient of the DM field
density induced by the central body. This term can be
identified from standard UFF measurements by using the
Eötvös parameter η defined by Eq. (39) with

η ¼ sð2ÞC Δᾱð2Þ
φ2
0

2

�
1 − sð2ÞC

GMc

c2r

�
: ð42Þ

Note that in the small coupling case and/or in remote
regions with respect to the source, the Eötvös parameter
reduces to

η ≈ sð2ÞC Δᾱð2Þ
φ2
0

2
: ð43Þ

Hence, in these regimes, the Eötvös parameter becomes
independent of the location of the two test masses with
respect to the source of the gravitational field. This
corresponds to the standard parametrization used for tests
of the UFF (see, e.g., Ref. [1]).
On the other hand, in the neighborhood region of a

central body and in the limit of strong couplings, the Eötvös
parameter grows linearly with the altitude h (with respect
to the radius RA). Indeed, in the strong coupling case (see
Sec. IV B), the Eötvös parameter can be rewritten in terms
of the altitude h as follows:

η ≈ sð2ÞC Δᾱð2Þ
φ2
0

2

h
RA þ h

: ð44Þ

This is another unique feature that could potentially be
tested. But since the Eötvös parameter becomes indepen-
dent of the location for h ≫ RA, designing an experiment in
this regime would be especially constraining for theories
with strong couplings, whereas they are much less con-
strained in regimes such that h ≪ RA—such as in
MICROSCOPE-like configurations, for instance.
The second and third lines of Eq. (41) correspond to

an oscillating differential acceleration whose amplitude
depends on the radial coordinates. The amplitude of the
oscillation in the differential oscillation from the second
line is the same as the static violation of the UFF from the
first line. These oscillations could be searched for in UFF
measurements as discussed in Sec. VI C.
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VI. CONSTRAINTS FROM EXISTING
MEASUREMENTS

In this work, we present the results using the method
of “maximum reach analysis” (MRA), which consists of
varying the parameters one at a time, while the others are
kept equal to zero. This method allows us to obtain an
idealistic estimate of the parameters’ limit. It has also the
benefit of producing readable 2D plots of the constraints.
More information about this method, that is implicitly used
in most papers using atomic sensors [13,14,16], can be
found in Ref. [61].
When the amplitude of the scalar field oscillation φ0 is

needed, we assume that the scalar field comprises all the
DM, which has a local energy density of ρφ¼0.4GeV=cm3

[59]. This value fixes φ0 through Eq. (27). Similarly, the
velocity of DM used in our calculation is jvj ¼ 10−3c.

A. Description of the existing measurements

We will now compare the signatures described in the
previous section to existing measurements. In this paper,
we will use four different types of measurements:

(i) Measurements of the UFF done by the Eöt-Wash
laboratory [40,41]. This consists of a measurement
of the differential acceleration between two test
masses at the Earth’s surface. Two types of pairs
of test masses have been used: (i) Be versus Ti and
(ii) Be versus Al. The dilatonic charges related to
these elements are given in Table I, as well as the
dilatonic charge of the Earth, which is assumed to be
composed of an iron core and a silicate mantle [32].
For each of these pairs of test masses, a violation of
the UFF in the field of the Earth and in the field of
the Sun has been searched for. This provides four
different constraints in total, which are summarized
in Table II.

(ii) To probe the UFF at very short distances, the
Eöt-Wash group also performed an experiment
where they made a body of uranium rotate around

the test masses to search for a violation of the UFF
in the gravitational field of that body [39]. This
measurement also has the advantage of being sensi-
tive to different linear combinations of the matter-
scalar coupling coefficients. For this particular
experiment, the test masses are made of Cu and Pb,
and the 238U source is located 10.2 cm from the test
masses. The constraint obtained on the η parameter
is mentioned in Table II.

(iii) The first reported measurements of the UFF per-
formed by the MICROSCOPE space mission [42].
This consists of a measurement of the differential
acceleration between two test masses orbiting
around the Earth on a nearly circular orbit
(710 km of altitude, where the Earth’s gravitational
acceleration is 7.9 m=s2). The two test masses are
made of an alloy of Pt and Ti. The exact composition
and the related dilatonic charges for these test
masses are given in Table I. The first result from
MICROSCOPE is given in Table II.

(iv) We search for oscillatory signatures in the comparison
between two frequencies delivered by two different
atomic transitions. This kind of measurement com-
pares directly the frequencies delivered by two differ-
ent hyperfine or radio-frequency transitions at the
same location in space. Such measurements using
two isotopes of dysprosium and the related data
analysis have been performed in Ref. [43]. Measure-
ments of the dual rubidium-cesium atomic fountain
from SYRTE (for a description of the experiment, see
Refs. [62–64]) have also been used to search for such
an oscillation [44]. In these measurements, the raw
data consist of a frequency comparison Y between
two different transitions, and the analysis from
Refs. [43,44] consists of fitting a harmonic model
Aω cosðωtþ δÞ to the data for different frequencies
(limited by the data span and the Nyquist frequency,
although a method has been suggested to search for
periodic variations beyond that limit; see Ref. [34]).
An upper limit on the amplitudeAω as a function ofω
is the result of these analyses (see Refs. [43,44]).

Although current measurements of the UFF using atom
interferometry [65] are not as constraining as macroscopic
measurements, with future improvements, these can also be
used to search for ultra-light DM. In particular, microscopic
UFF measurements performed in space, like proposed in
e.g. STE-QUEST [66], will be very adapted to search for
such a DM candidate.

B. Linear coupling

First of all, the measurements of the “static” UFF which
are summarized in Table II can directly be used to constrain
the Eötvös parameter whose expression is given by
Eq. (40). This type of measurement will actually constrain

combinations of the product of two constants dðiÞj —in

TABLE II. Measurement of the Eötvös parameter from the Eöt-
Wash laboratory (see Refs. [40,41]) and from MICROSCOPE
[42]. ηA-B;C refers to Eq. (39) and quantifies the differential
acceleration between two bodies A and B in the gravitational field
generated by the body C. The given uncertainties correspond to
the 1σ uncertainties.

Measurements Reference

ηBe-Ti;⊕ ð0.3� 1.8Þ × 10−13 [40,41]
ηBe-Ti;⊙ ð−3.1� 4.7Þ × 10−13 [41]
ηBe-Al;⊕ ð−0.7� 1.3Þ × 10−13 [41]
ηBe-Al;⊙ ð−5.2� 4.0Þ × 10−13 [41]

ηCu-Pt;
238U ð1.1� 3.0Þ × 10−9 [39]

ηPt-Ti;⊕ ð−0.1� 1.3Þ × 10−14 [42]

VIOLATION OF THE EQUIVALENCE PRINCIPLE FROM … PHYS. REV. D 98, 064051 (2018)

064051-9



particular,Dð1Þ
m̂ ¼ d�ð1Þg ðdð1Þm̂ − dð1Þg Þ,Dð1Þ

e ¼ d�ð1Þg de,D
ð1Þ
me ¼

d�ð1Þg ðdð1Þme − dð1Þg Þ, etc. Combined constraints on those
variables have been presented in Ref. [41] for the Eötwash
measurements and in Ref. [67] for the MICROSCOPE
results. The MRA analysis using the UFF measurements
are presented in Fig. 3. They are constant for smallmasses, up
to λφ of the order of the Earth radius. For small masses, the
interaction length λφ is larger than the distance between the
test masses and the center of the Earth. For these distances,
the Earth can be considered as a point mass, and the
measurements from theMICROSCOPE satellite are themost
constraining. For large masses, the interaction length λφ is
smaller than the distance between the test masses and the
center of the Earth, and experiments at the Earth’s surface
become more sensitive. Nevertheless, both decrease when λφ
decreases (or equivalently when mφ increases), but with
different initial slopes (in a log-log scale) that are directly
related to the distance between the two test masses and the
center of the Earth. The slope is initially more favorable for
experiments at the surface of the Earth. For short distances

(λ ∼ 10 km), theYukawa fieldwill be determined by the local
environment and by the topography around the experiment.
Therefore, UFF constraints in the field of the Earth are limited
to large values of λ in Fig. 3. For very short distances, the
dedicated experiment measuring the differential acceleration
in the gravitational field generated in the lab by a uranium
body [39] is the most powerful; see Fig. 3.
Note that, contrary to clock measurements, the UFF

constraints are independent of the hypothesis that the scalar
field discussed here constitutes the DM in our Galaxy.
The results from atomic clock measurements, also

presented in Fig. 3, are fully detailed in Refs. [43,44].
They are obtained by equating the amplitude of the
oscillation from Eq. (31) to the upper limit of the amplitude
Aω fitted to the data. For small masses, they are more
constraining than UFF measurements. For masses larger
than 10−22 eV, the upper limits on the di increase linearly
with the mass of the scalar field. It is worth mentioning that
these constraints depend on the identification of the scalar
field as the unique component of DM [because it fixes the
amplitude φ0 through Eq. (27)], while the UFF constraints
from the previous paragraph are obtained independently of
the DM interpretation of the scalar field. Note also that
constraints from the considered clock measurements are

practically insensitive to dð1Þme − dð1Þg .
In addition to searching for an oscillation with atomic

sensors, one can search for a Yukawa dependency of the
comparisons between frequencies [see the second line of
Eq. (31)], when clocks are moved in a given gravita-
tional field.
Such a scenario has been considered in Ref. [60] but is

currently not as competitive as the other measurements for
individual coupling parameters.
Note that the so-called natural couplings—usually

defined as couplings of the order of unity—are excluded

for scalar field masses mφ up to ∼10−5 eV for dð1Þe , up to

∼10−4 eV for dð1Þm̂ − dð1Þg , and up to 10−5 eV for dð1Þme − dð1Þg .
Finally, it is interesting to mention that UFF measure-

ments could potentially be reanalyzed to search for a
periodic variation in the signal that would come from
the first term of Eq. (38) [15]. The dashed line from Fig. 3
represents an estimate of the sensitivity that could be
obtained on the various coefficients if the amplitude of
the UFF oscillation from Eq. (38) could be constrained at
the level of δa ∼ ηg, where g is the gravitational accel-
eration. In Fig. 3, we present the constraints that can be
obtained from a reanalysis of MICROSCOPE observations
in the frequency range that seems reachable from the
current measurements. However, one can see from Fig. 3
that they would not be competitive to existing constraints.

C. Quadratic coupling

The case of quadratic coupling is more complex and
offers a richer phenomenology. The reason for this richer

FIG. 3. Upper (MRA) limit (at 95% confidence level) on the
various scalar/matter coupling coefficients in the case of a linear
coupling between matter and the scalar field. The SYRTE Cs/Rb
analysis is from Ref. [44], the Dy analysis is presented in
Ref. [43], the UFF measurement around Earth between Be and
Ti is from Ref. [40], the UFF measurement between Cu and Pb
in the gravitational field of a 238U body is from Ref. [39], and
MICROSCOPE’s result is presented in Refs. [42,67]. The
constraints derived from clock measurements assumed that the
scalar field comprises all local DM, while the UFF constraints do
not rely on this assumption. Note that the dashed line is not an
actual constraint but an estimate of the potential sensitivity;
see Sec. VI B.
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phenomenology comes from the presence of the J�ðxÞ
factor in the expression of the effective scalar charge sð2ÞA in
Eq. (23). First of all, as discussed in Sec. IV B, the behavior
of the effective scalar charge is significantly different for
positive and negative couplings (this is illustrated in Fig. 1).

In particular, for large positive couplings dð2Þi , a screen-
ing mechanism occurs: the amplitude of the oscillations of
the scalar field at the surface of the central body decreases,
lowering the sensitivity of any measurement. This kind
of effect occurs when εA ∼ di½Qi�A GMA

c2RA
∼ 1, which corre-

sponds to the case where the sð2ÞA
GMA
c2r part of the scalar field

solution from Eq. (22) starts to become relevant. This
deamplification mechanism discussed in Sec. IV B makes
the scalar field hard to detect and constrain for large scalar
field masses, as can be seen in Fig. 4.
On the other hand, the case of large negative couplings

dð2Þi < 0 is characterized by an amplification of the scalar
field (see Figs. 1 and 2) that increases the amplitude of
observables, which makes DM easier to either detect or

constrain. As mentioned in Sec. IV B, at some point when
the scalar field becomes too large, the approximation used
in this work breaks down. In particular, the development
done in Refs. [31,32] requires that diφ2=2 < 1 so that the
variation of the constants of nature from Eq. (3) can be
treated perturbatively. Moreover, the limit diφ2=2 ¼ −1
would naively imply a change of the sign of the constants of
nature, an undesirable behavior. This limit—where the
approximation used in this work breaks down, and where
the constants of nature would change their sign—is
indicated in Fig. 4 by a shaded green area. A full under-
standing of the behavior for large negative couplings
requires us to extend the work of Refs. [31,32] at the
nonperturbative level and to solve the full relativistic field
equations nonperturbatively (as discussed in Sec. IV B).
In Fig. 4, clock measurements from Refs. [43,44] have

been transformed into constraints on the dð2Þi coefficients.

In order to do so, the published constraints on dð1Þi need to
be transformed into a constraint on the amplitude Aω of an
oscillation that has been constrained from the data by using

FIG. 4. Upper and lower (MRA) limits (at 95% confidence level) on the various scalar/matter coupling coefficients dð2Þi in the case of a
quadratic coupling between matter and the scalar field. The constraints have been derived using the following measurements: the
SYRTE Cs/Rb data from Ref. [44], the Dy measurements from Ref. [43], the UFF measurement around Earth between Be and Ti from
Ref. [40], and the MICROSCOPE result presented in Ref. [42]. Note that the dashed line is not an actual constraint but an estimate of the
potential sensitivity that would be obtained by searching for an oscillating violation of the UFF within MICROSCOPE data. The lower
green shaded area represents the limits for which jdiφ2=2j ∼ 1, where the Minkowskian approximation used in this work breaks down
and where the constants of nature from Eq. (3) would naively experience a change of sign.
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the first line of Eq. (31), and then transformed back into a

constraint on the dð2Þi coefficients by using the second line of
Eq. (32). For small scalar field masses mφ, the upper and

lower limits on dð2Þi coefficients evolve quadratically with
mφ and agree with those derived in Refs. [13,18]. At some

point, when the constraints reach a value of dð2Þi that is such

that εA ¼ dð2Þi ½Qi�A GMA
c2RA

∼ 1, the sð2ÞA
GMA
c2r part of the scalar

field solution from Eq. (22) starts to become relevant
and the behavior of the constraint becomes dependent on

the sign of dð2Þi . For negative dð2Þi , the scalar field and the
observables diverge, which produces a saturation of the

constraints. For large positive dð2Þi , it can be seen from
Eq. (33) that the amplitude of the oscillation on the clock
observable evolves as ∝ 1=m2

φ and becomes independent of

dð2Þi —becauseΔκð2Þ=α̃ð2Þ⊕ is constant [see Eqs. (10)–(12) and
(16)], and φ0mφ is as well [see Eq. (27)]. In that particular
limit, there exists a critical scalar mass above which the
amplitude of the scalar-field-induced oscillation on clock
measurements becomes smaller than the limit measured.

Therefore, above this critical mass, no constraint on the dð2Þi
parameters can be inferred, as can be seen in Fig. 4. For small
masses, clock results are the most constraining measure-
ments. Similarly to the linear case, the considered clock

measurements are not sensitive to dð2Þme − dð2Þg .
Regarding the measurements of UFF violations, they can

be separated into two parts: a static part and an oscillatory
part. The UFF static measurements of η from Refs. [40,42]
can be directly used and compared to the static expression
of η from Eq. (42). It is important to notice that, contrary to

the constraint on the dð1Þi coupling coefficients discussed in

the previous section, the constraints on the dð2Þi parameters
deduced from η now depend on φ0 and on the assumption
that the scalar field is the unique component of DM. For
small scalar field masses mφ, the upper and lower limits

on dð2Þi coefficients evolve linearly withmφ. Similarly to the

clock results, when εA ¼ dð2Þi ½Qi�A GMA
c2RA

∼ 1, the constraints

become sign dependent. For negative di, the scalar field and
the observable diverge, which produces a saturation of the
constraints. For large positive di, constraints evolve as m2

φ

when taking into account the elevation of the measurements
(see Fig. 4). The reason why measurements at the surface of
the central body are less constraining is related to the
deamplification mechanism discussed in Sec. IV B: the
central body will act as an insulator for the scalar field and
strongly reduces the scalar field at its surface (see Fig. 2),
making it more difficult to detect. This is a major difference
with linear couplings, for which measurements on Earth
are more constraining for large scalar field masses. The
measurements in space from MICROSCOPE are therefore
the most constraining for quadratic couplings on a large
mass range, often by several orders of magnitude.

It is worthmentioning that, contrary to the linear coupling
case, values corresponding to so-called “natural couplings”

(i.e., dð2Þi of the order of unity) are either not constrained at
all, or only very marginally constrained for extremely small
DMmasses. This leaves a lot of space for so-called “natural”
models to exist in the context of quadratic couplings.
Finally, it is also possible to reanalyze UFF experiments

to search for harmonic oscillations in the data. Two types of
signature can be searched for. The first one is related to the
middle line of Eq. (41). If one assumes that the limit on the
amplitude of oscillations on δa that can be reached using
the MICROSCOPE data is ∼ηg, one finds that searching
the MICROSCOPE observations for such harmonic sig-
natures could potentially produce other constraints on the

dð2Þi coefficients at a similar level to the ones from the static
UFF case (solid purple line in Fig. 4). In addition to that, a
second harmonic signature is produced by the third line
of Eq. (41). Under the same assumption as above, if the
MICROSCOPE observations are reanalyzed, they could

produce constraints on the dð2Þi coefficients that are given
by the dashed purple line in Fig. 4. This sensitivity is
nevertheless several orders of magnitude worse than that
already existing from the static UFF analysis.

VII. CONCLUSION

In this paper, we have studied the observable conse-
quences induced by a violation of the Einstein equivalence
principle for models of ultralight scalar DM in detail. We
focused on two cases: (i) a linear interaction between the DM
scalar field and the standard-model fields, and (ii) a quadratic
coupling between the scalar field and the standard-model
fields. The microscopic interactions between the scalar field
and matter are modeled as in Refs. [31,32].
The specificity of our work is that we consider a massive

scalar field, such that it can be identified as DM, and
explore all local phenomenological consequences of such a
field. We assume a mass range between 10−24 eV and ∼eV,
where the field would behave classically and oscillate
because of its potential. We show that, in particular for
the quadratic coupling, this leads to new and unexpected
phenomenological behavior, and we review all existing
local experiments that could constrain the coupling con-
stants in such a model.
Two different types of experiments are considered in this

publication: (i) experiments based on the local comparison
of clocks (and more generally, on the local comparison of
atomic sensors, sensitive to different combinations of the
constants of nature), and (ii) local measurement of the
differential acceleration between two bodies of different
compositions and located at the same position in space-time.
Regarding the linear case, the scalar field is the sum of an

oscillating contribution and a Yukawa contribution. The
oscillating contribution can be identified as DM, while the
Yukawa interaction leads to a “standard” fifth interaction
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between bodies. This means that both types of signatures
can be searched for using atomic sensors and UFF
measurements. It turns out that atomic sensors are more
sensitive to the oscillations, while the UFF experiments are
more sensitive to the Yukawa interaction. Existing results
using local frequency comparisons between Cs and Rb
hyperfine transitions using the dual atomic fountain from
SYRTE [44] and using a local frequency comparison
between two radio-frequency transition in two dysprosium
isotopes [43], and existing results on UFF measurements
from the Eöt-Wash group [39–41] and from the
MICROSCOPE space mission [42] are presented in
Fig. 3 (see also Ref. [67]). For small masses of the scalar
field, clock comparisons are the most constraining obser-
vations, while for large masses, UFF measurements are
more powerful. It is also interesting to mention that for
intermediate masses, the result from the space experiment
MICROSCOPE is more constraining than those from the
Eöt-Wash group (this is due to the sensitivity of the
measurements), while for very large masses (typically
for masses corresponding to a Yukawa interaction length
λφ < R⊕), experiments located at the Earth’s surface are
more sensitive than experiments located in space. Finally,
it is worth mentioning that so-called “natural” couplings

(i.e., coupling coefficients dð1Þi of the order of unity) are

excluded up to a scalar field mass of ∼10−5 eV (for dð1Þe ).
The case of the quadratic coupling is more complex and

leads to a richer phenomenology. First of all, at the classical
level, the solution for the scalar field shows that no Yukawa
interaction is generated in this model.5 Instead, the scalar
field exhibits an oscillatory behavior that is perturbed or
enhanced by the presence of a massive body. This impor-
tant result is in agreement with Ref. [37]. In addition, in
Sec. IV B, we show that the amplitude of the scalar field
oscillations can be amplified (in the case of negative

coupling coefficients dð2Þi ) or screened (in the case of

positive coupling coefficients dð2Þi ), a behavior similar to
the scalarization mechanism [38]. In particular, it can be
shown that for large positive coupling coefficients, the
scalar field tends to vanish inside and at the surface of
the central body. This has a direct consequence: experi-
ments in space are more interesting to detect or constrain
DM with a quadratic coupling to the standard-model fields.
The signature from such a scalar field on the comparison of
two atomic sensors located at the same position takes the
form of a constant that depends on the location, and of an
oscillation whose amplitude depends on the location. Such
a signature is completely new, has never been searched for
in the past, and favors experiments that would compare

clocks located in eccentric orbits in space. Comparisons
between frequencies on Earth provide interesting con-
straints on the coupling coefficients (see Fig. 4), but they
are somewhat limited because of the deamplification
mechanism mentioned above. Regarding UFF measure-
ments, two types of signatures can be searched for: a
signature that corresponds exactly to the regular definition
of the UFF η parameter, and an oscillating signature.
Except for very small scalar-field masses, constraints from
the UFF measurements are more powerful, and space
experiments are more adapted to search for this type of
DM candidate. The amplification and screening mecha-
nisms lead to a modification of the constraints compared to
what has been previously published in the literature.
Finally, we point out that in the quadratic case, so-called
“natural” couplings are still allowed in most of the
parameter space we explored.
This work is only a first step in the exploration of the

signatures produced by scalar ultralight DM on some local
experiments. In this paper, we focused on experiments that
probe directly the Einstein equivalence principle. Further
exploration is needed to consider experiments that are
probing space-time curvature and not only the Einstein
equivalence principle, like, e.g., the orbital dynamics using
planetary ephemerides or lunar laser ranging [61], or the
motion of S-stars around our Galactic center [68,69], light
deflection, binary pulsars [8,9,22], gravitational wave
interferometers [13,17], cosmological measurements like
big bang nucleosynthesis [14,70–76], or gravimetry [77].
For these experiments, one needs to solve the equations of
the space-time metric in addition to the scalar field, whose
solution is presented in Sec. IV.
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APPENDIX A: OTHER CONVENTIONS USED
IN THE LITERATURE

Different conventions for the scalar field and for the
coupling constants are used in the literature. In particular,
while a dimensionless scalar field φ is used in this paper as
is done in Refs. [31,32], a dimensionful scalar field ϕ is
sometimes used [12,13,16,78]. The action using this scalar
field is written

S ¼ 1

c

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2κ

−
1

2
gμν∂μϕ∂νϕ −

m2
ϕϕ

2

2

�
þ Smat:

ðA1Þ

Comparing this action with Eq. (1) shows that

5Quantum one-loop corrections are expected to produce an
additional 1=r3 potential at distances 2mφr ≪ 1; see, e.g.,
Ref. [48]. This will not impact our results, since these mod-
ifications are generally orders of magnitude smaller.
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φ ¼ ð4πG=cℏÞ1=2ϕ ¼
ffiffiffiffiffiffi
4π

p
ϕ=MPl; ðA2Þ

withMPl being the Planck mass (MPl ¼ 1.22 × 1019 GeV).
On the other hand, the coupling between the scalar field

and matter is sometimes expressed using other conventions.
This work uses dimensionless coefficients as used in
Refs. [12,16,31,32], while Refs. [13,14,17,18,33,34,78]
use coefficients that have the dimension of energy.
The convention used by Refs. [13,14,17,18,33,34,78] in

the case of a linear coupling leads to

αEM ¼ αEM

�
1þ ϕ

Λγ

�
; ðA3aÞ

mj ¼ mj

�
1þ ϕ

Λj

�
for j ¼ e; u; d ðA3bÞ

for the linear case. A direct comparison with Eq. (3)
leads to the following relation between the two sets of
coefficients:

Λγ ¼
MPlffiffiffiffiffiffi
4π

p
dð1Þe

; ðA4aÞ

Λq ¼
MPlffiffiffiffiffiffi
4π

p
dð1Þm̂

; ðA4bÞ

Λe ¼
MPlffiffiffiffiffiffi
4π

p
dð1Þme

: ðA4cÞ

On the other hand, the convention used by
Refs. [13,14,17,18,33,34,78] in the case of a quadratic
coupling leads to

αEM ¼ αEM

�
1þ ϕ2

ðΛ0
γÞ2
�
; ðA5aÞ

mj ¼ mj

�
1þ ϕ

ðΛ0
jÞ2
�

for j ¼ e; u; d; ðA5bÞ

Λ0
γ ¼

MPlffiffiffiffiffiffiffiffiffiffiffiffiffi
2πdð2Þe

q ; ðA6aÞ

Λ0
q ¼

MPlffiffiffiffiffiffiffiffiffiffiffiffiffi
2πdð2Þm̂

q ; ðA6bÞ

Λ0
e ¼

MPlffiffiffiffiffiffiffiffiffiffiffiffiffi
2πdð2Þme

q : ðA6cÞ

APPENDIX B: DILATON CHARGES

In this Appendix, we briefly recall the formulas that were
used to get the values in Table I. These formulas are derived
in Ref. [32], from which one can write the coupling

α̃ðiÞA ¼ dðiÞg þ ½Qm̂�AðdðiÞm̂ − dðiÞg Þ þ ½Qδm�AðdðiÞδm − dðiÞg Þ
þ ½Qme

�AðdðiÞme − dðiÞg Þ þ ½Qe�AdðiÞe ; ðB1Þ

where the dilaton charges are written

Qm̂ ¼ FA

�
0.093 −

0.036

A1=3 − 0.02
ðA − 2ZÞ2

A2

− 1.4 × 10−4
ZðZ − 1Þ
A4=3

�
; ðB2aÞ

Qδm ¼ FA

�
0.0017

A − 2Z
A

�
; ðB2bÞ

Qme
¼ FA

�
5.5 × 10−4

Z
A

�
; ðB2cÞ

Qe ¼ FA

�
−1.4þ 8.2

Z
A
þ 7.7

ZðZ − 1Þ
A4=3

�
× 10−4; ðB2dÞ

with

FA ¼ Amamu

mA
¼ 1þOð10−4Þ; ðB2eÞ

where Z is the atomic number, A is the mass number,
mamu ¼ 931 MeV, and mA is the mass of the atom.

It is convenient to decompose α̃ðiÞA into a composition-
independent part and a part that is composition dependent
and that will play an important role in EEP tests. In order to
provide such a decomposition, we will use the fact that
Z=A ∼ 1=2 for most (heavy) elements to get

α̃ðiÞA ¼ d�ðiÞg þ ᾱðiÞA ; ðB3Þ

where d�ðiÞg contains the composition-independent parts of
the dilatonic charges

d�ðiÞg ¼ dðiÞg þ 0.093ðdðiÞm̂ − dðiÞg Þ þ 2.75 × 10−4ðdðiÞme − dðiÞg Þ
þ 2.7 × 10−4dðiÞe ; ðB4Þ

and where the composition-dependent part of the
coupling is
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ᾱðiÞ ¼ ½Q0
m̂�AðdðiÞm̂ − dðiÞg Þ þ ½Q0

δm�AðdðiÞδm − dðiÞg Þ
þ ½Q0

me
�AðdðiÞme − dðiÞg Þ þ ½Q0

e�AdðiÞe : ðB5Þ

These new dilatonic charges are now given by

Q0
m̂ ¼ −

0.036

A1=3 − 0.02
ðA − 2ZÞ2

A2
− 1.4 × 10−4

ZðZ − 1Þ
A4=3 ;

ðB6aÞ

Q0
δm ¼ 0.0017

A − 2Z
A

; ðB6bÞ

Q0
me

¼ −2.75 × 10−4
A − 2Z

A
; ðB6cÞ

Q0
e ¼ −4.1 × 10−4

A − 2Z
A

þ 7.7 × 10−4
ZðZ − 1Þ
A4=3 :

ðB6dÞ

In the previous equations, the terms that are proportional
to ðA − 2ZÞn are usually negligible for heavy elements.

APPENDIX C: SOLUTIONS FOR THE
SCALAR FIELD

1. Linear coupling

The equation for the scalar field is given by

1

c2
φ̈ðt; xÞ − Δφðt; xÞ ¼ −

4πG
c2

α̃ð1ÞA ρAðxÞ −
c2m2

φ

ℏ2
φðt; xÞ:

ðC1Þ

The general solution of this equation is the sum of the
general solution of the homogeneous equation and a
particular solution. The homogeneous equation is a regular
wave equation whose solutions are plane waves
φ0 cos ðk:x − ωtþ δÞ, where jkj2 þ c2m2

φ=ℏ2 ¼ ω2=c2.
A particular solution of the nonhomogeneous equation

can be obtained by considering that the source term
depends only on the spatial coordinates (ρ is time inde-
pendent). The particular solution will therefore be time
independent and can be determined by computing Green’s
function GðxÞ, the solution of the equation

ΔGðxÞ − c2m2
φ

ℏ2
GðxÞ ¼ δð3ÞðxÞ: ðC2Þ

The isotropic solution is given by

GðxÞ ¼ −
1

4π

e−r=λφ

r
; ðC3Þ

with λφ ¼ ℏ=cmφ. The general solution for the scalar field
is therefore given by

φð1Þðt; xÞ ¼ φ0 cos ðk:x − ωtþ δÞ

−
G
c2

Z
d3x0

e−jx−x0j=λφ

jx − x0j α̃ð1Þðx0Þρðx0Þ: ðC4Þ

a. Test mass

The academic case of a test mass whose density is given
by ρðxÞ ¼ MAδðxÞ leads to the standard Yukawa form of
the part of the scalar field generated by the body A:

φð1Þ
A ðxÞ ¼ −α̃ð1ÞA

GMA

rc2
e−r=λφ : ðC5Þ

b. Homogeneous spherically symmetric body

If we consider a uniform extended spherically symmetric
body, characterized by ρðxÞ ¼ ρA if r < RA and 0 other-
wise with ρA ¼ 3MA=4πR3

A, the integration from Eq. (C4)
leads to [79]

φð1Þ
A ðxÞ ¼ −α̃ð1ÞA I

�
RA

λφ

�
GMA

rc2
e−r=λφ ; ðC6Þ

with

IðxÞ ¼ 3
x cosh x − sinh x

x3
: ðC7Þ

c. Two-layer spherically symmetric body

Let us now consider a spherically symmetric body
composed of two layers (like the Earth with a core and
a mantle). The matter density is given by

ρðxÞ ¼ ρ1 if r ≤ R1; ðC8Þ

¼ ρ2 if R1 < r ≤ R2; ðC9Þ

¼ 0 if R2 < r: ðC10Þ

The coupling constant α̃ð1Þ is also dependent on the
position:

α̃ð1ÞðxÞ ¼ α̃ð1Þ1 if r ≤ R1; ðC11Þ

¼ α̃ð1Þ2 if R1 < r ≤ R2; ðC12Þ

¼ 0 if R2 < r: ðC13Þ
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The integration of Eq. (C4) gives

φð1Þ
A ðxÞ ¼ −

GM
c2r

e−r=λφ
�
α̃ð1Þ1

M1

M
I

�
R1

λφ

�

þ α̃ð1Þ2

M2

M

R3
2IðR2

λφ
Þ − R3

1IðR1

λφ
Þ

R3
2 − R3

1

�
; ðC14Þ

where M1 ¼ 4πR3
1ρ1=3 is the mass of the internal core,

M2 ¼ 4πρ2ðR3
2 − R3

1Þ=3 is the mass of the external shell,
and M ¼ M1 þM2.

d. Summary

To summarize, the general solution for the scalar field
around a spherically symmetric body is given by

φð1Þðt; xÞ ¼ φ0 cos ðk:x − ωtþ δÞ − sð1ÞA
GMA

c2r
e−r=λφ ;

ðC15Þ

where

sð1ÞA ¼ α̃ð1ÞA for a point particle; ðC16aÞ

¼ α̃ð1ÞA I

�
RA

λφ

�
for a sphere; ðC16bÞ

¼ α̃ð1Þ2

M2

M

R3
2IðR2

λφ
Þ − R3

1IðR1

λφ
Þ

R3
2 − R3

1

þ α̃ð1Þ1

M1

M
I

�
R1

λφ

�
for a two-layer sphere:

ðC16cÞ

2. Quadratic coupling

The equation for the scalar field is given by

1

c2
φ̈ðt; xÞ − Δφðt; xÞ ¼ −

4πG
c2

α̃ð2ÞA φðt; xÞρAðxÞ

−
c2m2

φ

ℏ2
φðt; xÞ: ðC17Þ

This is a fully linear equation with no source term. The
trivial solution φ ¼ 0 is always a solution to this equation.
In order to find a nontrivial solution, let us use a separa-
tion of variables and write the scalar field as a product
of two functions (one time dependent and one space
dependent):

φðt; xÞ ¼ TðtÞXðxÞ: ðC18Þ

Using this ansatz, Eq. (C17) is therefore equivalent to

T̈ − αT ¼ 0; ðC19aÞ

ΔX þ βX −
4πG
c2

α̃ð2ÞðxÞρðxÞX ¼ 0; ðC19bÞ

αþ β ¼ m2
φ: ðC19cÞ

We are interested in finding the solution in the case
around a spherically symmetric body. The outside solution
for the function X is a solution of

ΔX þ βX ¼ 0: ðC20Þ

This equation presents different behavior depending on the
value of β. Since we want to identify the scalar field as DM,
we are interested in the solutions that remain nonvanishing
at infinity (and that remain finite). This behavior only
shows up for β ¼ 0, which will be considered hereafter.
In that case, the temporal part of the scalar field can be
solved easily, and

φðt; xÞ ¼ φ0 cosðωtþ δÞXðxÞ; ðC21Þ

with ω ¼ mφc2=ℏ.
The function XðxÞ depends on the specific modeling of

the body, although the form of the outside solution will be

XðxÞ ¼ 1þ A
r
; ðC22Þ

where the constant A will depend on the internal structure
of the central body. We will model the central body as an
extended spherical mass or as a two-layer sphere. In both
cases, the strategy to solve for the function XðxÞ is to solve
Eq. (C19b) in each layer, to keep solutions that remain
finite for r ¼ 0 and whose radial derivative at r ¼ 0
vanishes, and to apply continuity conditions (continuity
of the scalar field and of its derivative) at the interfaces.

a. Homogeneous spherically symmetric body

If we consider a uniform extended spherically symmetric
body, characterized by ρðxÞ ¼ ρA if r < RA and 0 other-
wise with ρA ¼ 3MA=4πR3

A, inside the body XðxÞ ¼ XðrÞ
is a solution of

ΔX ¼ 4πG
c2

α̃ð2ÞA ρAX: ðC23Þ

The solution that remains finite and whose radial derivative
vanishes at r ¼ 0 is given by

XðrÞ ¼ B
sinh γAr

r
if α̃ð2ÞA > 0; ðC24aÞ

¼ B
sin γAr

r
if α̃ð2ÞA < 0; ðC24bÞ
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where

γ2A ¼ 4πG
c2

jα̃ð2ÞA jρA ¼ 3jα̃ð2ÞA jGMA

c2R3
A

: ðC25Þ

The continuity conditions (continuity of X and of its radial
derivative) at the interface r ¼ RA between the interior
solution from Eq. (C24) and the exterior solution from
Eq. (C22) allows one to determine the constants A and B.

The final solution depends on the sign of α̃ð2ÞA and is
given by

XðrÞ¼K
sign½α̃ð2ÞA �

 
r
RA

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jα̃ð2ÞA jGMA

c2RA

s !
for r≤RA;

¼1− α̃ð2ÞA
GMA

c2r
J
sign½α̃ð2ÞA �

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jα̃ð2ÞA jGMA

c2RA

s !
for r>RA;

ðC26Þ

with

JþðxÞ ¼ 3
x − tanh x

x3
; ðC27aÞ

J−ðxÞ ¼ 3
tan x − x

x3
; ðC27bÞ

Kþðx; yÞ ¼
sinhcðxyÞ
coshðyÞ ; ðC27cÞ

K−ðx; yÞ ¼
sincðxyÞ
cosðyÞ : ðC27dÞ

b. Two-layer spherically symmetric body

Let us now consider a spherically symmetric body
composed of two layers (like the Earth with a core and
a mantle). The matter density is given by

ρðxÞ ¼ ρ1 if r ≤ R1; ðC28Þ

¼ ρ2 if R1 < r ≤ R2; ðC29Þ

¼ 0 if R2 < r: ðC30Þ

The coupling constant α̃ð2Þ is also dependent on the position

α̃ð2ÞðxÞ ¼ α̃ð2Þ1 if r ≤ R1; ðC31Þ

¼ α̃ð2Þ2 if R1 < r ≤ R2; ðC32Þ

¼ 0 if R2 < r: ðC33Þ

The solution outside the body is given by Eq. (C22), and

the solution within the first layer depends on the sign of α̃ð2Þ1

and is given by Eq. (C24), while the solution within the
external layer is given by

XðrÞ ¼ C
eγ2r

r
þD

e−γ2r

r
if α̃ð2Þ2 > 0;

¼ C
sin γ2r

r
þD

cos γ2r
r

if α̃ð2Þ2 < 0; ðC34Þ

with

γ2i ¼
4πG
c2

jα̃ð2Þi jρi: ðC35Þ

The continuity conditions at the two interfaces r ¼ R1 and
r ¼ R2 allows one to determine the four constants A, B, C,
and D. After solving this system of equations, the external
solution is given by

XðrÞ ¼ 1 −
GM
c2r

Lðα̃ð2Þ1 ; α̃ð2Þ2 ; R1; R2; ρ1; ρ2Þ; ðC36Þ

where the function L is given by

L ¼
cosh ½ðR1 − R2Þγ2�ðR2γ1 cosh ½R1γ1� − sinh ½R1γ1�Þ þ sinh ½ðR1 − R2Þγ2�ðγ1γ2 cosh ½R1γ1� − R2γ2 sinh ½R1γ1�Þ

GM
c2 ðγ2 sinh ½R1γ1� sinh ½ðR1 − R2Þγ2� − γ1 cosh ½R1γ1� cosh ½ðR1 − R2Þγ2�Þ

if αð2Þi > 0; ðC37aÞ

¼
cos ½ðR1 − R2Þγ2�ðsin ½R1γ1� − R2γ1 cos ½R1γ1�Þ − sin ½ðR1 − R2Þγ2�ðγ1γ2 cos ½R1γ1� þ R2γ2 sin ½R1γ1�Þ

GM
c2 ðγ2 sin ½R1γ1� sin ½ðR1 − R2Þγ2� þ γ1 cos ½R1γ1� cos ½ðR1 − R2Þγ2�Þ

if αð2Þi < 0; ðC37bÞ

where the γi’s are given by Eq. (C35) and M ¼ 4
3
πR3

1ρ1 þ 4
3
πρ2ðR3

2 − R3
1Þ.
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c. Summary

To summarize, the general solution for the scalar field
around a spherically symmetric body that is not vanishing
at infinity is given by

φð2Þ ¼ φ0 cos

�
mφc2

ℏ
tþ δ

��
1 − sð2ÞA

GMA

c2r

�
; ðC38Þ

where the scalar charge sð2ÞA is given by

sð2ÞA ¼ α̃ð2ÞA J
sign½α̃ð2ÞA �

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jα̃ð2ÞA jGMA

c2RA

s !
ðC39aÞ

for an extended homogeneous spherically symmetric body
and

sð2ÞA ¼ Lðα̃ð2Þ1 ; α̃ð2Þ2 ; R1; R2; ρ1; ρ2Þ ðC39bÞ

for a two-layer body where the function J is defined
by Eq. (C27) and the function L is defined by
Eq. (C37).
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[64] J. Guéna, M. Abgrall, A. Clairon, and S. Bize, Metrologia
51, 108 (2014).

[65] S. Fray, C. A. Diez, T. W. Hansch, and M. Weitz, Phys. Rev.
Lett. 93, 240404 (2004); S. Merlet, Q. Bodart, N. Malossi,
A. Landragin, F. Pereira Dos Santos, O. Gitlein, and L.
Timmen, Metrologia 47, L9 (2010); A. Bonnin, N. Zahzam,
Y. Bidel, and A. Bresson, Phys. Rev. A 88, 043615 (2013);
D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C.
Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M.
Rasel, Phys. Rev. Lett. 112, 203002 (2014); M. G. Tarallo,
T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M.
Tino, Phys. Rev. Lett. 113, 023005 (2014); L. Zhou, B.
Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J.
Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, Phys.
Rev. Lett. 115, 013004 (2015).

[66] B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer,
L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J.
Hartwig, L. Iess, P. Jetzer, A. Landragin, E. Rasel, S.
Reynaud, S. Schiller, C. Schubert, F. Sor-rentino, U. Sterr,
J. D. Tasson, G. M. Tino, P. Tuckey, and P. Wolf, Adv. Space
Res. 55, 501 (2015).
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