
 

Simpler than vacuum: Antiscalar alternatives to black holes

Maxim A. Makukov* and Eduard G. Mychelkin†

Fesenkov Astrophysical Institute, 050020 Almaty, Republic of Kazakhstan

(Received 6 May 2018; published 25 September 2018)

The Janis-Newman-Winicour and Papapetrou metrics represent counterparts to the Schwarzschild black
hole with scalar and antiscalar background fields, correspondingly (where “anti” is to be understood as in
“anti–de Sitter”). There is also a scalar counterpart (the Krori-Bhattacharjee metric) to the Kerr black hole.
Here we study analytical connections between these solutions and obtain the exact rotational generalization
of the antiscalar Papapetrou spacetime as a viable alternative to the Kerr black hole. The antiscalar metrics
appear to be the simplest ones as they do not reveal event horizons and ergospheres, and they do not involve
an extra parameter for scalar charge. Static antiscalar field is thermodynamically stable and self-consistent,
but this is not the case for the scalar Janis-Newman-Winicour solution; in addition, antiscalar
thermodynamics is reducible to black-hole thermodynamics. Lensing, geodetic, and Lense-Thirring
effects are found to be practically indistinguishable between antiscalar and vacuum solutions in weak
fields. Only strong-field observations might provide a test for the existence of antiscalar background.
In particular, the antiscalar solution predicts 5% larger shadows of supermassive compact objects, as
compared to the vacuum solution. Another measurable aspect is the 6.92% difference in the frequency of
the innermost stable circular orbit characterizing the upper cutoff in the gravitational wave spectrum.
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I. INTRODUCTION

The field equations of general relativity relate the
energy-momentum tensor (EMT) Tμν to the Einstein tensor
Gμν describing the geometry of spacetime, with the sign of
the Einstein tensor to be chosen such that it conforms to
observational data at the Newtonian limit (the Poisson
equation). However, for possible non-Newtonian back-
ground media with exotic equations of state, the choice
of the Gμν sign should be made independently. For
example, the cosmological Λ term, as a sort of background
energy, for a given fixed value might manifest itself in two
disguises—de Sitter and anti–de Sitter, both with the same
equation of state p ¼ −ε implying that either energy
density ε or pressure p is negative [1].
Similarly, the minimal background scalar field ϕwith the

equation of state p ¼ ε for timelike gradient ∂μϕ (or p ¼
−ε=3 for spacelike ∂μϕ) might also be related to the positive
or negative sign of the Einstein tensor, depending on the
conformance to relevant experiments. We refer to these two
alternatives as the scalar and antiscalar cases. For the scalar
case with spherically symmetric boundary conditions,
one obtains the Janis-Newman-Winicour (JNW) static
solution [2]. It reduces to the vacuum Schwarzschild metric
in curvature coordinates when the scalar field vanishes;
meanwhile, the corresponding rotational generalization of

the JNW spacetime (the Krori-Bhattacharjee solution [3])
reduces to the Kerr metric. For the antiscalar case, one
obtains the solution first found by Papapetrou [4] and
rediscovered later by Yilmaz [5], and studied afterwards
typically in the context of alternative theories of gravity
(e.g., [6–12]); interestingly, recently it has been shown
that this metric might be interpreted as a traversable worm-
hole [13]. The rotational generalization of the exponential
Papapetrou metric as an antiscalar modification of the Kerr
spacetime is obtained in this paper using two independent
methods.
In the case when the background is represented by the

cosmologicalΛ term, the standard way to study the stability
of the solution is by perturbing the corresponding (de Sitter
or anti–de Sitter) metric; the same goes for the vacuum
Schwarzschild and Kerr solutions. In contrast, for a class of
theories incorporating fundamental scalar background [14],
the induced metric gμν ¼ gμνðϕÞ loses an independent
meaning as it is now determined by the (anti)scalar field
described by an additional (Klein-Gordon) equation. Since
antiscalar metric coefficients happen to depend on ϕ
smoothly (nonzero and well behaved for all r > 0), the
problem of stability reduces, in effect, to perturbing the
scalar field in the corresponding Klein-Gordon equation.
One way to introduce perturbations is via incorporating a

small mass term into the Klein-Gordon equation consid-
ering the minimal field as a massless limit of some more
realistic massive (anti)scalar field. In turn, for the latter, as
discussed in Appendix A, there exist two possibilities in
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choosing the sign of the mass term. As argued in [14], for
the antiscalar field the negative mass term is advisable, and
in this case we find that the corresponding Klein-Gordon
solution is stable, at least for large r. Furthermore, from the
viewpoint of general-relativistic thermodynamics, the anti-
scalar field appears as a thermodynamically stable and self-
consistent medium, but this is not the case for the scalar
JNW field; see Appendix B, where it is also shown that
antiscalar thermodynamics contains black-hole thermody-
namics as a particular case.
It stands to reason that changing the sign of the Einstein

tensor as discussed above is formally equivalent to chang-
ing the sign of the corresponding EMT. Because the scalar
EMT is quadratic in field, replacement of the scalar field by
its antiscalar counterpart within such an interpretation
produces the following map,

Tsc
μνðϕÞ ↦ −Tsc

μνðϕÞ ⇔ ϕ ↦ iϕ ð1Þ

implying a similar map for the field source, i.e., the scalar
charge σ: σ ↦ iσ. This interpretation allows us to produce a
new algorithm for the transformation of certain scalar-type
metrics containing scalar charge into their antiscalar ana-
logs and, thereby, to obtain new antiscalar solutions with
subsequent application to observational effects, which will
be covered in this paper.
As a whole, we aim to study analytical and observational

differences between stationary vacuum, scalar and anti-
scalar solutions, and pay special attention to the compari-
son of the newly obtained exact rotational generalization of
the Papapetrou metric with the Kerr spacetime.

II. SCALAR-TO-ANTISCALAR TRANSITION

We seek to compare three distinct physical situations—
vacuum, scalar, and antiscalar, which are described by
Einstein’s equations with vacuum, scalar, and antiscalar
minimal background, correspondingly,

Gμν ¼ 0; ð2Þ

Gμν ¼ ϰTsc
μνðϕÞ; ð3Þ

Gμν ¼ −ϰTsc
μνðϕÞ; ð4Þ

where ϰ ¼ 8πG=c4, and the scalar field EMT is

Tsc
μνðϕÞ ¼

1

4π

�
ϕμϕν −

1

2
gμνϕαϕα

�
; ϕμ ≡ ∂μϕ: ð5Þ

In curvature coordinates, the spherically symmetric static
solution of (2) is the standard Schwarzschild metric (here-
after, we use units such that G ¼ c ¼ 1):

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2 − r2dΩ2; ð6Þ

with dΩ2 ≡ dθ2 þ sin2θdϕ2.
The JNW solution of (3) might be represented in

different forms [2,15–18]; for our purposes, we use the
following one,

ds2 ¼
�
1 −

2M
γr

�
γ

dt2 −
�
1 −

2M
γr

�
−γ
dr2

−
�
1 −

2M
γr

�
1−γ

r2dΩ2; ð7Þ

where γ ¼ M=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ σ2

p
, and σ is the scalar charge related

to the solution of the corresponding (here, massless) Klein-
Gordon equation:

□ϕ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0 ⇒

ϕ ¼ σγ

2M
ln

�
1 −

2M
γr

�

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
ln
�
1 −

2M
γr

�
: ð8Þ

The remarkable feature of the metric (7) is that due to the
presence of the free parameter γ, it comprises solutions to
both (2) and (4) as limiting cases. Thus, in the absence of
scalar field σ ¼ 0, hence, γ ¼ 1, and the JNW metric (7)
reduces to the Schwarzschild interval represented in cur-
vature coordinates (6), while (8) reduces identically to zero.
On the other hand, following the ansatz (1), we obtain a

physically reasonable result by applying in (7) and (8) the
transition σ ↦ iM, which is equivalent to

γ ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ σ2

p → ∞: ð9Þ

Application of this limit represents an algorithm which
transforms (7) directly into the antiscalar metric in isotropic
coordinates:

ds2 ¼ e−2M=rdt2 − e2M=rðdr2 þ r2dΩ2Þ; ð10Þ

which satisfies Eq. (4). This interval was first obtained by
Papapetrou [4], who considered a class of metrics induced
by scalar field gμν ¼ gμνðϕðxαÞÞ without reference to the
EMT sign. Yilmaz later noted (in the footnote 4 of his paper
[5]) that solution (10) follows actually from the Einstein
equations of the type (4) rather than of the type (3).
Now, the corresponding limit (9) for the potential in (8)

yields

lim
γ→∞

ϕ ¼ −i
M
r
; or lim

γ→∞
iϕ ¼ M

r
: ð11Þ
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On the other hand, from (1) we have that ϕ ↦ iϕ, and so
the antiscalar field proves to be nothing but the (positively
defined) Newtonian potential

ϕ ¼ M=r; ð12Þ
with the magnitude of scalar charge reduced to the
central mass.
The transfer from the JNW solution (7) to the isotropic

Papapetrou metric (10) simultaneously transforms the
system (3) into (4) and induces the transfer from scalar
potential (8) to antiscalar potential (12), and such an
operation is unique. This implies that all masses might
be considered as sources of (anti)scalar field. Therefore,
antiscalar field might represent a universal background
unremovable from the Einstein equations, and whether it
should be considered massless or massive depends on the
scales involved. For example, massive antiscalar back-
ground expanded onto cosmological lengths with the mass
term estimated to be of order m ≈ 10−33 eV [14] might be
potentially identifiable with the dark energy phenomenon.
At relatively small scales relevant to the topic of the present
paper, such a mass term is negligible.
Another peculiar feature of the metric (10) is that it does

not exhibit an event horizon, and, thus, it does not represent
a black hole. Nevertheless, the Papapetrou solution proves
to be very similar in a number of respects to the vacuum
solution. The similarity between the two spacetimes is
especially evident after recasting the Schwarzschild metric
via the standard transformation

r ↦ r

�
1þM

2r

�
2

ð13Þ

from curvature coordinates to isotropic coordinates:

ds2 ¼
�
1 − M

2r

1þ M
2r

�
2

dt2 −
�
1þM

2r

�
4

ðdr2 þ r2dΩ2Þ: ð14Þ

Then, the difference between (10) and (14), even near the
point rg ¼ 2M is practically negligible (see Fig. 1). This

guarantees conformity with the “crucial” effects of general
relativity. We now turn to analyze other possible observa-
tional effects, including those arising in rotational gener-
alizations of the vacuum and antiscalar solutions.

III. LENSING EFFECTS

The role of scalar field in gravitational lensing was first
considered by Virbhadra et al. [19], with the key point that
gravitational lensing might serve as a diagnostic tool for the
scalar charge on the basis of the JNW solution, since it
involves the integration constant naturally interpreted as
scalar charge. In contrast, within the antiscalar algorithm,
the only justifiable nonzero choice for scalar charge
magnitude is mass, as has been shown above.

A. Light deflection

First, we compare the light deflection angles for the
antiscalar and vacuum cases and demonstrate how both of
those might be obtained from the JNW approach as
corresponding limiting cases. The spherically symmetric
interval might be written as

ds2 ¼ gαβdxαdxβ ¼ gttðrÞdt2 þ grrðrÞdr2
þ gθθðrÞdθ2 þ gϕϕðr; θÞdϕ2; ð15Þ

where gϕϕðr; θÞ ¼ gθθðrÞsin2θ, and the signature ðþ−−−Þ
is absorbed into the metric components so that grr, gθθ, and
gϕϕ are negative. For the closest distance of approach r0,
the exact deflection angle might be represented as follows
[19,20]:

α̂ðr0Þ¼ 2

Z
∞

r0

�
grrðrÞ
gθθðrÞ

�
1=2
�
gθθðrÞ
gθθðr0Þ

gttðr0Þ
gttðrÞ

−1

�
−1=2

dr−π;

ð16Þ

yielding for the JNW metric (see [19,20]),

α̂ðr0Þ ¼ 2

Z
∞

r0

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M

γr

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rr0Þ2ð1− 2M

γr Þ1−2γð1− 2M
γr0
Þ2γ−1−1

q
−π;

or, up to the second order with respect to M=r0,

α̂ðr0Þ ¼
4M
r0

þ 4M2

r20

�
15π

16
− 2

�

þ 2M2

r20

�
2

γ
−
πð1 − γ2Þ

8γ2

�
þ � � � : ð17Þ

The vacuum limit γ ¼ 1 gives (in curvature coordinates)
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FIG. 1. Absolute values of the Papapetrou and Schwarzschild
metric coefficients as functions of radial isotropic coordinate r
(normalized by rg ¼ 2M).
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α̂ðr0Þ ¼
4M
r0

þ 4M2

r20

�
15π

16
− 1

�
þ � � � : ð18Þ

This result might be also obtained directly by substituting
(6) into (16).
Now, following the same algorithm, we find from (16)

and (10) the deflection angle for the Papapetrou antiscalar
metric (at the same order)

α̂ðr0Þ ¼ 2

Z
∞

r0

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rr0Þ2e

4Mð1r− 1
r0
Þ − 1

q − π

¼ 4M
r0

þ 4M2

r20
ðπ − 2Þ þ � � � ; ð19Þ

where integration is performed with the method described
in [1]. Alternatively, this result might also be obtained as a
limiting case γ → ∞ from (17).
However, it should be stressed that direct comparison of

results (18) and (19) would be incorrect, since the radial
variables in these formulas are geometrically distinct as
they label different types of coordinates (N.B.: for sim-
plicity, we employ the same r notation for radial distance
in all coordinates, with concrete interpretation following
from the context). To compare deflection angles (as well as
other observational effects) for the Papapetrou and
Schwarzschild spacetimes, one should use the isotropic
form of the Schwarzschild metric (14). Then, from (16) and
(14) we get for the vacuum solution

α̂ðr0Þ ¼ 2

Z
∞

r0

dr
r

� ð2rþMÞ6
ð2r0 þMÞ6

ð2r0 −MÞ2
ð2r −MÞ2

r20
r2

− 1

�−1
2

− π;

and, following [1], after straightforward but cumbersome
calculation up to the second order, we obtain for the
isotropic vacuum case

α̂ðr0Þ ¼
4M
r0

þ 4M2

r20

�
15π

16
− 2

�
þ � � � : ð20Þ

So, a comparison of (19) and (20) reveals a somewhat more
pronounced effect for the Papapetrou spacetime. However,
the resulting difference is measurable in practice only in
strong fields, and it is negligible within the Solar System.
To probe the difference, we need to turn to very massive
objects like those found in the centers of galaxies and to
consider the imaging of their shadows.

B. Shadows of compact objects

For simplicity, we will restrict our consideration to the
static case, leaving the effect of rotation on the shadow
image for later studies. As a first step, we calculate the
impact parameter of the so-called photon sphere. The
general impact parameter J ¼ Dl sinΘ (here,Dl is distance

from the observer to the lens, and Θ is the observer’s polar
angle for image of the source) represented in terms of the
general metric (15)

J ¼ Jðr0Þ ¼
�
−gθθðr0Þ
gttðr0Þ

�
1=2

ð21Þ

for the JNW metric becomes [19,20]

J ¼ r0

�
1 −

2M
r0γ

�ð1−2γÞ=2
: ð22Þ

From here, for vacuum (γ ¼ 1) in curvature coordinates,

J ¼ r0

�
1 −

2M
r0

�
−1=2

¼ 1þM
r0

þO

�
M2

r20

�
; ð23Þ

while for the antiscalar background (γ → ∞), we get

J ¼ r0 exp

�
2M
r0

�
¼ 1þ 2M

r0
þO

�
M2

r20

�
: ð24Þ

As for the Schwarzschild isotropic coordinates, from (21) it
follows:

J ¼
r0ð1þ M

2r0
Þ3

1 − M
2r0

¼ 1þ 2M
r0

þO

�
M2

r20

�
: ð25Þ

At first order, expressions (25) and (24) coincide but differ
from (23).
The characteristic related to the shadow imaging—the

photon sphere—arises when the deflection angle (16) is
maximized, which means that the derivative of (16) with
respect to r0 is zero, i.e.,

gtt
∂gθθ
∂r0 ¼ gθθ

∂gtt
∂r0 : ð26Þ

The solution of this equation yields the radius of photon
sphere r0 ¼ rps. Then, for the scalar JNW metric (7), one
obtains

rps ¼
M
γ
ð1þ 2γÞ: ð27Þ

So, in vacuum with curvature coordinates rps ¼ 3M, and
for the antiscalar case we get rps ¼ 2M, while for isotropic
Schwarzschild’s coordinates, we obtain four solutions
of (26),

rps ¼ �M
2
; rps ¼

�
1�

ffiffiffi
3

p

2

�
M;
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and the only solution which does not lead to contradictions
is the maximal positive one:

rps ¼
�
1þ

ffiffiffi
3

p

2

�
M ≈ 1.866M: ð28Þ

After substitution of the JNW photon sphere radius (27)
instead of r0 in (22), the resulting impact parameter [which
characterizes the radius of the shadow: JðrpsÞ ¼ Rsh; see,
e.g., [21]] proves to be [19,20]

JðrpsÞ ¼ Rsh ¼ M
1þ 2γ

γ

�
1 −

2

1þ 2γ

�1
2
−γ
: ð29Þ

In other words, for vacuum in curvature coordinates (γ ¼ 1),
it follows that Rsh ¼ 3

ffiffiffi
3

p
M ¼ 5.196M. Remarkably, in the

Schwarzschild isotropic coordinates, substituting (28) into
(25), we get exactly the same value for the shadow size,
Rsh ¼ 3

ffiffiffi
3

p
M. This may be comprehensible because geo-

metrically different photon spheres represent SOð3Þ ×R-
invariant surfaces [22] describing propagation of photons
around black holes.
At the same time, for the antiscalar case (γ → ∞) from

(29) we find Rsh ¼ 2eM ¼ 5.437M, which corresponds to
a physically distinct situation and proves to be 5% larger
than in the vacuum case.
Thus, we have two different expectations for the shadow

size for the same value of the central mass M. The mass of
compact objects is measurable independently, e.g., via
surrounding orbits of test particles, and so the observed
size of the shadow might distinguish between the vacuum
and antiscalar cases.
Next, we turn to spin precession effects in vacuum and

antiscalar backgrounds.

IV. GENERAL SPIN PRECESSION

The general frequency Ω of a test gyro in an arbitrary
stationary spacetimewith a timelike Killing vectorK can be
expressed in terms of differential forms [23] as

Ω̃ ¼ 1

2K2
� ðK̃ ∧ dK̃Þ; ð30Þ

where Ω̃ and K̃ are the 1-forms of Ω and K, and �
represents the Hodge dual. The K vector might be repre-
sented as a linear combination of time-translational and
azimuthal vectors, K ¼ ∂t þ ω∂ϕ, where ω is the angular
velocity for an observer moving along the integral curves of
the K field [23]. With the coordinate-free form of spin
precession (30), the vector field corresponding to the
general precession rate may be represented as (see [23])

Ω⃗ ¼ ffiffiffiffiffiffiffiffiffi
−grr

p
Ωrr̂þ ffiffiffiffiffiffiffiffiffiffi

−gθθ
p

Ωθθ̂ ¼ 1

2
ffiffiffiffiffiffi−gp ð1þ 2ω

gtϕ
gtt
þω2 gϕϕ

gtt
Þ

×

� ffiffiffiffiffiffiffiffiffi
−grr

p ��
gtϕ;θ −

gtϕ
gtt

gtt;θ

�
þω

�
gϕϕ;θ −

gϕϕ
gtt

gtt;θ

�

þω2

�
gtϕ
gtt

gϕϕ;θ −
gϕϕ
gtt

gtϕ;θ

��
r̂

−
ffiffiffiffiffiffiffiffiffiffi
−gθθ

p ��
gtϕ;r −

gtϕ
gtt

gtt;r

�
þω

�
gϕϕ;r −

gϕϕ
gtt

gtt;r

�

þω2

�
gtϕ
gtt

gϕϕ;r −
gϕϕ
gtt

gtϕ;r

��
θ̂

�
: ð31Þ

The magnitude of this vector is

Ωðr; θÞ ¼ jΩ⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−grrðΩrÞ2 − gθθðΩθÞ2

q
; ð32Þ

and will be used in subsequent calculations.

V. GEODETIC PRECESSION

A. JNW (scalar) case

The substitution of the JNWmetric (7) into (31) and (32)
leads to the general precession frequency for a gyro moving
in the equatorial plane (θ ¼ π=2) with orbital angular
speed ω:

Ω ¼ ωð1 − 2M
r − M

γrÞð1 − 2M
γr Þ−ðγþ3Þ=2

ð1 − 2M
γr Þ−1 − r2ω2ð1 − 2M

γr Þ−2γ
: ð33Þ

Since it appears that the analysis of the geodetic effect for
the JNW metric is absent in the literature, here we present
its sufficiently full derivation. It is common to choose
circular geodesics with corresponding angular velocities,
for which we denote ω ¼ ωc and r ¼ R ¼ const.
Traditionally, the circular frequencies ωc might be obtained
from the standard Hamilton-Jacobi formalism [24].
Following that procedure, we start from the Hamilton-
Jacobi equation for a test body of mass m,

gμν
∂S
∂xμ

∂S
∂xν −m2 ¼ 0; ð34Þ

written for the JNW metric:

�∂S
∂t
�

2

B−γ −
�∂S
∂r
�

2

Bγ −
�∂S
∂ϕ
�

2 Bγ−1

r2
¼ m2; ð35Þ

with B ¼ 1–2M=ðγrÞ. Because of spherical symmetry, we
look for the action in the form (see, e.g., [24])

S ¼ −Etþ Lϕþ SrðrÞ;
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where E and L are the constant energy and angular
momentum, respectively, and Sr is the part of the action
that depends only on r. The solution to (35) is then

S ¼ −Etþ Lϕþ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2B−2γ − L2r−2B−1 −m2B−γ
p

dr:

Taking derivatives of this with respect to E and L and
equating them to constants, we find

∂ϕ
∂r ¼ L

Br2
ðE2B−2γ − L2r−2B−1 −m2B−γÞ−1=2;

∂r
∂t ¼

B2γ

E
ðE2B−2γ − L2r−2B−1 −m2B−γÞ1=2;

so the orbital angular velocity ω ¼ ∂ϕ=∂t is

ω ¼ LB2γ−1

Er2
:

For circular orbits expressing L=E in a standard way (based
on the transformation to a new variable u ¼ 1=r), it follows
that

ωc ¼
�
M
R3

�1
2

�
1 −

2M
γR

�
γ−1

2

�
1 −

M
R
−
M
γR

�
−1
2

:

Substituting this result into (33), we obtain the correspond-
ing gyro precession frequency (with respect to proper
time):

Ω ¼
�
M
R3

�1
2

�
1 −

2M
γR

�γ−2
2

�
1 −

M
R

−
M
γR

�1
2

:

To express this quantity in terms of coordinate time,
we need the relation between the coordinate and proper
times, ut ¼ dt=dτ. Then, from uiui ¼ 1, with uϕ ¼ ωcut,
ur ¼ uθ ¼ 0, we find for the JNW metric,

ut ¼
�
1 −

2M
γR

�
−γ
2

�
1 −

M
Rð1 − M

R − M
γRÞ
�

−1
2

; ð36Þ

so the gyro precession frequency with respect to coordinate
time is

Ω0 ¼ Ω
ut

¼ ωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − M

γR −
M
RÞð1 − 2M

R − M
γRÞ

1 − 2M
γR

vuut : ð37Þ

Ω0 is always directed opposite to ωc [25], and the resulting
difference between their magnitudes produces the geodetic
precession effect. Thus, during the time interval t ¼ 2π=ωc,
the direction of spin changes by the angle

α ¼ 2π

ωc
ðωc −Ω0Þ; ð38Þ

and for (37) this yields

α ¼ 2π

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − M

γR −
M
RÞð1 − 2M

R − M
γRÞ

1 − 2M
γR

vuut
1
CA: ð39Þ

Adopting γ ¼ 1, we obtain the corresponding results for the
vacuum solution in curvature coordinates (these results are
known and might be found elsewhere; see, e.g., [23,24]).
Another limit we are interested in, γ → ∞, yields antiscalar
results in isotropic coordinates. For further comparison, we
need to derive corresponding results for the vacuum
solution in isotropic coordinates as well. These might be
obtained either by applying the transformation (13) to the
mentioned results [23,24] or starting from scratch. For
completeness, we provide brief direct derivation.

B. Schwarzschild (vacuum) case
in isotropic coordinates

Substitution of the Schwarzschild isotropic metric (14)
into (31) and (32) leads to the precession frequency for a
gyro moving in an equatorial plane with θ ¼ π=2 with
some orbital angular velocity ω:

Ω ¼ ωð1 − 2M
r þ M2

4r2Þ
ð1 − M

2rÞ2 − r2ω2ð1þ M
2rÞ6

: ð40Þ

For circular geodesics with r ¼ R ¼ const and correspond-
ing orbital angular velocity ω ¼ ωc, we obtain, following
the standard procedure of solving the Hamilton-Jacobi
equation:

ωc ¼
ffiffiffiffiffiffi
M
R3

r �
1þ M

2R

�
−3
: ð41Þ

Now, substituting (41) into (40) one obtains the gyro
precession frequency (with respect to proper time), the
magnitude of which exactly coincides with that of (41):

Ω ¼
ffiffiffiffiffiffi
M
R3

r �
1þ M

2R

�
−3
:

The relation between coordinate and proper times ut ¼
dt=dτ for a gyro moving on a circular orbit in this
spacetime is found as

ut ¼
�
1þ M

2R

��
1 −

2M
R

þ M2

4R2

�−1=2
:

So, the final gyro precession frequency with respect to
coordinate time is
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Ω0 ¼ Ω
ut

¼ ωc

�
1þ M

2R

�
−1
�
1 −

2M
R

þ M2

4R2

�
1=2

; ð42Þ

and from (38) one obtains per one orbital revolution:

α ¼ 2π

�
1 −

�
1þ M

2R

�
−1
�
1 −

2M
R

þ M2

4R2

�
1=2
�
: ð43Þ

Evidently, this formula is applicable for distances above the
point R ¼ Mð1þ ffiffiffi

3
p

=2Þ, where Ω in (40) changes sign.

C. Papapetrou (antiscalar) case

The substitution of the metric (10) into (31) and (32)
leads to precession frequency for a gyro moving in an
equatorial plane with orbital angular velocity ω:

Ω ¼ ωð1 − 2M=rÞeM=r

1 − r2ω2e
4M
r

ð44Þ

[as might be checked, this expression also follows as a limit
from the scalar counterpart (33) with γ → ∞].
To consider the geodetic effect for the antiscalar case, we

again choose circular geodesics and follow the Hamilton-
Jacobi formalism as in the previous section. In this case, the
action equation (34) becomes

�∂S
∂t
�

2

e2M=r −
�∂S
∂r
�

2

e−2M=r −
�∂S
∂ϕ
�

2 e−2M=r

r2
¼ m2:

Its general solution is

S ¼ −Etþ Lϕþ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2e4M=r − L2r−2 −m2e2M=r
p

dr:

Taking the derivative with respect to E and L and equating
them to constants, we find ∂ϕ=∂r and ∂r=∂t and, ulti-
mately, the orbital angular velocity ω ¼ ∂ϕ=∂t:

ω ¼ Le−4M=r

Er2
:

For circular orbits with radius R, expressing L=E in the
standard way [24], we find

ωc ¼
ffiffiffiffiffiffi
M
R3

r �
1 −

M
R

�
−1=2

e−2M=R: ð45Þ

Substituting this into (44), one obtains the gyro precession
frequency (with respect to proper time):

Ω ¼
ffiffiffiffiffiffi
M
R3

r �
1 −

M
R

�
1=2

e−M=R:

Next, instead of (36), it may be found that

ut ¼ ∂t
∂τ ¼

�
1 −M=R
1 − 2M=R

�
1=2

eM=R;

and so the gyro precession frequency with respect to
coordinate time is

Ω0 ¼ Ω
ut

¼ ωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
R

þ 2M2

R2

r
: ð46Þ

Now, from (38) and (46), the angle of precession during
one revolution of a gyro on a circular orbit becomes

α ¼ 2π

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
R

þ 2M2

R2

r !
; ð47Þ

which also follows from the limit γ → ∞ in (39).
Similar to the Schwarzschild case, the result in (47) is

restricted to R ≥ 2M, and the expression for Ω in (44)
changes sign for R ¼ 2M.
Accumulated during a large number of periods, both

geodetic effects, antiscalar (47) and vacuum (43), might be
measurable in satellite experiments [26]. However, for
realistic measurement times, the difference between those
might become significant only in the strong-field regime at
distances comparable to rg, as can been seen in Fig. 2.

D. Upper limit in the gravitational wave spectrum

The frequency of circular orbits (45) is also relevant in
the study of gravitational radiation emitted during inspiral
mergers. As shown by Watt and Misner [9], the effective
potential of the Papapetrou metric (10) has a “pit” just like
in the Schwarzschild case, which leads to the existence of
the innermost stable circular orbit (ISCO) with radius
Risco ¼ Mð3þ ffiffiffi

5
p Þ. Substituted into (45), this yields the

frequency of ISCO,

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1

2

3

4

5

6

R/rg

(r
ad

pe
r

re
vo

l.)

Antiscalar

Vacuum

FIG. 2. Geodetic precession angle α per one orbital revolution
as a function of circular orbit radius R for the vacuum and
antiscalar solutions, both in isotropic coordinates.
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ωisco ¼
0.0633326

M
; ð48Þ

which determines the upper limit in the observed
gravitational wave spectrum. Watt and Misner, however,
compare this with the corresponding known vacuum
analogs in curvature coordinates (Rcurv

isco ¼ 6M, ωcurv
isco ¼

0.0680414=M), yielding the 6.92% difference as compared
to antiscalar case (48).
To double check, we use isotropic coordinates ab initio

in both the antiscalar and vacuum cases. Then, for the
Schwarzschild metric in isotropic coordinates, we obtain
Risot
isco ¼ ð5

2
þ ffiffiffi

6
p ÞM ≈ 4.9495M which, after substitution

into (41), produces exactly the same numerical value for
ωisot
isco ¼ 0.0680414=M. In fact, this is not surprising, since

the transformation (13) from the curvature to isotropic form
does not involve angular and time coordinates. So, indeed,
the frequencies of innermost stable circular orbits charac-
terizing a cutoff in the gravitational wave spectrum differ by
6.92% between the vacuum and antiscalar cases.
As a next step, we compare the effects of the central

mass rotation in the vacuum, scalar, and antiscalar field
backgrounds.

VI. LENSE-THIRRING EFFECT

For ω ¼ 0, expression (31) reduces to the Lense-Thirring
precession [23,27]:

Ω⃗jω¼0 ¼ Ω⃗LT ¼ ffiffiffiffiffiffiffiffiffi
−grr

p
Ωr

LTr̂þ
ffiffiffiffiffiffiffiffiffiffi
−gθθ

p
Ωθ

LTθ̂

¼ 1

2
ffiffiffiffiffiffi−gp
� ffiffiffiffiffiffiffiffiffi

−grr
p �

gtϕ;θ −
gtϕ
gtt

gtt;θ

�
r̂

−
ffiffiffiffiffiffiffiffiffiffi
−gθθ

p �
gtϕ;r −

gtϕ
gtt

gtt;r

�
θ̂

�
: ð49Þ

The magnitude of this vector

ΩLTðr; θÞ ¼ jΩ⃗LTj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−grrðΩr

LTÞ2 − gθθðΩθ
LTÞ2

q
ð50Þ

will be used in subsequent calculations.

A. Rotating mass in the scalar background

The rotational generalization of the JNWmetric was first
obtained in [3], and, later and in a different form, redis-
covered in [16]. We will use the solution in the simple form
as presented, e.g., in [28]:

ds2 ¼
�
1 −

A
γ

�
γ

ðdt −WdϕÞ2

−
�
1 −

A
γ

�
1−γ

ρ2
�
dr2

Δ
þ dθ2 þ sin2θdϕ2

�
þ 2Wðdt −WdϕÞdϕ; ð51Þ

where

A ¼ 2Mr
ρ2

; ρ2 ¼ r2 þ a2cos2θ;

W ¼ asin2θ; Δ ¼ r2 þ a2 −
2Mr
γ

; ð52Þ

and a is the specific rotation parameter. The Jacobian for
the metric (51) is

ffiffiffiffiffiffi
−g

p ¼ ρ2
�
1 −

A
γ

�
1−γ

sin θ:

The corresponding solution of the Klein-Gordon equa-
tion can be found as

ϕ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
ln
�
1 −

A
γ

�
; ð53Þ

which for a ¼ 0 reduces to (8).
In accord with (50), vector (49) evaluated for the metric

(51) has the magnitude,

ΩLT ¼ aB
γ−3
2

ρ5
ffiffiffiffi
Δ

p fcos2θ½ρ4Bð1 − BγÞ þ 2a2Mrsin2θ�2

þM2sin2θΔðρ2 − 2r2Þ2g1
2; ð54Þ

with B ¼ 1 − A=γ. This general relation is applied for the
deduction of subsequent results.

B. Kerr (vacuum) case

In this case, one should pose γ ¼ 1 in (51) and (52), then
Δðγ ¼ 1Þ ¼ r2 þ a2 − 2Mr, and so the standard Kerr
vacuum metric follows:

ds2 ¼ ð1 − AÞðdt −WdϕÞ2 − ρ2
�
dr2

Δ
þ dθ2 þ sin2θdϕ2

�
þ 2Wðdt −WdϕÞdϕ; ð55Þ

with
ffiffiffiffiffiffi−gp ¼ ρ2 sin θ. In accord with (50), the magnitude of

the vector (49) evaluated for the Kerr metric is [27]

ΩLTðr; θÞ ¼
aM

ρ3ðρ2 − 2MrÞ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2Δcos2θ þ ðρ2 − 2r2Þ2sin2θ

q
; ð56Þ

which also may be obtained from (54) by taking γ ¼ 1. As
was noted in Sec. V, for correct comparison with the
antiscalar case, one should apply the transformation (13) to
“isotropic” coordinates in (55) and (56). Thus, e.g., in (56)
one should insert rð1þ M

2rÞ2 instead of r into ΩLTðr; θÞ.
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C. Rotating mass in the antiscalar background

In this case, we adopt γ → ∞ in (51) and obtain
the rotational generalization of the antiscalar Papapetrou
metric,

ds2 ¼ e−Aðdt −WdϕÞ2 − eAρ2
�
dr2

Δ
þ dθ2 þ sin2θdϕ2

�
þ 2Wðdt −WdϕÞdϕ; ð57Þ

where A, ρ, and W the same as in (52), but

Δ ¼ Δðγ → ∞Þ ¼ r2 þ a2: ð58Þ

The Jacobian of the metric (57) is

ffiffiffiffiffiffi
−g

p ¼ ρ2eA sin θ:

As a double check, we have obtained the same result (57)
directly from the Papapetrou metric, applying the Newman-
Janis formalism; see Appendix C.
As easily seen, with a → 0 (57) reduces to the

Papapetrou solution (10). Unlike the vacuum Kerr (55)
and scalar rotational JNW (51) metric, the solution (57) is
much more simple: It does not contain event horizons and
ergospheres, and moreover, for all r > 0, none of the metric
coefficients vanishes or blows up.
The corresponding potential might be obtained from (53)

via the algorithm (9):

lim
γ→∞

ϕ ¼ lim
γ→∞

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
2

ln

�
1 −

A
γ

��
¼ −i

Mr
ρ2

:

In other words, since ϕ↦ iϕ [cf. (11) and (12)], the
antiscalar rotational potential proves to be

ϕ ¼ ϕðr; θÞ ¼ Mr
ρ2

¼ Mr
r2 þ a2cos2θ

¼ A
2
: ð59Þ

In accord with (50), the Lense-Thirring vector (49)
evaluated for the metric (57) has the magnitude

ΩLT ¼ ae−A=2

ρ5
ffiffiffiffi
Δ

p fcos2θ½ð1 − e−AÞρ4 þ 2a2Mrsin2θ�2

þM2sin2θΔðρ2 − 2r2Þ2g1
2; ð60Þ

which also may be obtained from (54) by taking γ → ∞.
Now, this final relation (60) may be compared with its

Kerr-type isotropic analog following directly from (56) by
applying (13). Some results of this comparison of vacuum
and antiscalar Lense-Thirring effects in the strong-field
regime (small r) are represented in Fig. 3. Manipulation in
the orientation of the orbital plane from θ ¼ 0 to θ ¼ π=2
shows that the singular behavior of ΩLT in vacuum at
r ¼ M=2 becomes apparent only very close to the equa-
torial plane. Meanwhile, for the antiscalar background,
ΩLT always behaves monotonically and increases with the
growth of specific angular momentum a when moving off
the polar plane.

VII. CONCLUSION

Working within the standard general relativity algorithm,
we have obtained a number of exact results where effects
are induced by the antiscalar field which (at least in the
static case) proves to be dynamically and thermodynami-
cally stable. We have juxtaposed corresponding solutions
and their possible observational signatures both in the static
and rotational regimes. In particular, we have obtained the
new solution (57) representing the rotational generalization
of the spherically symmetric Papapetrou spacetime, as an
antiscalar counterpart of the vacuum Kerr metric (55).
Remarkably, all new analytical results demonstrate, as a

rule, practically negligible expected observational differences
between the two physically distinct situations for objects in
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0.0
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FIG. 3. Behavior of Lense-Thirring precession frequency (in units of M−1) as a function of isotropic radial coordinate r for antiscalar
(“ASF”) and vacuum (“vac”) background in polar (left, θ ¼ 0) and equatorial (right, θ ¼ π=2) orbital planes, each for two values of
specific angular momentum a.
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vacuum and for those embedded into antiscalar background
when considered in the weak-field regime.
Nevertheless, the differences might be reliably traced in

the strong-field regime, e.g., by shadow imaging of the
central object in the Milky Way, as undertaken by the Event
Horizon Telescope [29]. Our result is that in the static case
for a fixed mass of a compact object, the shadow size is
about 5% larger in the antiscalar approach than in the
vacuum case. We have also confirmed, using isotropic
coordinates ab initio, the 6.92% difference in ωisco in the
vacuum and antiscalar cases predicted earlier by Watt and
Misner [9].
When transferring from scalar to antiscalar metrics

(static and rotational), the fundamental conclusion is that
masses serve as scalar field sources. In the end, the obtained
antiscalar solutions are much simpler than their scalar
counterparts as they have one less free parameter. At the
same time, antiscalar solutions are also simpler than
vacuum analogs, as they are deprived of event horizons
and ergospheres due to the presence of antiscalar
background.
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APPENDIX A: ON THE STABILITY OF THE
ANTISCALAR DYNAMICAL EQUATION

The dynamical equation for both the scalar and antiscalar
fields is the same Klein-Gordon equation (here, massless):

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0: ðA1Þ

The difference is that in the former case, the JNW metric is
used, while in the latter case, it is the Papapetrou metric.
The stability of (A1) in terms of the JNW metric was
studied in [30] using a method where perturbation was
introduced via a small positive mass term. We employ a
similar algorithm to the perturbed equation (A1) for
antiscalar background with a necessarily negative mass
term, as follows from the following consideration.
As was noted in the Introduction, we envisage the

minimal (anti)scalar field as a limiting case of some
massive field. In one of our previous works [14], we have
considered the static limit of the usual Einstein-Maxwell
equations Gμν ¼ ϰTEM

μν (EM standing for electromagnetic),
with the resulting space EMT components TEM

ij ðϕÞ which
have exactly negative sign (see [10,31]):

Gij ¼ −
ϰ

4π

�
ϕ;iϕ;j −

1

2
gijϕ;kϕ

;k

�
¼ −TEM

ij ðϕÞ: ðA2Þ

Here, the electrostatic field ϕ might be understood, e.g., as
the Coulomb field of a positive (ϕþ) or negative (ϕ−)
electric charge. Assuming that there might exist an effec-
tively neutral scalar field as a superposition of quasistatic
electric fields of the type ϕ ≈ ϕþ þ ϕ− (e.g., generated by
all charged fermions in the Universe), it is admissible to
prolongate (A2) into an ordinary four-dimensional anti-
scalar EMT (5) satisfying (4). Then, it has been found that a
realistic cosmological solution (reducing at linear approxi-
mation to the Newtonian gauge) may be obtained for the
antiscalar field with a vanishingly small and negative mass
term fixed by the value of the cosmological constant
through the integrability condition m2 ¼ − 3

2
Λ (see [14]).

Then, considering the minimal antiscalar background
related to such a cosmological field, we apply the algorithm
described in [30] to the perturbed Klein-Gordon equation
but with negative mass term,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ −m2; ðA3Þ

which should be analyzed within the antiscalar Papapetrou
metric. Following [30], we choose the ansatz

ϕ ¼ ψðrÞ
r

Ylmðθ;ϕÞeiωt;

with Ylm the spherical harmonics and tortoiselike coordi-
nate r� ¼ rþ 2M

γ ln ð γr
2M − 1Þ, which in our case (γ → ∞)

reduces simply to r. In [30], it was shown that for the JNW
case the spectrum ω should be real, i.e., ω2 ≥ 0 (see also
in [32]). Because the Papapetrou metric is a particular
(limiting) case of the JNW spacetime, this condition holds
here as well. Then, the Klein-Gordon equation (A3) in the
antiscalar metric (10) becomes

−
d2ψ
dr2

þ
�
lðlþ 1Þ

r2
−m2e2M=r

�
ψ ¼ ω2e4M=rψ :

For the end point r → ∞, this reduces to

−
dψ2

dr2
−m2ψ ¼ ω2ψ ;

with the general solution

ψ ¼ C1 cos krþ C2 sin kr;

where k2 ¼ ω2 þm2 is always real. In this case, there are
no exponentially growing solutions at r → ∞, which
implies stability of scalar field under the metric (10).
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APPENDIX B: ANTISCALAR
THERMODYNAMICS

1. Thermodynamic stability

The first law of thermodynamics

dE ¼ dQ − pdV ðB1Þ

for quasiequilibrium states might be recast into the follow-
ing Gibbs equation (with s being the entropy density and q
the heat flux density):

dq ¼ 0 ¼ Θdðs=nÞ ¼ dðε=nÞ þ pdð1=nÞ: ðB2Þ

Following, e.g., Synge [33] (see Sec. 14), we express the
energy density ε ¼ −∂n=∂z and the pressure p ¼ n=z of
perfect fluid as functions of the number density n ¼ nðzÞ
and temperature Θ through the geometric scalar z related to
reciprocal temperature, z ¼ Θ−1. Then, (B2) transforms
into differential equation

nn00 þ nn0=z − ðn0Þ2 ¼ 0;

the first integral of which is the barotropic equation of state
with constant w:

−w∂n=∂z ¼ n=z ⇒ p ¼ wε: ðB3Þ

Integrating once more, we get n ¼ CΘ1=w, and so

ε ¼ C
w
Θ1þ1

w; p ¼ CΘ1þ1
w; ðB4Þ

s
kB

¼ dp
dΘ

¼ C

�
1þ 1

w

�
Θ1=w ¼ zðεþ pÞ; ðB5Þ

where, for closed systems, the chemical potential is taken to
be zero [34] (kB is the Boltzmann constant). Obviously, for
each value of w in (B4) and (B5) we have, in general, a
different medium or type of state, and so C ¼ CðwÞ is the
positive integration constant with dimensionality depend-
ing on w. Now, from (B2) and (B3) it follows that
p ¼ n∂ε=∂n − ε ¼ wε, i.e.,

∂ε
∂n ¼ ð1þ wÞ ε

n
: ðB6Þ

Thermodynamic stability might be expressed through the
known condition (see, e.g., [35,36]):

δ2E > 0 ⇒
∂2E
∂V2

≥ 0;

i.e., positivity of the second-order derivative of the energy
with respect to some extensive parameter (here, volume).
Now, using (B1) and transforming

∂
∂V →

∂
∂ð1=nÞ ¼ −n2

∂
∂n ;

we obtain for p ¼ wε,

∂2E
∂V2

¼ −
∂p
∂V > 0 ⇒ n2

∂ε
∂nw > 0;

which, by applying (B6), yields the final condition of stable
equilibrium for systems with the state parameter w:

wðwþ 1Þnε > 0: ðB7Þ

According to (B4), ε might be positive or negative depend-
ing on the sign of w. Then, for ε > 0, (B7) implies

wðwþ 1Þ > 0; ðB8Þ

while for ε < 0 we get

wðwþ 1Þ < 0: ðB9Þ

Comparing the standard scalar field EMT (5) with the
perfect fluid EMT

Tpf
μν ¼ ðεþ pÞuμuν − pgμν;

we adopt uμ ¼ ϕμ=
ffiffiffiffiffiffiffiffiffiffiffi
ϕαϕ

α
p

for timelike gradient ϕμ

(ϕαϕ
α > 0, uαuα ¼ 1) and uμ ¼ ϕμ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϕαϕ

α
p

for spacelike
ϕμ (ϕαϕ

α < 0, uαuα ¼ −1). Then, we obtain the equation-
of-state parameter w ¼ 1 for the timelike gradient and
w ¼ −1=3 for the spacelike gradient. Thus, according to
(B8) and (B9), the scalar and antiscalar backgrounds for
both w ¼ 1 and w ¼ −1=3 might exist as thermodynami-
cally stable media.
However, the condition (B7) is necessary but insufficient,

since we have not yet included gravity into equilibrium
thermodynamics. In general, such an inclusion implies the
existence of a timelike Killing field ξμ ¼ ξuμ with standard
modulus ξ ¼ ξμuμ ¼ ffiffiffiffiffiffi

g00
p

, which, on the other hand, is
equal (up to some general-relativistic invariant Θ0) to
the reciprocal temperature ξ ¼ Θ0z ¼ Θ0=Θ, so that
Θ0 ¼ Θ ffiffiffiffiffiffi

g00
p

, thus, taking the gravitational redshift factor
into account [37]. With gravity present, we require for all
quantities to be general-relativistic invariants, thus, replacing
Θ by Θ0.
Now, for the spacelike case, taking the trace of standard

Einstein’s equations Gμν ¼ ϰTpf
μν with (B4), we get

−R ¼ −ϰðεþ 5pÞ ¼ −ϰC
1þ 5w

w
Θ1þ1

w
0 ; ðB10Þ

i.e., since in this case w ¼ −1=3,
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R ¼ 2ϰC
Θ2

0

> 0; ðB11Þ

positing the non-negativeness of the square of temperature.
However, for the scalar JNW solution (7), the Ricci scalar

R ¼ 2G2M2ðγ2 − 1Þ
γ2c4r4

�
1 −

2GM
γc2r

�
γ−2

ðB12Þ

is negative for all 0 < γ < 1 and, thus, contradicts (B11).
Transfer to the antiscalar mode is equivalent to the change

of the sign of the trace of Tsc
μν, i.e., ϕαϕ

α < 0 → ϕαϕ
α > 0,

which, as mentioned above, implies an effective state with
w ¼ 1. In this case, we have

−R ¼ ϰðε − 3pÞ ¼ ϰC
1 − 3w

w
Θ1þ1

w
0 ; ðB13Þ

i.e.,

R ¼ 2ϰCΘ2
0 > 0; ðB14Þ

again positing the non-negativeness of the square of the
invariant temperature as a sufficient condition of general-
relativistic stability. The conclusion is that (B14) is satisfied
by antiscalar Papapetrou solution (10) which is self-
consistent due to the proper sign of the Ricci scalar:

R ¼ 2
G2M2

c4r4
exp

�
−2GM
c2r

�
> 0: ðB15Þ

On the contrary, for the scalar JNW solution (7) the Ricci
scalar (B12) is negative for all 0 < γ < 1 and, thus, contra-
dicts (B14). So, only antiscalar stationary state background
is attainable within thermodynamically consistent general-
relativistic approach.

2. Relation to BH thermodynamics

The difference between conditions (B11) and (B14) is
that the first leads to exotic thermodynamics (with negative
w, as for tachyons and strings), while the second reduces
(as a particular case) to the black-hole thermodynamics, as
shown below.
In accord with (B14) and (B15), the local temperature

(Θ ¼ Θ0=
ffiffiffiffiffiffi
g00

p
) of antiscalar background in the Papapetrou

metric is

ΘðrÞ ¼ 1

2
ffiffiffiffiffiffi
2π

p
ffiffiffiffi
G
C

r
M
r2

: ðB16Þ

On an equipotential surface with r ¼ rg ¼ 2GM=c2, we get
for the value of local temperature Θ at this scale,

ΘðrgÞ ¼
c4

8
ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffi
CG3

p 1

M
; ðB17Þ

which is similar to the Hawking black-hole temperature:

ΘBH ¼ kBTBH ¼ ℏc3

8πG
1

M
: ðB18Þ

A comparison of (B17) with (B18) yields the correspond-
ing value for C:

C ¼ Cðw ¼ 1Þ ¼ πc2

2ℏ2G
: ðB19Þ

In a sense, this situation resembles that of the Stefan-
Boltzmann law for radiant emittance jrad ¼ σT4, which had
been found classically, and then the phenomenological
constant σ was estimated by quantum methods.
So, the corresponding local densities (B4) and (B5) are

well defined for w ¼ 1 on each equipotential surface withC
and Θ given by (B19) and (B16): n ¼ CΘ, ε ¼ CΘ2,
p ¼ CΘ2, s ¼ kBð2CΘÞ. In particular, full entropy SðrgÞ
related to the domain inside r ¼ rg is

SðrgÞ ¼
Z

sμdVμ ¼ 4π

Z
rg

0

sðrÞr2dr

¼ 8πCkB

Z
rg

0

ΘðrÞr2dr ¼ kB
4πG
ℏc

M2;

where sμ ¼ suμ and dVμ ¼ uμd3V. The last result coin-
cides with the well-known relation for black-hole entropy
SBH ¼ kBA=ð4l2

PÞ ¼ kBðπr2g=l2
PÞ, with A being the area of

the horizon and lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
the Planck length. Thus,

the antiscalar thermodynamics includes traditional black-
hole thermodynamics (at r ¼ rg) as a particular case
(cf. [38]). This might serve as another argument in favor
of the physical relevance of antiscalar background.

APPENDIX C: DERIVATION OF THE
ANTISCALAR ROTATIONAL METRIC USING

THE NEWMAN-JANIS ALGORITHM

Following the procedure described in [16], we begin
with the static antiscalar Papapetrou metric (10), which in
the radiation form can be written as

ds2 ¼ eαðrÞdu2 þ 2dudr − e−αðrÞr2ðdθ2 þ sin2θdϕ2Þ;

where the new time coordinate u is defined as

du ¼ dt − e−αðrÞdr; eαðrÞ ¼ e−2M=r:

Now, in accord with the Newman-Janis algorithm [39], we
write this metric in terms of the complex null tetrad:
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gμν ¼ lμnν þ lνnμ −mμm̄ν −mνm̄μ;

lμ ¼ ð0; 1; 0; 0Þ; nμ ¼ ð1;−eαðrÞ=2; 0; 0Þ;

mμ ¼ 1ffiffiffi
2

p
re−αðrÞ=2

�
0; 0; 1;

i
sin θ

�
;

m̄μ ¼ 1ffiffiffi
2

p
re−αðrÞ=2

�
0; 0; 1;−

i
sin θ

�
;

where l and n correspond to principal null vectors of the
Weyl tensor in coordinates xμ ¼ ðu; r; θ;ϕÞ.
To transfer to real coordinates, the following complex

transformation is applied,

u0 ¼ u − ia cos θ; r0 ¼ rþ ia cos θ;

θ0 ¼ θ; ϕ0 ¼ ϕ;

which leads to a new null tetrad (we drop the primes),

lμ ¼ð0;1;0;0Þ; nμ ¼ð1;−eαðr;θÞ=2;0;0Þ;

mμ ¼ 1ffiffiffi
2

p ðrþ iacosθÞe−αðr;θÞ=2
�
iasinθ;−iasinθ;1;

i
sinθ

�
;

m̄μ ¼ 1ffiffiffi
2

p ðr− iacosθÞe−αðr;θÞ=2
�
−iasinθ; iasinθ;1;

−i
sinθ

�
;

where now we can write, using (59),

eαðr;θÞ ¼ e
−2Mr

ρ2 ¼ e−2ϕðr;θÞ; ρ2 ¼ r2 þ a2cos2θ

[the potential ϕ ¼ ϕðr; θÞ not to be confused with the
coordinate ϕ]. Performing the coordinate transformation

du ¼ dt̂ −
�
e−αðr;θÞρ2 þ a2sin2θ

r2 þ a2

�
dr;

dϕ ¼ dϕ̂ −
�

a
r2 þ a2

�
dr;

we obtain, dropping the hats, the following line element:

ds2 ¼ e−2ϕdt2 −
dr2

e−2ϕð1þ a2sin2θ
ρ2

Þ
þ 2ð1− e2ϕÞasin2θdtdϕ

− e2ϕρ2
�
dθ2 þ

�
1þ ð2− e−2ϕÞa2sin2θ

e2ϕρ2

�
sin2θdϕ2

�
:

Then, in final form the sought-after Kerr metric analog for
antiscalar background might be rewritten as

ds2 ¼ e−2ϕðr;θÞðdt − asin2θdϕÞ2

− e2ϕðr;θÞρ2
�
dr2

Δ
þ dθ2 þ sin2θdϕ2

�
þ 2asin2θðdt − asin2θdϕÞdϕ; ðC1Þ

with Δ ¼ r2 þ a2. This expression coincides with (57).
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