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We explore nonlinear perturbations in different static fluid systems. We find that the equations,
corresponding to the perturbation of the integrals of motion, i.e., Bernoulli’s constant and the mass flow
rate, satisfy the massless scalar field equation in a time dependent acoustic metric. When one is interested
up to the second order behavior of the perturbations, the emergent time dependent acoustic metric of the
system, derived from the massless scalar field equations of the perturbations of the integrals of motion, has
some astounding similarities with the metric describing gravitational wave in Minkowski spacetime.
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I. INTRODUCTION

Detection of gravitational waves [1] is not only one of
the greatest achievement of this century in physics but it is
also an another confirmation of the general theory of
relativity [2]. Unruh’s pioneering work [3] shows that the
linear perturbation of velocity potential in an inviscid
irrotational fluid medium behaves like a massless scalar
field propagating in a curved spacetime. Several features
of a classical black hole can be mimicked in different fluid
systems [4]. There are also some works which show that
instead of linear perturbation of velocity potential, one can
work with linear perturbation of the integrals of motion of
the fluid equations for irrotational inviscid medium, i.e.,
Bernoulli’s constant and mass flow rate [5–10]. However
it is evident that to mimic the Minkowski spacetime,
the fluid medium has to be static, i.e., the background
velocity of the fluid medium has to be zero everywhere
and in such a medium, the propagation of linear pertur-
bation of velocity potential would satisfy the massless
scalar field equation in the acoustic analog of Minkowski
spacetime.
References [11–13] study nonlinear perturbations in a

moving fluid medium, more specifically, in an accreting
medium, i.e., there is a position dependence of velocity. We
consider apparently simpler fluid systems where there is no
background velocity in the medium. The medium is static
with respect to the indeterminable absolute space [14] or
the medium has a uniform velocity with respect to the
absolute space. Due to the Galilean relativity principle, all
the inertial frames are equivalent in nature. Therefore for
simplicity, we consider a reference frame where the
medium is static and Newton’s laws hold. Hence the
emergent spacetime is analogous to Minkowski spacetime
when one works with linear perturbations. Here we have

shown that the emergent spacetime corresponding to
the massless scalar field equation satisfied by the pertur-
bation of the integrals of motion gives time dependent
spacetime metric in general. In the case of the nonlinear
wave equation, the acoustic metric is time dependent and
when the expressions of the perturbations are expanded up
to the second order, i.e., in the weak nonlinear limit, the
emergent spacetime metric is very similar to the spacetime
metric describing gravitational wave propagation in
Minkowski spacetime. In our system, the background
medium is static and fluid density and velocity have no
time dependence. Therefore, if one now analyzes the flow
around this solution by linearizing the density and velocity
and assuming the flow to be barotropic and irrotational in
nature just like Unruh did [3], the emergent spacetime will
be an acoustic analog of Minkowski spacetime. There
would be no time dependence in the metric. In Unruh’s
formulation [3], the fluid quantities are perturbed around a
known solution of the fluid equations. If the known
solution does not have explicit time dependence, the
acoustic metric obtained through the linear perturbation
in velocity potential is time independent. As the known
solution of the fluid systems which are considered in this
work are time independent, the acoustic metric obtained by
following Unruh’s formulation is time independent. There
is only one way to get a time dependent metric, i.e., by
introducing perturbations which are nonlinear in nature.
The vindication of this statement is shown in the next
section. This is the main difference between Unruh’s result
[3] and ours. Unlike Unruh’s case, we extend the analysis to
the second order in perturbation technique. Unlike Unruh’s
result, the wave equation we find is nonlinear in the
perturbed quantities. Here the acoustic analog of a gravi-
tational wave, propagating with the speed of sound in the
medium, is not transverse in kind, rather it is of longitudinal
type. Our work explores the longitudinal wave nature of the
acoustic metric in different fluid systems.*satadaldatta1@gmail.com, satadaldatta@hri.res.in
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II. NONLINEAR ACOUSTICS

We first consider the simplest possible system, a medium
of uniform density ρ0 and of uniform pressure p0, i.e.,
∇ρ0 ∼ 0, ∇p0 ∼ 0. The effect of any external field is
assumed to be negligible. This is how we are choosing
the background flow, i.e., the known solutions (density and
velocity) are not only independent of time but also they do
not have any spatial dependence. The fluid equations for
inviscid flow read as in general,

∂ρ
∂t þ ∇:ðρvÞ ¼ 0; ð1Þ

∂v
∂t þ v:∇v ¼ −

∇p
ρ

: ð2Þ

We assume the medium to be barotropic, i.e., pressure is a
function of density only. We introduce perturbations, not
necessarily linear, as

pðx; tÞ ¼ p0 þ p0ðx; tÞ;
ρðx; tÞ ¼ ρ0 þ ρ0ðx; tÞ;
vðx; tÞ ¼ v0ðx; tÞ:

Unlike Unruh’s case, we are making no assumption about
the linearity of the wave, we are assuming the wave to be
nonlinear in general. The motion of the fluid is assumed to
be irrotational, i.e., ∇ × v ¼ ∇ × v0 ¼ 0. Hence

∂v
∂t þ ∇

�
1

2
v2 þ

Z
dp
ρ

�
¼ 0: ð3Þ

For the steady state problem, the conserved quantity derived
from the momentum equation is Bernoulli’s constant, ζ and
ζ ¼ ð1

2
v2 þ R dp

ρ Þ in general. Equation (3) implies

∂v0
∂t þ ∇ζ0 ¼ 0: ð4Þ

One can write ζ as

ζðx; tÞ ¼ ζ0 þ ζ0ðx; tÞ ð5Þ

where ζ0 corresponds to the background value of the
Bernoulli’s constant, which is a constant number and
ζ0ðx; tÞ is the nonlinear fluctuation around this value.
From the expression (calculations are shown in detail in
Appendix B)

∂tζ
0 ¼ v0:∂tv0 þ

c2s
ρ
∂tρ

0 ð6Þ

where c2s ¼ dp
dρ from definition. Using the continuity

equation (1) and Euler momentum equation (2),

∂μðfμνðx; tÞ∂νÞζ0ðx; tÞ ¼ 0 ð7Þ

where

fμνðx; tÞ≡ ρ

c2s

2
664

−1 ..
.

−v0j

� � � � � � � � � � � �
−v0j ..

.
c2sδij − v0iv0j

3
775 ð8Þ

where indices i, j run from 1 to 3 and the Greek indices run
from 0 to 3. Unlike Unruh’s case, the field equation (7) we
find is nonlinear in perturbed quantities generally. Now one
can find the timedependent acousticmetric by comparing the
above equation with the massless scalar field equation as
follows:

fμν ¼ ffiffiffiffiffiffi
−g

p
gμν ð9Þ

where g, the determinant of the metric gμν, is equal to − ρ4

c2s
.

We find

gμνðx; tÞ≡ ρ

cs

2
664
−ðc2s − v02Þ ..

.
−v0i

� � � � � � � � � � � �
−v0i ..

.
δij

3
775: ð10Þ

Hence the perturbation of Bernoulli’s constant satisfies
the massless scalar field equation in a time dependent
spacetime.1

Now we make use of the perturbation method, writing
every relevant quantity in the form of an infinite series,
where each term becomes smaller and smaller in magnitude
with succession. Therefore, we have

ρðx; tÞ ¼ ρ0 þ ρ0ð1Þðx; tÞ þ � � �
pðx; tÞ ¼ p0 þ p0

ð1Þðx; tÞ þ � � �
csðx; tÞ ¼ cs0 þ csð1Þðx; tÞ þ � � �
c2sðx; tÞ ¼ c2s0 þ c2sð1Þðx; tÞ þ � � �
v0ðx; tÞ ¼ v0ð1Þðx; tÞ þ v0ð2Þðx; tÞ þ � � �

The above expressions are not independent expressions.
It is sufficient to introduce a pressure variation in the
system and then write that in terms of a perturbation
series to get the expression of other quantities in such a
fashion (discussed in detail in Appendices B and C).
ζ0ðx; tÞ; fμνðx; tÞ can be written as

1Instead of working with ζ0, one can work with ζ because ζ0 is
just a constant number.
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ζ0ðx; tÞ ¼ ζ0ð1Þðx; tÞ þ ζ0ð2Þðx; tÞ þ � � �
fμνðx; tÞ ¼ fμνð0Þ þ fμνð1Þðx; tÞ þ � � �

Now we write down the governing equations for each order
because the (nþ 1)th term is incomparably smaller than the
nth term in series expansion of any quantity; one does this
in the perturbation method.
As the pressure and density of the medium is assumed to

be uniform within the region of our interest, the zeroth
order momentum equation gives the conserved Bernoulli’s
constant in such a medium (see Appendix B).
In the first order, the continuity equation is given by

∂tρ
0
ð1Þ þ ρ0∇v0ð1Þ ¼ 0: ð11Þ

Similarly, separating out the first order terms from Eq. (4),
we get

∂tv0ð1Þ þ ∇ζ0ð1Þ ¼ 0 ð12Þ

where ζ0ð1Þ ¼
c2s0
ρ0
ρ0ð1Þ. Therefore, we find

∂2
t ρ

0
ð1Þðx; tÞ ¼ c2s0∇2ρ0ð1Þðx; tÞ ð13Þ

and

∂2
t v0ið1Þðx; tÞ ¼ c2s0∂ið∂jv0

j
ð1Þðx; tÞÞ: ð14Þ

Separating out first order terms from Eq. (7), we get

∂μðfμνð0Þ∂νÞζ0ð1Þðx; tÞ ¼ 0: ð15Þ

Therefore, the acoustic metric obtained from the terms in
first order is given by

gμν ≡ ρ0
cs0

2
6664
−c2s0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7775; ð16Þ

where ρ0
cs0

is a constant number. The above metric gives the
acoustic analog of the Minkowski metric, ðηAÞμν ¼ cs0

ρ0
gμν.

Hence, when one is interested in the equations in the first
order of smallness, the emergent spacetime metric is time
independent and as the medium is static and uniformly
dense, the acoustic metric is analogous to the Minkowski
metric. It is evident that if one limits himself or herself up to
the first order in smallness according to the strength of the
disturbance in the medium the emergent spacetime will
always be time independent.
In the weakly nonlinear limit, studying perturbation up to

the first order is not going to give the correct result. In this
limit, all the quantities are expanded up to the second order.

Therefore, ζ0 ¼ ζ0ð1Þ is not a good approximation to work

with. In this limit ζ0 ¼ ζ0ð1Þ þ ζ0ð2Þ (details in Appendix C).

Therefore, we seek the wave equation for ζ0 ¼ ζ0ð1Þ þ ζ0ð2Þ.
ζ0ð1Þ already satisfies a wave equation [Eq. (15)].

Separating out the second order term from Eq. (7), we find

∂μðfμνð0Þ∂νÞζ0ð2Þðx; tÞ þ ∂μðfμνð1Þ∂νÞζ0ð1Þðx; tÞ ¼ 0: ð17Þ

In the weak nonlinear limit, one neglects any term of third
order in magnitude and higher order than the third order. At
this point, one can first solve the wave equation of ζ0ð1Þ
[Eq. (15)] and then using that solution of ζ0ð1Þ in Eq. (17),

one can find the solution of ζ02 and thus ζ0 can be found in
the weakly nonlinear limit. In this paper, our motivation is
not to find the solution of ζ0; here we are interested to find
the acoustic metric through perturbation of Bernoulli’s
constant ζ0. Therefore, we add Eqs. (15) and (17) and we
make use of the weak nonlinearity assumption by adding
another term of cubic order, ∂μðfμνð1ÞÞζ0ð2Þ, and we get

∂μððfμνð0Þ þfμνð1Þðx; tÞÞ∂νÞðζ0ð1Þðx; tÞþζ0ð2Þðx; tÞÞ¼Oð3Þ≈0:

The right-hand side is approximately zero due to the
assumption of weak nonlinearity. The above equation
can also be viewed in a different manner. If one simply
uses ζ0 ¼ ζ0ð1Þ þ ζ0ð2Þ (the weak nonlinear limit) and then if

one expands the terms in Eq. (7) up to the second order in
smallness, one gets

∂μððfμνð0Þ þ fμνð1Þðx; tÞÞ∂νÞðζ0ð1Þðx; tÞþ ζ0ð2Þðx; tÞÞþOð3Þ≈ 0:

ð18Þ
The terms higher than the third order can be equated to zero
for each order due to the implementation of perturbation
technique and the third order extra leftover terms are zero
due to weak nonlinearity.
We do not proceed further by finding the equation for

ζ0 ¼ ζ0ð1Þ þ ζ0ð2Þ þ ζ0ð3Þ because of the weakly nonlinear

assumption about the perturbation strength.
Therefore, to study second order behavior, fμνðx; tÞ is

eventually expanded up to the first order in smallness;
hence as a consequence, gμνðx; tÞ is expanded up to the
linear order as

gμνðx; tÞ ¼ gð0Þμν þ gð1Þμνðx; tÞ: ð19Þ

Assuming isentropic perturbations in this isothermal
medium,2 we use barotropic equation for fluid,

2The medium is isothermal in the absence of any perturbation
because the medium is taken to be uniform in density and
pressure, hence from the equation of state of ideal gas, the
medium has to be isothermal.
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p ¼ Kργ ð20Þ

where K is a constant number and γ is the specific heat
ratio. Therefore when one works with perturbations up to
the first order in smallness, the speed of propagation of
linear perturbation, i.e., the adiabatic sound speed cs0, is
given by [15]

c2s0 ¼
p0
ð1Þðx; tÞ

ρ0ð1Þðx; tÞ
¼ γp0

ρ0
: ð21Þ

One can work with isothermal perturbation also, for sound
wave propagating in the air medium, the adiabatic

approximation works much better than the isothermal
one [15].
Using Eq. (14), we find that

csð1Þðx; tÞ
cs0

¼ ðγ − 1Þ
2

ρ0ð1Þðx; tÞ
ρ0

;

c2sð1Þðx; tÞ
c2s0

¼ ðγ − 1Þ
ρ0ð1Þðx; tÞ

ρ0
:

Using the above expressions in the matrix of Eq. (10),
we get

gμνðx; tÞ ¼ gð0Þμν þ gð1Þμνðx; tÞ≡ ρ0
cs0

2
666664

−c2s0

�
1þ ðγþ1Þ

2

ρ0ð1Þðx;tÞ
ρ0

�
..
.

−v0ið1Þðx; tÞ
� � � � � � � � � � � �

−v0ið1Þðx; tÞ ..
.

δij

�
1þ ð3−γÞ

2

ρ0ð1Þðx;tÞ
ρ0

�

3
777775
; ð22Þ

as ρ0
cs0

is just a constant number in front of the above matrix.
We work with a better looking matrix, defined by

g̃μνðx; tÞ ¼
cs0
ρ0

gμνðx; tÞ ¼ ðηAÞμν þ hμνðx; tÞ ð23Þ

where ðηAÞμν, the acoustic analog of the Minkowski metric,
is ðdiag½−c2s0;þ1;þ1;þ1�Þμν; the convention in [16] is
used. hμν is the linear perturbation term of the acoustic
metric.
Now we examine the behavior of the hμνðx; tÞ.
We assume in our coordinate system that the z compo-

nent of the linear perturbation of velocity is the only
nonzero component, i.e., we are studying nonlinear sound
wave propagating parallel to the z axis. Hence

v01;2ð1Þ ¼ 0; ð24Þ

v03ð1Þ ¼ v03ð1Þðz; tÞ; ð25Þ

ρ0ð1Þ ¼ ρ0ð1Þðz; tÞ: ð26Þ

This assumption is compatible with the irrotationality
condition. This is very similar to working in the harmonic
coordinate system [17], i.e., choosing the Einstein gauge
[18], in the case of studying real gravitational wave
propagating parallel to the z axis. Therefore, in this
coordinate system, we have from Eqs. (11) and (12),

∂ρ0ð1Þ
∂t þ ρ0

∂v03ð1Þ
∂z ¼ 0 ð27Þ

and

∂v03ð1Þ
∂t þ c2s0

ρ0

∂ρ0ð1Þ
∂z ¼ 0: ð28Þ

Similarly, from Eqs. (13) and (14), we get

□Ahμνðz; tÞ ¼ 0 ð29Þ

where□A is the acoustic analog of the d’Alembertian wave
operator, given by

□A ¼ −
1

c2s0

∂2

∂t2 þ ∇2:

Hence, hμνðz; tÞ represents the acoustic analog of the
gravitational wave propagating parallel to the z axis. In
the case of the sound wave propagating uniformly in all
directions, we would have chosen to work in the spherical
polar coordinate system as the analogous harmonic coor-
dinate system.We are doing two things simultaneously, one
is that we are giving the wave vector of sound a certain
direction (sound wave propagating uniformly in all direc-
tions or sound wave propagating along a particular direc-
tion, etc.) and we are considering a suitable coordinate
system to describe it. As a result the d’Alembertian
operator of Eq. (29) happens to be 1þ 1 dimensional.
hμνðz; tÞ depends only on the linear terms of the

perturbed quantities. Therefore, apparently it seems that
analyzing equations up to the first order in smallness is
enough to obtain Eq. (29) but to relate the linear perturba-
tion term in density and linear perturbation term in velocity
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to hμνðz; tÞ, i.e., the linear perturbation terms in the acoustic
metric, one needs Eq. (7) followed by Eq. (18) which are
nonlinear wave equations. However, after arriving at
Eq. (29), one can argue that if one analyzes the equations
up to the first order in smallness, one could predict what
would happen to the acoustic metric if the equations are
written down in the weakly nonlinear limit, but to predict

such thing one should have the information about the
nonlinear wave equation (18) in weak form.
One can also work in other coordinate systems to get

Eq. (29), for example in a coordinate system such that v01;2ð1Þ
are constant numbers. This is similar to gauge freedom
which we have in the case of a real gravitational wave.
Therefore, hμνðz; tÞ is given by

hμνðz; tÞ≡

2
666666664

−c2s0
ðγþ1Þ
2

ρ0ð1Þðz;tÞ
ρ0

0 0 −v03ð1Þðz; tÞ

0
ð3−γÞ
2

ρ0ð1Þðz;tÞ
ρ0

0 0

0 0
ð3−γÞ
2

ρ0ð1Þðz;tÞ
ρ0

0

−v03ð1Þðz; tÞ 0 0
ð3−γÞ
2

ρ0ð1Þðz;tÞ
ρ0

3
777777775
: ð30Þ

Instead of Bernoulli’s constant, one can start with studying
perturbation of mass flow rate (Appendix A), the conserved
quantity derived from the continuity equation when the
motion of the fluid medium is assumed to be steady. In that
case, in the very beginning, one has to assume the direction
of the sound wave and a suitable coordinate system to
describe it, and similarly, one would find the analog of the
gravitational wave in the Minkowski spacetime.
Instead of adiabatic sound in the isothermal medium, one

could start with isothermal sound in such a medium. Sound
is approximately adiabatic in nature in air medium [15]. In
the case of isothermal sound, the expressions in the
previous equations would be the same except one has to
put γ ¼ 1.
Just like the gravitational wave propagating in the z

direction, the acoustic analog of a gravitational wave has
nontrivial components, h00ðz; tÞ (proportional to the linear
perturbation of density of the medium) and h03ðz; tÞ
(proportional to the linear perturbation of velocity along
the z axis in the medium). Other nontrivial components are
derivable from these two nonzero components as follows:

h11 ¼ h22 ¼ h33 ¼ −
ð3 − γÞ

c2s0ðγ þ 1Þ h00; ð31Þ

h30 ¼ h03: ð32Þ

Equations (27) and (28) give that h00 and hð03Þ are related
by the following expressions:

2

c2s0ðγ þ 1Þ
∂hð00Þ
∂t þ ∂h03

∂z ¼ 0 ð33Þ

and

∂hð03Þ
∂t þ 2

ðγ þ 1Þ
∂h00
∂z ¼ 0: ð34Þ

Therefore, the number of nontrivial independent compo-
nents is one.
A real gravitational wave acquires the nontrivial com-

ponents by gauge freedom and gauge fixing. In the case of a
real gravitational wave, there is the Einstein equation in the
linear order, i.e., in the weak field approximation, over
which we have a gauge freedom. In the case of analog
gravity models there is no analogous Einstein equation to
begin with [4]. Therefore, the analog models of gravity give
half of the picture of general relativity, only the kinematic
picture not the dynamic picture. In the case of an acoustic
gravitational wave, we have the fluid equations, continuity
equation, and momentum equation in the Newtonian
framework. The fluid systems we are talking about have
a privileged coordinate system and each component of the
acoustic metric has physical meaning, for example, density
and velocity of the medium, appearing in the acoustic
metric [Eqs. (16) and (22)]. This is not the case in the
general relativistic context. Thus the diffeomorphism
invariance is violated here (“diffeomorphism invariance”
section in [19]). As we are beginning with fluid equations
in a Newtonian framework, the diffeomorphism invariance
is not reflected here, which is why the analysis can be
thought of as a model of gravitational wave only describing
the kinematic aspect.
Equation (22) is compatible with the symmetric property

of the acoustic metric.
For a sound wave propagating along the x axis,

hμν ¼ hμνðx; tÞ, the nontrivial diagonal quantities will be
similar looking as before, h01 ¼ h10 ¼ v01ð1Þðx; tÞ will be

the nontrivial component instead of h03. This same con-
clusion can be drawn similarly by applying a rotation
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operator over hμν. As an acoustic metric is invariant under
rotation, we have

h0μν ¼ Rρ
μRσ

νhρσ ð35Þ

where Rρ
μ denotes the rotation operator and h0μν denotes

the linear perturbation term in the acoustic metric after
rotation; writing the matrix corresponding to hμν as ĥ and
the rotation operator as R̂, we get

ĥ0 ¼ R̂Tĥ R̂ ð36Þ

where R̂TR̂ ¼ R̂R̂T ¼ I, R̂T is the transpose of R̂ and I is the
4 × 4 identity matrix. The sound wave propagating along
the z direction in one coordinate system has direction along
the x axis in another coordinate system; the second
coordinate system can be obtained from the first one by
a rotation of −90° about the y axis. For a rotation of angle θ
about the y axis over the matrix of Eq. (28), we get

ĥ0 ¼ R̂T
y ĥR̂y

¼

2
666666664

−c2s0
ðγþ1Þ
2

ρ0ð1Þ
ρ0

v03ð1Þ sinθ 0 −v03ð1Þ cosθ

v03ð1Þ sinθ
ð3−γÞ
2

ρ0ð1Þ
ρ0

0 0

0 0
ð3−γÞ
2

ρ0ð1Þ
ρ0

0

−v03ð1Þ cosθ 0 0
ð3−γÞ
2

ρ0ð1Þ
ρ0

3
777777775

ð37Þ

where R̂y denotes the rotation operator corresponding to
rotation about the y axis. θ ¼ −90° in the above matrix
equation gives the desired ĥ0. Therefore by rotation about
the y axis, the diagonal elements in the ĥ matrix remain
same. Wherefore, the diagonal entries in the ĥ matrix are
proportional to the linear perturbation in density, the
diagonal elements do not change under rotation of any
kind; these quantities are scalar quantities under rotation.
The nontrivial off-diagonal quantities are proportional to
the linear perturbation in velocity, hence they transform
under rotation.
However, rotation about the z axis on ĥ do not have any

effect. This is not the case for a real gravitational wave
propagating along the z axis; the physically significant
terms in the case of a real gravitational wave have helicity
�2 [17].
The solution of Eq. (29), has the general form

hμνðz; tÞ ¼ hμνðz� cstÞ: ð38Þ

The speed of an analog gravitational wave is the sound
speed; the “þ” sign implies sound wave propagating along
the negative z axis and the “−” sign implies the sound wave

propagating along the positive z axis. For a plane wave
propagating along the þz axis, we write

hμνðz; tÞ ¼ eμν exp ðiðkz − ωtÞÞ; ð39Þ

where eμν is the amplitude of the wave, and ω and k are the
angular frequency and the wave vector of the plane wave.
Using Eq. (29), we find the dispersion relation as

ω ¼ csk: ð40Þ

This linear dispersion relation of the acoustic gravitational
wave is similar to that for the real gravitational wave.
Hence when one extends the analysis of introducing

perturbations to second order, the emergent metric gets to
have some striking similarities with the real gravitational
wave and there are some differences as well.

A. Implications in nonlinear acoustics

The above formalism of nonlinear perturbations can be
used to understand some nonlinear phenomena. We have
assumed the fluid to be inviscid even in the presence of
perturbations and also there is no heat conduction or
convection happening in the system. Hence we can
describe nonlinear acoustics in lossless fluids [20]. Let
us consider irrotational flow along the x axis. The velocity
v1 ¼ v01 ¼ −ψx, where ψ is the velocity potential and ψx is
the partial derivative with respect to x. From Eq. (4)

ψ t ¼ ζ0: ð41Þ

Using the expression of ζ, Eq. (6), the continuity equation
and the above expression, we get

ψ tt − 2ψxtψx þ ðψ2
xÞψxx ¼ c2sψxx: ð42Þ

This is the nonlinear acoustic wave equation in a lossless
scenario in terms of velocity potential [20–23]. Using the
barotropic equation (20) and the expression of ζ, we have

ζ ¼ 1

2
ψ2
x þ

c2s
ðγ − 1Þ

¼ ζ0 þ ζ0ðx; tÞ

¼ c2s0
ðγ − 1Þ þ ψ t: ð43Þ

Therefore, using expression (43) in Eq. (42), we find

ψ tt − c2s0ψxx ¼ 2ψxtψx þ ðγ − 1Þψxxψ t −
ðγ þ 1Þ

2
ψ2
xψxx:

ð44Þ

Furthermore, using expression (43), one can write density
as a function of partial derivatives of velocity potential [22],
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ρ ¼ ρ0

�
1þ ðγ − 1Þ

c2s0

�
ψ t −

ψ2
x

2

�� 1
γ−1
: ð45Þ

Neglecting smallness of cubic order, one can derive some
interesting lossless wave equations in weakly nonlinear
limit [24],

ψ tt − c2s0ψxx ¼ 2ψxtψx þ ðγ − 1Þψxxψ t: ð46Þ

Approximating ψxx ∼ 1
c2
0

ψ tt, one can derive the lossless

Kuznetsov equation [25],

ψ tt − c2s0ψxx ¼ 2ψxtψx þ
ðγ − 1Þ
c2s0

ψ ttψ t: ð47Þ

Studying nonlinear acoustic phenomena is not the aim of
this paper. Hence we are not going into more detail about it.
Thus the nonlinear wave in the lossless regime can also

be described as acoustic gravitational wave propagating in
the medium. Here the gravitational wavelike effect is the
emergent phenomena in the system.

III. STRATIFIED MEDIUM

A. Isothermal stratified medium

Let us consider an isothermal medium of uniform
temperature T0, having a density variation along the z
axis due to the external force along the z direction. For
example, in a constant gravitational field g, acting along
the −z direction, the density ρðzÞ ¼ ρð0Þ exp ð− z

ðRT0=gMAÞÞ
[15], where R is the ideal gas constant andMA is the molar
weight of the constituent particle of the medium. In the
absence of any perturbation in such a system, we have

1

ρ0

dp0

dz
þ FextðzÞ ¼ 0: ð48Þ

FextðzÞ is the external body force. Let us consider pertur-
bations in the medium along the x direction,

ρðx; y; z; tÞ ¼ ρ0ðzÞ þ ρ0ðx; y; z; tÞ; ð49Þ

v0y ¼ v0z ¼ 0; ð50Þ

v0x ¼ v0xðx; tÞ: ð51Þ

Equations (50) and (51) are compatible with the irrotation-
ality condition. The system has a preferred direction, i.e.,
the z direction. As at the very outset, we are assuming
perturbations propagating along the x direction, we expect
to get a 2 × 2 acoustic metric instead of 4 × 4. Therefore,
we have continuity equation and Euler momentum equation
for the perturbed quantities as follows:

∂tρ
0 þ ∂xðρv0xÞ ¼ 0; ð52Þ

∂tv0x þ ∂xζ
0 ¼ 0: ð53Þ

The nonlinear perturbation ∂tζ
0 ¼ v0x∂tv0x þ c2s

ρ ∂tρ
0. After

some manipulations we find

∂μðfμν∂νÞζ0 ¼ 0 ð54Þ

where μ, ν run over t and x. fμν is given by

fμνðx; z; tÞ≡ ρ

c2s

� −1 −v0x

−v0x c2s − ðv0xÞ2
�
: ð55Þ

Defining ðgμνÞeff [26], as the problem is not intrinsically
1þ 1 dimensional rather it is 3þ 1 dimensional [19], we
can write3

ðgμνÞeff ≡ ρ

cs

�
−ðc2s − v02Þ −v0x

−v0x 1

�
: ð56Þ

After getting rid of the conformal factor, considering
expansion of the terms up to second order and considering
the disturbances to be of adiabatic type, we find in a similar
fashion as before

g̃μνðx; tÞ ¼ ðηAÞμν þ hμνðx; tÞ ð57Þ

≡
2
64−c2s0

�
1þðγþ1Þ

2

ρ0ð1Þ
ρ0

�
−v0xð1Þ

−v0xð1Þ
�
1þð3−γÞ

2

ρ0ð1Þ
ρ0

�
3
75: ð58Þ

As the medium has uniform constant temperature in
the absence of any disturbances, the linear sound speed

cs0ð¼
ffiffiffiffiffiffiffiffi
γRT0

MA

q
Þ is the same everywhere.

Considering the continuity equation and Euler equation
up to first order of smallness,

∂tρ
0
1 þ ∂xðρ0v0x1Þ ¼ 0; ð59Þ

∂tv0x1 þ
c2s0
ρ0

∂xρ
0
1 ¼ 0; ð60Þ

3As the actual dimension (as in Sec. II) of the problem is 3þ 1
because in this problem, the equation ∂μðfμν∂νÞζ0 ¼ 0 still holds
even for general perturbations, i.e., in the presence of nonzero
v0x; v0y and v0z; here in the very beginning choosing the symmetry
and the direction of the wave reduces the dimension of the wave
equation to 1þ 1. Alternatively, for wave propagating in an
arbitrary direction, after deriving ∂μðfμν∂νÞζ0 ¼ 0, we could have
chosen the symmetry and the direction of the wave as we did in
Sec. II. Therefore we use the same conformal factor in front of the
metric as before.
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∂z

�
c2s0
ρ0

ρ01

�
¼ 0: ð61Þ

∵ v0x1 ¼ v0x1ðx; tÞ and ρ0 ¼ ρ0ðzÞ, ρ01ðx; y; z; tÞ ¼ ρ0ðzÞ
c2s0

ϵðx; tÞ
from the above equations. ϵðx; tÞ is a function within the
first order of smallness. Therefore

∂2
t ρ

0
1 ¼ c2s0∂2

xρ
0
1; ð62Þ

∂2
t v0x1 ¼ c2s0∂2

xv0x1; ð63Þ

⇒

�
−

1

c2s0
∂2
t þ ∂2

x

�
hμνðx; tÞ ¼ 0: ð64Þ

The above equation has a solution of plane wave propa-
gating along the �x axis.
Herewehave tacitly chosen the coordinate system first and

we have assumed the perturbations across the perpendicular
direction of stratification in the medium. We restrict our-
selves by considering perturbations perpendicular to the
direction of stratification. Nevertheless the form of
Eq. (54) does not depend on the direction of perturbations
but the form of Eqs. (62)–(64) depends on the relative
orientation between the direction of the propagating wave
and the direction of stratification. Unlike the previous
case of uniform medium, in this case there is a preferred
direction in the system, i.e., the direction of external body
force, and the symmetry is lost. That is why the wave
propagating along the direction of stratification is different
from thewave propagating across it. Evendisturbances linear
in nature propagating parallel to the direction of external
body force have attenuation and would be dispersive in
nature [15].

B. Adiabatic stratified medium

Let us consider the direction of external body force
is along the z axis as before. In the absence of any
perturbation, pressure p0ðzÞ ∝ ρ0ðzÞγ. Unlike the previous
case, the sound speed, more precisely the speed of linear
perturbation, is not a constant number but rather a function
of z, for example, in the case of an adiabatic medium in a
constant gravitational field −gẑ, where ẑ is the unit vector
along the z axis. In this case, sound speed diminishes
linearly with z as the temperature diminishes linearly with
height z.
Introducing perturbations in the medium as below,

ρðx; z; tÞ ¼ ρ0ðzÞ þ ρ0ðx; z; tÞ; ð65Þ

vxðx; z; tÞ ¼ v0xðx; z; tÞ; ð66Þ

vzðx; z; tÞ ¼ v0zðx; z; tÞ; ð67Þ

such that ∂xv0zðx; z; tÞ ¼ ∂zv0xðx; z; tÞ, i.e., the irrotation-
ality condition is satisfied.4 Again after manipulation in a
similar fashion, one gets

∂μðfμνðx; z; tÞ∂νÞζ0ðx; z; tÞ ¼ 0; ð68Þ

where

fμνðx; z; tÞ≡ ρ

c2s

2
64

−1 −v0x −v0z

−v0x c2s − ðv0xÞ2 −v0xv0z

−v0z −v0zv0x c2s − ðv0zÞ2

3
75: ð69Þ

We get a three-dimensional matrix, because we choose the
quantities having dependence on one time dimension and
two spatial dimensions. The continuity equation and Euler
equation in the first order of smallness,

∂tρ
0
1 þ ∂xðρ0v0x1Þ þ ∂zðρ0v0z1Þ ¼ 0; ð70Þ

∂tv0x1 þ
c2s0
ρ0

∂xðρ01Þ ¼ 0; ð71Þ

∂tv0z1 þ ∂z

�
c2s0
ρ0

ρ01

�
¼ 0: ð72Þ

From the equation in the zeroth order of smallness, we have

1

ρ0ðzÞ
dp0ðzÞ
dz

¼ −FextðzÞ ¼
dΦðzÞ
dz

ð73Þ

where ΦðzÞ corresponds to the potential corresponding to
the conservative external body force. Hence at height l

2
from

the height z0, at

ρ0

�
z0 þ

l
2

�

¼ ρ0ðz0Þ
�
1þ 1

c2s0ðz0Þ
�
Φ
�
z0 þ

l
2

�
−Φðz0Þ

�
þ � � �

�
:

ð74Þ

Free fall velocity from height z0 þ l
2

to z0 isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΦðz0 þ l

2
Þ −Φðz0ÞÞ

q
. Hence ρ0ðz0 þ l

2
Þ ∼ ρ0ðz0Þ when

the height difference is such that the free fall velocity is
negligible compared to the sound speed within one’s
tolerance range of precision. Therefore, ρ01ðx; z0 þ l

2
; tÞ∼

ρ01ðx; z0; tÞ. We assume v0zðx; z; tÞ to be a slowly varying
function of z which means v0zðx; z0 þ l

2
; tÞ ∼ v0zðx; z0; tÞ.

4If one chooses simply as before, v0z ¼ 0 and v0x ¼ v0xðx; tÞ, in
the same manner, one could derive ∂2

t v0x1 ¼ c2s0∂2
xv0x1, which does

not make any sense because cs0 ¼ cs0ðzÞ, whereas v0x ¼
v0xðx; tÞ. That is why we choose v0x ¼ v0xðx; z; tÞ and to satisfy
the irrotationality condition we need v0zðx; z; tÞ.
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Basically, we are trying to generate wave propagating
perpendicular to the direction of stratification which
follows v0xðx;z0;tÞ∼v0xðx;z0þ l

2
;tÞ, otherwise the viscous

effects due to shear force would come into play. From the
irrotationality condition, v0zðx; z; tÞ is very small. As the
sound speed is also more or less the same within the slice of
space between heights, z0 þ l

2
and z0 − l

2
, we effectively

reduce the problem to a problem of isothermal medium.
Two things are done here simultaneously, one is that
disturbance propagating perpendicular to the direction of
stratification is chosen and secondly a slice of space having
a thickness along the direction of external body force is
chosen in such a way that all the variations along z become
negligible.
Averaging out Eqs. (71)–(73) by integrating over z, over

z in the limit z0 − l
2
to z0 þ l

2
, writing the average of

ρ01ðx; z; tÞ as ρ̃01ðx; tÞ ∼ ρ01ðx; z0; tÞ and the average of
v0x1ðx; z; tÞ as ṽ0xðx; tÞ ∼ v0xðx; z0; tÞ, we get

∂tρ̃
0
1 þ ∂xðρ0ðz0Þṽ0x1Þ ¼ 0;

∂tṽ0x1 þ
c2s0ðz0Þ
ρ0ðz0Þ

∂xρ̃
0
1 ¼ 0;

⇒ ∂2
t ρ̃

0
1 ¼ c2s0ðz0Þ∂2

xρ̃
0
1; ð75Þ

⇒ ∂2
t ṽ0x1 ¼ c2s0ðz0Þ∂2

xṽ0x1: ð76Þ

Similarly averaging fμν over z and rewriting it as f̃μν,

f̃μνðx;tÞ≡ ρ̃

c̃s2

2
64

−1 −ṽ0x 0

−ṽ0x c̃s2− ðṽ0xÞ2 0

0 0 c̃s2− ðṽ0zÞ2

3
75: ð77Þ

Now finding the acoustic metric after getting rid of the
conformal factor and carrying the expressions up to second
order of smallness, we find using Eqs. (76) and (77) in the
same manner as done before

�
−

1

c2s0ðz0Þ
∂2
t þ ∂2

x

�
hμνðx; tÞ ¼ 0: ð78Þ

IV. SHALLOW WATER WAVE

A shallow water wave or long gravity wave is a wave
having wavelength longer than the depth of the incom-
pressible liquid medium [27]. We assume constant gravity
−gẑ; the depth of the liquid is denoted by h. As we
consider a shallow water wave not necessarily linear, the
liquid flows through a channel (along the x axis) and the
wave is longitudinal [27], i.e., the velocity along the z
direction and the y direction is much smaller compared to
the velocity v along the x axis; the continuity equation
reads as [27]

∂h
∂t þ

∂
∂x ðvhÞ ¼ 0: ð79Þ

The Euler momentum equation has the form

∂v
∂t þ v

∂v
∂x þ g

∂h
∂x ¼ 0: ð80Þ

Now we define a quantity ξ as (1
2
v2 þ gh) which is very

similar to Bernoulli’s constant ζ in the previous cases, and
hence from the momentum equation is given by

∂v
∂t þ

∂ξ
∂x ¼ 0: ð81Þ

The fluid velocity and height are given by

vðx; tÞ ¼ v0ðx; tÞ; ð82Þ

hðx; tÞ ¼ h0 þ h0ðx; tÞ; ð83Þ

where primed quantities are the perturbations in the
system, and h0 is the constant height of the liquid in
the absence of any disturbances. The sound speed corre-
sponding to linear perturbation cs0 is

ffiffiffiffiffiffiffi
gh0

p
[27]. After

manipulations with the perturbed quantities in the same
manner as before, we find

∂μðfμν∂νÞξ0ðx; tÞ ¼ 0 ð84Þ

where μ, ν run over t and x. fμν is given by

fμνðx; tÞ≡
� −1 −v0

−v0 gh − v02

�
: ð85Þ

In the above matrix, gh can be denoted as c2s . There is no
conformal factor in front of fμν because in this problem h
is mathematically equivalent to ρ in the previous problems
and c2s is proportional to h; that is why the conformal
factor ρ

c2s
in the previous cases happens to be a constant

number in this problem. Just like in the previous case
of Sec. III A and due to symmetry, the problem becomes
1þ 1 dimensional, therefore using the same argument, we
use same conformal factor as before. Hence, effectively,
the acoustic metric becomes

gμνðx; tÞ≡
ffiffiffi
h

p �
−ðc2s − v02Þ −v0x

−v0x 1

�
: ð86Þ

The conformal factor is
ffiffiffi
h

p
because in the previous cases,

the conformal factor ρ
cs
in front of gμν is equivalent to hffiffiffiffi

gh
p

here. After expanding the equations up to second order of
smallness, i.e., in the weak nonlinear limit, we find after
dropping the conformal factor

ffiffiffiffiffi
h0

p
,
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g̃μνðx; tÞ ¼ ðηAÞμν þ hμνðx; tÞ

≡
2
64−c2s0

�
1þ 3

2

h0
1

h0

�
−v0x1

−v0x1
�
1þ 1

2

h0
1

h0

�
3
75: ð87Þ

One can show in the same manner that

�
−

1

c2s0
∂2
t þ ∂2

x

�
hμνðx; tÞ ¼ 0: ð88Þ

A shallow water wave in a weakly nonlinear limit can also
be experimentally realized [28].

V. BOSE EINSTEIN CONDENSATE
IN A TIGHT RING TRAP

Experimentally, very cold temperature (∼10−6 K) is
achieved in alkali atoms, which are very dilute as well
as weakly interacting [29]. A dilute, very cold (temperature
∼0þ K), weakly interacting Bose Einstein condensate
(BEC) can be described by a classical field Φðx; tÞ, having
the meaning of the order parameter, satisfying the time
dependent Gross-Pitaevskii equation [30],

iℏ
∂Φðx; tÞ

∂t ¼
�
−
ℏ2

2m
∇2 þ VextðxÞ þ gjΦðx; tÞj2

�
Φðx; tÞ

ð89Þ

where VðxÞ is the external potential and g is the two body
interaction coefficient related to s-wave scattering cross
section,

g ¼ 4πℏ2a
m

;

where a is the scattering length and g is positive for
repulsive interaction and negative for attractive interaction.
The stationary state Φsðx; tÞ, satisfying the eigenvalue
equation, i.e., the time independent Gross-Pitaevskii equa-
tion, is given by

�
−
ℏ2

2m
∇2 þ VextðxÞ þ gjΦsðx; tÞj2

�
Φsðx; tÞ ¼ μΦsðx; tÞ;

ð90Þ

where μ is the eigenvalue of the problem, which is also the
chemical potential of the problem.
Hence from Eq. (91), Φsðx; tÞ ¼ Φsðx; 0Þe−i

μt
ℏ ¼ffiffiffiffiffiffiffiffiffiffiffi

n0ðxÞ
p

eiSðxÞe−i
μt
ℏ with i ¼ ffiffiffiffiffiffi

−1
p

, n0ðxÞ being the conden-
sate number density and SðxÞ being a phase factor.
Superfluid speed (resistance less speed) of BEC is propor-
tional to the gradient of SðxÞ [30]. The energy functional
E½Φ� is given by [30]

E½Φ� ¼
Z

d3x

�
ℏ2

2m
j∇Φj2þVextðxÞjΦj2þ g

2
jΦj4

�
: ð91Þ

The first, second, and third terms in the integral correspond
to the kinetic energy (Ekin), the potential energy (EV), and
the interaction energy (Eint), respectively.
Ring traps as external potential are experimentally

realized in many cases [31–35]. Here we discuss the
toroidal ring trap, given by

VextðxÞ ¼
1

2
mω2ððr − RÞ2 þ z2Þ: ð92Þ

For simplicity, we assume the trapping frequency along
the cylindrical radial direction r is same as the trapping
frequency along z, denoted by ω.

A. The energy scales and the length scales
of the problem

In the ground state, i.e., the state with zero superfluid
speed, SðxÞ can be assumed to be zero. Hence the solution
of the stationary Gross-Pitaevskii (GP) equation is
effectively a function of density n0 only, i.e., Φsðx; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
n0ðxÞ

p
e−i

μt
ℏ . Therefore the energy is a functional of

number density only [30],

E½ ffiffiffiffiffi
n0

p �¼
Z

d3x

�
ℏ2

2m
j∇ ffiffiffiffiffi

n0
p j2þVextðxÞn0þ

g
2
n20

�
: ð93Þ

The length scale along the z direction and the r direction
around the radius R, i.e., around the circle of minima
of the potential on z ¼ 0 plane, is aho ¼ ð ℏ

mωÞ1=2 [30].
The length scale along the azimuthal direction is R. Hence
the volume scale of the problem is a2hoR, N ∼ n̄0a2hoR,
where N is the total number of atoms in the trap. Therefore,
we have

jΦsj∼
ffiffiffiffiffi
n̄0

p
;

				∂Φs

∂r
				∼
				∂Φs

∂z
				∼

ffiffiffiffiffi
n̄0

p
aho

;

				∂Φs

r∂φ
				∼

ffiffiffiffiffi
n̄0

p
R

;

where n̄0 is the spatially averaged number density of
condensate atoms, r is the cylindrical radial coordinate,
and φ is the azimuthal angle. Therefore,

Eint ∼ gn̄0N ¼ 4πℏ2a
m

n̄0N; Eφ
kin ∼

�
ℏ2

2m

�
n̄0a2ho
R

;

Er
kin ∼ Ez

kin ∼
ℏ2

2m
n̄0R;

where Eφ
kin, E

r
kin, and Ez

kin are the kinetic energy compo-
nents along φ, r, and z directions, respectively,
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⇒
Er;z
kin

Eint
∼

R
Na

; ð94Þ

⇒
Eφ
kin

Eint
∼
�
aho
R

��
aho
Na

�
: ð95Þ

For a tight toroidal trap, aho ≪ R.

B. Ground state solution of the
stationary GP equation

We seek solution for the ground state, as the external
potential does not depend on the azimuthal angle φ, there-
fore Φsðx; tÞ ¼ Φsðr; z; tÞ. Under the Thomas-Fermi (T-F)
approximation, the GP equation can be reduced to classical
fluid equations [30]. We assume the bosonic atoms to be
strongly repulsively interacting, i.e., the T-F approximation,
Eint ≫ Ekin. As there is no azimuthal angle dependence of
the ground state function, from the above section, the T-F
approximation in this case means Na ≫ R which automati-
cally implies for a tight toroidal trap Na ≫ R ≫ aho.
Therefore, dropping the kinetic term in Eq. (92), we find

n0ðr; zÞ ¼
μ − Vextðr; zÞ

g
; ð96Þ

where n0ðr; zÞ > 0 for μ > Vextðr; zÞ and zero for
μ ≤ Vextðr; zÞ. Figure 1 describes the distribution of the
condensate atoms.
We define a new coordinate system as

ðr − RÞ ¼ χ cos α; ð97Þ
z ¼ χ sin α; ð98Þ

where χ is the distance from r ¼ R at a fixed ϕ; α is the
angle of that distance with the r − φ plane. Therefore

Vextðr;zÞ¼VextðχÞ¼ 1
2
mω2χ2. n0ðχÞð¼ μ−1

2
mω2χ2

g Þ is greater

than zero for χ < χ0ð¼
ffiffiffiffiffiffiffiffi
2μ=m

p
ω Þ and is zero for χ ≥ χ0.

Therefore under the T-F approximation, the BEC atoms are
confined within a torus of finite radius χ0 surrounding the
minima of the potential function at r ¼ R on the z ¼ 0
plane. χ0 is determined by the equation

N ¼
Z
V
n0d3x

¼ 2π

Z
2π

0

Z
χ0

0

dχdαχðRþ χ cos αÞ 1
g

�
μ −

1

2
mω2χ2

�
:

ð99Þ

V is the volume of the torus with χ0 being the radius
of its circular section. μð¼ 1

2
mω2χ20Þ determines the maxi-

mum χ radius within which all the atoms stay. We find
χ0 ¼ 2ahoð aN2πRÞ

1
4.

Therefore,

n0ðr;zÞ¼ n0ðχÞ¼
1

8πa4hoa

�
4a2ho

�
aN
2πR

�1
2

−χ2
�

¼ 1

8πa4hoa

�
4a2ho

�
aN
2πR

�1
2

− ðr−RÞ2−z2
�
: ð100Þ

Therefore, from Eqs. (91) and (92), the stationary ground
state solution of the GP equation is

Φsðr; z; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðr; zÞ

p
e−i

μt
ℏ : ð101Þ

FIG. 1. Demonstrating the ring torus region of space (the blue region in the figure) within which all the BEC atoms are effectively
trapped (left) and the Thomas-Fermi number density distribution (right).
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C. Perturbative approach to the time
dependent GP equation

With tight radial and axial components, the dynamics
along the radial direction and the axial direction is “frozen”
[36]. The problem becomes effectively one dimensional.
Therefore, the wave function can be written as

Φ ¼ fðr; zÞψðφ; tÞ; ð102Þ

where
R
B rdrdzfðr; zÞ2 ¼ 1 and

R
2π
0 dφjψ j2 ¼ N, where

B ¼ V
2π ¼ πχ20R,

iℏfðr; zÞ ∂ψðφ; tÞ∂t ¼ −
ℏ2

2m

�
ψ

r
∂
∂r

�
r
∂
∂r

�
fðr; zÞ

þ f
r2

∂2

∂φ2
ψðφ; tÞ þ ψ

∂2

∂z2 fðr; zÞ
�

þ 1

2
mω2ððr − RÞ2 þ z2Þfψ

þ gjfj2jψ j2fψ : ð103Þ

Now we insert the expression of the stationary ground state
solution in the above equation as below

fðr; zÞ ¼
ffiffiffiffiffiffi
2π

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðr; zÞ

p
: ð104Þ

Therefore, due to the T-F approximation, the first and third
terms in the right-hand side of Eq. (105) vanishes. Hence

iℏf
∂ψðφ; tÞ

∂t ¼ −
ℏ2

2m
f
r2

∂2

∂φ2
ψðφ; tÞ

þ
�
1

2
mω2ððr − RÞ2 þ z2Þ þ gjfj2jψ j2

�
fψ :

ð105Þ

The dependence on r and z can be projected out by
multiplying the above equation by f� and integrating
the above equation over r and z within the volume B.
We find

iℏ
∂ψ
∂t ¼ −

�
ℏ2

2mR2

� ∂2ψ

∂φ2
þ
�

n
12n̄0

�
mω2χ20ψ þ g̃jψ j2ψ ;

ð106Þ

where g̃ ¼ g 2πn2

3Nn̄0
, n ¼ n0ðχ ¼ 0Þ, and the average number

density n̄0 ¼ N
2πRπχ2

0

. The factor 1
R2 in the first term of the

right-hand side is appearing because we are considering the
wave function to be concentrated around the minima circle
of potential due to tightness of the trap [36]. Thus the
problem becomes effectively one dimensional. The second
term in the right-hand side of the equation is a constant shift

in potential; we make it zero by translation in the potential.
Therefore, finally we have

iℏ
∂ψ
∂t ¼ −

ℏ2

2mR2

∂2ψ

∂φ2
þ g̃jψ j2ψ : ð107Þ

We decompose ψ as

ψ ¼ ψS þ ψ 0ðφ; tÞ; ð108Þ

where ψS corresponds to ψ in the ground state which is
proportional to e−i

μt
ℏ . The number density nðφ; tÞ ¼ jψ j2 ¼

constþ n0ðφ; tÞ and ψ ¼ ffiffiffi
n

p
eiγðφ;tÞ, where n0ðφ; tÞ is the

perturbation in number density which is not necessarily
linear. The velocity along φ, vφ is proportional to ∂γ

∂φ.
Putting this value of ψ and using the T-F approximation, we
get classical inviscid irrotational fluid equations [30]

∂tρþ
1

R
∂
∂φ ðρvÞ ¼ 0; ð109Þ

∇ × v ¼ 0; ð110Þ

∂vφ
∂t þ vφ

R

∂vφ
∂φ ¼ −

1

ρR
∂p
∂φ ; ð111Þ

where p ¼ 1
2
g̃n2, and sound speed cs0 ¼

ffiffiffiffi
g̃n
m

q
. We have

ρ ¼ constþ ρ0 ð112Þ

and

vφ ¼ v0φ: ð113Þ

After manipulations in same manner as before, we find

∂μðfμνðφ; tÞ∂νÞζ0ðφ; tÞ ¼ 0: ð114Þ

The greek indices in the above equation run over time t and
the compact dimension, R ¼ Rφ.

fμνðφ; tÞ≡ ρ

c2s

� −1 −v0φ
−v0φ c2s − ðv0φÞ2

�
ð115Þ

and

ðgμνÞeff ≡ ρ

cs

�−ðc2s − ðv0φÞ2Þ −v0φ
−v0φ 1

�
: ð116Þ

Proceeding in the same fashion, we find
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g̃μνðR; tÞ ¼ ðηAÞμν þ hμνðR; tÞ

≡
2
64−c2s0

�
1þ 3

2

ρ0
1

ρ0

�
−ðv0φÞ1

−ðv0φÞ1
�
1þ 1

2

ρ0
1

ρ0

�
3
75: ð117Þ

This is very similar to Eq. (89). One can show in the same
manner that

�
−

1

c2s0
∂2
t þ ∂2

R

�
hμνðR; tÞ ¼ 0: ð118Þ

Here the difference from the previous cases is that the
spatial dimension is a compact dimension. Any perturba-
tion produced in the toroidal ring will propagate in
clockwise and anticlockwise senses and eventually will
superimpose with each other and thus a standing wave will
be produced. Here we can view the scenario as the standing
wave of the acoustic analog gravitational wave.
One can do the same kind of analysis in other tight traps

of different geometries. The methods would be very similar
to the method discussed in this section.

VI. SUMMARY AND CONCLUSIONS

We find that if one extends the perturbative method of
analysis to study sound in the weakly nonlinear limit for
irrotational inviscid barotropic flow in a static medium, one
discovers that acoustic metric components satisfy the wave
equation and in that sense, the acoustic geometry happens
to get some similarities with the gravitational wave propa-
gation in Minkowski spacetime, where the metric compo-
nents also have wave nature. The transverse nature of the
gravitational wave is missing in the acoustic metric; rather
it describes the longitudinal wave in the acoustic analog of
Minkowski spacetime. Our analysis also makes a connec-
tion between two seemingly different subjects; one is
nonlinear acoustics and the other one is the study of
emergent spacetime. In the weakly nonlinear limit, the
acoustic analog of the gravitational wave is the emergent
phenomena.
As Unruh’s work shows, the acoustic metric components

for linear perturbation depend on the known solution, i.e.,
the background solution over which perturbations in the
fluid quantities are introduced. Therefore, in principle, one
can design a time dependent system (the known solutions)
in such a manner that, after linearizing the fluid quantities,
the linear wave equation satisfied by the velocity potential
or integrals of motion gives an acoustic metric similar to the
metric describing propagation of the gravitational wave.
That can be an another potential way to get an analogous
gravitational wave, but to do that first one has to find out
such realistic or experimentally possible systems. If one can
find such a system, that can be thought of as another
alternative analog model of the gravitational wave. The
novelty of our work lies in two things. One is that, as

completely different from Unruh’s work [3], we have
shown a way of getting a time dependent acoustic metric
from a time independent known solution (or background
solution) by introducing perturbations which are not linear.
Second, we have made a connection between nonlinear
acoustics in weak form with an analog model of a
gravitational wave.
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APPENDIX A: PERTURBATION
IN MASS FLOW RATE

Mass flow rate is defined as the amount of mass of
fluid passing through a unit area perpendicularly per unit
time and that is why we first specify the direction of the
disturbance and we consider the medium to be uniform in
the absence of any perturbations,

pðz; tÞ ¼ p0 þ p0ðz; tÞ ρðz; tÞ ¼ ρ0 þ ρ0ðz; tÞ
vz ¼ v0zðz; tÞ vx ¼ 0 vy ¼ 0:

Therefore, mass flow rate f ¼ ρvz ¼ f0ðz; tÞ ¼ ρv0z. From
the continuity equation and the Euler equation, the fluid
equations can be written as

∂ρ0
∂t þ ∂zðf0Þ ¼ 0: ðA1Þ

∂ttv0z þ ∂zðv0z∂tv0zÞ ¼ ∂z

�
c2s
ρ
∂tf0

�
: ðA2Þ

From the definition of the mass accretion rate

∂tv0z ¼
1

ρ
ð∂tf0 þ v0z∂zf0Þ: ðA3Þ

Therefore, using Eqs. (A1)–(A3), we get

∂μðfμνðz; tÞ∂νÞf0ðz; tÞ ¼ 0 ðA4Þ

where

fμνðz; tÞ≡ 1

ρ

� −1 −v0z

−v0z c2sδij − ðv0zÞ2
�
: ðA5Þ

The above matrix is a 2 × 2matrix because we have chosen
the direction of the perturbation first. One can not derive gμν

from fμν ¼ ffiffiffiffiffiffi−gp
gμν for 2 × 2 matrices. As the problem is

intrinsically 3þ 1 dimensional, we conventionally use the
same gμν obtained from the wave equation of Bernoulli’s
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constant. As a result, the rest of the analysis becomes
the same.

APPENDIX B: PROPAGATION OF SOUND
IN A MEDIUM

We assume that the pressure in the medium is a function
of density only even in the presence of perturbation in the
medium. Hence, the barotropic condition is given by

p ¼ FðρÞ; ðB1Þ

where p ∝ ρ for the isothermal relation and p ∝ ργ (γ ≠ 1)
for the adiabatic relation between pressure and density

pðx; tÞ ¼ p0 þ p0ðx; tÞ ðB2Þ

ρðx; tÞ ¼ ρ0 þ ρ0ðx; tÞ: ðB3Þ

p0 and ρ0 are the background value of pressure and density,
which can be treated as constant numbers, i.e., these
quantities neither depend on time nor on position.
Due to the barotropic condition, perturbation of pressure

induces the density to change. Therefore, the change in
density does not happen independently. The medium is
static. From either of the continuity equation (1) or momen-
tum equation (2), there has to be a change in velocity as well
due to this change in pressure. Therefore, it is sufficient to
introduce change in pressure in themedium, and that change
in pressurewill cause a change in density which will cause a
change in the velocity field.
Therefore, the velocity of the medium can be written as

vðx; tÞ ¼ v0ðx; tÞ: ðB4Þ

Velocity change is the rate of change of displacement δ in
unit time of the fluid elements from their position of
equilibrium (the position in the absence of disturbance in
the fluid system) (Chap. 6 of Ref. [15]),

vðx; tÞ ¼ ∂δðx; tÞ
∂t ¼ dδ

dt
: ðB5Þ

The second equality in Eq. (B5) is due to the zero
unperturbed velocity. Therefore, the event can be described
as follows. First, there is a mechanical external agent (for
example, the moving boundary in the experimental setup
depicted in Ref. [28]), which undulates the medium by
transfer of mechanical energy, i.e., the fluid elements are
displaced from their positions of equilibrium, causing
pressure and density in the medium to change. This
mechanical energy source is outside our region of interest
where we are considering the momentum equation and the
continuity equation of fluid. This is exactly like considering
the source free Einstein equation in weak field approxi-
mation while studying a gravitational wave. There is of

course a source of energy but that thing is not situated in the
region where we are writing down the equations.
The Bernoulli’s constant, defined for irrotational inviscid

barotropic flow, is written as

ζ ¼
�
1

2
v2 þ

Z
dp
ρ

�
: ðB6Þ

The first term in the above expression is the kinetic energy
per unit mass of a fluid element and the second term can be
thought of as the pressure energy, the enthalpy per unit
mass, arising from the random motion of the constituent
fluid molecules. Equation (4) implies that the energy from
the external mechanical agent is expelled in two ways: one
is that the bulk velocity of each fluid element is changed
causing the kinetic energy of each fluid element to increase,
and also the kinetic energy due to random motion of the
constituent particles in a fluid element is changed, causing a
change in the enthalpy.
In the absence of disturbance in such a static medium,

Bernoulli’s constant is a conserved quantity, given by
(Refs. [15,27])

ζ0 ¼
c2s0
γ − 1

ðB7Þ

for the adiabatic relation between pressure and density,

ζ0 ¼ c2s0 lnðρ0Þ; ðB8Þ

for the isothermal relation between pressure and density.
Therefore, Bernoulli’s constant and mass flow rate (con-
served quantity derived from the continuity equation)
govern the steady state flow. That is why studying the
change in these two quantities due to disturbances in the
medium is important.

APPENDIX C: PERTURBATION METHOD
AND ITS LIMITATION

In this Appendix, we have shown some calculations
explicitly. Let us consider a continuous and differentiable
function of ρðx; tÞ, F ðρÞ. ρ is given by Eq. (B1). Therefore,
using rules of partial derivatives

∂tF ¼ dF
dρ

∂tρ ¼ dF
dρ

∂tρ
0; ðC1Þ

because ρ0 in expression (B3) is not a function of time.The
second equality in the above expression can also be shown
by expandingF in Taylor series of ρ0 around ρ0 and then by
taking a partial derivative in time. We have defined c2s as

c2s ¼
dp
dρ

¼ dF
dρ

: ðC2Þ
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Therefore, using Eqs. (B1) and (C1), we find

∂tp ¼ c2s∂tρ ⇒ ∂tp0 ¼ c2s∂tρ
0: ðC3Þ

The enthalpy, defined for barotropic flow, is given by

hðρÞ ¼
Z

dp
ρ

¼
Z

c2sdρ
ρ

: ðC4Þ

Therefore, we have

∂th ¼ c2s
ρ
∂tρ ⇒ ∂tρ ¼ c2s

ρ
∂tρ

0; ðC5Þ

⇒ ∂tζ
0 ¼ v0:∂tv0 þ

c2s
ρ
∂tρ

0: ðC6Þ

This is how the quantities like enthalpy and Bernoulli’s
constant are automatically changed when there is a change
in density or pressure due to a disturbance in the medium.
Let us evaluate h in the presence of perturbation in the

system, in powers of ρ0 by using Taylor series,

hðρÞ ¼ hðρ0 þ ρ0Þ

¼ hðρ0Þ þ
dh
dρ

				
ρ¼ρ0

ρ0 þ 1

2!

d2h
dρ2

				
ρ¼ρ0

ρ02

þ 1

3!

d3h
dρ3

				
ρ¼ρ0

ρ03 þ � � � ðC7Þ

dh
dρ jρ¼ρ0

¼ c2s0
ρ0

from Eq. (C4). For the adiabatic case,
p ¼ Kργ, K being proportionality constant. Therefore,

dn

dρn

�
c2s
ρ

�
¼ c2sρ−ðnþ1ÞYi¼n

i¼1

ðγ − 1 − iÞ: ðC8Þ

From Eq. (C7), we have

hðρÞ¼h0þh0

¼ c2s0
γ−1

þc2s0

�
ρ0

ρ0
þγ−2

2!

�
ρ0

ρ0

�
2

þðγ−2Þðγ−3Þ
3!

�
ρ0

ρ0

�
3

þ���
�
:

ðC9Þ
Therefore, we have

ζ¼ 1

2
v0:v0 þ c2s0

γ−1

þc2s0

�
ρ0

ρ0
þ γ−2

2!

�
ρ0

ρ0

�
2

þðγ−2Þðγ−3Þ
3!

�
ρ0

ρ0

�
3

þ���
�
:

ðC10Þ

For the isothermal case,p ∝ ρ, we have c2s¼ constant¼ c2s0.
Therefore, we have in the similar way,

ζ ¼ 1

2
v0:v0 þ c2s0 lnðρ0Þ

þ c2s0

�
ρ0

ρ0
−
1

2

�
ρ0

ρ0

�
2

þ 1

3

�
ρ0

ρ0

�
3

− � � �
�
: ðC11Þ

Therefore, the order of magnitude of the terms in ζ depends
on the magnitude of the perturbations.
In the perturbation method, one writes

ρðx; tÞ ¼ ρ0 þ ρ0 ¼ ρ0 þ ρ0ð1Þðx; tÞ þ ρ0ð2Þðx; tÞ… ðC12Þ

v0ðx; tÞ ¼ v0ð1Þðx; tÞ þ v0ð2Þðx; tÞ þ � � � ðC13Þ

such that ρ0≫ jρ0ð1Þj≫ jρ0ð2Þj≫… and jv0ð1Þj ≫ jv0ð2Þj ≫ …,
jρ0ð1Þj, jv0ð1Þj are the terms having order of magnitude of ϵ, ϵ
being a small dimensionless number (ϵ < 1); jρ02j and jv0ð2Þj
are the terms having magnitude of the order of ϵ2, and
so on. As a result, we can expand the other quantities,
depending on the density perturbation and velocity pertur-
bation, as below

pðx; tÞ ¼ p0 þ p0
ð1Þðx; tÞ þ � � � ðC14Þ

csðx; tÞ ¼ cs0 þ csð1Þðx; tÞ þ � � � ðC15Þ

c2sðx; tÞ ¼ c2s0 þ c2sð1Þðx; tÞ þ � � � ðC16Þ

ζ0ðx; tÞ ¼ ζ0ð1Þðx; tÞ þ ζ0ð2Þðx; tÞ þ � � � ðC17Þ

Therefore, from Eq. (C10), we find for the adiabatic case,

ζ0ð1Þ ¼ c2s0
ρ0ð1Þ
ρ0

; ðC18Þ

ζ0ð2Þ ¼
1

2
v0ð1Þ:v

0
ð1Þ þ c2s0

γ − 2

2!

�ρ0ð1Þ
ρ0

�2

þ c2s0
ρ0ð2Þ
ρ0

; ðC19Þ

ζ0ð3Þ ¼ v0ð1Þ:v
0
ð2Þ þ c2s0

ðγ − 2Þðγ − 3Þ
3!

�ρ0ð1Þ
ρ0

�3

þ c2s0
γ − 2

2!

�
2ρ0ð1Þρ

0
ð2Þ

ρ20

�
þ c2s0

ρ0ð3Þ
ρ0

; ðC20Þ

and so on. Similarly, for the isothermal case,

ζ0ð1Þ ¼
c2s0
ρ0

ρ0ð1Þ; ðC21Þ

ζ0ð2Þ ¼
1

2
v0ð1Þ:v

0
ð1Þ −

c2s0
2

�ρ0ð1Þ
ρ0

�2

þ c2s0
ρ0ð2Þ
ρ0

; ðC22Þ
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ζ0ð3Þ ¼ v0ð1Þ:v
0
ð2Þ þ c2s0

1

3

�ρ0ð1Þ
ρ0

�3

− c2s0
1

2

�
2ρ0ð1Þρ

0
ð2Þ

ρ20

�

þ c2s0
ρ0ð3Þ
ρ0

; ðC23Þ

and so on. In the same way, the other quantities like c2s , cs,
p, etc. can be expanded in terms of density perturbation and
velocity perturbation.
Depending on the magnitude of the perturbation, one has

to consider the higher order terms. For example, in the case
of blast waves and shock waves, one has to consider the
higher order terms and possibly one has to solve it
numerically order by order in perturbation theory to match
the phenomena (finding the solution of such a wave is not
taken into account in this paper). It might happen that the
higher order terms may appear to be bigger in magnitude or
having magnitude of same order as the lower order terms.
In that case, the perturbation method will fail, one has to
consider different techniques. For example, the similarity
solution technique is commonly used to describe dynamics
of a spherical blast wave (Refs. [15,27]). As we are
working in the weakly nonlinear limit (slight improvement
over linear limit), perturbation theory is useful here.
Weakly nonlinear waves are also studied in the literature
(Refs. [24,25]). Weakly nonlinear waves have experimental
significance too [28].
In the weakly nonlinear limit, one neglects terms having

magnitude higher than ϵ2. Therefore, in the weakly non-
linear limit, for the adiabatic case, ζ0 can be written as

ζ0 ¼ ζ0ð1Þ þ ζ0ð2Þ

¼ c2s0
ρ0

ρ0ð1Þ þ
1

2
v0ð1Þ:v

0
ð1Þ þ c2s0

γ − 2

2!

�ρ0ð1Þ
ρ0

�2

þ c2s0
ρ0ð2Þ
ρ0

:

ðC24Þ

For the isothermal case, in the weakly nonlinear limit,

ζ0 ¼ ζ0ð1Þ þζ0ð2Þ

¼ c2s0
ρ0

ρ0ð1Þ þ
1

2
v0ð1Þ:v

0
ð1Þ−

c2s0
2

�ρ0ð1Þ
ρ0

�2

þc2s0
ρ0ð2Þ
ρ0

: ðC25Þ

We have shown in the paper that, in the weakly linear limit,
the variation of ζ0 can be described in a way as if ζ0 is a
massless scalar field in a spacetime background, and that
spacetime, i.e., the emergent spacetime, has some similar-
ities with the real spacetime corresponding to the gravita-
tional wave in Minkowski spacetime.
We restrict ourselves to weakly nonlinear perturbation

over a steady state flow and that steady state flow does not
have any explicit time dependency, rather the flow is taken
to be independent of position in some cases. In the case of

linear perturbation, ζ0 ¼ ζ0ð1Þ. Using the perturbation
method, we get from Eq. (18), expanding terms up to first
order in smallness,

∂μðfμν0 ∂νÞζ0ð1Þ ¼ 0: ðC26Þ

One gets an emergent metric, analogous to the
Minkowski spacetime metric, ðηAÞμν of Eq. (23), from
fμν0 . As we are considering stationary background
medium, within our scope, it is possible to get a time
dependent acoustic metric if and only if nonlinear
perturbation is introduced in the flow, wherefore to
get an analog gravitational wave, one has to work with
nonlinearity in weak form.

APPENDIX D: PERTURBATION
IN VELOCITY POTENTIAL

From the irrotationality condition,

v ¼ −∇ψ : ðD1Þ

Therefore, from Eq. (3), we find

−
∂ψ
∂t þ ζ ¼ −

∂ψ
∂t þ

�
1

2
v2 þ

Z
dp
ρ

�
¼ 0

and by subtracting the equation for the unperturbed
quantities,

⇒ −
∂ψ 0

∂t þ ζ0 ¼ −
∂ψ 0

∂t þ 1

2
v02 þ h0 ¼ 0; ðD2Þ

where h and h0 are defined as enthalpy and its variation by
Eqs. (C4) and (C9), respectively. From Eq. (1),

∂ρ
∂t ¼ ∇:ðρ∇ψÞ

⇒
∂ρ0
∂t ¼ ∇:ðρ∇ψ 0Þ ðD3Þ

After some manipulations, one finds that

−
ρ

c2s
∂ttψ

0 þ ∇:ðρ∇ψ 0Þ þ ρ

c2s
v0:∂t∇ψ 0 ¼ 0: ðD4Þ

This above equation can never be put into the form of
∂μðfμν∂νÞψ 0 ¼ 0 (where, from fμν, one derives the time
dependent acoustic metric), as opposed to the equations
satisfied by the perturbation of Bernoulli’s constant ζ0
[Eq. (7)] and mass accretion rate f0 [Eq. (A4)].
This is the reason, unlike Unruh’s case [3], we choose to

analyze the nonlinear wave equation for the variation of the
integrals of motion instead of velocity potential in the
system to find out the acoustic metric.
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