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A form of infinite derivative gravity is free from ghostlike instabilities with improved small scale
behavior. In this theory, we calculate the tree-level scattering amplitude and the corresponding weak field
potential energy between two localized covariantly conserved spinning pointlike sources that also have
velocities and orbital motion. We show that the spin-spin and spin-orbit interactions take the same form as
in Einstein’s gravity at large separations, whereas at small separations, the results are different. We find that
not only the usual Newtonian potential energy but also the spin-spin and spin-orbit interaction terms in the
potential energy are nonsingular as one approaches r → 0.
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I. INTRODUCTION

Although General Relativity (GR) provides very success-
ful solutions, observations and predictions at the intermediate
regimes, it fails to be a complete theory at both large (IR)
and small (UV) scales. In the IR regime, GR does not give
explanations to the accelerating expansion of the universe
and rotational speed of galaxies without assuming a tremen-
dous amount of dark energy and darkmatter compared to the
ordinarymatter.As for small distances at the quantum level, it
is a nonrenormalizable theory according to perturbative
quantum field theory perspective because of the infinities
appearing in a renormalization procedure. These infinities
coming from the self-interactions of gravitons (in the pure
gravity case) cannot be regulated by a redefinition of finite
numbers of parameters. GR has also black hole or cosmo-
logical type singularities at the classical level. The GR is
expected to be modified at both regimes in order to have a
complete theory. Here, the main question is what kind of
modification in the UVwill provide a completemodel which
may also solve cosmological or black hole singularity
problems. In this respect, a possible way out of this problem
was to add scalar higher order curvature terms to Einstein’s
theory such as the quadratic theory,

I ¼
Z

d4xðσRþ αR2 þ βR2
μνÞ; ð1Þ

which describes massive and massless spin-2 gravitons
together with a massless spin-0 particle [1]. By adding
higher curvature terms, renormalizability is gained, but the
unitarity (ghost and tachyon-free) of the theory is lost due to a
conflict between themassless andmassive spin-2 excitations.
In other words, the theory has Ostragradsky type instabilities

at the classical level which become ghosts at the quantum
theory. Theory has an unbounded Hamiltonian density from
below. That is to say, the addition of higher powers of
curvature causes a conflict between the unitarity and the
renormalizability.
On the other hand, it has been recently demonstrated that

infinite derivative gravity (IDG) [2,3] has the potential to
have a complete theory in the UV scale.1 IDG is described
by an action constructed from nonlocal functions Fið□Þ
[given in Eq. (4)], where □ is the d’Alembartian operator
(□ ¼ gμν∇μ∇ν). The propagator of the IDG in a flat
background in 3þ 1 dimensions,

ΠIDG ¼ P2

aðk2Þ −
P0
s

2aðk2Þ ¼
ΠGR

aðk2Þ ; ð2Þ

is given in terms of Barnes-Rivers spin projection operators
(P2, P0

s) [2]. Here, a is given in terms of Fið□Þ [see
Eq. (6)], and ΠGR is the pure GR graviton propagator. One
of the important points is to avoid introducing ghostlike
instabilities and having additional scalar degrees of free-
dom (d.o.f.) other than the massless spin-2 graviton. To do
this, aðk2Þ can be chosen to be an exponential of an entire

function as aðk2Þ ¼ eγð
k2

M2Þ, where γð k2M2Þ is an entire func-
tion. This choice guarantees that the propagator has no
additional poles other than massless graviton, in other
words, aðk2Þ has no roots. In the aðk2Þ → 0 or k ≪ M
limit, the propagator takes the usual Einsteinian form.
Furthermore, as the propagator does not have any extra
d.o.f., the modified propagator is free from ghostlike
instabilities. The Hamiltonian density is bounded from
below. Moreover, in [18], it has been recently shown that
loop divergences beyond one loop may be handled by
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introducing some form factors. Furthermore, infinite
derivative extension of GR may resolve the problem of
singularities in black holes and cosmology [2–9].
In this work, wewould like to explore the weak field limit

of the IDG and compare it with the result of GR. In [2], the
Newtonian potential for the point source was calculated for
the IDG; here we extend this discussion to include the spin,
velocities and orbital motion of the sources. By spin, we
mean the rotation of the sources about their own axes.
Therefore we calculate the spin-spin and spin-orbit inter-
actions between two massive sources in IDG and show that
the mass-mass interaction, the spin-spin interaction and the
spin-orbit interaction part become nonsingular as r → 0.
These nonsingular results in IDG show that the theory has
improved behavior in the small scale compared to GR.
The layout of the paper is as follows: In Sec. II, we

investigate the spin-spin interactions of localized pointlike
spinning massive objects in IDG and consider the large and
small distance limits of potential energy. Section III is
devoted to extend the calculations in the previous section to
the case that the massive spinning sources are also moving.
In that section, in addition to mass-mass and spin-spin
interactions, we studied the spin-orbit interactions in IDG.
In conclusions and further discussions, we give the final
result for a gravitational memory effect in IDG and discuss
the effects of mass scale of nonlocality on memory. In the
Appendix, we give some of the details of calculations for
Sec. III.

II. SCATTERING AMPLITUDE IN IDG

The matter coupled Lagrangian density of IDG is [2]:

L ¼ ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ 1

2
RF1ð□ÞRþ 1

2
RμνF2ð□ÞRμν

þ 1

2
CμνρσF3ð□ÞCμνρσ þ Lmatter

�
; ð3Þ

whereMP is the Planck mass, R is the scalar curvature, Rμν

is the Ricci tensor and Cμνρσ is the Weyl tensor. The infinite
derivative functions Fið□Þ are given as

Fið□Þ ¼
X∞
n¼1

fin
□

n

M2n ; ð4Þ

which are functions of the d’Alembartian operator. Here,
fin are dimensionless coefficients, and M is the mass scale
of nonlocality. The linearized field equations around a
Minkowski background of gμν ¼ ημν þ hμν reads2 [2],

að□ÞRL
μν −

1

2
ημνcð□ÞRL −

1

2
fð□Þ∂μ∂νRL ¼ κTμν; ð5Þ

where L refers to linearization and nonlinear functions are
defined as

að□Þ ¼ 1þM−2
P ðF2ð□Þ þ 2F3ð□ÞÞ□;

cð□Þ ¼ 1 −M−2
P

�
4F1ð□Þ þ F2ð□Þ − 2

3
F3ð□Þ

�
□;

fð□Þ ¼ M−2
P

�
4F1ð□Þ þ 2F2ð□Þ þ 4

3
F3ð□Þ

�
; ð6Þ

which give the constraint að□Þ − cð□Þ ¼ fð□Þ□. After
plugging the relevant linearized curvature tensors [19] into
(5), one arrives at the linearized field equations:

1

2
½að□Þð□hμν − ∂σð∂μhσν þ ∂νhσμÞÞ þ cð□Þ
× ð∂μ∂νhþ ημν∂σ∂ρhσρ − ημν□hÞ
þ fð□Þ∂μ∂ν∂σ∂ρhσρ� ¼ −κTμν: ð7Þ

If we set að□Þ ¼ cð□Þ, we recover the pure GR propagator
in the large distance limit without introducing additional
d.o.f. Then, in the de Donder gauge ∂μhμν ¼ 1

2
∂νh, the

linearized field equations (7) take the following compact
form:

að□ÞGL
μν ¼ κTμν; ð8Þ

where GL
μν is the linearized Einstein tensor defined as

GL
μν ¼ − 1

2
ð□hμν − 1

2
ημν□hÞ. Manipulation of (8) yields

að□Þ□hμν ¼ −2κ
�
Tμν −

1

2
ημνT

�
; ð9Þ

which is the equation that we shall work with.
From now on, we consider the tree-level scattering

amplitude between two spinning conserved pointlike sources
and find the correspondingweak field potential energy. To do
that, one needs to first eliminate the nonphysical d.o.f. from
the theory. For this purpose, let us consider the following
decomposition of the spin-2 field:

hμν ≡ hTTμν þ ∇̄ðμVνÞ þ ∇̄μ∇̄νϕþ ḡμνψ ; ð10Þ

where hTTμν is the transverse-traceless part of the field, Vμ is
the transverse helicity-1 mode and ϕ and ψ are scalar
helicity-0 components of the field. To obtain ψ in terms
of field h, one needs to take the trace and double divergence
of (10) to arrive at

h ¼ ∂2ϕþ 4ψ ;
1

2
∂2h ¼ ∂4ϕþ ∂2ψ ; ð11Þ2We will work with the mostly plus signature ημν ¼

diagð−1; 1; 1; 1Þ.
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whereweused∂μ∂νhμν ¼ 1
2
∂2h. Then, by using (11) and (8),

one obtains

ψ ¼ κ

3
ðað□Þ∂2Þ−1T: ð12Þ

On the other hand, inserting (10) into (8) yields thewave-type
equation,

hTTρν ¼ −2κO−1TTT
ρν ; ð13Þ

where the corresponding scalar Green’s function is

Gðx;x0; t; t0Þ ¼ O−1 ≡ ðað□Þ∂2Þ−1: ð14Þ
Accordingly, the tensor decomposition of energy-momentum
tensor Tρν can be given as [20]

TTT
ρν ¼ Tρν −

1

3
ḡρνT þ 1

3
ð∇̄ρ∇̄νÞ × ð□̄Þ−1T: ð15Þ

Recall that the tree-level scattering amplitude between two
sources via one graviton exchange is given by

A ¼ 1

4

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
T 0
ρνðxÞhρνðxÞ

¼ 1

4

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ðT 0
ρνhTTρν þ T 0ψÞ: ð16Þ

Consequently, by plugging (12), (13) and (15) into (16), the
scattering amplitude in a flat background can be obtained
as follows:

4A ¼ −2κT 0
ρνO−1Tρν þ κT 0O−1T; ð17Þ

where the integral signs are suppressed for notational
simplicity. Now, we are ready to compute the tree-level
scattering amplitude for IDG between two covariantly

conserved pointlike spinning sources. For this purpose,
let us consider the following localized spinning energy-
momentum tensors:

T00 ¼ maδ
ð3Þðx− xaÞ; Ti

0 ¼ −
1

2
Jkaϵikj∂jδ

ð3Þðx− xaÞ;
ð18Þ

where ma are the mass and Ja are the spin of the sources
which have no dimension in our limits; here a ¼ 1, 2. In
this respect, we want to solve the linearized IDG equations
for the sources given in (18). The scattering amplitude (17)
can be explicitly recast as

4A ¼ −2κT 0
00

�
1

að□Þ∂2

�
T00 þ κT 0

�
1

að□Þ∂2

�
T

þ 4κT 0
0i

�
1

að□Þ∂2

�
Ti

0: ð19Þ

On the other hand one must keep in mind that, to avoid
ghosts, að□Þmust be an entire function. For simplicity, let

us choose að□Þ ¼ e−
□

M2 with which the main propagator
can be computed as

Gðx;x0; t; t0Þ ¼ 1

4πr
erf

�
Mr
2

�
δðx − x0 − ðt − t0ÞÞ; ð20Þ

where r ¼ jx1 − x2j and erfðrÞ is the error function defined
by the integral

erfðrÞ ¼ 2ffiffiffi
π

p
Z

r

0

e−k
2

dk: ð21Þ

Thus, by substituting (20) into (19) and carrying out the
time integrals, one gets

4U ¼ −2κm1m2

Z
d3x

Z
d3x0δð3Þðx0 − x2ÞĜðx;x0Þδð3Þðx − x1Þ

þ κm1m2

Z
d3x

Z
d3x0δð3Þðx0 − x2ÞĜðx;x0Þδð3Þðx − x1Þ

þ κ

Z
d3x

Z
d3x0Jk1ϵ

ikj∂ 0
jδ

ð3Þðx0 − x2ÞĜðx;x0ÞJl2ϵilm∂mδ
ð3Þðx − x1Þ: ð22Þ

Here, the potential energy is U ¼ A=t [21,22], and Ĝðx;x0Þ denotes the time-integrated scalar Green’s function defined as

Ĝðx;x0Þ ¼
Z

dt0Gðx;x0; t; t0Þ ¼ 1

4πr
erf

�
Mr
2

�
: ð23Þ

Finally, the Newtonian potential energy can be obtained as

U ¼ −
Gm1m2

r
erf

�
Mr
2

�
þ M3

2
ffiffiffi
π

p e−
M2r2

4 G½J1:J2 − ðJ1:r̂ÞðJ2:r̂Þ�−G½J1:J2 − 3ðJ1:r̂ÞðJ2:r̂Þ�×
�
1

r3
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r2
e−

M2r2
4

�
:

ð24Þ
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Observe that the first term is the ordinary potential energy
in IDG which was found in [2], and the last two terms are
the spin-spin part which could be attractive or repulsive
depending on the choice of spin alignments. Let us now
turn our attention to the small and large distance behaviors
of potential energy. For the large separations as r → ∞,
erfðrÞ → 1, e−r

2

→ 0, then potential energy takes the form

U ¼ −
Gm1m2

r
−
G
r3
ðJ1:J2 − 3ðJ1:r̂ÞðJ2:r̂ÞÞ; ð25Þ

which reproduces the pure GR result [21] as expected. That
is, the first term is the usual Newtonian potential energy,
and the second one is the spin-spin interactions in GR. On
the other side, for the small distances, as expanding the
error and the exponential functions into series around r ¼ 0
give

erfðrÞ ¼ 2rffiffiffi
π

p −
2r3

3
ffiffiffi
π

p þOðr5Þ; e−r
2 ¼ 1 − r2 þOðr4Þ;

ð26Þ

the potential energy reads

U ¼ −
Gm1m2Mffiffiffi

π
p þGM3

3
ffiffiffi
π

p J1:J2 þOðr2Þ: ð27Þ

Here, the ordinary Newtonian potential term and the spin-
spin interaction term in (27) are constant, and hence the
potential is not singular at the origin. In GR, the spin-spin
part diverges according to ∼ − 1

r3 [21], whereas in the IDG,
this part is nonsingular. Though the potential energy is
generated by matter sources which have dirac delta function
singularities, it is regular due to the nonlocality. Thus, in the
IDG, not only the usual Newtonian potential but also the
spin-spin part become regular as one approaches r → 0.
Therefore, the theory has improved behavior in the small
scale behavior.

III. FURTHER GRAVITOMAGNETISM
EFFECTS IN IDG

In the previous part, we have shown that both usual
Newtonian potential and spin-spin terms are finite at the
origin. This is a remarkable result, but one can ask whether
further gravitomagnetic effects such as spin-orbit inter-
actions also have nonsingular behavior or not. To answer
this question, let us turn our attention to the tree-level

scattering amplitude between two spinning sources that
also have velocities and orbital motion. For this purpose, let
us consider the following energy-momentum tensors [23]:

T00 ¼ Tð0Þ
00 þ Tð2Þ

00 ; Ti0 ¼ Tð1Þ
i0 ; Tij ¼ Tð2Þ

ij ; ð28Þ

where the relevant tensors are

Tð0Þ
00 ¼ maδ

ð3Þð⃗x − ⃗xaÞ;

Tð2Þ
00 ¼ 1

2
ma ⃗v2aδð3Þð⃗x − ⃗xaÞ −

1

2
Jkaviaϵikj∂jδ

ð3Þð⃗x − ⃗xaÞ;

Tð1Þ
i0 ¼ −maviaδð3Þð⃗x − ⃗xaÞ þ

1

2
Jkaϵikj∂jδ

ð3Þð⃗x − ⃗xaÞ;

Tð2Þ
ij ¼ maviav

j
aδð3Þð⃗x − ⃗xaÞ þ Jlav

ði
a ϵjÞkl∂kδ

ð3Þð⃗x − ⃗xaÞ:
ð29Þ

Here, ⃗vi are the velocities of the particles as defined in a rest
frame, and vðiϵjÞkl denotes symmetrization. We shall work
in the small velocity and spin limits, in other words up to
Oðv2Þ and OðvJÞ. In this respect, the scattering amplitude
(17) turns into

4A ¼ −2κT 0
00ðað□Þ∂2Þ−1T00 − 4κT 0

0iðað□Þ∂2Þ−1T0i

− 2κT 0
ijðað□Þ∂2Þ−1Tij þ κT 0ðað□Þ∂2Þ−1T; ð30Þ

where integral signs are suppressed and ðað□Þ∂2Þ−1 is the
scalar Green’s function as was given in (20). To find the
weak field potential energy for the sources given in (28), let
us calculate the amplitude by working each term in (30),
separately. After evaluating the relevant integrals, the
energy density interaction term takes the form

− 2κT00ðað□Þ∂2Þ−1T 000

¼ −2κ
�
m1m2

4πr

�
1þ ⃗v21 þ ⃗v22

2

�
erf

�
Mr
2

�

þ 1

4π

�
1

r2
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r
e−

M2r2
4

�

×

�
m1ðr̂ × ⃗v2Þ · J⃗2

2
−
m2ðr̂ × ⃗v1Þ · J⃗1

2

��
t: ð31Þ

Here, we have dropped the term which includes higher
order contributions OðJ2v2Þ. On the other hand, the trace-
trace interaction term yields

κT 0ðað□Þ∂2Þ−1T ¼ κ

�
m1m2

4πr

�
1þ −⃗v21 − ⃗v22

2

�
erf

�
Mr
2

�
þ 1

4π

�
1

r2
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r
e−

M2r2
4

�

×

�
−
m1ðr̂ × ⃗v2Þ · J⃗2

2
þm2ðr̂ × ⃗v1Þ · J⃗1

2

��
t: ð32Þ
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Similarly the T 0
0ið∂2Þ−1T0i term becomes

−4κT 0
0iðað□Þ∂2Þ−1T0i ¼ −4κ

�
−
m1m2 ⃗v1 · ⃗v2

4πr
erf

�
Mr
2

�
þ 1

8π

�
1

r2
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r
e−

M2r2
4

�

× ð−m1ðr̂ × ⃗v1Þ · ⃗J2 þm2ðr̂ × ⃗v2Þ · ⃗J1Þ

−
1

16π

�
M3

2
ffiffiffi
π

p e−
M2r2

4 ½J1:J2 − ðJ1:r̂ÞðJ2:r̂Þ� − ½J1:J2 − 3ðJ1:r̂ÞðJ2:r̂Þ�

×

�
1

r3
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r2
e−

M2r2
4

���
t: ð33Þ

Note that as the T 0
ijð∂2Þ−1Tij term in (30) contributes only at the higher order, it has been dropped. Consequently, by using

all these results, the potential energy in IDG takes the form

UIDG ¼ −
G
r
m1m2

�
1þ 3

2
⃗v21 þ

3

2
⃗v22 − 4⃗v1 · ⃗v2

�
erf

�
Mr
2

�
þ M3

2
ffiffiffi
π

p e−
M2r2

4 G½J1:J2 − ðJ1:r̂ÞðJ2:r̂Þ�

− G½J1:J2 − 3ðJ1:r̂ÞðJ2:r̂Þ� ×
�
1

r3
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r2
e−

M2r2
4

�

− G
�
1

r2
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r
e−

M2r2
4

��
3m1ðr̂ × ⃗v2Þ · J⃗2

2
−
3m2ðr̂ × ⃗v1Þ · J⃗1

2

− 2m1ðr̂ × ⃗v1Þ · J⃗2 þ 2m2ðr̂ × ⃗v2Þ · J⃗1
�
: ð34Þ

Observe that potential energy has the ordinary Newtonian
potential energy, spin-spin and spin-orbit interactions. For
large separations as r → ∞, the potential energy becomes

U ¼ −
G
r
m1m2

�
1þ 3

2
⃗v21 þ

3

2
⃗v22 − 4⃗v1 · ⃗v2

�

−
G
r3
½J⃗1 · J⃗2 − 3J⃗1 · r̂ J⃗2 ·r̂�

−
G
r2

�
3m1ðr̂ × ⃗v2Þ · J⃗2

2
−
3m2ðr̂ × ⃗v1Þ · J⃗1

2

− 2m1ðr̂ × ⃗v1Þ · J⃗2 þ 2m2ðr̂ × ⃗v2Þ · J⃗1
�
; ð35Þ

which matches with the pure GR result [24] as expected.
That is, the potential energy contains the usual Newtonian
potential energy and relativistic corrections. On the other
hand, for small distances, the potential energy reduces to

U ¼ −
Gm1m2Mffiffiffi

π
p

�
1þ 3

2
⃗v21 þ

3

2
⃗v22 − 4⃗v1 · ⃗v2

�

þ GM3

3
ffiffiffi
π

p J1:J2 þOðrÞ: ð36Þ

Here, the ordinary Newtonian potential term and the spin-
spin interaction term in (36) are constant, and the spin-orbit
interaction terms contribute at the orderOðrÞ. Therefore the
potential is regular at the origin. Thus, in the IDG, not only

the usual Newtonian potential but also the spin-spin and
spin-orbit interactions become regular as one approaches
r → 0. These nonsingular results in IDG show that the
theory is very well behaved in the UV region compared
to GR.

IV. CONCLUSIONS AND FURTHER
DISCUSSIONS

We have considered the IDG in 3þ 1 dimensional flat
backgrounds. We computed the tree-level scattering ampli-
tude in IDG and accordingly found weak field potential
energy between two pointlike spinning sources interacting
via one-graviton exchange. We have demonstrated that at
large distances potential energy is the same as the GR
result, whereas at small distances, it is discreetly different
from GR. We have also shown that both the ordinary
Newtonian potential energy and the spin-spin term remain
finite at the small distance limit (r → 0). Furthermore, in
addition to spin-spin interactions, we studied the spin-orbit
interactions in IDG by considering that the sources are also
moving. We found that not only mass-mass but also spin-
spin and spin-orbit interactions are nonsingular and finite at
the origin. That is, gravitational potential energy of spin-
ning sources that also have velocities becomes nonsingular
for IDG. Consequently, the theory is a very well behaved
feature in the UV regime as compared to GR.
Now, we would like to discuss the effects of mass

scale of nonlocality (M) on gravitational memory effect.
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Gravitational waves, induced by merger of neutron stars or
black holes etc., create a permanent effect on a system
composed of inertial test particles. In other words, a pulse
of gravitational wave changes the relative displacements of
test particles. This effect is called gravitational memory
effect and comes in two forms: ordinary (or linear) [25]
and null (or nonlinear) [26]. The studies on gravitational
memory effect have recently received more attention in
various aspects [27–33] because there is a hope that it could
be measured by advanced LIGO. To calculate gravitational
memory effect in IDG in a flat spacetime, we can follow the
method of [27,28]: we first solved the geodesic deviation
equation and then integrated it two times to find relative
separation of the test particles. Without giving the details,
we shall give the final result:

Δξi ¼ 1

r
erf

�
Mr
2

�
Δi

jΘðUÞξj; ð37Þ

where Θ is the step function, ξ is a spatial separation vector
and Δi

j are spatial components of the memory tensor {see
Eq. (45) in [27] for memory tensor}. This result shows that
the test particles have nontrivial change in their separations
which is described by the memory tensor. Observe that the
memory is dependent of the mass scale of nonlocality and
different from GR. In the large distance limits, memory is
the same as the usual Einsteinian form as expected.
Furthermore, for a lower bound on mass scale of non-
locality (M > 4 keV) [34], the memory reduces to GR
prediction above at very small distances.
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APPENDIX: DETAILS OF THE CALCULATIONS

In this part, we would like to give the details of scattering
amplitude calculations for Sec. III. Before going into
further details, let us give the following identities:

∂kr¼
ðxk−x0kÞ

r
¼ r̂k; ∂k

1

r
¼−ðxk−x0kÞ

r3
¼−r̂k

r2
;

∂k0r¼
−ðxk−x0kÞ

r
¼−r̂k; ∂k0

1

r
¼ðxk−x0kÞ

r3
¼ r̂k

r2
;

∂k∂n0r¼
1

r
ð−δknþ r̂kr̂nÞ; ∂k∂n0

1

r
¼ 1

r3
ðδkn−3r̂kr̂nÞ;

∂kerfðrÞ¼
2ffiffiffi
π

p e−r
2

r̂k; ∂k0erfðrÞ¼−
2ffiffiffi
π

p e−r
2

r̂k; ðA1Þ

which are needed for computations. Let us now calculate
the amplitude by working each term in (30), separately.
The energy density interaction term becomes

T00ðað□Þ∂2Þ−1T 000¼
�
m1δ

ð3Þðx⃗− x⃗1Þþ
1

2
m1v⃗21δ

ð3Þðx⃗− x⃗1Þ

−
1

2
Jl1v

i
1ϵ

ilk∂kδðx⃗− x⃗1Þ
�
ðað□Þ∂2Þ−1

�
m2δ

ð3Þðx⃗0− x⃗2Þþ
1

2
m2v⃗22δ

ð3Þðx⃗0− x⃗2Þ

−
1

2
Jm2 v

j
2ϵ

jmn∂ 0
nδ

ð3Þðx⃗0− x⃗2Þ
�
; ðA2Þ

whose each distinct term reads

m1δ
ð3Þð⃗x − ⃗x1Þðað□Þ∂2Þ−1m2δ

ð3Þðx⃗0 − ⃗x2Þ

¼ m1m2

4πr
erf

�
Mr
2

�
t; ðA3Þ

m1δ
ð3Þð⃗x − ⃗x1Þðað□Þ∂2Þ−1 1

2
m2 ⃗v22δ

ð3Þðx⃗0 − ⃗x2Þ

¼ 1

2

m1m2 ⃗v22
4πr

erf

�
Mr
2

�
t; ðA4Þ

−
1

2
m1δ

ð3Þð⃗x − ⃗x1Þðað□Þ∂2Þ−1Jm2 vj2ϵjmn∂ 0
nδ

ð3Þðx⃗0 − ⃗x2Þ

¼ 1

2

m1ðr̂ × ⃗v2Þ:J⃗2
4πr2

erf

�
Mr
2

�
t

−
M
2

ffiffiffi
π

p e−
M2r2

4
m1ðr̂ × ⃗v2Þ:J⃗2

4πr
t; ðA5Þ

1

2
m1 ⃗v21δ

ð3Þð⃗x − ⃗x1Þðað□Þ∂2Þ−1m2δ
ð3Þðx⃗0 − ⃗x2Þ

¼ 1

2

m1m2 ⃗v21
4πr

erf

�
Mr
2

�
t; ðA6Þ

−
1

2
Jl1v

i
1ϵ

ilk∂kδ
ð3Þð⃗x − ⃗x1Þðað□Þ∂2Þ−1m2δ

ð3Þðx⃗0 − ⃗x2Þ

¼ −
1

2

m2ðr̂ × ⃗v1Þ:J⃗1
4πr2

erf

�
Mr
2

�
t

þ M
2

ffiffiffi
π

p m2ðr̂ × ⃗v1Þ:J⃗1
4πr

e−
M2r2

4 t; ðA7Þ

with these terms, one ultimately gets
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−2κT00ðað□Þ∂2Þ−1T 000 ¼ −2κ
�
m1m2

4πr
erf

�
Mr
2

��
1þ ⃗v21 þ ⃗v22

2

�
þ 1

4π

�
1

r2
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r
e−

M2r2
4

�

×

�
m1ðr̂ × ⃗v2Þ · J⃗2

2
−
m2ðr̂ × ⃗v1Þ · J⃗1

2

��
t: ðA8Þ

On the other side, the trace-trace interaction term yields

T 0ðað□Þ∂2Þ−1T ¼
�
−m1δ

ð3Þð⃗x − ⃗x1Þ þ
1

2
m1 ⃗v21δ

ð3Þð⃗x − ⃗x1Þ −
1

2
Jl1v

i
1ϵ

ilk∂kδ
ð3Þð⃗x − ⃗x1Þ

�
ð∂2Þ−1

×

�
−m2δ

ð3Þðx⃗0 − ⃗x2Þ þ
1

2
m2 ⃗v22δ

ð3Þðx⃗0 − ⃗x2Þ −
1

2
Jm2 v

j
2ϵ

jmn∂ 0
nδ

ð3Þðx⃗0 − ⃗x2Þ
�
: ðA9Þ

Then, by evaluating the relevant integrals, one eventually obtains

κT 0ðað□Þ∂2Þ−1T ¼ κ

�
m1m2

4πr

�
1þ −⃗v21 − ⃗v22

2

�
erf

�
Mr
2

�
þ
�

1

4πr2
erf

�
Mr
2

�
−

M

4π
3
2r
e−

M2r2
4

�

×

�
−
m1ðr̂ × ⃗v2Þ · J⃗2

2
þm2ðr̂ × ⃗v1Þ · J⃗1

2

��
t: ðA10Þ

Similarly, the T 0
0ið∂2Þ−1T0i term can be written as

T 0
0iðað□Þ∂2Þ−1T0i ¼

�
−m1vi1δ

ð3Þð⃗x − ⃗x1Þ þ
1

2
Jk1ϵ

ikj∂jδ
ð3Þð⃗x − ⃗x1Þ

�
ðað□Þ∂2Þ−1

×

�
m2vi2δ

ð3Þðx⃗0 − ⃗x2Þ −
1

2
Jl2ϵ

ilm∂ 0
mδ

ð3Þðx⃗0 − ⃗x2Þ
�
; ðA11Þ

which after lengthy and tedious calculations becomes

−4κT 0
0iðað□Þ∂2Þ−1T0i ¼ −4κ

�
−
m1m2 ⃗v1 · ⃗v2

4πr
erf

�
Mr
2

�
þ 1

8π

�
1

r2
erf

�
Mr
2

�
−
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π

p
r
e−

M2r2
4

�

× ð−m1ðr̂ × ⃗v1Þ · ⃗J2 þm2ðr̂ × ⃗v2Þ · ⃗J1Þ −
1

16π

�
M3

2
ffiffiffi
π

p e−
M2r2

4 ½J1:J2 − ðJ1:r̂ÞðJ2:r̂Þ�

− ½J1:J2 − 3ðJ1:r̂ÞðJ2:r̂Þ� ×
�
1

r3
erf

�
Mr
2

�
−

Mffiffiffi
π

p
r2
e−

M2r2
4

���
t: ðA12Þ

Recall that the T 0
ijð∂2Þ−1Tij term contributes in higher order corrections. Consequently, by using the results above obtained,

the potential energy in IDG is obtained in the form as given in (34).
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