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We formulate the Einstein-Cartan-Dirac equations in the Newman-Penrose (NP) formalism, thereby
presenting a more accurate and explicit analysis of previous such studies. The equations show in a
transparent way how the Einstein-Dirac equations are modified by the inclusion of torsion. In particular,
the Hehl-Datta equation is presented in NP notation. We then describe a few solutions of the Hehl-Datta
equation on Minkowski space-time, and in particular report a solitonic solution which removes the
unphysical behavior of the corresponding Dirac solution. The present work serves as a prelude to similar

studies for nondegenerate Poincaré gauge gravity.
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I. INTRODUCTION

Einstein’s general theory of relativity (GR)—published
in 1915—has been described as the most beautiful of all the
existing physical theories [1]. The background space-time
on which classical GR is formulated is a Riemannian
manifold (denoted by V,) which is torsionless. In this case,
the affine connection coincides uniquely with the Levi-
Civita connection and geodesics coincide with the path of
shortest distance. This is, however, not generally true for
other, rorsional manifolds, such as the manifold on which
the Einstein-Cartan-Sciama-Kibble (ECSK)—or simply,
Einstein-Cartan (EC)—theory is formulated. In such a
theory, the geometrical structure of the manifold is modi-
fied such that the affine connection is no longer required to
be symmetric, and no longer coincides uniquely with the
Levi-Civita connection [2-7].

Torsion, as the antisymmetric part of the affine con-
nection, was introduced by Cartan [4]. Also termed U,
theories of gravitation, Einstein-Cartan theories work with
an underlying manifold that is non-Riemannian (unlike
classical GR which is formulated on V,). The non-
Riemannian part of the manifold is associated with the
spin density of matter, which plays the role of a source
analogous to the role of mass in Riemannian curvature.
Here, mass and spin both play a dynamical role. While
mass “adds up” on classical length scales due to its
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monopole character, spin, being of dipole character, usually
averages out in the absence of external forces.

For this reason, matter, in the macrophysical regime, can
be dynamically characterized entirely by the energy-
momentum tensor. In the microregime, heuristic arguments
suggest that a spin density tensor plays an analogous role
for spin, and related, as with mass and curvature, to some
other geometrical property of space-time. It is this require-
ment that EC/ECSK theory satisfies (the reader is referred
to [2] for a detailed treatment). When we minimally couple
the Dirac field on Uy, we term this Einstein-Cartan-Dirac
(ECD) theory. There are two independent geometric
fields—the metric and torsion—and one matter field y
in this theory. Varying the corresponding Lagrangian, we
get three equations of motion, corresponding to the
modified Finstein field equations, modified Dirac equation,
and a torsional coupling. On Uy, the Dirac equation
becomes nonlinear; and is known as the Hehl-Datta
(HD) equation after the seminal work in [3].

The usual method in approaching solutions to problems
in GR is to use a local coordinate basis é* such that
e = 0,. This coordinate basis field is covariant under
general coordinate transformations. However, it has been
found useful to employ noncoordinate basis techniques in
problems involving spinors. Moreover, choosing the tetrad
basis vectors as null vectors is extremely useful in certain
situations. This formalism—where a given theory is
expressed in a basis of null tetrads—is the celebrated
Newman-Penrose (NP) formalism. In this formalism, we
replace tensors by their null tetrad components and re-
present these components with certain distinctive symbols.
Most of the important and physically relevant geometrical
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objects and identities (e.g., the Riemann curvature tensor,
Weyl tensor, Bianchi identities, Ricci identities etc.) on Uy
have been formulated in the NP formalism (such as in [8]).

It can be shown that there is a natural connection
between spin dyads (a detailed account of spin dyads
can be found in [9]) and null tetrads [9,10]. Physical
systems involving spinor fields can be fully expressed in
the NP formalism (e.g., the Dirac equation on V4 has been
studied extensively, Ref. Chap. 12 in [9]). In addition, many
systems in gravitational physics are also studied in the NP
formalism [9]. It appears that the NP formalism is the shared
vocabulary between the physics of relativistic quantum
mechanical systems (with spinor fields) and classical gravi-
tational systems (having a metric and/or torsion). Apart
from NP formalism, there are other approaches to the
problem of a Dirac field in a Riemann-Cartan manifold.
One such literature uses Foldy-Wouthyusen transformation
for studying the relativistic Dirac fermion interacting
with general electromagnetic fields in Riemann-Cartan
spacetimes [11,12].

In the present paper, we aim to formulate the full ECD
equations in the NP formalism. We know that the con-
tortion (which is also spelled as contorsion) tensor is
completely expressible in terms of the Dirac state [2].
We wish to then find expressions for the contortion spin
coefficients—which are the standard NP variables that
account for spin—explicitly in terms of the Dirac state.
Using this, we can write the complete set of HD equations
in the NP formalism. In a sense, this work is to be read as a
sequel to the work of Chandrasekhar in [9] (see Chap. 12),
where the Dirac equation on V, has been given a full
treatment in the NP formalism. Some recent works [13—15]
attempt to do that but have not provided explicit corrections
to the standard NP variables due to torsion. Further, there
are notational and sign inconsistencies in many such
examples of existing literature in the field, and we aim
to provide a comprehensive and self-contained treatment.

Finally, we attempt to find solutions to the HD equations
in a Minkowski space with torsion. This, apart from being
the simplest case to consider, is also motivated by certain
physical intuitions which can be considered as supporting,
but nonessential, corollaries to this work. A recent essay
[16—18] suggests the incorporation of a new length scale in
quantum gravity, thereby providing a symmetry between
large and small masses; a conjecture has been proposed
therein to establish a duality between these two limits. This
conjecture is predicated on the necessary existence of
solutions to the Hehl-Datta equations on Minkowski space,
representing the balance between the Riemannian and
torsional effects which reduce to small and large masses
in the respective limits. However, notwithstanding the
duality conjecture and the new length scale proposed,
our results hold for the standard theory as well. All
equations are expressed in terms of two relevant generic
length scales, /{ = Lp and [, = %ﬂc, the first being Planck

length, and the second being one half the Compton wave-
length. In case of the modified ECD theory with a new
length scale Lcg (as defined below), we will instead have
[y = I, = Lcg: the Planck length and Compton wavelength
no longer appear in the ECD equations, and are both
replaced by Lcg.

A. Notation and conventions

The following conventions are in use for the remainder

of this paper:

(1) The Lorentz signature used is (+ — ——) throughout.

(ii) V4 is a nontorsional space-time, while a space-time
endowed with torsion is specified by U,.

(iii) Greek indices, e.g., a, ¢, o refer to world compo-
nents, which transform according to general coor-
dinate transformations and are raised or lowered
using the metric g, .

(iv) Latin indices within parenthesis e.g., (a) or (i) are
tetrad indices, which transform according to local
Lorentz transformations in the flat tangent space,
and are raised or lowered using 7;))-

(v) Latin indices (without parenthesis) e.g., i, j, b, ¢
indicate objects in Minkowski space, which trans-
form according to global Lorentz transformations.

(vi) In general 0,1,2,3 refer to world indices while (0),
(1),(2),(3) refer to tetrad indices.

(vii) The total covariant derivative is denoted by V, while
{} denotes the Christoffel connection. Correspond-
ingly, VU represents a covariant derivative with
respect to the Christofel connections.

(viii) Commas (,) indicate partial derivatives while semi-
colons (; ) indicate the Riemannian covariant deriva-
tive. Thus, for tensors, ; and Vi are same, while
for spinors, (;) involves both partial derivatives and
the Riemannian part of the spin connection, y, as
defined in the following.

(ix) The four component Dirac spinor is written as

PA

v=|o ] 0
Op

where P4 and Qp are two dimensional complex

vectors in C? space. We redefine the spinors as

P’ =F,, P'=F, 0" = G,,and Q" = —G,. This

is in accordance with our primary source [9]; the

notations, conventions, and representations wherein
are generally adhered to in this paper.

II. EINSTEIN-CARTAN THEORY AND ITS
COUPLING TO THE DIRACH FIELD

A. Einstein-Cartan theory

In the Einstein-Cartan theory, the Riemannian manifold
of ordinary GR (V,) is promoted to the corresponding
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non-Riemannian manifold U,. As discussed, this latter
manifold admits, in addition to the structure of ordinary
GR, a nonvanishing torsion. Torsion is a (rank 3) tensorial
object defined as the antisymmetric part of the affine
connection:

1
Qaﬂﬂ = F[aﬂ]ﬂ = 5 (Faﬂ” - Fﬁa”)' (2)

Similarly, the contortion tensor K,z is given by
Ko = =0 — OFop + Q4 - This allows us to write—
in terms of the usual Christoffel symbols—the following
relation:

raﬁﬂ_{”}—Kaﬁﬂ. (3)

o

When a matter field y is minimally coupled with gravity
and torsion, its action is given as follows [2]:

5= [ axy=a| ot Vo) - 5 Rla00)] @

Here k = 87G/c*, L,, is the matter Lagrangian density,
and the second term represents the Lagrangian density
for the gravitational field. There are three fields in this
Lagrangian: v, g,,, and K, representing the matter field,
the metric, and the contortion, respectively. Varying the
action with respect to these, one arrives at the following
three field equations:

8(v=9Ln) _
S(V=TR) _, 8(TLn) "
og" Sgv
6(v=9R) _ | 8(v/=9Ly)
oK, afu =% oK, afu . (7)

Here, (5) leads us to the matter field equations on a
curved space-time with torsion. The right-hand side of (6)
is associated with /=gkT,, via the definition of the metric
energy-momentum tensor 7,. Similarly, the right-hand
side of (7) is associated with 2,/=gkS*’* where S¥/* is the
spin density tensor. Together, these two yield the Einstein-
Cartan field equations:

G = kX, (8)
THba — [ SHP 9)
In (8), the G** on the left-hand side is the asymmetric

Einstein tensor built from the asymmetric connection,
while X# is the asymmetric canonical (total) energy

momentum tensor, constructed out of the symmetric
(metric) energy-momentum tensor and the spin density
tensor. In (9), the so-called “modified” torsion T#/* is the
traceless part of the torsion tensor, and is algebraically
related to $¥#* on the right. In the limit torsion — 0, we
recover classical GR—(9) vanishes, and (8) reduces to the
Einstein field equations which couple the (symmetric)
Einstein tensor to the (symmetric) metric energy-
momentum tensor. It should also be noted that in the
recent works [19], it was shown rigorously that in the
structure of the Poincaré gauge (PG) theory of gravity (of
which the EC theory is an example of), torsion couples only
to the elementary particle spin and not to the orbital angular
momentum under any circumstances.

B. EC coupling to the Dirac field

The theory generated from the minimal coupling of the
Dirac field on U, is what we term Einstein-Cartan-Dirac
(ECD) theory. In this theory, the matter field is the spinorial
Dirac field y, for which the Lagrangian density is given by
[20] (note the noncommuting covariant derivatives)

ihc , _ _ _
Ly == @7V = Vpy'y) - me*py. - (10)

In ECD theory, the addition of spin degrees of freedom
necessitates a more careful treatment of anholonomic
objects. As we define the affine connection, I, to facilitate
parallel transport of geometrical objects with world (Greek)
indices, so do we define the spin connection y for anholo-
nomic objects (with Latin indices). The affine connection
can be decomposed into a Riemannian ({}) and a torsional
part (made up of the contortion tensor, K) and similarly,
the spin connection y can also be decomposed into a
Riemannian (y?) and torsional part (once again, formed of
the contortion tensor). These components are related via the
following equation (following the notation in [8]):

y, 06 = yo O _ K, 00 (11)

where 75" is Riemannian part and K ) is the torsional

part. Using these, we define the covariant derivative for
spinors, on V4 and Uy:

1 ,
W = O + 170007 rw (on vy, (12)

4
Vo — w0 b))
u = ;4‘/""17,,@)@7 VY
1
—ZKﬂ(c>(b)7(b>7<c”l// (on Uy).  (13)

Substituting this into (10) we obtain the explicit form of
Lagrangian density; varying with respect to ¥ as in (5)
yields the Dirac equation on V4 and Uy:
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) mc
iy ——-w =0 (on V) (14)
. i Y mc
iy'w., + ZK(a)(b)(c)}/[( JyPly(ly — V= 0 (on Uy).
(15)

Next, we use (6) and Lagrangian density defined in (10)
to obtain the gravitational field equations on V, and Uj:

SJTG

Gu({}) = w (on Vy), (16)
87rG 1 /87G\?2
({}) w Ty <c4) QWS”/MS(W (on Uy).
(17)
Here, T, is the metric EM tensor which is symmetric

and defined as

T/w = Z(/u/) ({})
ihc

= T - l/_/;y}/yw - l/_/;yyuu/]‘ (18)

v + Wy,

Equations (14) and (16) together form the system of
equations of Einstein-Dirac theory. We now move to the
full Einstein-Cartan-Dirac theory. Using the Lagrangian
density defined in (10), we can define the spin density
tensor:

—ihc _
st = — =ty (19)

Using (19) and (7), (15) can be simplified to give the
Hehl-Datta equation [2,3]. This, along with (17) and the
relation between the modified torsion tensor and spin
density tensor, define the field equations of the Einstein-
Cartan-Dirac theory:

&rG 1 (8z2G
Gl ) =51, =5 () 0550 0

2
8rG
T/,wa = _Km/a = 7Sﬂl/(l7 (21)
3 mc
V"W = + g L1 a Wy Wy + v (22)

where Lp; is the Planck length.
III. INTRODUCING A UNIFIED LENGTH
SCALE Lcgs IN QUANTUM GRAVITY

Recent work [16,17] has provided motivation for uni-
fying the Compton wavelength (%) and Schwarzschild

radius (R, = 23M) of a point particle with mass m into one
single length scale the Compton-Schwarzschild length
(Lcs)- Such a treatment compels us to introduce torsion,
and relate the Dirac field to the torsion field. An action
principle has been proposed with this new length scale
which permits the Dirac equation and the Einstein field
equations as mutually dual limiting cases. The modified
action proposed is as follows:

L3 R iy
%S = / d*x\/=g [R - ELCS‘//’// + L%s‘l/l}’”vpl//] .
(23)

Using this new length scale, Lcg, we can rewrite the
Einstein-Cartan-Dirac equations as [17]

Gullh) =7, + (),

8rLig
Ty, = e Sy (25)
7! +5 ) L2 + : 0. (206)
W¥a= 3 SWV YWy vy 2o V=

A note on length scales: We use / to denote a length scale
in the theory. For standard ECD theory, the two scales that

appear are the Planck length /; = Lp = /9%, and half the
Compton wavelength [, = %C = % For the modified ECD

c
theory, we have [; = [, = Lcg, in terms of the new unified

length scale.

IV. THE NEWMAN-PENROSE FORMALISM
AND ECD IN NP

A. Tetrads

It is common in the literature [9] to use tetrads (or
vierbeins) to define spinors on a curved space-time (in V,
as well as U4).1 In this formalism, the transformation
properties of spinors are defined in a flat (Minkowski)
space, locally tangent to U,. At each point in space-time,
we can define a coordinate basis vector field e = ¢ 5=
[9] which is covariant under general coordinate trans-
formations, with ¢* being the metric. The basis vectors
associated with spinors, however, are covariant under local
Lorentz transformations. Hence, we define, at each point of
our manifold, a set of four orthonormal basis vectors
(forming the tetrad field) given by ¢()(x). These comprise

'While this is often the case, there are other formalisms that
can be used [21].
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four vectors (one for each ) at each point, and the tetrad

field is governed by the relation &()(x) = e,(,i) (x)e* where
e,(f) is the transformation matrix.
The following convolution relation follows:

i) (k
I = eiel >’7(i)(k). (27)

The inverse of transformation matrix viz. e’(‘i) follows:

v v i v k
g = e’(‘i)e<k)17( ) and e’('l.> =g r](,-)<k)e,(, ), (28)

The transformation matrix e,(f> allows us to convert the
components of any world tensor (a tensor which transforms
according to general coordinate transformation) to the
corresponding components in local Minkowskian space
(these latter components being covariant under local
Lorentz transformation). Greek indices are raised or low-
ered using the metric g, while the Latin indices are raised
or lowered using 7). Parentheses around indices is a
matter of convention (see ‘“Notations and conventions” in
the Introduction). In general, given a world tensor W, its
corresponding components W;; in the flat tangent
manifold can be obtained using a tetrad transformation
matrix such that

W(l)( = e” e/ W

i) = €l W (29)

B. Introduction to the NP formalism

The Newman-Penrose (NP) formalism was formulated
by Newman and Penrose in their work [22]. It is a special
case of the tetrad formalism, in which we choose our tetrad
as a set of four null vectors:

e’('o) = ¥, e’(’l) = nH, ey = m", e = m*
(30)

where /#, n* are real and m*, m* are complex. The null
tetrad indices are raised and lowered using the flat space-
time metric

01 0 O
s 1 0 O
Loy = pO0) = 31
M) =1 00 0 - (31)
00 -1 0
and the tetrad vectors satisfy the equation g, =

e,(pegj >77(,->< j)- In this formalism, we replace tensors by their
tetrad components and represent these components with
a collection of distinctive symbols which are now standard

in the literature.

C. Spinor analysis

We define four null tetrads (and their corresponding
covectors) on Minkowski space (raised and lowered

using 7,,):
1
V2

1
m* =——(0,1,1,0), n*=——(1,0,0,-1). 32
-0.100 10000 ()

We also define the following Van der Waarden symbols:

1*=—(1,0,0,1), m°=

(07 15 _iv O)’

\®)

[ mt n* —m*
w:ﬁL } wzﬁ{_ }Gﬂ
m¢ n* —m4 I

For the Dirac gamma matrices, we use the complex
version of the Weyl (chiral) representation:

Ly ] e [2)]

1o ]

where a = (0, 1,2,3).

The complex Weyl representation is used so that the
Dirac bispinor and gamma matrices defined in (1) and (34)
remain consistent with Egs. (97) and (98) of Sec. 103 in [9]
[comparing with our standard reference, [9], we recover
Eq. (99) in complex form].

In order to represent spinorial objects (objects compris-
ing spinors and gamma matrices) on a curved space-time,
we use the following prescription on the tetrad formalism
[10], viz. let M be a curved manifold with all conditions
necessary for the existence of spin structure, and let U
be a chart on M with coordinate functions (x*). Then, for
representing spinorial objects, we (i) choose an orthonor-

mal tetrad field e’(u)(x“) on U, (ii) define the Van der

Waarden symbols () and 5(@) in this tetrad basis exactly as
defined on Minkowski space in (33) and choose a y
representation (34), (iii) then, the ¢’s in a local coordinate
frame are obtained via

P @ »oomt
ot (x%) = €(y (x*)o :\@{W nﬂ}
nt —mH
Gt = e’(‘a) (xa)[;(a) = \/E{—ﬁz/‘ p ] (35)

with the y matrices obeying a similar transformation.
Thus, objects with world indices (containing world-
indexed y matrices or spinors) are now functions of chosen
orthonormal tetrads. These are defined a priori in a local
tetrad basis (with components identical to those defined on
a flat Minkowski space-time) and then carried into a curved
space via the tetrads. This is unlike other geometrical world
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objects which are first defined naturally at a point in a
manifold and subsequently carried to a local tangent space
via tetrads. We now aim to carry the Dirac equation (in NP)
on V, into the U, space, building upon Sec. 102(d) of [9].
In order to calculate the covariant derivative of a spinor in
U,, we require the spinor affine connection coefficients.
They are defined via the requirement that €,5 and ¢’s are
covariantly constant. The analysis in [9]—until Eq. (91) in
the book—still stands; however, the covariant derivatives
are promoted to those acting on U,. They are defined as
follows:

\Y%

PY = ,P4 + A PE, (36)

V.0 =9,0" + T4, 0". (37)

The I" terms here are added to the partial derivative when
working with objects in U,. Their values can completely be
determined in terms of the spin coefficients, and we can
readily evaluate its tetrad components using the following
formulas and the spin dyads [10]:

1, _ 1 _y,e
FﬁB = za‘;‘Y (V,.0%y). F}’:‘B, = 55‘;‘ Y(V,5%y).  (38)

Using Friedman’s lemma (see p. 542 of [9] for a full
proof), we can express the various spin coefficients
La)(b)(c)(@) In terms of covariant derivatives of the basis
null vectors I, n, m and m. The covariant derivative here is
exactly as defined in Eq. (3.3) [and explicitly written in
Eq. (3.5)] of [8].

Using this covariant derivative, it is readily seen how
Egs. (95) and (96) in [9] get modified; viz, ['ypoy = k° + K
and I'11917 = p° + u; (noughts in the superscript are used to
indicate the original spin coefficients defined on V). The
12 independent spin coefficients are calculated in terms
of covariant derivatives of null vectors and defined in the
following table? (39):

(a)(b)
; 00 01 or 10 11

(c)(d")

00’ K+ kK1 | €4e | m+m
LPam@@) =y P pl | a®Far | A+ A

01’ a’+oy | B0+ B | u+

1 47 | A |V Hn

(39)

D. Contortion spin coefficients in terms
of Dirac spinor components

The spin density tensor of matter (S#**) can be written
as a world tensor in U, made up of the Dirac spinor, its
adjoint, and gamma matrices:

’In the generic case, all 12 have contortion spin coefficients.

—ihc _
S = — =y (40)

The ECD field equations show that 7#** = kS*“, where
T is the modified torsion tensor defined in Eq. (2.3)
of [2]. It can be shown that, for the Dirac field,

T = —K** = kS** as in Eq. (5.6) of [3]. Here, k is

a gravitational coupling constant containing the length
2

scale [, i.e., k= % For the standard theory, /; = Lp.

Substituting (40) in the field equations, we obtain the
following:

KHva — _ | Spra — 21',1-[%1/7],[/47/1/7/0]1// (41)

where the y#’s are those defined in (34), generalized with
world indices using orthonormal tetrads. We subsequently
rewrite K*** (of which only four independent components
are excited by the Dirac field) in the NP formalism; i.e., in
the null tetrad basis, as follows:

Ki()w) = eqpejperak™ (42)

where e;), = (L,,n,,m,, m,)fori=0,1,2,3 To calculate
the contortion spin coefficients, we need to evaluate the
contortion tensor with world indices as defined in (Al).
Consider the product y*y”y#, which is defined as

0 (5&)*(&)*(5,,)*).

@@y o .

ryPyt = <

The explicit form of this matrix is fairly expansive, and
a full treatment is given in Appendix A. Eventually, we
substitute in for the Dirac bispinor (as defined in [9]), and
obtain the expressions for the contortion spin coefficients in
terms of the spinor components. We have, e.g., for p

p=—-Kope = —2V2izli[F,F, — GiG]. (44)

All the contortion spin coefficients can be found in a

similar fashion. After evaluating those, the eight nonzero

spin coefficients excited by the Dirac spinor given in (1)—
of which four are independent—are as follows:

1 = =28 = Koo = 2V2inl}(FoFy + GyGy).  (45)

T = —2(1] = K013 = 2\/§lﬂl%(—F1F2 - GIGZ)’ (46)

H = —2y1 = —Kip3 = 2\/§i”l%(F1F1 - G262>7 (47)

p1 = —2¢; = —Kop3 = 2V2izl3(G\G, — F,Fy).  (48)

From the above relations, we have

Hi = —H]s (49)
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E. The Dirac equation with torsion

p1 = =P, (50) in the NP formalism
The Dirac equation on U, (also known as the Hehl-Datta
m =+t (51) equation) is
. mc v
H = =
The table (39) is modified as follows: TV n 21, (53)
(a)(b) 0 0L or 10 0 where V here denotes covariant derivative on U, and
() (d) . l, = '17 for standard theory. It can be written in the following
I Lo Ko €0 —p1/2 | mo+ T matrix form:
@®) @) 10 po+p1 | ap—m1/2 Ao
01’ 00 Bo—711/2 | po+ 0 (54)* pA 1 pA
1 0+ 71 | Y0 — pi1/2 o i< . )V <_ >— (_ > (54)
(o") 0 ! Op 2\/512 Op
(52)
This can be written as a pair of matrix equations:
Next, we formulate ECD theory in the NP formalism. P 0 . ~ 1
S ) o %o P i -0
There are three equations in this theory—the Dirac equa- \Y +— _ =0, (55
q ry q A u\ o NG o
tion on U, (known as the Hehl-Datta equation), the o ‘v P V2L \ 0

gravitation field equation on Uy, and an algebraic equation

relating torsion and spin. The algebraic equation is given in U’I‘ Y —G’I‘ o -0" i PO

Eq. (Al). In the next two sections, we formulate the Dirac (_ o o > " < o > +W < P1> =0. (56)
equation and the gravitation field equations explicitly on or o 2
U, respectively. Working out explicitly, the first equation is
|

l

0" =04y V,P* + 6}V, P! = 9oy P* + 00 P') + (D1 P! + T 10 P')

2\/512 10/
= (D + Ty P’ + 1% P") + (5" + T 1o PO+ Ty P')
i 3
= WGI = (D+ey=po)Fy + (6" + 7y — ap) F +§(”1F2 - piFy), (57)
2

where we have used the gamma matrices as defined in (34), computed the covariant derivatives using (36), (37), and the spin
connections in terms of contortion spin coefficients as given in (52). Using this procedure (a full treatment given in
Appendix B), the four Dirac equations are obtained as

(D +ey—po)F1 + (6" + 79— ag) F +%(”1F2 —piFy) =ib(1)Gy, (58)
(A4 po —10)Fa+ (8 + o — 70)F +%(ﬂ1F2 —11F1) = ib(1,)Gy, (59)
(D -+ €= 5)Ga = 5+ 7 = )61 =5 (0161 = ;1 Ga) = ib()F, (60)
(A+p5 = 75)Gr = (8" + B — 75) Gy —%(/ﬁ(ﬁ —mGy) = ib(L)F,. (61)

Substituting in the spinorial form of the contortion spin coefficients in (45)-(48), we obtain

(D +ey—po)Fi + (8" + mg — ag) Fy + ia(l))[(—=F 1 Fy — G,Gy)Fy + (FoF5 — GGy ) Fy] = ib(1,)Gy, (62)

(A po —70)F2 + (5+ fo — 70) F1 + ia(l)[(F\Fy — G2Gy)Fy — (FoFy 4 G,G ) Fy] = ib(1,)Gs, (63)
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(D + €y —p5)Gy — (6 + 5 — ) G

(A+u;—15)Gr — (8" + 5 —75)Ga —

where a(l,) = 3v2xl} and b(l,) = Ml

These equations can be condensed into the following
form:

(D +e€g=po)Fy + (6" + 79— ap) F, = i[b(L,) + a(l,)&]G,

(66)

(A +po—70)Fo+ (6 + Py —70)Fy = i[b(Ly) + a(1,)£] G,
(67)

(D +€5—p5)Ga— (6 + 75— ag)Gy = i[b(ly) + a(l1)E7]Fa,
(68)

(A+p5—75)Gr— (8" + By —15) Gy = i[b(ly) + a(l,)E|Fy,
(69)

where & = F,G, + F,G, and & = F |G, + F,G,. These
equations should be compared and contrasted with the torsi-
onless Dirac equations in [9], and then we see that the impact
of torsion is to include the term a& on the right-hand side of the
first two equations, and a&* in the last two equations.

—ia(1)[(FyFy — G,G,)Gy + (FoFy + G,G1)G]

ia(ly)[(F\F,

= ib(L)Fs, (64)

— G,G,)G| — (—FF, — G1G,)G,] = ib(ly)F, (65)

|
F. The gravitation equations on U4 in NP formalsim

The equation of interest here is (17), reproduced here:

7[2 7[2
Gl () =21, - (S0 598,55, (10

On the left-hand side, we have G, ({}), which has been
completely evaluated in the NP formalism in [9]. There
are two terms on right-hand side—the first of these is the
metric energy-momentum tensor (7,,) formulated on Uy
and is given by Eq. (18). In what follows, we will give a
prescription to compute the various components of 7,
under the definition
Ty = lfch [,y + 9, Vi = Vi - V).

(71)

First, we choose a tetrad basis and construct Van der
Waarden symbols as defined in (35). Using these, we
construct Dirac gamma matrices in the complex Weyl
representation as defined in (34). Now, the expression
for the covariant derivatives of spinors—see (36)—(38)—
can be expressed in terms of the gamma matrices, yielding

ihc 1 |
= [W”a”w PO Ve v+ anﬂ‘/’ + P Vilray
=0 = 3 VTP = D = e U Fai . (72)

Here, the gamma matrices and other variables are expressed in the basis of null vectors I, n, m and m. For the generic

metric energy-momentum tensor 7',

no further simplification is possible. The expression for

T, in the NP formalism will

however simplify under certain symmetries or specific conditions that the system in question is subjected to. For example, if
the background metric is 7,,, then (for illustration purposes) the 7';, component of metric EM tensor is given by

T(Np) _ ihc
12 4\/§
— iF,5(5 — 8°)F,

—i(8+ 8)FyF, +

(lF2<5 + 5*)F1

iF (6 + 6)F, —iG,(5 + 6%)G, + iG (6 + )G,
—iF (6 = 8°)F, +iG,(6 — 6°)G + iG, (6 — 6)G,)

(84 8%)iF Fy + (6 + 6%)iG,G,
+ (8= 8)iF,F\ + (6 — 8)iF | F, — (6 — §")iG,G, —

— (6 +6%)iG,G,
(6 —69)iG,G,). (73)

With this prescription, we are able to evaluate all the components of T, achieving a particularly simple form in the case

of a Minkowskian background metric.

In (17), we also have an additional term in terms of the spin density tensor, given as 4

for the spin density, we can evaluate this term:

g S Sqpi- Using our expression
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471'12 "
h—g"”S ’lsaﬂz
—nl2hc
= Tl 7y ) 0y @y praw) (74)
_ —nlihe

= @y Oy Dy Ol By yryraw) — (75)

= 6rhclig,, (F1G) + FLG,)(F Gy + FL,G,)  (76)
= 6rhcl? s (77)

= 12nhcli(l,n,) — m,m,))EE* (78)
i.e., we find that it turns out to be proportional to the ¢&
parameter introduced.

This completes the formulation of the Einstein-Cartan-
Dirac equations in the NP formalism. The formalism can
be used to examine how torsion modifies the properties of
the FEinstein-Dirac system. Next, we investigate some
solutions of the Hehl-Datta equations. In future work we
hope to extend these studies to Poincaré gauge gravity with
propagating torsion.

V. SOLUTIONS TO HD EQUATIONS IN
MINKOWSKI SPACE

A. Motivation

In the previous section, we formulated the ECD
equations in the NP formalism. In this section, we aim
to solve them. The simplest space-time with torsion is the
Minkowski (#,,) space-time with a manifold that has
nonzero torsion. In this space-time, the Dirac equation
on U, looks very similar to the linear Dirac equation with
modified mass (the torsion-related term which modifies it is
bilinear in the Dirac states). In this spirit, we will consider
modifications (due to torsion) to well-studied solutions to
the linear Dirac equation (e.g., plane wave solutions).

In addition, there are good (physical) reasons to work
within Minkowski space-time, to find solution(s) of the HD
equations incorporating torsion. In a recent work [16-18], a
duality between large and small masses (correspondingly,
between Riemannian curvature and torsion) was proposed,
explicitly constructed in the “curvature-torsion duality
conjecture” therein. For this conjecture to hold true, a
solution to Dirac equation on Minkowski space with torsion
must exist—along with certain other conditions. One such
additional condition is the vanishing of the (7 -S),,
tensor, as defined in Appendix C.

While we proceed in the following section to find
solutions to the HD equations on Minkowski space for
their own sake, the reader may find, in [18], useful
extensions to this work. To this end, in the Appendices
(reference Appendix C) we have also computed the
(T —S),, tensor in certain cases, for completeness.

B. The Hehl-Datta equations on Minkowski
space with torsion

The HD equations on Minkowski space with torsion (in
the NP formalism) are as follows:

DF| + 8*F, = i[b(l,) + a(l})¢&]Gy, (79)
AF, + 6F, = i[b(l,) + a(l,)&]G,, (80)
DG, — 6G| = i[b(ly) + a(l,)E*|F,, (81)
AG| - 6°G, = i[b(l,) + a(l,)E)F,. (82)

In a Cartesian coordinate system (ct,x,y,z)’ we have

(0o + 03)Fy + (01 + i0,)F, = ivV2[b(1,) + a(1,) Gy,

(83)

a(l1)¢]Go.
(84)

(0o = 03)F, + (0, — i0y)Fy = ivV2[b(Ly) +

(D9 + 03)Ga — (0, —i0,)Gy = iV2[b(L,) + a(l})E]F,,
(85)

(8p — 03)Gy — (0, +i0,)G, = iV2[b(Ly) + a(l})EF,
(86)

In cylindrical polar coordinates (ct, r, ¢, z), we have

rO,Fy + €710, Fy + ie'?0yFy + ro F,

= irv2[b(ly) + a(1,)&G,. (87)
rd,Fy + e rd,F| — ie”04F| — r0,F,
= irv2[b(Ly) + a(l,)é]G,, (88)
r9,G, — e"rd,G, + ie7%9,G, + crd.G,
= irV2[b(L,) + a(l,)EF,, (89)

ratGl — ei¢r3,G2 — i€i¢6¢Gz — r@ZGl
= irv2[b(ly) + a(l,)EF. (90)

Likewise, in spherical polar coordinates (ct, r, 0, ¢)

sin @

6,F1 —|—Cost98,F1 —89F1

) 0
+ €' sin60,F, + e cos

ol

= iV2[b(L,) + a(11)€)G,, (91)

3Setting ¢ = 1 by convention.
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0,F5 —cos00,F, — gagﬁ + rizi_riq; Oyl
+ e sin 00, F, — M%Fl
= iV2[b(L) + a(11)E]G,, (92)
0,G, + ¢c0s00,G, — %ang - i",ia[,,cl
r rsin @
e sin00,G, + %% 5,6,
= iV2[b(L) + a(l,)&F,, (93)
0,G; — c0s00,G, —#@,Gl _riseijé? G
— ¢ §in60,G, — e ‘;OS 994Gy
= iV2[b(L) + a(l,)&F). (94)

C. A nonstatic solution in 1+ 1 dimensions

In the following analysis, we will assume an ansatz of
the form F; = G, and F, = Gy, and further assume that
the Dirac states are a function of only ¢ and z. The four
equations—in Cartesian (83)—(86) as well as cylindrical
polar coordinates (87)—(90)—reduce to the following two
independent equations4:

. ia
Oy + 0.ws — iV2by + 7§(|V/2|2 — |1y =0,

. ia
Oy + 0y + iV2by, +—— (Jw1* = lwa2*)wa =0,
V2
(95)

where | = F|; + F, and y, = F; — F,. If we were to
define v/2b = —m and a = 2v/2), we would get

Oy + 0w + imyry + 2iA(|ya|* — |y |*)wy =0,

Oy + Oy — imyry + 2|y > = [yal )2 = 0. (96)

These equations are identical to those studied in [23],
which investigates the convergence and stability of the
difference scheme for the nonlinear Dirac equation in 1 4 1
dimensions. Proceeding as in [23], we use the following
solitary wave ansatz:

()M

where A(z) and B(z) are real functions. Substituting in
(96), we have

B — (V2b + A)A —\/—E(A2 - B))A =0,

A= (V2b—A)B - % (A2=B>B=0,  (98)

which admits the following solutions:

—i234(\/2b— A)\/ (V2b+ A) cosh(zV2b? — A?)

Al) = Va [Acosh(2zv262 — AZ) —/2b]

(99)

—i23/4(\/2b + A) (v2b — A)sinh(zv2b% — A?)
B(z) =

Va [Acosh(2zV2b? — A%) —/2b] |
(100)

It can be seen upon the substitutions 4 = 0.5 (equiv-
alently @ = v/2) and m = 1 (equivalently m, = —1), that
this is a generalization of the equations for A(z) and B(z) in
[23] (see Sec. III). A similar solution is found in [24], with
a(ly) = a(L,;) and b(l,) = b(4.). In terms of the spinor
components:

. / _ T_A2 / . T_A2
(267 = A?) | —i23/4 (v2b—A)cosh(zV2b A)+23/4 (v2b+ A)sinh(zv2b% — A?) oy

Fi=G,= e™ (101
b 2 Va  [Acosh(2zV262—A2)—/2b] V@ [Acosh(2zV2b> — AZ)—/2b] (101)
(267 —AZ) |=i23/4\/ (V2b=NA)cosh(zvV20° =A%) 23/4/(V2b+A)sinh(zvV2b* =A%) | (102)
F,=G,= - e 102
2 2 Va  [Acosh(2zvV262—A2)—/2b]  Va [Acosh(2zv267 — A2) —/2b]
and the parameter £ characterizing torsion takes the form
. —2v/2(2b% = A?)(v/2b — A) cosh(2zV2b% — A?) (103)

alA cosh(2zV2b* — A?) — \/2b)?

064046-10
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The probability density is given by the zeroth component
of the four-vector fermion current jO = yy'y = yiy =
2(|F\ > + |F»)*) = (|A|* + | B|?) For the subsequent analy-
sis, we define the following dimensionless variables:

A
p = V2bz, w=

-~

i~ VA By VA

A@f—h@A&L B@%—h@B&%
?:%ﬂ (104)

With these definitions, we have [p] = [w] = [A(p)] =
[B(p)] = [j°] = 0; i.e., all these quantities are now dimen-
sionless. Scaled thus, A(p) and B(p) take the form

~ 2i(14w)y/b(1 —w)cosh(pV1 —w?)
Alp)= va  (weosh(2pvV1—w?) +1) (105)
B(p) _ 2i(1 —w) /b(1 +w)sinh(pV'1 —w?) (106)

Va  (weosh2pV1—w?)+1)

There are six unique cases (corresponding to values of w)
which give different solutions. In each case, we will
consider torsion-less limit (the linear Dirac equation) in
order to compare and contrast the behavior. The equations
and plots for the linear case can be found in Appendix D.

Case I: w € (—o0, —1): The equations reduce to

V(w| + 1) cos(pvw? — 1)

A(p) = i(] +W) (1 _ |W‘ Cos(ZPM)) , (107)
i . (w[ = 1) sin(pvV/w? — 1)
e . (108
(p)=i( ) (1- |W|cos(2pm)) 1o
o _ [v+ 2wl + Deos2(pv'n? = 1)
A e T
N (w—1)2(jw| = 1)sin?(pvV/w? — 1) _ (109)

(1 —|w|cos(2pvw? —1))?

Comments: This solution has an infinite number of
singularities placed periodically at nonzero values of p,
and is clearly unphysical. An example of this case (with
w = —2) can be seen in the left column of Fig. 1.

Comparison with torsionless case: For w € (—o0, —1),
the linear Dirac equation gives plane waves solutions,
which are physically meaningful, and the probability
density fluctuates sinusoidally. It is the addition of torsion
that makes this case unphysical. A plot has been made (for
w = —2) in Fig. 2.

Case II: w = %1 (trivial case): The equations reduce to

A(p)=0.  B(p)=0,

=0. (110)

Case III: w € (—1,0): The equations reduce to

W /(1 + [w]) cosh(pV'1 —w?)

AP = ooy =)y Y

Bo) — (1 — /(1 = |w|) sinh(pV'1 — w?)

L T Py e TR

o [Ov D2(Iwl + Deosh? (VT =)

L T (2 Wl cosh(2pVT —w?))?
+(1—W)2<1—|W|)Sinh2(p\/1—w2) 1)

(1 = |w|cosh(2pV'1 —w?))?

Comments: This solution has two singularities placed
symmetrically around the origin at two finite (nonzero)
values of p. In the infinite limit, it decays to zero. However,
owing to the presence of singularities, we may still consider
it an unphysical solution. An example (with w = —0.5) can
be seen in the left column of Fig. 3.

Comparison with torsionless case: For w € (—1,0) the
linear Dirac equation has unphysical solutions. The sol-
utions grow exponentially to infinity as p — f+oo. For
w = —0.5, this solution is plotted in Fig. 2. As can be seen,
for this case, both the linear (torsionless) and nonlinear
(with torsion) Dirac equations give unphysical solutions.

Case IV: w = 0: The equations reduce to

A(p) = icosh(p), (114)
B(p) = isinh(p), (115)
7° = [cosh?(p) + sinh?(p)]. (116)

Comments: This solution blows up exponentially as
p — *oo. Thus, it is clearly unphysical. This case (with
w = 0) has been plotted in the right column of Fig. 3.

Comparison with torsionless case: For w = 0, the linear
Dirac equation is unphysical. The solutions exponentially
increase to infinity as p — +o0. A plot of the solutions (for
w = 0) is available in Fig. 2. Thus, for this case, both the
linear and nonlinear Dirac equations give unphysical
solutions.

Case V- w € (0, 1): The equations reduce to

< , W) (1 —w) cosh(pV'1 —w?)

Alp)=Hl+ (1+wcosh(2pV1 —w?)) (117)
B(p):l(l_w)\/(ler)sinh(p\/] —w?) (118)

(1 +wcosh(2pV1 —w?))’
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[6-A] Case VI:Plotof A(p)Vs.p
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FIG. 1. Caseland case VI The left column shows plots for case I with w = —2. The right column shows plots for case 6 with w = +2.

Both the cases have unphysical solutions.

w0 [+ w21 =w)cosh?(pv1 —w?)
7 (14 wcosh(2pV1 —w?))?
n (1 =w)2(1 + w)sinh?(pV'1 — w?)
(1+wcosh2pV1—w?))? |

Comments: In this case, we have no singularities anywhere.
All the functions (including the probability density)

(119)

asymptotically vanish. Therefore, this case represents a
physically viable solution. Depending on the exact nature
of solution, we can consider two subcases: (a) with w € (0,1)
and (b) withw € [% , 1). We see that (a) has a local minimum at
the origin and two global maxima symmetric around the origin
atnonzero p. A plotis provided in Fig. 4 (in blue). On the other
hand, (b) has global maximum at the origin and monotonically
decays to zero at infinity. Two examples of this can be seen in
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Blue - A(p), Orange - B(p), Green =g (p)

Blue - A(p), Orange - 8(p), Green = ()

Fig. 4 (in orange and green). This classification of case Vinto 2
subcases has been done by analyzing the behavior of
probability density. The solution for case (b) is solitonlike;
further analysis of this can be found in the discussion.
Comparison with torsionless case: For w € (0,1) the
linear Dirac equation gives unphysical solutions. The
solutions increase exponentially to infinity as p — +oo.
A plot of this solution (with w = 0.5) can be seen in Fig. 2.
The addition of torsion, as seen, makes the solutions

N
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Plots of A(p), B(p) and Jo(p) of linear Dirac equation for case V

FIG. 2. Solutions to the linear (torsionless) Dirac equations. Only the plane-wave solutions (Cases I, VI) are physical.

physically meaningful.

Case VI: w € (1, 00): The equations reduce to

A(p) ==(1+w)

064046-13
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[3-B] Case lll: Plotof B(p) Vs.p
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Case III and case IV. Case III on the left, with w = —0.5. Case IV on the right, with w = 0. Both the cases have unphysical

solutions.

50— (1 +w)*(w—1)cos?(pvw? — 1)

N (1 =w)*(w+ 1)sin?>(pvVw? — 1) .

(1 +wcos(2pVw? —1))?

(1 +wcos(2pVw? —1))?

(122)

Comments: This solution has an infinite number of
singularities placed periodically over nonzero values of
p, and is thus clearly unphysical. A plot (with w = 2) is
given in the left column of Fig. 1.

Comparison with torsionless case: For w € (1, c0) the
linear Dirac equation gives (physically meaningful) plane
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[5-A] Case V:Plotof A(p)Vs.p

[5-B] Case V:Plotof B(p)Vs.p
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FIG. 4. Case V. In all plots: green: w = 0.75; orange: w = 0.5; blue: w = 0.25. For probability density plot, we have two subcases.
Case V(b) has global maxima at origin (2 candidates of this case are shown in orange and green). Case V(a) has local minima at origin
and two maximas at the two symmetrically opposite sides of origin at nonzero p (blue graph represents this case). Both cases V(a) and

V(b) are asymptotically vanishing.

waves solutions. The probability density fluctuates sinus-
oidally. The addition of torsion makes this solution ulti-

considering the following plane wave ansatz:

mately unphysical. A plot (with w =2) is available

in Fig. 2.
Table I summarises the various cases.

D. Attempting plane wave solutions

For previous work on plane wave solutions of the
nonlinear Dirac equation see [24,25]. Our work in this

Fl MO
1
F2 — u eik.x
Gl 1_]0’
G, vy
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TABLE 1.

While the physical cases for the Dirac solution (plane waves) are case I and case VI, case V is the only feasible solution in

the case with torsion—while the corresponding Dirac solution blows up at infinity.

Cases Solution(s) of the linear Dirac equation Solution(s) of the Dirac equation with torsion
Case 1 Physical (plane wave) Unphysical (infinite singularities)

Case II Trivial solution Trivial solution

Case III Unphysical (blows up exponentially at infinity) Unphysical (two singularities)

Case IV Unphysical (blows up exponentially at infinity) Unphysical (blows up exponentially at infinity)
Case V Unphysical (blows up exponentially at infinity) Physical (No singularity)

Case VI Physical (plane wave) Unphysical (infinite singularities)

With this ansatz, £ and &* are as follows:

E=urvy, (124)

& =u"v,. (125)

Substituting the above ansatz in (83)—(86), we obtain the
following equations:

(ko + k3)u® + (ky + iky)u' — pu(&)5y =0, (126)
(ko — k3)u' + (ky — iky)u® — u(&)vy =0,  (127)
(ko + k) oy — (ky = iky) Ty — p(E)u' =0, (128)
(ko — k3)By — (ky + iky) By — u(E)u® = 0. (129)

Here u(&) = v2[b(l,) + a(l,)¢] remains an undeter-
mined quantity until a complete solution is obtained since
£ is a function of the spinor. However, if we assume that £ is
a real constant, we essentially end up with the usual Dirac
equation with a “modified mass” u(&). The equations can
then be cast in matrix form:

(ko +k3) (ki + iky) —u(é) 0
(ky —iky) (ko — k3) 0 —u(&)
0 —u(g) —(ky —iky) (ko + k3)
—u(&) 0 (ko —k3)  —(ki + iky)
u 0
u! 0
X 5y =1 (130)
o 0

We work in the rest frame, and set k; = k, = k3 = 0.
The matrix equation then reduces to

ke 0 —u& 0 u® 0
_ 1
0 ko 0 —u() u _|0 (131)
0 —u@ O ko Dy 0
@ 0 k0 /) \p,/ \o

For a solution to exist, we require a null determinant. In
other words,

(kg = u(£)*)? = 0 = ko = £u(é).

Case I kg = u(¢)
The general solution is of the form

F 0 1
F, o . F1 0 .

el eir&)xo o 1 e(&)xo 132
G, VV I o VY1 (132)
G, 1 0

where |a|? + |1|* = 1, and V = 6x/3 is the volume of the
box in which the theory lives.
Here, & and p are as follows:

laal* + |Baf? + g 1
V’

p=v2(b+2) = —1 where 13> 2121, (134)
v 212

&= (133)

£ is indeed a real constant, verifying our approach.
Further we recall that,

P PO F,
(-G [o]- | |
VR Op Qv -0 -G
Oy 0" —G,
(135)
Therefore, the actual spinor is given by
0 1
%! 1 b1 j
Y=—r o elv, (136
VVI[ oo VV [ -1 (136)
-1 0

Here, we have redefined u(£) = p_ since the solution
looks like the negative frequency solutions to the Dirac
equation with a mass y_. This “modified mass” pu_ is
always positive. Hence ko = u_ is always positive in
this case.
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Case II: kg = —u(&)
In this case, the general solution is of the form

F, 0 -1
Bl | =V e P o-in(E)x0
G, VV I o0 vV
G, 1 0
(137)

where |, |* 4 |$,)* = 1 is the normalization condition.
The quantities &, y and W are given by

P = B -1
= = 138
¢ . . (138)
\/E(b a) ( ! ﬁ) where I3 > 2821, (139)
H= ==\l ,
v) 2, B 0
0 1
(12 1 . ﬂz 0 _:
Y—— e Yo —— e X0, 140
VVI|o VVI| 1 (140)
1 0
'R
55 Box size
=t —1
3.0 11
25 F 2
20 F -3
15 ¢ \_/ — 10
1.0 |
0.5
05 1.0 15 tes
(a)
s
35 | Box size
— 0.08
30 |
— 01
By — 02
20 |
15 |
10 |
5 [
0.05 0.10 0.15 tes
(b)
FIG. 5.

Once again we define u(&) =y, since this spinor
looks like the positive frequency solution to the Dirac
equation with a mass g,. This modified mass “u,” is
always positive. Hence ky = —pu, is always negative in
this case.

By substituting the expressions for the suitable length
scales in various theories (/; = 0, I, = 1./2 for a torsion-
less theory, I, = L,;, I, = 4./2 for standard ECD, [, =
I, = Lcg for modified ECD), and setting the value of
fundamental constants to unity, we obtain the following
table for g, and p_ in the various cases:

No torsion Standard ECD Modified ECD
L? L2
, 1
m my, — & ==
Ky 1.2 12773 2Lcs 3
L? L2
|
m m —pt Zcs
H- 12 12+ e T8

Corresponding to each value of Lg, there are two values
of mass m; and m,. For the theory with no torsion
ur(ly, 1) =u_(l}, 1), this equality breaks down when
torsion is introduced, but is restored as [, tends to infinity.
Note also that while |m;, — | = |m;, — u_| is indepen-
dent of m,, for standard ECD, this is not the case for
modified ECD.

Hy
Box size
4l — 0.08
— 01
3l —1
11
2 2
— 3
1 — 10
L " : L
0.5 1.0 1.5 cs
(c)
Hy
100 - Box size
— 0.08
80 - — 0.1
— 0.2
60 |
40 |
20 -
0.01 0.02 0.03 0.04 0.05 0.06 Les
(d)

Plots for s_ and u, as a function of Lcg for various values of ;.
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Figure 5 shows plots of 4, and u_ as a function of L¢g
(in the range L ,; to /) for various values of /,. Lengths are
measured in units of 10> L p1- For a sense of scale, the L¢g
for an electron (and for its dual mass) is ~10**L ,; = 0.1 in
these units.

The symmetry between positive and negative frequency
solutions is broken by torsion in a peculiar way. Further, the
introduction of Lcg introduces an interesting dependence of
p, and p_ on Lcg. In the standard ECD theory, u, (u_)
acquires a very small subtractive (additive) “correction
term” which is proportional to % and independent of the
mass m, 5. This term becomes insignificant as the box size
becomes larger. But this situation changes dramatically
for the modified Lcg theory. ., decreases monotonically
with Lcg and increases monotonically with /,. While p_

1 . ..
decreases for Lcg < /43, acquires a minimum at Lcg =

ly /4% and increases thereafter, it increases monotonically
with [,. The significance of the “modified mass” u in this
case is still being investigated.

E. Solution by reduction to (2+1) dim in cylindrical
coordinates (t.r,¢,z)

After assuming 0, = 0, the HD equations in cylindrical
coordinates [(87)—(90)] are as follows:

rOF\ + crd, Fre® + icO4F e Fy = icrv2(b + aé)Gy,
(141)

r0,Fy + crd,Fre — icOyF e = icrv2(b + a&)G,,
(142)

10,G,y — ¢rd,Gye™? + ic0yGie™® = icrv2(b + a&*)F,,
(143)

r0,G — ¢r9,Gye — icd,Gre™ = icrv2(b + a&)F),.
(144)

We now take the ansatz, F, = G, and F| = -G,

rOF\ + 10, Fye' + i0yFre® = —irv2(b + a&)F,,
(145)

rd,Fy + 1, Fye™ — id,F e™ = irvV/2(b + a)F,.
(146)

We choose the following ansatz in the above equation:

. it
[Fl] _ [zA(r)ez ]e_iwl.
F, B(r) e
Putting this ansatz in above equations, we obtain the two
differential equations as follows:

(147)

B + r0,A +%‘ — Va[b+a(B2 - AY)B,  (148)
rAw + rd,B + B_ 2[b+ a(B? - AY)]A.  (149)

2

We add and subtract the two equations above and make
the following substitution:

v = B(r) + A(r), (150)
way = B(r) — A(r), (151)

in order to obtain
—roy, + ry + % —rV2(b+ay o)y =0, (152)
roy + ryh + % +rV2(b+ ayr)y, = 0. (153)

With w = 0, we have the solutions

cze\/ib’
5 5]

1-22ac
vy

—1-22ac
¢y e~2br

Vv =

1. (154)

P 9]

This is clearly unphysical because y; blows up V
nonzero c,, and setting ¢, = 0 results in y, diverging.
Thus, we conclude that a static solution to the above system
of equation is unphysical, and @ cannot be zero. Further
work to solve these equations numerically is in progress.

F. Solution by reduction to (3+1) dim
in spherical coordinates (t,r,0,¢)

We begin by putting following ansatz in HD equations
with spherical coordinates:

Fl R_%(F)S_%(Q)EHINZ
F, R+%(”)S+%(9)e_i¢/2 . (155)
= et 155
+ig/2
Gl R+%(r)S_%(9)e
Gy | R4(r)S, ()2

With this ansatz, (91)-(94) become
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. sin @ cos @ .

<—1a)R_;S_% + cosOR’ ;S %—7R + 27 sind Jr1S+1 + sin OR’ Jr1S+1 +— HS/*é) = l\/i(b + aé)RJr%S_%

(156)
sin@ , cosG r

—i0R 48,4 = COSOR 4S.y+— =R =5 = RS +Sin0R S +——R S, = iV2(b+ad)R_y(r)S..(6)

(157)
sind 1 cosd
—iowR 1S+1+COS9R/ |S+1——R IS/ 2 sind +IS 1 —sinOR’ +1S l——RJrlS/ \/_(b—l—af*) ( )S+2(9)
rsin
(158)
) sin@ , 1 cosf , /2 .

—za)R+%(r)S 2((9) —cosOR’ +1S 1 —RﬂS 5_2rsm0 _1S+1—s1m9R 1S+1——R 1S+1 =1 Z(b—l—af )R_%S_%

(159)
I

where modified Dirac equation. It is with these motivations,
o o that the present study has been initiated. The Newman-
E=R.LS.R S 1 +RSR.S ), (160)  Penrose formalism is an elegant way to display the

2 2 2 2 2 2 2 2 . . . .
symmetry between torsion and gravity, especially in

&= _1S_1R+1S L +R+1S+1R 1S (161)  the context of the Dirac equation.

Further work is in progress to investigate if this system of
equations admits solitonic solutions.

VI. SUMMARY

The FEinstein-Cartan-Dirac equations provide the
most elegant classical system for describing the coupling
of matter to space-time geometry. Torsion arises naturally
because of the presence of spin; mass couples to gravity
whereas torsion couples to spin. It is also expected
that spin dominates mass in the small mass limit, where-
as mass dominates spin for large masses. Corres-
pondingly, it is expected that torsion dominates gravity
in the microscopic limit, whereas gravity dominates
torsion in the macroscopic limit. Furthermore, if one
were to consider the fields of a point mass m, we expect it
to behave like a black hole when say m > mp,, and like a
Dirac fermion when m << mp;. This intriguingly suggests
that the ECD equations ought to admit an exact solution
which interpolates between Dirac fermions and black
holes. There is an interplay between Compton wavelength
and Schwarzschild radius of the particle, which will
decide the nature of the solution (fermion or black
hole) and one can expect some novel properties in the
transition region. In the small mass limit, since torsion is
present, the Dirac equation gets modified to the Hehl-
Datta equation, and it is important to investigate the
role that torsion might play in particle physics, and to put
experimentally motivated bounds on torsion in the

In this paper, we formulated ECD theory in the NP
formalism. To this intent, we first described the standard
field equations of the ECD theory. We also described how
these equations are modified by the introduction of a new
length scale, so that the two length scales in the problem are
Planck length and Compton wavelength, or modifications
thereof. We then introduced tetrads and the NP formalism.
The contortion tensor is expressed in terms of Dirac
spinors. The Dirac equation is carried to U, and presented
(in NP) in (66)—(69). We have also provided a prescription
for finding the covariant derivative on U, in NP formalism,
thereby allowing one to calculate objects like the generic
EM tensor on U, etc. We have calculated the spin density
term which acts as a correction to the metric EM tensor; the
two of which contribute together to the Einstein tensor
(made up of Christoffel connections). In addition, the NP
variables for the contortion spin coefficients are also
expressed in terms of the Dirac state. Written in this
formalism, the Dirac equation clearly shows an elegant
symmetry between torsion and curvature.

Solutions to the linear Dirac equation on Minkowski
space have been studied extensively. In this work, we
attempted finding solutions to HD equations on Minkowski
space with torsion. To begin with, we wrote these equations
in Cartesian, cylindrical polar, and spherical polar coor-
dinates. We explored whether presence of torsion induces
any nontrivial (and physically relevant) modifications to the
solutions for linear (nontorsional) case. Solutions after
reducing the problem to (1 + 1) dimension in the variables
(t,z) were found. We found a finite parameter range
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w € (0,1) (corresponding to the range 0 < A < m), where
this solution vanishes at infinity in the nonstatic case and
has finite maxima (or finite local minima) at origin.
For w € [%, 1), the solution (and the probability density)
decreases monotonically from a finite value at center and
asymptotically reaches zero at infinity. This is the sought
after finite, solitonlike solution. This gives us hope that a
3 + 1 solitonic solution exists, which interpolates between
a black hole and a Dirac fermion.

Plane wave solutions were found in Sec. (V D). In so
doing we have provided a more detailed analysis of earlier
work on plane wave solutions of the nonlinear Dirac
equation. The presence of torsion gives rise to a modified
mass. We showed how the modified mass for the positive
and negative frequency case depends on the bare mass and
on the two length scales in the problem.

Next, we attempted finding solutions by reducing the
problem to (2 4 1) dimensions in cylindrical coordinates
with variables (¢, r, ¢b). Static solutions to this were also
found to be unphysical. However, finding nonstatic sol-
utions to (2 + 1) case (given in Sec. VE) and the (3 + 1)
case (given in Sec. V F) is work under progress.

In future work we also hope to extend this investigation
to Poincaré gauge gravity with propagating torsion. One of
the principal goals of these studies is to look for torsion-
induced nonsingular solitonic solutions of the nonlinear
Dirac equation.
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APPENDIX A: CONTORTION TENSOR (K*#%)
COMPONENTS

Our aim is to write the contortion tensor (K***) in the NP
formalism eventually in terms of spinor components, with
the contortion tensor given by

K = St = 2y iy y @y (A1)
Note, only four independent components of this tensor is

excited by the Dirac field. Writing explicitly in the NP
formalism, i.e., null tetrad basis, we have

K = eimeiinemak" (A2)
where e(;), = (l,,n,,m,,m,) for i =0, 1, 2, 3 First, we
consider the product y*y?y*, defined as follows:

0 CONCONGON
ryPyt =
(CONCONCON 0

0o K
:2\/5( 2x2 o1> (A3)
Ko 032

where, explicitly, expanding out the Van der Waarden
symbols, we have

—nlm + nml + mmm — mnl | %P
_ _ _ , (A4)
+mlm — mml — Imm + Inl
+Inm — linn — mmm + min 7P
(AS)

+mnl — mmm — nml + nlm +mnm — mmn — nmm + nin

With the expression for y*/#y#, we can now define the world components of K. Next, we use (A2) to calculate the
contortion spin coefficients [8] in the NP (null tetrad) basis. An an example, the solution for p; is given as

P11 = _K(O)(Z)(3) = —lﬂm,,ﬁzaK”’“"‘ = —2i7r12[lﬂm,,ﬁ1a]l/7y[”y”ya]y/.

(A6)

The only quantity giving a nonzero scalar product when contracted with [,m,m, is n*m“m® and corresponding
permutations (given the definition of y#y*y®), giving Lym,m n*m*m* = 1. Thus,
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0 0 -1 O 0 010 0 0 -1 0 00 0 O
I _]_[ﬂ]\/i_OO 0 0000+0000 00 0 O
m,im, U,,Q [ _ _
WAV V=37V 1o o ol o0 o0 o0 00 0 0ol |00 0 o0
0 0 0 0 0 0 O 00 0 O 00 -1 0
0 0 0 O 0 0 00
N 00 0 O 0 0 00
00 0 O 0 0 00
01 00 0 -1 0 0
00 =30 P
V2 v -,.010 0 0 O P!
=—=(0y 0 P" P") -
3 00 0 O (N
03 0 O Oy
= V2(P'P' - 0'QY).
This gives the full expression for p (redefining the spinor components as prescribed):
p=-Kooi = —2\/51'”12[1:21_72 - GIGI] (A7)
and similarly for the other spin coefficients.
APPENDIX B: THE DIRAC EQUATION IN U,
The Dirac equation on U, (the Hehl-Datta equation) is given, in matrix form, as
0 6")* PA 1 PA
(& L) ss(i)
(¢) 0 Op 2V21\ Qp
Rewriting as a pair of matrix equations, we have
(2 ) (5) (e )0 =)
H =0 ’
oo o4y P') 221\ Q°
d, =d, -0" i ([ P°
! 10 vﬂ< % >+ : ( 1) =0. (B3)
—ohy Ohy 0 221\ P

We will proceed to work through a solution for the first and third equation generated by this pair; the second and fourth
follow along similar lines.

Equation 1I:

ZﬁlQl :OJ(;O/V#PO+UI;O/VMP1

= (0o P* + g P') + (31 P! + Ty PY)

= (D + Ty P’ + T 99 P") + (8" + Tl P + Ty P)
= (D + 00 = Too10)P° + (6" + Ty100 = Tori) P!
=(D+e +e —p°—p)P°+ (5 +7° + 7 —a° —a;)P!

3
= (D +eg—po) P’ + (5" + mp — ap) P! +§(771P1 —p1PY). (B4)
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Equation 3:
i / oy i
P’ = —o,V,0! V0" + —=P°
2l V0" — 0y V,0 ol
/v ‘ll v 0/ i PO
51V, 0 ne, ENGT,

= (010" +T1110") + (919 0” +T9010")
= (AQ" + T QY + TV 111 Q") + (50" + 1941 0” + T 101 0")

= (A+ Ty —Torr) 0" + (6 + Trgor = Too) QY

= (A =1 =)0+ (5 B+ pr — 1" —7,) 0"

= (A+ug—y5)0" = (6" + py—75) Q" ——(mQ‘ -1 Q%) (BS)

where we have used the gamma matrices as defined in (34), computed the covariant derivatives using (36), (37) and the spin
connections in terms of contortion spin coefficients as given in (52). Using this procedure, the four Dirac equations in U, are
obtained as

(D +ey—po)F1+ (6" + 70— ag) F +%(”1F2 —piF1) =ib(1)Gy, (B6)
(A + o —vo)Fa+ (8 + o — 70) F +%(ﬂ1F2 -0 Fy) = ib(l)G,, (B7)
(D +¢€;—p5)Gy — (6 + 7§ — o)) G —%(rlGl —p1G,) = ib()F», (B8)
(A + 1 = 73)Gy = (5 + By = 7)Ga = (G, = mGa) = ib(DF, (B9)

where we have also redefined {P, O} — {F, G}, as per the substitution in (1) and to obtain a form that can be consistently
compared with the primary source material in [9] [Eq. (108)].

APPENDIX C: CALCULATING (T -S),,

In theories which consider a balance between the Riemannian and torsional curvatures (such as in [18]), the tensor
(T - S),, is of paramount importance. Vanishing (7 — §),, would take the form of a “balance condition,” and represent a

space with nonzero Riemannian curvature and torsion, but where the two exactly cancel each other out. The (T - S),,
tensor is defined as

47rl
fzc

This tensor has 10 components. The 6 off-diagonal components are as follows:

ihc _ _ _ _
(T— S)IO = 4 (F 81F1 + an F2 + Gla G] + G23162 anoFl - F130F2 + G280G1 + G130G2

(T-S), = S” S(W. (C1)

—O\F\F| = 0,F,F, — 0,G |G| — 0,G,G, + 0yF2F | + 0yF | F5 — 0,G,G| — 0yG,G), (C2)

ih _ _
(T - S)ZO = l4c (F 82F1 + F282F2 + G 82G1 + G282G2 + 1F280F1 1F180F2 - iG280G1 + iGlaoGz

ihc _ _ _ _
(T - S)30 4 (F 8’;F1 + F263F2 + G 83G1 + G233Gz F130F1 + F260F2 + G180G1 —_ G280G2

— O3F\F| = 03F,F) — GGy — 05G,Gy + OgF | F — 0yF,F, — 9,G G + 9,G1Gy), (C4)
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(T =S), = % (iF20,F\ — iF\0,Fy — iG20,G, + iG10,Gy — F20,F, — F10yF, + G20,G, + G,0,G,

ihc , - - _ _ - _ _ -
(T—S8)3 = T(—F181F1 + F20,F, + G10,G| — G,0,Gy — F203F — F105F; + G,03G + G056,

+ 0\FF\ — 0,F2F, — 0,G Gy 4 8,GyGy + 03F2F | 4+ 05F | Fy — 0,G,Gy — 0;G1G,), (Co)

ihe - - _ _ _ - _ _

The diagonal components are as follows:
ihc - _ _ _ _ _ _ _
(T - S)OO = 7 (GlaoGl + GzaoGz - 3OG1G1 - aoGsz + F180F1 + F280F2 - 80F1F1 - 80F2F2) - 6ﬂflC12§§*,
(C8)
ihc - - _ _ _ _ _ _
(T - S)ll = 7 (_F281F1 - F181F2 —+ G281G1 —+ G1(91G2 -+ 81F2F1 + 81F1F2 - aleGl - 81G1G2) —+ 671'716'1255*,
(C9)
e ) . . ) ) ) .
(T_S)ZZ :%(lFZazF] —iFlaze - iGzazGl +iG182G2 —iazeFl + i82F1F2+i82G2G1 —iazGle) —|—67r71012§§*,
(C10)
ihe , - - - _ - - - _
(T—S8)3 = 17 (=F105F | + F05F; + G 105Gy — G203Gy + O3F | Fy — 05F,Fy — 05G,G + 0;G,G,) + 6mhcPEE".
(C11)

We can now calculate this tensor for the various solutions to the HD equations on Minkowski space with torsion, to probe
the feasibility of a “balance condition.” For example, (7 — §),, for nonstatic solutions in 1+ 1 dim (z,z),

(Al 4 B2 =) o —AAB 0
a[AZ—B2]2
) 0 (72 = ) 0 0
(T =), = he - (C12)
“AAB 0 (T) 0
a[A2—B2
0 0 0 (1B = Ba') + “422T)

A is a free parameter in the solution; we can analyze the tensor 7 — S for various types of values of A.

APPENDIX D: THE LINEAR (TORSIONLESS) DIRAC EQUATION IN 1+1 DIMENSIONS

The vanishing of torsion is characterized by the limit a(l,) = 3\/§7rL1231 — 0. So in a torsionless case, the differential
equations become (with dimensionless constants):

B = (1-w)A, (D1)

A= (1+w)B. (D2)

Their solutions in various special cases are plotted in Fig. 2.
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