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We formulate the Einstein-Cartan-Dirac equations in the Newman-Penrose (NP) formalism, thereby
presenting a more accurate and explicit analysis of previous such studies. The equations show in a
transparent way how the Einstein-Dirac equations are modified by the inclusion of torsion. In particular,
the Hehl-Datta equation is presented in NP notation. We then describe a few solutions of the Hehl-Datta
equation on Minkowski space-time, and in particular report a solitonic solution which removes the
unphysical behavior of the corresponding Dirac solution. The present work serves as a prelude to similar
studies for nondegenerate Poincaré gauge gravity.
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I. INTRODUCTION

Einstein’s general theory of relativity (GR)—published
in 1915—has been described as the most beautiful of all the
existing physical theories [1]. The background space-time
on which classical GR is formulated is a Riemannian
manifold (denoted by V4) which is torsionless. In this case,
the affine connection coincides uniquely with the Levi-
Civita connection and geodesics coincide with the path of
shortest distance. This is, however, not generally true for
other, torsional manifolds, such as the manifold on which
the Einstein-Cartan-Sciama-Kibble (ECSK)—or simply,
Einstein-Cartan (EC)—theory is formulated. In such a
theory, the geometrical structure of the manifold is modi-
fied such that the affine connection is no longer required to
be symmetric, and no longer coincides uniquely with the
Levi-Civita connection [2–7].
Torsion, as the antisymmetric part of the affine con-

nection, was introduced by Cartan [4]. Also termed U4

theories of gravitation, Einstein-Cartan theories work with
an underlying manifold that is non-Riemannian (unlike
classical GR which is formulated on V4). The non-
Riemannian part of the manifold is associated with the
spin density of matter, which plays the role of a source
analogous to the role of mass in Riemannian curvature.
Here, mass and spin both play a dynamical role. While
mass “adds up” on classical length scales due to its

monopole character, spin, being of dipole character, usually
averages out in the absence of external forces.
For this reason, matter, in the macrophysical regime, can

be dynamically characterized entirely by the energy-
momentum tensor. In the microregime, heuristic arguments
suggest that a spin density tensor plays an analogous role
for spin, and related, as with mass and curvature, to some
other geometrical property of space-time. It is this require-
ment that EC/ECSK theory satisfies (the reader is referred
to [2] for a detailed treatment). When we minimally couple
the Dirac field on U4, we term this Einstein-Cartan-Dirac
(ECD) theory. There are two independent geometric
fields—the metric and torsion—and one matter field ψ
in this theory. Varying the corresponding Lagrangian, we
get three equations of motion, corresponding to the
modified Einstein field equations, modified Dirac equation,
and a torsional coupling. On U4, the Dirac equation
becomes nonlinear; and is known as the Hehl-Datta
(HD) equation after the seminal work in [3].
The usual method in approaching solutions to problems

in GR is to use a local coordinate basis êμ such that
êμ ¼ ∂μ. This coordinate basis field is covariant under
general coordinate transformations. However, it has been
found useful to employ noncoordinate basis techniques in
problems involving spinors. Moreover, choosing the tetrad
basis vectors as null vectors is extremely useful in certain
situations. This formalism—where a given theory is
expressed in a basis of null tetrads—is the celebrated
Newman-Penrose (NP) formalism. In this formalism, we
replace tensors by their null tetrad components and re-
present these components with certain distinctive symbols.
Most of the important and physically relevant geometrical
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objects and identities (e.g., the Riemann curvature tensor,
Weyl tensor, Bianchi identities, Ricci identities etc.) on U4

have been formulated in the NP formalism (such as in [8]).
It can be shown that there is a natural connection

between spin dyads (a detailed account of spin dyads
can be found in [9]) and null tetrads [9,10]. Physical
systems involving spinor fields can be fully expressed in
the NP formalism (e.g., the Dirac equation on V4 has been
studied extensively, Ref. Chap. 12 in [9]). In addition, many
systems in gravitational physics are also studied in the NP
formalism [9]. It appears that the NP formalism is the shared
vocabulary between the physics of relativistic quantum
mechanical systems (with spinor fields) and classical gravi-
tational systems (having a metric and/or torsion). Apart
from NP formalism, there are other approaches to the
problem of a Dirac field in a Riemann-Cartan manifold.
One such literature uses Foldy-Wouthyusen transformation
for studying the relativistic Dirac fermion interacting
with general electromagnetic fields in Riemann-Cartan
spacetimes [11,12].
In the present paper, we aim to formulate the full ECD

equations in the NP formalism. We know that the con-
tortion (which is also spelled as contorsion) tensor is
completely expressible in terms of the Dirac state [2].
We wish to then find expressions for the contortion spin
coefficients—which are the standard NP variables that
account for spin—explicitly in terms of the Dirac state.
Using this, we can write the complete set of HD equations
in the NP formalism. In a sense, this work is to be read as a
sequel to the work of Chandrasekhar in [9] (see Chap. 12),
where the Dirac equation on V4 has been given a full
treatment in the NP formalism. Some recent works [13–15]
attempt to do that but have not provided explicit corrections
to the standard NP variables due to torsion. Further, there
are notational and sign inconsistencies in many such
examples of existing literature in the field, and we aim
to provide a comprehensive and self-contained treatment.
Finally, we attempt to find solutions to the HD equations

in a Minkowski space with torsion. This, apart from being
the simplest case to consider, is also motivated by certain
physical intuitions which can be considered as supporting,
but nonessential, corollaries to this work. A recent essay
[16–18] suggests the incorporation of a new length scale in
quantum gravity, thereby providing a symmetry between
large and small masses; a conjecture has been proposed
therein to establish a duality between these two limits. This
conjecture is predicated on the necessary existence of
solutions to the Hehl-Datta equations on Minkowski space,
representing the balance between the Riemannian and
torsional effects which reduce to small and large masses
in the respective limits. However, notwithstanding the
duality conjecture and the new length scale proposed,
our results hold for the standard theory as well. All
equations are expressed in terms of two relevant generic
length scales, l1 ¼ LPl and l2 ¼ 1

2
λC, the first being Planck

length, and the second being one half the Compton wave-
length. In case of the modified ECD theory with a new
length scale LCS (as defined below), we will instead have
l1 ¼ l2 ¼ LCS: the Planck length and Compton wavelength
no longer appear in the ECD equations, and are both
replaced by LCS.

A. Notation and conventions

The following conventions are in use for the remainder
of this paper:

(i) The Lorentz signature used is (þ − −−) throughout.
(ii) V4 is a nontorsional space-time, while a space-time

endowed with torsion is specified by U4.
(iii) Greek indices, e.g., α, ζ, δ refer to world compo-

nents, which transform according to general coor-
dinate transformations and are raised or lowered
using the metric gμν.

(iv) Latin indices within parenthesis e.g., (a) or (i) are
tetrad indices, which transform according to local
Lorentz transformations in the flat tangent space,
and are raised or lowered using ηðiÞðkÞ.

(v) Latin indices (without parenthesis) e.g., i, j, b, c
indicate objects in Minkowski space, which trans-
form according to global Lorentz transformations.

(vi) In general 0,1,2,3 refer to world indices while (0),
(1),(2),(3) refer to tetrad indices.

(vii) The total covariant derivative is denoted by ∇, while
fg denotes the Christoffel connection. Correspond-
ingly, ∇fg represents a covariant derivative with
respect to the Christofel connections.

(viii) Commas ð; Þ indicate partial derivatives while semi-
colons ð; Þ indicate the Riemannian covariant deriva-
tive. Thus, for tensors, ; and ∇fg are same, while
for spinors, ð; Þ involves both partial derivatives and
the Riemannian part of the spin connection, γ, as
defined in the following.

(ix) The four component Dirac spinor is written as

ψ ¼
�
PA

Q̄B0

�
ð1Þ

where PA and Q̄B0 are two dimensional complex
vectors in C2 space. We redefine the spinors as
P0 ¼ F1, P1 ¼ F2, Q̄10 ¼ G1, and Q̄00 ¼ −G2. This
is in accordance with our primary source [9]; the
notations, conventions, and representations wherein
are generally adhered to in this paper.

II. EINSTEIN-CARTAN THEORY AND ITS
COUPLING TO THE DIRACH FIELD

A. Einstein-Cartan theory

In the Einstein-Cartan theory, the Riemannian manifold
of ordinary GR (V4) is promoted to the corresponding
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non-Riemannian manifold U4. As discussed, this latter
manifold admits, in addition to the structure of ordinary
GR, a nonvanishing torsion. Torsion is a (rank 3) tensorial
object defined as the antisymmetric part of the affine
connection:

Qαβ
μ ¼ Γ½αβ�μ ¼

1

2
ðΓαβ

μ − Γβα
μÞ: ð2Þ

Similarly, the contortion tensor Kαβ
μ is given by

Kαβ
μ ¼ −Qαβ

μ −Qμ
αβ þQβ

μ
α. This allows us to write—

in terms of the usual Christoffel symbols—the following
relation:

Γαβ
μ ¼

�
μ

αβ

�
− K αβ

μ : ð3Þ

When a matter field ψ is minimally coupled with gravity
and torsion, its action is given as follows [2]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Lmðψ ;∇ψ ; gÞ − 1

2k
Rðg; ∂gÞ

�
: ð4Þ

Here k ¼ 8πG=c4, Lm is the matter Lagrangian density,
and the second term represents the Lagrangian density
for the gravitational field. There are three fields in this
Lagrangian: ψ , gμν, and Kαβμ, representing the matter field,
the metric, and the contortion, respectively. Varying the
action with respect to these, one arrives at the following
three field equations:

δð ffiffiffiffiffiffi−gp
LmÞ

δψ
¼ 0; ð5Þ

δð ffiffiffiffiffiffi−gp
RÞ

δgμν
¼ 2k

δð ffiffiffiffiffiffi−gp
LmÞ

δgμν
; ð6Þ

δð ffiffiffiffiffiffi−gp
RÞ

δKαβμ
¼ 2k

δð ffiffiffiffiffiffi−gp
LmÞ

δKαβμ
: ð7Þ

Here, (5) leads us to the matter field equations on a
curved space-time with torsion. The right-hand side of (6)
is associated with

ffiffiffiffiffiffi−gp
kTμν via the definition of the metric

energy-momentum tensor Tμν. Similarly, the right-hand
side of (7) is associated with 2

ffiffiffiffiffiffi−gp
kSμβα where Sμβα is the

spin density tensor. Together, these two yield the Einstein-
Cartan field equations:

Gμν ¼ kΣμν; ð8Þ

Tμβα ¼ kSμβα: ð9Þ

In (8), the Gμν on the left-hand side is the asymmetric
Einstein tensor built from the asymmetric connection,
while Σμν is the asymmetric canonical (total) energy

momentum tensor, constructed out of the symmetric
(metric) energy-momentum tensor and the spin density
tensor. In (9), the so-called “modified” torsion Tμβα is the
traceless part of the torsion tensor, and is algebraically
related to Sμβα on the right. In the limit torsion → 0, we
recover classical GR—(9) vanishes, and (8) reduces to the
Einstein field equations which couple the (symmetric)
Einstein tensor to the (symmetric) metric energy-
momentum tensor. It should also be noted that in the
recent works [19], it was shown rigorously that in the
structure of the Poincaré gauge (PG) theory of gravity (of
which the EC theory is an example of), torsion couples only
to the elementary particle spin and not to the orbital angular
momentum under any circumstances.

B. EC coupling to the Dirac field

The theory generated from the minimal coupling of the
Dirac field on U4 is what we term Einstein-Cartan-Dirac
(ECD) theory. In this theory, the matter field is the spinorial
Dirac field ψ , for which the Lagrangian density is given by
[20] (note the noncommuting covariant derivatives)

Lm ¼ iℏc
2

ðψ̄γμ∇μψ −∇μψ̄γ
μψÞ −mc2ψ̄ψ : ð10Þ

In ECD theory, the addition of spin degrees of freedom
necessitates a more careful treatment of anholonomic
objects. As we define the affine connection, Γ, to facilitate
parallel transport of geometrical objects with world (Greek)
indices, so do we define the spin connection γ for anholo-
nomic objects (with Latin indices). The affine connection
can be decomposed into a Riemannian (fg) and a torsional
part (made up of the contortion tensor, K) and similarly,
the spin connection γ can also be decomposed into a
Riemannian (γo) and torsional part (once again, formed of
the contortion tensor). These components are related via the
following equation (following the notation in [8]):

γμ
ðiÞðkÞ ¼ γoðiÞðkÞμ − Kμ

ðkÞðiÞ ð11Þ

where γoðiÞðkÞμ is Riemannian part and Kμ
ðkÞðiÞ is the torsional

part. Using these, we define the covariant derivative for
spinors, on V4 and U4:

ψ ;μ ¼ ∂μψ þ 1

4
γoμðbÞðcÞγ

½ðbÞγðcÞ�ψ ðon V4Þ; ð12Þ

∇μψ ¼ ∂μψ þ 1

4
γ0μðbÞðcÞγ

½ðbÞγðcÞ�ψ

−
1

4
KμðcÞðbÞγ½ðbÞγðcÞ�ψ ðon U4Þ: ð13Þ

Substituting this into (10) we obtain the explicit form of
Lagrangian density; varying with respect to ψ̄ as in (5)
yields the Dirac equation on V4 and U4:
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iγμψ ;μ −
mc
ℏ

ψ ¼ 0 ðon V4Þ; ð14Þ

iγμψ ;μ þ
i
4
KðaÞðbÞðcÞγ½ðaÞγðbÞγðcÞ�ψ −

mc
ℏ

ψ ¼ 0 ðon U4Þ:
ð15Þ

Next, we use (6) and Lagrangian density defined in (10)
to obtain the gravitational field equations on V4 and U4:

GμνðfgÞ ¼
8πG
c4

Tμν ðon V4Þ; ð16Þ

GμνðfgÞ ¼
8πG
c4

Tμν −
1

2

�
8πG
c4

�
2

gμνSαβλSαβλ ðon U4Þ:

ð17Þ

Here, Tμν is the metric EM tensor which is symmetric
and defined as

Tμν ¼ ΣðμνÞðfgÞ

¼ iℏc
4

½ψ̄γμψ ;ν þ ψ̄γνψ ;μ − ψ̄ ;μγνψ − ψ̄ ;νγμψ �: ð18Þ

Equations (14) and (16) together form the system of
equations of Einstein-Dirac theory. We now move to the
full Einstein-Cartan-Dirac theory. Using the Lagrangian
density defined in (10), we can define the spin density
tensor:

Sμνα ¼ −iℏc
4

ψ̄γ½μγνγα�ψ : ð19Þ

Using (19) and (7), (15) can be simplified to give the
Hehl-Datta equation [2,3]. This, along with (17) and the
relation between the modified torsion tensor and spin
density tensor, define the field equations of the Einstein-
Cartan-Dirac theory:

GμνðfgÞ ¼
8πG
c4

Tμν −
1

2

�
8πG
c4

�
2

gμνSαβλSαβλ; ð20Þ

Tμνα ¼ −Kμνα ¼
8πG
c4

Sμνα; ð21Þ

iγμψ ;μ ¼ þ 3

8
L2
Plψ̄γ

5γðaÞψγ5γðaÞψ þmc
ℏ

ψ ; ð22Þ

where LPl is the Planck length.

III. INTRODUCING A UNIFIED LENGTH
SCALE LCS IN QUANTUM GRAVITY

Recent work [16,17] has provided motivation for uni-
fying the Compton wavelength ( λℏc) and Schwarzschild

radius (Rs ¼ 2GM
c2 ) of a point particle with mass m into one

single length scale, the Compton-Schwarzschild length
(LCS). Such a treatment compels us to introduce torsion,
and relate the Dirac field to the torsion field. An action
principle has been proposed with this new length scale
which permits the Dirac equation and the Einstein field
equations as mutually dual limiting cases. The modified
action proposed is as follows:

L2
Pl

ℏ
S ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
LCSψ̄ψ þ L2

CSψ̄iγ
μ∇μψ

�
:

ð23Þ

Using this new length scale, LCS, we can rewrite the
Einstein-Cartan-Dirac equations as [17]

GμνðfgÞ ¼
8πL2

CS

ℏc
Tμν þ

�
8πL2

CS

ℏc

�
2

τμν; ð24Þ

Tμνγ ¼
8πL2

CS

ℏc
Sμνγ; ð25Þ

iγaψ ;a ¼ þ 3

8
L2
CSψ̄γ

5γaψγ
5γaψ þ 1

2LCS
ψ ¼ 0: ð26Þ

A note on length scales: We use l to denote a length scale
in the theory. For standard ECD theory, the two scales that

appear are the Planck length l1 ¼ LPl ¼
ffiffiffiffiffi
Gℏ
c3

q
, and half the

Compton wavelength l2 ¼ λC
2
¼ ℏ

2mc. For the modified ECD
theory, we have l1 ¼ l2 ¼ LCS, in terms of the new unified
length scale.

IV. THE NEWMAN-PENROSE FORMALISM
AND ECD IN NP

A. Tetrads

It is common in the literature [9] to use tetrads (or
vierbeins) to define spinors on a curved space-time (in V4

as well as U4).
1 In this formalism, the transformation

properties of spinors are defined in a flat (Minkowski)
space, locally tangent to U4. At each point in space-time,
we can define a coordinate basis vector field êμ ¼ gμν ∂

∂xν
[9] which is covariant under general coordinate trans-
formations, with gμν being the metric. The basis vectors
associated with spinors, however, are covariant under local
Lorentz transformations. Hence, we define, at each point of
our manifold, a set of four orthonormal basis vectors
(forming the tetrad field) given by êðiÞðxÞ. These comprise

1While this is often the case, there are other formalisms that
can be used [21].
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four vectors (one for each μ) at each point, and the tetrad

field is governed by the relation êðiÞðxÞ ¼ eðiÞμ ðxÞêμ where

eðiÞμ is the transformation matrix.
The following convolution relation follows:

gμν ¼ eðiÞμ eðkÞν ηðiÞðkÞ: ð27Þ

The inverse of transformation matrix viz. eμðiÞ follows:

gμν ¼ eμðiÞe
ν
ðkÞη

ðiÞðkÞ and eμðiÞ ¼ gμνηðiÞðkÞe
ðkÞ
ν : ð28Þ

The transformation matrix eðiÞμ allows us to convert the
components of any world tensor (a tensor which transforms
according to general coordinate transformation) to the
corresponding components in local Minkowskian space
(these latter components being covariant under local
Lorentz transformation). Greek indices are raised or low-
ered using the metric gμν, while the Latin indices are raised
or lowered using ηðiÞðkÞ. Parentheses around indices is a
matter of convention (see “Notations and conventions” in
the Introduction). In general, given a world tensor Wμν, its
corresponding components WðiÞðjÞ in the flat tangent
manifold can be obtained using a tetrad transformation
matrix such that

WðiÞðjÞ ¼ eμðiÞe
ν
ðjÞWμν: ð29Þ

B. Introduction to the NP formalism

The Newman-Penrose (NP) formalism was formulated
by Newman and Penrose in their work [22]. It is a special
case of the tetrad formalism, in which we choose our tetrad
as a set of four null vectors:

eμð0Þ ¼ lμ; eμð1Þ ¼ nμ; eμð2Þ ¼ mμ; eμð3Þ ¼ m̄μ

ð30Þ

where lμ, nμ are real and mμ, m̄μ are complex. The null
tetrad indices are raised and lowered using the flat space-
time metric

ηðiÞðjÞ ¼ ηðiÞðjÞ ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCCA ð31Þ

and the tetrad vectors satisfy the equation gμν ¼
eðiÞμ eðjÞν ηðiÞðjÞ. In this formalism, we replace tensors by their
tetrad components and represent these components with
a collection of distinctive symbols which are now standard
in the literature.

C. Spinor analysis

We define four null tetrads (and their corresponding
covectors) on Minkowski space (raised and lowered
using ημν):

la ¼ 1ffiffiffi
2

p ð1; 0; 0; 1Þ; ma ¼ 1ffiffiffi
2

p ð0; 1;−i; 0Þ;

m̄a ¼ 1ffiffiffi
2

p ð0; 1; i; 0Þ; na ¼ 1ffiffiffi
2

p ð1; 0; 0;−1Þ: ð32Þ

We also define the following Van der Waarden symbols:

σa ¼
ffiffiffi
2

p �
la ma

m̄a na

�
; σ̃a ¼

ffiffiffi
2

p �
na −ma

−m̄a la

�
: ð33Þ

For the Dirac gamma matrices, we use the complex
version of the Weyl (chiral) representation:

γa ¼
�

0 ðσ̃aÞ�
ðσaÞ� 0

�
where γ0 ¼

�
0 1

1 0

�
;

γi ¼
�

0 ð−σiÞ�
ðσiÞ� 0

�
ð34Þ

where a ¼ ð0; 1; 2; 3Þ.
The complex Weyl representation is used so that the

Dirac bispinor and gamma matrices defined in (1) and (34)
remain consistent with Eqs. (97) and (98) of Sec. 103 in [9]
[comparing with our standard reference, [9], we recover
Eq. (99) in complex form].
In order to represent spinorial objects (objects compris-

ing spinors and gamma matrices) on a curved space-time,
we use the following prescription on the tetrad formalism
[10], viz. let M be a curved manifold with all conditions
necessary for the existence of spin structure, and let U
be a chart on M with coordinate functions (xα). Then, for
representing spinorial objects, we (i) choose an orthonor-
mal tetrad field eμðaÞðxαÞ on U, (ii) define the Van der

Waarden symbols σðaÞ and σ̃ðaÞ in this tetrad basis exactly as
defined on Minkowski space in (33) and choose a γ
representation (34), (iii) then, the σ’s in a local coordinate
frame are obtained via

σμðxαÞ ¼ eμðaÞðxαÞσðaÞ ¼
ffiffiffi
2

p �
lμ mμ

m̄μ nμ

�
;

σ̃μ ¼ eμðaÞðxαÞσ̃ðaÞ ¼
ffiffiffi
2

p �
nμ −mμ

−m̄μ lμ

�
ð35Þ

with the γ matrices obeying a similar transformation.
Thus, objects with world indices (containing world-

indexed γ matrices or spinors) are now functions of chosen
orthonormal tetrads. These are defined a priori in a local
tetrad basis (with components identical to those defined on
a flat Minkowski space-time) and then carried into a curved
space via the tetrads. This is unlike other geometrical world
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objects which are first defined naturally at a point in a
manifold and subsequently carried to a local tangent space
via tetrads. We now aim to carry the Dirac equation (in NP)
on V4 into the U4 space, building upon Sec. 102(d) of [9].
In order to calculate the covariant derivative of a spinor in
U4, we require the spinor affine connection coefficients.
They are defined via the requirement that ϵAB and σ’s are
covariantly constant. The analysis in [9]—until Eq. (91) in
the book—still stands; however, the covariant derivatives
are promoted to those acting on U4. They are defined as
follows:

∇μPA ¼ ∂μPA þ ΓA
μBP

B; ð36Þ

∇μQ̄A0 ¼ ∂μQ̄A0 þ Γ̄A0
μB0Q̄B0

: ð37Þ

The Γ terms here are added to the partial derivative when
working with objects inU4. Their values can completely be
determined in terms of the spin coefficients, and we can
readily evaluate its tetrad components using the following
formulas and the spin dyads [10]:

ΓA
μB ¼ 1

2
σAY

0
ν ð∇μσ

ν
BY 0 Þ; Γ̄A0

μB0 ¼ 1

2
σ̄A

0Y
ν ð∇̄μσ̄

ν
B0YÞ: ð38Þ

Using Friedman’s lemma (see p. 542 of [9] for a full
proof), we can express the various spin coefficients
ΓðaÞðbÞðcÞðd0Þ in terms of covariant derivatives of the basis
null vectors l, n, m and m̄. The covariant derivative here is
exactly as defined in Eq. (3.3) [and explicitly written in
Eq. (3.5)] of [8].
Using this covariant derivative, it is readily seen how

Eqs. (95) and (96) in [9] get modified; viz, Γ00000 ¼ κo þ κ1
and Γ11010 ¼ μo þ μ1 (noughts in the superscript are used to
indicate the original spin coefficients defined on V4). The
12 independent spin coefficients are calculated in terms
of covariant derivatives of null vectors and defined in the
following table2 (39):

ð39Þ

D. Contortion spin coefficients in terms
of Dirac spinor components

The spin density tensor of matter (Sμνλ) can be written
as a world tensor in U4 made up of the Dirac spinor, its
adjoint, and gamma matrices:

Sμνα ¼ −iℏc
4

ψ̄γ½μγνγα�ψ : ð40Þ

The ECD field equations show that Tμνα ¼ kSμνα, where
Tμνα is the modified torsion tensor defined in Eq. (2.3)
of [2]. It can be shown that, for the Dirac field,
Tμνα ¼ −Kμνα ¼ kSμνα as in Eq. (5.6) of [3]. Here, k is
a gravitational coupling constant containing the length

scale l1, i.e., k ¼ 8πl2
1

ℏc . For the standard theory, l1 ¼ LPl.
Substituting (40) in the field equations, we obtain the
following:

Kμνα ¼ −kSμνα ¼ 2iπl21ψ̄γ
½μγνγα�ψ ð41Þ

where the γμ’s are those defined in (34), generalized with
world indices using orthonormal tetrads. We subsequently
rewrite Kμνα (of which only four independent components
are excited by the Dirac field) in the NP formalism; i.e., in
the null tetrad basis, as follows:

KðiÞðjÞðkÞ ¼ eðiÞμeðjÞνeðkÞαKμνα ð42Þ

where eðiÞμ ¼ ðlμ; nμ; mμ; m̄μÞ for i ¼ 0, 1, 2, 3 To calculate
the contortion spin coefficients, we need to evaluate the
contortion tensor with world indices as defined in (A1).
Consider the product γαγβγμ, which is defined as

γαγβγμ ¼
�

0 ðσ̃αÞ�ðσβÞ�ðσ̃μÞ�
ðσαÞ�ðσ̃βÞ�ðσμÞ� 0

�
: ð43Þ

The explicit form of this matrix is fairly expansive, and
a full treatment is given in Appendix A. Eventually, we
substitute in for the Dirac bispinor (as defined in [9]), and
obtain the expressions for the contortion spin coefficients in
terms of the spinor components. We have, e.g., for ρ

ρ ¼ −Kð0Þð2Þð3Þ ¼ −2
ffiffiffi
2

p
iπl21½F2F̄2 −G1Ḡ1�: ð44Þ

All the contortion spin coefficients can be found in a
similar fashion. After evaluating those, the eight nonzero
spin coefficients excited by the Dirac spinor given in (1)—
of which four are independent—are as follows:

τ1 ¼ −2β1 ¼ K012 ¼ 2
ffiffiffi
2

p
iπl21ðF2F̄1 þG2Ḡ1Þ; ð45Þ

π1 ¼ −2α1 ¼ K013 ¼ 2
ffiffiffi
2

p
iπl21ð−F1F̄2 − G1Ḡ2Þ; ð46Þ

μ1 ¼ −2γ1 ¼ −K123 ¼ 2
ffiffiffi
2

p
iπl21ðF1F̄1 −G2Ḡ2Þ; ð47Þ

ρ1 ¼ −2ϵ1 ¼ −K023 ¼ 2
ffiffiffi
2

p
iπl21ðG1Ḡ1 − F2F̄2Þ: ð48Þ

From the above relations, we have

μ1 ¼ −μ�1; ð49Þ2In the generic case, all 12 have contortion spin coefficients.
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ρ1 ¼ −ρ�1; ð50Þ

π1 ¼ þτ�1: ð51Þ

The table (39) is modified as follows:

ð52Þ

Next, we formulate ECD theory in the NP formalism.
There are three equations in this theory—the Dirac equa-
tion on U4 (known as the Hehl-Datta equation), the
gravitation field equation on U4, and an algebraic equation
relating torsion and spin. The algebraic equation is given in
Eq. (A1). In the next two sections, we formulate the Dirac
equation and the gravitation field equations explicitly on
U4 respectively.

E. The Dirac equation with torsion
in the NP formalism

The Dirac equation on U4 (also known as the Hehl-Datta
equation) is

iγμ∇μψ ¼ mc
ℏ

ψ ¼ ψ

2l2
ð53Þ

where ∇ here denotes covariant derivative on U4 and
l2 ¼ λc

2
for standard theory. It can be written in the following

matrix form:

i

�
0 ðσ̃μÞ�

ðσμÞ� 0

�
∇μ

�
PA

Q̄B0

�
¼ 1

2
ffiffiffi
2

p
l2

�
PA

Q̄B0

�
: ð54Þ

This can be written as a pair of matrix equations:

�
σμ
000 σμ

100

σμ
010 σμ

110

�
∇μ

�
P0

P1

�
þ i

2
ffiffiffi
2

p
l2

�
−Q̄10

Q̄00

�
¼ 0; ð55Þ

�
σμ
110 −σμ

100

−σμ
010 σμ

000

�
∇μ

�
−Q̄10

Q̄00

�
þ i

2
ffiffiffi
2

p
l2

�
P0

P1

�
¼0: ð56Þ

Working out explicitly, the first equation is

i

2
ffiffiffi
2

p
l2
Q̄10 ¼ σμ

000∇μP0 þ σμ
100∇μP1 ¼ ð∂000P0 þ Γ0

i000PiÞ þ ð∂100P1 þ Γ1
i100PiÞ

¼ ðDþ Γ0
0000P0 þ Γ0

1000P1Þ þ ðδ� þ Γ1
0100P0 þ Γ1

1100P1Þ

⇒
i

2
ffiffiffi
2

p
l2
G1 ¼ ðDþ ϵ0 − ρ0ÞF1 þ ðδ� þ π0 − α0ÞF2 þ

3

2
ðπ1F2 − ρ1F1Þ; ð57Þ

where we have used the gammamatrices as defined in (34), computed the covariant derivatives using (36), (37), and the spin
connections in terms of contortion spin coefficients as given in (52). Using this procedure (a full treatment given in
Appendix B), the four Dirac equations are obtained as

ðDþ ϵ0 − ρ0ÞF1 þ ðδ� þ π0 − α0ÞF2 þ
3

2
ðπ1F2 − ρ1F1Þ ¼ ibðl2ÞG1; ð58Þ

ðΔþ μ0 − γ0ÞF2 þ ðδþ β0 − τ0ÞF1 þ
3

2
ðμ1F2 − τ1F1Þ ¼ ibðl2ÞG2; ð59Þ

ðDþ ϵ�0 − ρ�0ÞG2 − ðδþ π�0 − α�0ÞG1 −
3

2
ðτ1G1 − ρ1G2Þ ¼ ibðl2ÞF2; ð60Þ

ðΔþ μ�0 − γ�0ÞG1 − ðδ� þ β�0 − τ�0ÞG2 −
3

2
ðμ1G1 − π1G2Þ ¼ ibðl2ÞF1: ð61Þ

Substituting in the spinorial form of the contortion spin coefficients in (45)–(48), we obtain

ðDþ ϵ0 − ρ0ÞF1 þ ðδ� þ π0 − α0ÞF2 þ iaðl1Þ½ð−F1F̄2 −G1Ḡ2ÞF2 þ ðF2F̄2 −G1Ḡ1ÞF1� ¼ ibðl2ÞG1; ð62Þ

ðΔþ μ0 − γ0ÞF2 þ ðδþ β0 − τ0ÞF1 þ iaðl1Þ½ðF1F̄1 − G2Ḡ2ÞF2 − ðF2F̄1 þG2Ḡ1ÞF1� ¼ ibðl2ÞG2; ð63Þ
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ðDþ ϵ�0 − ρ�0ÞG2 − ðδþ π�0 − α�0ÞG1 − iaðl1Þ½ðF2F̄2 −G1Ḡ1ÞG2 þ ðF2F̄1 þG2Ḡ1ÞG1� ¼ ibðl2ÞF2; ð64Þ

ðΔþ μ�0 − γ�0ÞG1 − ðδ� þ β�0 − τ�0ÞG2 − iaðl1Þ½ðF1F̄1 −G2Ḡ2ÞG1 − ð−F1F̄2 −G1Ḡ2ÞG2� ¼ ibðl2ÞF1; ð65Þ

where aðl1Þ ¼ 3
ffiffiffi
2

p
πl21 and bðl2Þ ¼ 1

2
ffiffi
2

p
l2
.

These equations can be condensed into the following
form:

ðDþ ϵ0 − ρ0ÞF1 þ ðδ� þ π0 − α0ÞF2 ¼ i½bðl2Þ þ aðl1Þξ�G1;

ð66Þ

ðΔþ μ0 − γ0ÞF2 þ ðδþ β0 − τ0ÞF1 ¼ i½bðl2Þ þ aðl1Þξ�G2;

ð67Þ

ðDþ ϵ�0 − ρ�0ÞG2 − ðδþ π�0 − α�0ÞG1 ¼ i½bðl2Þ þ aðl1Þξ��F2;

ð68Þ

ðΔþμ�0− γ�0ÞG1− ðδ� þ β�0 − τ�0ÞG2 ¼ i½bðl2Þþaðl1Þξ��F1;

ð69Þ

where ξ ¼ F1Ḡ1 þ F2Ḡ2 and ξ� ¼ F̄1G1 þ F̄2G2. These
equations should be compared and contrasted with the torsi-
onless Dirac equations in [9], and then we see that the impact
of torsion is to include the termaξ on the right-hand side of the
first two equations, and aξ� in the last two equations.

F. The gravitation equations on U4 in NP formalsim

The equation of interest here is (17), reproduced here:

GμνðfgÞ ¼
8πl21
ℏc

Tμν −
1

2

�
8πl21
ℏc

�
2

gμνSαβλSαβλ: ð70Þ

On the left-hand side, we have GμνðfgÞ, which has been
completely evaluated in the NP formalism in [9]. There
are two terms on right-hand side—the first of these is the
metric energy-momentum tensor (Tμν) formulated on U4

and is given by Eq. (18). In what follows, we will give a
prescription to compute the various components of Tμν,
under the definition

Tμν ¼
iℏc
4

½ψ̄γμ∇fg
ν ψ þ ψ̄γν∇fg

μ ψ −∇fg
μ ψ̄γνψ −∇fg

ν ψ̄γμψ �:
ð71Þ

First, we choose a tetrad basis and construct Van der
Waarden symbols as defined in (35). Using these, we
construct Dirac gamma matrices in the complex Weyl
representation as defined in (34). Now, the expression
for the covariant derivatives of spinors—see (36)–(38)—
can be expressed in terms of the gamma matrices, yielding

Tμν ¼
iℏc
4

h
ψ̄γμ∂νψ þ 1

4
ψ̄ðγμγα∇fg

ν γαÞψ þ ψ̄γν∂μψ þ 1

4
ψ̄ðγνγα∇fg

μ γαÞψ

− ∂μψ̄γνψ −
1

4
ðγ̄α∇̄fg

μ γ̄αÞψ̄γνψ − ∂νψ̄γμψ −
1

4
ðγ̄α∇̄fg

ν γ̄αÞψ̄γμψ
i
: ð72Þ

Here, the gamma matrices and other variables are expressed in the basis of null vectors l, n, m and m̄. For the generic
metric energy-momentum tensor Tμν, no further simplification is possible. The expression for Tμν in the NP formalism will
however simplify under certain symmetries or specific conditions that the system in question is subjected to. For example, if
the background metric is ημν, then (for illustration purposes) the T12 component of metric EM tensor is given by

TðNPÞ
12 ¼ iℏc

4
ffiffiffi
2

p ðiF̄2ðδþ δ�ÞF1 − iF̄1ðδþ δ�ÞF2 − iḠ2ðδþ δ�ÞG1 þ iḠ1ðδþ δ�ÞG2

− iF̄2ðδ − δ�ÞF1 − iF̄1ðδ − δ�ÞF2 þ iḠ2ðδ − δ�ÞG1 þ iḠ1ðδ − δ�ÞG2Þ
− iðδþ δ�ÞF̄2F1 þ ðδþ δ�ÞiF̄1F2 þ ðδþ δ�ÞiḠ2G1 − ðδþ δ�ÞiḠ1G2

þ ðδ − δ�ÞiF̄2F1 þ ðδ − δ�ÞiF̄1F2 − ðδ − δ�ÞiḠ2G1 − ðδ − δ�ÞiḠ1G2Þ: ð73Þ

With this prescription, we are able to evaluate all the components of Tμν, achieving a particularly simple form in the case
of a Minkowskian background metric.

In (17), we also have an additional term in terms of the spin density tensor, given as 4πl2
1

ℏc gμνSαβλSαβλ. Using our expression
for the spin density, we can evaluate this term:
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4πl21
ℏc

gμνSαβλSαβλ

¼ −πl21ℏc
4

ðψ̄γ½αγβγλ�ψÞðψ̄γ½αγβγλ�ψÞ ð74Þ

¼ −πl21ℏc
4

ðψ̄γ½ðiÞγðjÞγðkÞ�ψÞðψ̄γ½ðiÞγðjÞγðkÞ�ψÞ ð75Þ

¼ 6πℏcl21gμνðF1Ḡ1 þ F2Ḡ2ÞðF̄1G1 þ F̄2G2Þ ð76Þ

¼ 6πℏcl21gμνξξ
� ð77Þ

¼ 12πℏcl21ðlðμnνÞ −mðμm̄νÞÞξξ� ð78Þ

i.e., we find that it turns out to be proportional to the ξ
parameter introduced.
This completes the formulation of the Einstein-Cartan-

Dirac equations in the NP formalism. The formalism can
be used to examine how torsion modifies the properties of
the Einstein-Dirac system. Next, we investigate some
solutions of the Hehl-Datta equations. In future work we
hope to extend these studies to Poincaré gauge gravity with
propagating torsion.

V. SOLUTIONS TO HD EQUATIONS IN
MINKOWSKI SPACE

A. Motivation

In the previous section, we formulated the ECD
equations in the NP formalism. In this section, we aim
to solve them. The simplest space-time with torsion is the
Minkowski (ημν) space-time with a manifold that has
nonzero torsion. In this space-time, the Dirac equation
on U4 looks very similar to the linear Dirac equation with
modified mass (the torsion-related term which modifies it is
bilinear in the Dirac states). In this spirit, we will consider
modifications (due to torsion) to well-studied solutions to
the linear Dirac equation (e.g., plane wave solutions).
In addition, there are good (physical) reasons to work

within Minkowski space-time, to find solution(s) of the HD
equations incorporating torsion. In a recent work [16–18], a
duality between large and small masses (correspondingly,
between Riemannian curvature and torsion) was proposed,
explicitly constructed in the “curvature-torsion duality
conjecture” therein. For this conjecture to hold true, a
solution to Dirac equation onMinkowski space with torsion
must exist—along with certain other conditions. One such
additional condition is the vanishing of the ðT − SÞμν
tensor, as defined in Appendix C.
While we proceed in the following section to find

solutions to the HD equations on Minkowski space for
their own sake, the reader may find, in [18], useful
extensions to this work. To this end, in the Appendices
(reference Appendix C) we have also computed the
ðT − SÞμν tensor in certain cases, for completeness.

B. The Hehl-Datta equations on Minkowski
space with torsion

The HD equations on Minkowski space with torsion (in
the NP formalism) are as follows:

DF1 þ δ�F2 ¼ i½bðl2Þ þ aðl1Þξ�G1; ð79Þ
ΔF2 þ δF1 ¼ i½bðl2Þ þ aðl1Þξ�G2; ð80Þ
DG2 − δG1 ¼ i½bðl2Þ þ aðl1Þξ��F2; ð81Þ
ΔG1 − δ�G2 ¼ i½bðl2Þ þ aðl1Þξ��F1: ð82Þ

In a Cartesian coordinate system ðct; x; y; zÞ3 we have

ð∂0 þ ∂3ÞF1 þ ð∂1 þ i∂2ÞF2 ¼ i
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ�G1;

ð83Þ

ð∂0 − ∂3ÞF2 þ ð∂1 − i∂2ÞF1 ¼ i
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ�G2;

ð84Þ

ð∂0 þ ∂3ÞG2 − ð∂1 − i∂2ÞG1 ¼ i
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ��F2;

ð85Þ

ð∂0 − ∂3ÞG1 − ð∂1 þ i∂2ÞG2 ¼ i
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ��F1:

ð86Þ
In cylindrical polar coordinates ðct; r;ϕ; zÞ, we have

r∂tF1 þ eiϕr∂rF2 þ ieiϕ∂ϕF2 þ r∂zF1

¼ ir
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ�G1; ð87Þ

r∂tF2 þ e−iϕr∂rF1 − ie−iϕ∂ϕF1 − r∂zF2

¼ ir
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ�G2; ð88Þ

r∂tG2 − e−iϕr∂rG1 þ ie−iϕ∂ϕG1 þ cr∂zG2

¼ ir
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ��F2; ð89Þ

r∂tG1 − eiϕr∂rG2 − ieiϕ∂ϕG2 − r∂zG1

¼ ir
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ��F1: ð90Þ

Likewise, in spherical polar coordinates ðct; r; θ;ϕÞ

∂tF1 þ cos θ∂rF1 −
sin θ
r

∂θF1 þ
ieiϕ

r sin θ
∂ϕF2

þ eiϕ sin θ∂rF2 þ
eiϕ cos θ

r
∂θF2

¼ i
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ�G1; ð91Þ

3Setting c ¼ 1 by convention.
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∂tF2 − cos θ∂rF2 −
sin θ
r

∂θF2 þ
ie−iϕ

r sin θ
∂ϕF1

þ e−iϕ sin θ∂rF1 −
e−iϕ cos θ

r
∂θF1

¼ i
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ�G2; ð92Þ

∂tG2 þ cos θ∂rG2 −
sin θ
r

∂θG2 −
ie−iϕ

r sin θ
∂ϕG1

− e−iϕ sin θ∂rG1 þ
e−iϕ cos θ

r
∂θG1

¼ i
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ��F2; ð93Þ

∂tG1 − cos θ∂rG1 −
sin θ
r

∂θG1 −
ieiϕ

r sin θ
∂ϕG2

− eiϕ sin θ∂rG2 −
eiϕ cos θ

r
∂θG2

¼ i
ffiffiffi
2

p
½bðl2Þ þ aðl1Þξ��F1: ð94Þ

C. A nonstatic solution in 1 + 1 dimensions

In the following analysis, we will assume an ansatz of
the form F1 ¼ G2 and F2 ¼ G1, and further assume that
the Dirac states are a function of only t and z. The four
equations—in Cartesian (83)–(86) as well as cylindrical
polar coordinates (87)–(90)—reduce to the following two
independent equations4:

∂tψ1 þ ∂zψ2 − i
ffiffiffi
2

p
bψ1 þ

iaffiffiffi
2

p ðjψ2j2 − jψ1j2Þψ1 ¼ 0;

∂tψ2 þ ∂zψ1 þ i
ffiffiffi
2

p
bψ2 þ

iaffiffiffi
2

p ðjψ1j2 − jψ2j2Þψ2 ¼ 0;

ð95Þ

where ψ1 ¼ F1 þ F2 and ψ2 ¼ F1 − F2. If we were to
define

ffiffiffi
2

p
b≡ −m and a ¼ 2

ffiffiffi
2

p
λ, we would get

∂tψ1 þ ∂zψ2 þ imψ1 þ 2iλðjψ2j2 − jψ1j2Þψ1 ¼ 0;

∂tψ2 þ ∂zψ1 − imψ2 þ 2iλðjψ1j2 − jψ2j2Þψ2 ¼ 0: ð96Þ

These equations are identical to those studied in [23],
which investigates the convergence and stability of the
difference scheme for the nonlinear Dirac equation in 1þ 1
dimensions. Proceeding as in [23], we use the following
solitary wave ansatz:

ψ ¼
�
ψ1

ψ2

�
¼
�

AðzÞ
iBðzÞ

�
e−iΛt ð97Þ

where AðzÞ and BðzÞ are real functions. Substituting in
(96), we have

B0 − ð
ffiffiffi
2

p
bþ ΛÞA −

affiffiffi
2

p ðA2 − B2ÞA ¼ 0;

A0 − ð
ffiffiffi
2

p
b − ΛÞB −

affiffiffi
2

p ðA2 − B2ÞB ¼ 0; ð98Þ

which admits the following solutions:

AðzÞ¼−i23=4ð ffiffiffi
2

p
b−ΛÞffiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

2
p

bþΛÞ
q

coshðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ

½Λcoshð2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ− ffiffiffi

2
p

b�
;

ð99Þ

BðzÞ ¼−i23=4ð ffiffiffi
2

p
bþΛÞffiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

2
p

b−ΛÞ
q

sinhðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 −Λ2

p
Þ

½Λcoshð2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ− ffiffiffi

2
p

b�
:

ð100Þ
It can be seen upon the substitutions λ ¼ 0.5 (equiv-

alently a ¼ ffiffiffi
2

p
) and m ¼ 1 (equivalently m0 ¼ −1), that

this is a generalization of the equations for AðzÞ and BðzÞ in
[23] (see Sec. III). A similar solution is found in [24], with
aðl1Þ ¼ aðLplÞ and bðl2Þ ¼ bðλcÞ. In terms of the spinor
components:

F1¼G2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2b2−Λ2Þ

p
2

2
4−i23=4ffiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

2
p

b−ΛÞ
q

coshðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ

½Λcoshð2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ− ffiffiffi

2
p

b�
þ23=4ffiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

2
p

bþΛÞ
q

sinhðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ

½Λcoshð2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ− ffiffiffi

2
p

b�

3
5e−iΛt; ð101Þ

F2¼G1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2b2−Λ2Þ

p
2

2
4−i23=4ffiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

2
p

b−ΛÞ
q

coshðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ

½Λcoshð2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ− ffiffiffi

2
p

b�
−
23=4ffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

2
p

bþΛÞ
q

sinhðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ

½Λcoshð2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2−Λ2

p
Þ− ffiffiffi

2
p

b�

3
5e−iΛt ð102Þ

and the parameter ξ characterizing torsion takes the form

ξ ¼ −2
ffiffiffi
2

p ð2b2 − Λ2Þð ffiffiffi
2

p
b − ΛÞ coshð2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 − Λ2

p
Þ

a½Λ coshð2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 − Λ2

p
Þ − ffiffiffi

2
p

b�2
: ð103Þ
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The probability density is given by the zeroth component
of the four-vector fermion current j0 ¼ ψ̄γ0ψ ¼ ψ†ψ ¼
2ðjF1j2 þ jF2j2Þ ¼ ðjAj2 þ jBj2Þ For the subsequent analy-
sis, we define the following dimensionless variables:

p ¼
ffiffiffi
2

p
bz; w ¼ −

Λffiffiffi
2

p
b
;

ÃðpÞ ¼
ffiffiffi
a

p

2
ffiffiffi
b

p AðzÞ; B̃ðpÞ ¼
ffiffiffi
a

p

2
ffiffiffi
b

p BðzÞ;

j̃0 ¼ a
4b

j0: ð104Þ

With these definitions, we have ½p� ¼ ½w� ¼ ½ÃðpÞ� ¼
½B̃ðpÞ� ¼ ½j̃0� ¼ 0; i.e., all these quantities are now dimen-
sionless. Scaled thus, AðpÞ and BðpÞ take the form

AðpÞ ¼ 2ið1þ wÞffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1 − wÞp

coshðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ðw coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ þ 1Þ

; ð105Þ

BðpÞ ¼ 2ið1 − wÞffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1þ wÞp

sinhðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ðw coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ þ 1Þ

: ð106Þ

There are six unique cases (corresponding to values of w)
which give different solutions. In each case, we will
consider torsion-less limit (the linear Dirac equation) in
order to compare and contrast the behavior. The equations
and plots for the linear case can be found in Appendix D.
Case I: w ∈ ð−∞;−1Þ: The equations reduce to

ÃðpÞ ¼ ið1þ wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjwj þ 1Þp

cosðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

ð1 − jwj cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ÞÞ

; ð107Þ

B̃ðpÞ ¼ iðw − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjwj − 1Þp

sinðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

ð1 − jwj cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ÞÞ

; ð108Þ

j̃0 ¼
�ðwþ 1Þ2ðjwj þ 1Þcos2ðp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

ð1 − jwj cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ÞÞ2

þ ðw − 1Þ2ðjwj − 1Þsin2ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

ð1 − jwj cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ÞÞ2

�
: ð109Þ

Comments: This solution has an infinite number of
singularities placed periodically at nonzero values of p,
and is clearly unphysical. An example of this case (with
w ¼ −2) can be seen in the left column of Fig. 1.
Comparison with torsionless case: For w ∈ ð−∞;−1Þ,

the linear Dirac equation gives plane waves solutions,
which are physically meaningful, and the probability
density fluctuates sinusoidally. It is the addition of torsion
that makes this case unphysical. A plot has been made (for
w ¼ −2) in Fig. 2.
Case II: w ¼ �1 (trivial case): The equations reduce to

ÃðpÞ ¼ 0; B̃ðpÞ ¼ 0; j̃0 ¼ 0: ð110Þ

Case III: w ∈ ð−1; 0Þ: The equations reduce to

ÃðpÞ ¼ ið1þ wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ jwjÞp

coshðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ð1 − jwj coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ÞÞ

; ð111Þ

B̃ðpÞ ¼ ið1 − wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − jwjÞp

sinhðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ð1 − jwj coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ÞÞ

; ð112Þ

j̃0 ¼
�ðwþ 1Þ2ðjwj þ 1Þcosh2ðp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ð1 − jwj coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ÞÞ2

þ ð1 − wÞ2ð1 − jwjÞsinh2ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ð1 − jwj coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ÞÞ2

�
: ð113Þ

Comments: This solution has two singularities placed
symmetrically around the origin at two finite (nonzero)
values of p. In the infinite limit, it decays to zero. However,
owing to the presence of singularities, we may still consider
it an unphysical solution. An example (with w ¼ −0.5) can
be seen in the left column of Fig. 3.
Comparison with torsionless case: For w ∈ ð−1; 0Þ the

linear Dirac equation has unphysical solutions. The sol-
utions grow exponentially to infinity as p → �∞. For
w ¼ −0.5, this solution is plotted in Fig. 2. As can be seen,
for this case, both the linear (torsionless) and nonlinear
(with torsion) Dirac equations give unphysical solutions.
Case IV: w ¼ 0: The equations reduce to

ÃðpÞ ¼ i coshðpÞ; ð114Þ

B̃ðpÞ ¼ i sinhðpÞ; ð115Þ

j̃0 ¼ ½cosh2ðpÞ þ sinh2ðpÞ�: ð116Þ

Comments: This solution blows up exponentially as
p → �∞. Thus, it is clearly unphysical. This case (with
w ¼ 0) has been plotted in the right column of Fig. 3.
Comparison with torsionless case: For w ¼ 0, the linear

Dirac equation is unphysical. The solutions exponentially
increase to infinity as p → þ∞. A plot of the solutions (for
w ¼ 0) is available in Fig. 2. Thus, for this case, both the
linear and nonlinear Dirac equations give unphysical
solutions.
Case V: w ∈ ð0; 1Þ: The equations reduce to

ÃðpÞ ¼ ið1þ wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − wÞp

coshðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ð1þ w coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ÞÞ

; ð117Þ

B̃ðpÞ ¼ ið1 − wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ wÞp

sinhðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ð1þ w coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ÞÞ

; ð118Þ
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j̃0 ¼
�ð1þ wÞ2ð1 − wÞcosh2ðp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ð1þ w coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ÞÞ2

þ ð1 − wÞ2ð1þ wÞsinh2ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
Þ

ð1þ w coshð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ÞÞ2

�
: ð119Þ

Comments: In this case,we have no singularities anywhere.
All the functions (including the probability density)

asymptotically vanish. Therefore, this case represents a
physically viable solution. Depending on the exact nature
of solution, we can consider two subcases: (a) withw ∈ ð0; 1

2
Þ

and (b)withw ∈ ½1
2
; 1Þ.We see that (a) has a localminimumat

the origin and twoglobalmaxima symmetric around the origin
at nonzerop.Aplot is provided inFig. 4 (in blue).On the other
hand, (b) has globalmaximumat the origin andmonotonically
decays to zero at infinity. Two examples of this can be seen in

FIG. 1. Case I and case VI. The left column shows plots for case I with w ¼ −2. The right column shows plots for case 6 with w ¼ þ2.
Both the cases have unphysical solutions.
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Fig. 4 (in orange andgreen). This classification of caseVinto 2
subcases has been done by analyzing the behavior of
probability density. The solution for case (b) is solitonlike;
further analysis of this can be found in the discussion.
Comparison with torsionless case: For w ∈ ð0; 1Þ the

linear Dirac equation gives unphysical solutions. The
solutions increase exponentially to infinity as p → �∞.
A plot of this solution (with w ¼ 0.5) can be seen in Fig. 2.
The addition of torsion, as seen, makes the solutions
physically meaningful.

Case VI: w ∈ ð1;∞Þ: The equations reduce to

ÃðpÞ ¼ −ð1þ wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðw − 1Þp

cosðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

ð1þ w cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ
; ð120Þ

B̃ðpÞ ¼ −ð1 − wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðwþ 1Þp

sinðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

ð1þ w cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ
; ð121Þ

FIG. 2. Solutions to the linear (torsionless) Dirac equations. Only the plane-wave solutions (Cases I, VI) are physical.
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j̃0 ¼
�ð1þ wÞ2ðw − 1Þcos2ðp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

ð1þ w cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ÞÞ2

þ ð1 − wÞ2ðwþ 1Þsin2ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

ð1þ w cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ÞÞ2

�
: ð122Þ

Comments: This solution has an infinite number of
singularities placed periodically over nonzero values of
p, and is thus clearly unphysical. A plot (with w ¼ 2) is
given in the left column of Fig. 1.
Comparison with torsionless case: For w ∈ ð1;∞Þ the

linear Dirac equation gives (physically meaningful) plane

FIG. 3. Case III and case IV. Case III on the left, with w ¼ −0.5. Case IV on the right, with w ¼ 0. Both the cases have unphysical
solutions.
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waves solutions. The probability density fluctuates sinus-
oidally. The addition of torsion makes this solution ulti-
mately unphysical. A plot (with w ¼ 2) is available
in Fig. 2.
Table I summarises the various cases.

D. Attempting plane wave solutions

For previous work on plane wave solutions of the
nonlinear Dirac equation see [24,25]. Our work in this

section provides a more detailed analysis. We begin by
considering the following plane wave ansatz:

2
6664
F1

F2

G1

G2

3
7775 ¼

2
6664
u0

u1

v̄00

v̄10

3
7775eik:x: ð123Þ

FIG. 4. Case V. In all plots: green: w ¼ 0.75; orange: w ¼ 0.5; blue: w ¼ 0.25. For probability density plot, we have two subcases.
Case V(b) has global maxima at origin (2 candidates of this case are shown in orange and green). Case V(a) has local minima at origin
and two maximas at the two symmetrically opposite sides of origin at nonzero p (blue graph represents this case). Both cases V(a) and
V(b) are asymptotically vanishing.
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With this ansatz, ξ and ξ� are as follows:

ξ ¼ uAv̄A0 ; ð124Þ

ξ� ¼ ūA
0
vA: ð125Þ

Substituting the above ansatz in (83)–(86), we obtain the
following equations:

ðk0 þ k3Þu0 þ ðk1 þ ik2Þu1 − μðξÞv̄00 ¼ 0; ð126Þ

ðk0 − k3Þu1 þ ðk1 − ik2Þu0 − μðξÞv̄10 ¼ 0; ð127Þ

ðk0 þ k3Þv̄10 − ðk1 − ik2Þv̄00 − μðξÞu1 ¼ 0; ð128Þ

ðk0 − k3Þv̄00 − ðk1 þ ik2Þv̄10 − μðξÞu0 ¼ 0: ð129Þ

Here μðξÞ ¼ ffiffiffi
2

p ½bðl2Þ þ aðl1Þξ� remains an undeter-
mined quantity until a complete solution is obtained since
ξ is a function of the spinor. However, if we assume that ξ is
a real constant, we essentially end up with the usual Dirac
equation with a “modified mass” μðξÞ. The equations can
then be cast in matrix form:

0
BBB@

ðk0 þ k3Þ ðk1 þ ik2Þ −μðξÞ 0

ðk1 − ik2Þ ðk0 − k3Þ 0 −μðξÞ
0 −μðξÞ −ðk1 − ik2Þ ðk0 þ k3Þ

−μðξÞ 0 ðk0 − k3Þ −ðk1 þ ik2Þ

1
CCCA

×

0
BBB@

u0

u1

v̄00

v̄10

1
CCCA ¼

0
BBB@

0

0

0

0

1
CCCA: ð130Þ

We work in the rest frame, and set k1 ¼ k2 ¼ k3 ¼ 0.
The matrix equation then reduces to

0
BBB@

k0 0 −μðξÞ 0

0 k0 0 −μðξÞ
0 −μðξÞ 0 k0

−μðξÞ 0 k0 0

1
CCCA
0
BBB@

u0

u1

v̄00

v̄10

1
CCCA¼

0
BBB@
0

0

0

0

1
CCCA: ð131Þ

For a solution to exist, we require a null determinant. In
other words,

ðk20 − μðξÞ2Þ2 ¼ 0 ⇒ k0 ¼ �μðξÞ:
Case I: k0 ¼ μðξÞ
The general solution is of the form0

BBB@
F1

F2

G1

G2

1
CCCA ¼ α1ffiffiffiffi

V
p

0
BBB@

0

1

0

1

1
CCCAeiμðξÞx0 þ β1ffiffiffiffi

V
p

0
BBB@

1

0

1

0

1
CCCAeiμðξÞx0 ð132Þ

where jα1j2 þ jβ1j2 ¼ 1, and V ¼ 6πl30 is the volume of the
box in which the theory lives.
Here, ξ and μ are as follows:

ξ ¼ jα2j2 þ jβ2j2
V

¼ 1

V
; ð133Þ

μ¼
ffiffiffi
2

p �
bþ a

V

�
¼
�

1

2l2
þ l21
l30

�
where l30>2l21l2: ð134Þ

ξ is indeed a real constant, verifying our approach.
Further we recall that,

Ψ¼
�
ψL

ψR

�
¼
�
PA

Q̄B0

�
¼

0
BBB@

P0

P1

Q̄00

Q̄10

1
CCCA¼

0
BBB@

P0

P1

−Q̄10

Q̄00

1
CCCA¼

0
BBB@

F1

F2

−G1

−G2

1
CCCA:

ð135Þ
Therefore, the actual spinor is given by

Ψ¼ α1ffiffiffiffi
V

p

0
BBB@

0

1

0

−1

1
CCCAeiðμ−Þx0 þ β1ffiffiffiffi

V
p

0
BBB@

1

0

−1
0

1
CCCAeiðμ−Þx0 : ð136Þ

Here, we have redefined μðξÞ ¼ μ− since the solution
looks like the negative frequency solutions to the Dirac
equation with a mass μ−. This “modified mass” μ− is
always positive. Hence k0 ¼ μ− is always positive in
this case.

TABLE I. While the physical cases for the Dirac solution (plane waves) are case I and case VI, case V is the only feasible solution in
the case with torsion—while the corresponding Dirac solution blows up at infinity.

Cases Solution(s) of the linear Dirac equation Solution(s) of the Dirac equation with torsion

Case I Physical (plane wave) Unphysical (infinite singularities)
Case II Trivial solution Trivial solution
Case III Unphysical (blows up exponentially at infinity) Unphysical (two singularities)
Case IV Unphysical (blows up exponentially at infinity) Unphysical (blows up exponentially at infinity)
Case V Unphysical (blows up exponentially at infinity) Physical (No singularity)
Case VI Physical (plane wave) Unphysical (infinite singularities)
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Case II: k0 ¼ −μðξÞ
In this case, the general solution is of the form0

BBB@
F1

F2

G1

G2

1
CCCA ¼ α2ffiffiffiffi

V
p

0
BBB@

0

−1
0

1

1
CCCAe−iμðξÞx0 þ β2ffiffiffiffi

V
p

0
BBB@

−1
0

1

0

1
CCCAe−iμðξÞx0

ð137Þ
where jα2j2 þ jβ2j2 ¼ 1 is the normalization condition.
The quantities ξ, μ and Ψ are given by

ξ ¼ −jα2j2 − jβ2j2
V

¼ −1
V

; ð138Þ

μ¼
ffiffiffi
2

p �
b−

a
V

�
¼
�

1

2l2
−
l21
l30

�
where l30>2l21l2; ð139Þ

Ψ¼ α2ffiffiffiffi
V

p

0
BBB@
0

1

0

1

1
CCCAe−iμþx0 þ β2ffiffiffiffi

V
p

0
BBB@
1

0

1

0

1
CCCAe−iμþx0 : ð140Þ

Once again we define μðξÞ ¼ μþ since this spinor
looks like the positive frequency solution to the Dirac
equation with a mass μþ. This modified mass “μþ” is
always positive. Hence k0 ¼ −μþ is always negative in
this case.
By substituting the expressions for the suitable length

scales in various theories (l1 ¼ 0, l2 ¼ λc=2 for a torsion-
less theory, l1 ¼ Lpl, l2 ¼ λc=2 for standard ECD, l1 ¼
l2 ¼ LCS for modified ECD), and setting the value of
fundamental constants to unity, we obtain the following
table for μþ and μ− in the various cases:

No torsion Standard ECD Modified ECD

μþ m1;2 m1;2 −
L2
pl

l3
0

1
2LCS

− L2
CS

l3
0

μ− m1;2 m1;2 þ
L2
pl

l3
0

1
2LCS

þ L2
CS

l3
0

Corresponding to each value of LCS, there are two values
of mass m1 and m2. For the theory with no torsion
μþðl1; l2Þ ¼ μ−ðl1; l2Þ, this equality breaks down when
torsion is introduced, but is restored as l0 tends to infinity.
Note also that while jm1;2 − μþj ¼ jm1;2 − μ−j is indepen-
dent of m1;2 for standard ECD, this is not the case for
modified ECD.

FIG. 5. Plots for μ− and μþ as a function of LCS for various values of l0.
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Figure 5 shows plots of μþ and μ− as a function of LCS
(in the range Lpl to l0) for various values of l0. Lengths are
measured in units of 1023 Lpl. For a sense of scale, the LCS

for an electron (and for its dual mass) is ∼1022Lpl ¼ 0.1 in
these units.
The symmetry between positive and negative frequency

solutions is broken by torsion in a peculiar way. Further, the
introduction of LCS introduces an interesting dependence of
μþ and μ− on LCS. In the standard ECD theory, μþ (μ−)
acquires a very small subtractive (additive) “correction
term” which is proportional to 1

l3
0

and independent of the

mass m1;2. This term becomes insignificant as the box size
becomes larger. But this situation changes dramatically
for the modified LCS theory. μþ decreases monotonically
with LCS and increases monotonically with l0. While μ−
decreases for LCS ≤ l0=4

1
3, acquires a minimum at LCS ¼

l0=4
1
3 and increases thereafter, it increases monotonically

with l0. The significance of the “modified mass” μ in this
case is still being investigated.

E. Solution by reduction to (2 + 1) dim in cylindrical
coordinates (t;r;ϕ;z)

After assuming ∂z ¼ 0, the HD equations in cylindrical
coordinates [(87)–(90)] are as follows:

r∂tF1 þ cr∂rF2eiϕ þ ic∂ϕF2eiϕF1 ¼ icr
ffiffiffi
2

p
ðbþ aξÞG1;

ð141Þ

r∂tF2 þ cr∂rF1e−iϕ − ic∂ϕF1e−iϕ ¼ icr
ffiffiffi
2

p
ðbþ aξÞG2;

ð142Þ

r∂tG2 − cr∂rG1e−iϕ þ ic∂ϕG1e−iϕ ¼ icr
ffiffiffi
2

p
ðbþ aξ�ÞF2;

ð143Þ

r∂tG1 − cr∂rG2eiϕ − ic∂ϕG2eiϕ ¼ icr
ffiffiffi
2

p
ðbþ aξ�ÞF1:

ð144Þ

We now take the ansatz, F2 ¼ G2 and F1 ¼ −G1

r∂tF1 þ r∂rF2eiϕ þ i∂ϕF2eiϕ ¼ −ir
ffiffiffi
2

p
ðbþ aξÞF1;

ð145Þ

r∂tF2 þ r∂rF1e−iϕ − i∂ϕF1e−iϕ ¼ ir
ffiffiffi
2

p
ðbþ aξÞF2:

ð146Þ

We choose the following ansatz in the above equation:

�
F1

F2

�
¼
�
iAðrÞeiϕ

2

BðrÞe−iϕ
2

�
e−iωt: ð147Þ

Putting this ansatz in above equations, we obtain the two
differential equations as follows:

−rBωþ r∂rAþ A
2
¼ r

ffiffiffi
2

p
½bþ aðB2 − A2Þ�B; ð148Þ

rAωþ r∂rBþ B
2
¼ r

ffiffiffi
2

p
½bþ aðB2 − A2Þ�A: ð149Þ

We add and subtract the two equations above and make
the following substitution:

ψ1 ¼ BðrÞ þ AðrÞ; ð150Þ

ψ2 ¼ BðrÞ − AðrÞ; ð151Þ

in order to obtain

−rωψ2 þ rψ 0
1 þ

ψ1

2
− r

ffiffiffi
2

p
ðbþ aψ1ψ2Þψ1 ¼ 0; ð152Þ

rωψ1 þ rψ 0
2 þ

ψ2

2
þ r

ffiffiffi
2

p
ðbþ aψ1ψ2Þψ2 ¼ 0: ð153Þ

With ω ¼ 0, we have the solutions

ψ1 ¼
"
c2e

ffiffi
2

p
br

rð
1−2
ffiffi
2

p
ac1

2
Þ

#
; ψ2 ¼

"
c1e−

ffiffi
2

p
brrð

−1−2
ffiffi
2

p
ac1

2
Þ

c2

#
: ð154Þ

This is clearly unphysical because ψ1 blows up ∀
nonzero c2, and setting c2 ¼ 0 results in ψ2 diverging.
Thus, we conclude that a static solution to the above system
of equation is unphysical, and ω cannot be zero. Further
work to solve these equations numerically is in progress.

F. Solution by reduction to (3 + 1) dim
in spherical coordinates (t;r;θ;ϕ)

We begin by putting following ansatz in HD equations
with spherical coordinates:2

666664
F1

F2

G1

G2

3
777775 ¼

2
6666664

R−1
2
ðrÞS−1

2
ðθÞeþiϕ=2

Rþ1
2
ðrÞSþ1

2
ðθÞe−iϕ=2

Rþ1
2
ðrÞS−1

2
ðθÞeþiϕ=2

R−1
2
ðrÞSþ1

2
ðθÞe−iϕ=2

3
7777775
e−iωt: ð155Þ

With this ansatz, (91)–(94) become
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�
−iωR−1

2
S−1

2
þ cos θR0

−1
2
S−1

2
−
sin θ
r

R−1
2
S0−1

2
þ 1

2r sin θ
Rþ1

2
Sþ1

2
þ sin θR0þ1

2
Sþ1

2
þ cos θ

r
Rþ1

2
S0þ1

2

�
¼ i

ffiffiffi
2

p
ðbþ aξÞRþ1

2
S−1

2

ð156Þ
�
−iωRþ1

2
Sþ1

2
− cosθR0þ1

2
Sþ1

2
þ sinθ

r
Rþ1

2
S0þ1

2
−

1

2r sinθ
R−1

2
S−1

2
þ sinθR0

−1
2
S−1

2
þ cosθ

r
R−1

2
S−1

2

�0
¼ i

ffiffiffi
2

p
ðbþaξÞR−1

2
ðrÞSþ1

2
ðθÞ

ð157Þ
�
−iωR−1

2
Sþ1

2
þcosθR0

−1
2
Sþ1

2
−
sinθ
r

R−1
2
S0þ1

2
þ 1

2rsinθ
Rþ1

2
S−1

2
−sinθR0þ1

2
S−1

2
−
cosθ
r

Rþ1
2
S0−1

2

�
¼ i

ffiffiffi
2

p
ðbþaξ�ÞRþ1

2
ðrÞSþ1

2
ðθÞ

ð158Þ
�
−iωRþ1

2
ðrÞS−1

2
ðθÞ−cosθR0þ1

2
S−1

2
þsinθ

r
Rþ1

2
S0−1

2
−

1

2rsinθ
R−1

2
Sþ1

2
−sinθR0

−1
2
Sþ1

2
−
cosθ
r

R−1
2
S0þ1

2

�
¼ i

ffiffiffi
2

p
ðbþaξ�ÞR−1

2
S−1

2

ð159Þ

where

ξ ¼ R−1
2
S−1

2
R̄þ1

2
S̄−1

2
þ Rþ1

2
Sþ1

2
R̄−1

2
S̄−1

2
; ð160Þ

ξ� ¼ R̄−1
2
S̄−1

2
Rþ1

2
S−1

2
þ R̄þ1

2
S̄þ1

2
R−1

2
S−1

2
: ð161Þ

Further work is in progress to investigate if this system of
equations admits solitonic solutions.

VI. SUMMARY

The Einstein-Cartan-Dirac equations provide the
most elegant classical system for describing the coupling
of matter to space-time geometry. Torsion arises naturally
because of the presence of spin; mass couples to gravity
whereas torsion couples to spin. It is also expected
that spin dominates mass in the small mass limit, where-
as mass dominates spin for large masses. Corres-
pondingly, it is expected that torsion dominates gravity
in the microscopic limit, whereas gravity dominates
torsion in the macroscopic limit. Furthermore, if one
were to consider the fields of a point mass m, we expect it
to behave like a black hole when say m ≫ mPl, and like a
Dirac fermion when m ≪ mPl. This intriguingly suggests
that the ECD equations ought to admit an exact solution
which interpolates between Dirac fermions and black
holes. There is an interplay between Compton wavelength
and Schwarzschild radius of the particle, which will
decide the nature of the solution (fermion or black
hole) and one can expect some novel properties in the
transition region. In the small mass limit, since torsion is
present, the Dirac equation gets modified to the Hehl-
Datta equation, and it is important to investigate the
role that torsion might play in particle physics, and to put
experimentally motivated bounds on torsion in the

modified Dirac equation. It is with these motivations,
that the present study has been initiated. The Newman-
Penrose formalism is an elegant way to display the
symmetry between torsion and gravity, especially in
the context of the Dirac equation.
In this paper, we formulated ECD theory in the NP

formalism. To this intent, we first described the standard
field equations of the ECD theory. We also described how
these equations are modified by the introduction of a new
length scale, so that the two length scales in the problem are
Planck length and Compton wavelength, or modifications
thereof. We then introduced tetrads and the NP formalism.
The contortion tensor is expressed in terms of Dirac
spinors. The Dirac equation is carried to U4 and presented
(in NP) in (66)–(69). We have also provided a prescription
for finding the covariant derivative on U4 in NP formalism,
thereby allowing one to calculate objects like the generic
EM tensor on U4 etc. We have calculated the spin density
term which acts as a correction to the metric EM tensor; the
two of which contribute together to the Einstein tensor
(made up of Christoffel connections). In addition, the NP
variables for the contortion spin coefficients are also
expressed in terms of the Dirac state. Written in this
formalism, the Dirac equation clearly shows an elegant
symmetry between torsion and curvature.
Solutions to the linear Dirac equation on Minkowski

space have been studied extensively. In this work, we
attempted finding solutions to HD equations on Minkowski
space with torsion. To begin with, we wrote these equations
in Cartesian, cylindrical polar, and spherical polar coor-
dinates. We explored whether presence of torsion induces
any nontrivial (and physically relevant) modifications to the
solutions for linear (nontorsional) case. Solutions after
reducing the problem to (1þ 1) dimension in the variables
ðt; zÞ were found. We found a finite parameter range
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w ∈ (0,1) (corresponding to the range 0 < Λ < m), where
this solution vanishes at infinity in the nonstatic case and
has finite maxima (or finite local minima) at origin.
For w ∈ [1

2
, 1), the solution (and the probability density)

decreases monotonically from a finite value at center and
asymptotically reaches zero at infinity. This is the sought
after finite, solitonlike solution. This gives us hope that a
3þ 1 solitonic solution exists, which interpolates between
a black hole and a Dirac fermion.
Plane wave solutions were found in Sec. (V D). In so

doing we have provided a more detailed analysis of earlier
work on plane wave solutions of the nonlinear Dirac
equation. The presence of torsion gives rise to a modified
mass. We showed how the modified mass for the positive
and negative frequency case depends on the bare mass and
on the two length scales in the problem.
Next, we attempted finding solutions by reducing the

problem to (2þ 1) dimensions in cylindrical coordinates
with variables ðt; r;ϕÞ. Static solutions to this were also
found to be unphysical. However, finding nonstatic sol-
utions to (2þ 1) case (given in Sec. V E) and the (3þ 1)
case (given in Sec. V F) is work under progress.
In future work we also hope to extend this investigation

to Poincaré gauge gravity with propagating torsion. One of
the principal goals of these studies is to look for torsion-
induced nonsingular solitonic solutions of the nonlinear
Dirac equation.
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APPENDIX A: CONTORTION TENSOR (Kμνα)
COMPONENTS

Our aim is to write the contortion tensor (Kμνα) in the NP
formalism eventually in terms of spinor components, with
the contortion tensor given by

Kμνα ¼ −kSμνα ¼ 2iπl2ψ̄γ½μγνγα�ψ ðA1Þ

Note, only four independent components of this tensor is
excited by the Dirac field. Writing explicitly in the NP
formalism, i.e., null tetrad basis, we have

KðiÞðjÞðkÞ ¼ eðiÞμeðjÞνeðkÞαKμνα ðA2Þ

where eðiÞμ ¼ ðlμ; nμ; mμ; m̄μÞ for i ¼ 0, 1, 2, 3 First, we
consider the product γαγβγμ, defined as follows:

γαγβγμ ¼
�

0 ðσ̃αÞ�ðσβÞ�ðσ̃μÞ�
ðσαÞ�ðσ̃βÞ�ðσμÞ� 0

�

¼ 2
ffiffiffi
2

p �
02×2 K01

K10 02×2

�
ðA3Þ

where, explicitly, expanding out the Van der Waarden
symbols, we have

K01 ¼
�þnln − nm̄m − m̄mnþ m̄nm −nlm̄þ nm̄lþ m̄mm̄ − m̄nl

−mlnþmm̄mþ lmn − lnm þmlm̄ −mm̄l − lmm̄þ lnl

�
αβμ

; ðA4Þ

K10 ¼
� þlnl − lm̄m − m̄mlþ m̄lm þlnm̄ − lm̄n − m̄mm̄þ m̄ln

þmnl −mm̄m − nmlþ nlm þmnm̄ −mm̄n − nmm̄þ nln

�
αβμ

: ðA5Þ

With the expression for γαγβγμ, we can now define the world components of K. Next, we use (A2) to calculate the
contortion spin coefficients [8] in the NP (null tetrad) basis. An an example, the solution for ρ1 is given as

ρ1 ¼ −Kð0Þð2Þð3Þ ¼ −lμmνm̄αKμνα ¼ −2iπl2½lμmνm̄α�ψ̄γ½μγνγα�ψ : ðA6Þ

The only quantity giving a nonzero scalar product when contracted with lμmνm̄α is nμm̄νmα and corresponding
permutations (given the definition of γ½μγνγα�), giving lμmνm̄αnμm̄νmα ¼ 1. Thus,
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½lμmνm̄α�ψ̄γ½μγνγα�ψ ¼
ffiffiffi
2

p

3
ψ̄

0
BBB@
2
6664
0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

3
7775 −

2
6664
0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

3
7775þ

2
6664
0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

3
7775 −

2
6664
0 0 0 0

0 0 0 0

0 0 0 0

0 0 −1 0

3
7775

þ

2
6664
0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

3
7775 −

2
6664
0 0 0 0

0 0 0 0

0 0 0 0

0 −1 0 0

3
7775
1
CCCA

¼
ffiffiffi
2

p

3
ðQ0 Q1 P̄00 P̄10 Þ

0
BBB@

0 0 −3 0

0 0 0 0

0 0 0 0

0 3 0 0

1
CCCA
0
BBB@

P0

P1

Q̄00

Q̄10

1
CCCA

¼
ffiffiffi
2

p
ðP̄10P1 −Q1Q̄10 Þ:

This gives the full expression for ρ (redefining the spinor components as prescribed):

ρ ¼ −Kð0Þð2Þð3Þ ¼ −2
ffiffiffi
2

p
iπl2½F2F̄2 −G1Ḡ1� ðA7Þ

and similarly for the other spin coefficients.

APPENDIX B: THE DIRAC EQUATION IN U4

The Dirac equation on U4 (the Hehl-Datta equation) is given, in matrix form, as

i

�
0 ðσ̃μÞ�

ðσμÞ� 0

�
∇μ

�
PA

Q̄B0

�
¼ 1

2
ffiffiffi
2

p
l

�
PA

Q̄B0

�
: ðB1Þ

Rewriting as a pair of matrix equations, we have

�
σμ
000 σμ

100

σμ
010 σμ

110

�
∇μ

�
P0

P1

�
þ i

2
ffiffiffi
2

p
l

�
−Q̄10

Q̄00

�
¼ 0; ðB2Þ

 
σμ
110 −σμ

100

−σμ
010 σμ

000

!
∇μ

�
−Q̄10

Q̄00

�
þ i

2
ffiffiffi
2

p
l

�
P0

P1

�
¼ 0: ðB3Þ

We will proceed to work through a solution for the first and third equation generated by this pair; the second and fourth
follow along similar lines.
Equation 1:

i

2
ffiffiffi
2

p
l
Q̄10 ¼ σμ

000∇μP0 þ σμ
100∇μP1

¼ ð∂000P0 þ Γ0
i000PiÞ þ ð∂100P1 þ Γ1

i100PiÞ
¼ ðDþ Γ0

0000P0 þ Γ0
1000P1Þ þ ðδ� þ Γ1

0100P0 þ Γ1
1100P1Þ

¼ ðDþ Γ10000 − Γ00100 ÞP0 þ ðδ� þ Γ11000 − Γ01100 ÞP1

¼ ðDþ ϵo þ ϵ1 − ρo − ρ1ÞP0 þ ðδ� þ πo þ π1 − αo − α1ÞP1

¼ ðDþ ϵ0 − ρ0ÞP0 þ ðδ� þ π0 − α0ÞP1 þ 3

2
ðπ1P1 − ρ1P0Þ: ðB4Þ
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Equation 3:

i

2
ffiffiffi
2

p
l
P0 ¼ −σμ

110∇μQ̄10 − σμ
100∇μQ̄00 þ i

2
ffiffiffi
2

p
l
P0

¼ −σ̄μ
110∇μQ̄10 − σ̄μ

001∇μQ̄00 þ i

2
ffiffiffi
2

p
l
P0

¼ ð∂110Q̄10 þ Γ̄10
i0101Q̄i0 Þ þ ð∂100Q̄00 þ Γ̄00

i0001Q̄i0 Þ
¼ ðΔQ̄10 þ Γ̄10

00101Q̄00 þ Γ̄10
10101Q̄10 Þ þ ðδ�Q̄00 þ Γ̄00

00001Q̄00 þ Γ̄00
10001Q̄10 Þ

¼ ðΔþ Γ̄1010001 − Γ̄0010101ÞQ̄10 þ ðδ� þ Γ̄1000001 − Γ̄0000101ÞQ̄00

¼ ðΔþ μo þ μ1 − γo − γ1ÞQ̄10 þ ðδ� þ βo þ β1 − τo − τ1ÞQ̄00

¼ ðΔþ μ�0 − γ�0ÞQ̄10 − ðδ� þ β�0 − τ�0ÞQ̄00 −
3

2
ðμ1Q̄10 − π1Q̄00 Þ ðB5Þ

where we have used the gamma matrices as defined in (34), computed the covariant derivatives using (36), (37) and the spin
connections in terms of contortion spin coefficients as given in (52). Using this procedure, the four Dirac equations inU4 are
obtained as

ðDþ ϵ0 − ρ0ÞF1 þ ðδ� þ π0 − α0ÞF2 þ
3

2
ðπ1F2 − ρ1F1Þ ¼ ibðlÞG1; ðB6Þ

ðΔþ μ0 − γ0ÞF2 þ ðδþ β0 − τ0ÞF1 þ
3

2
ðμ1F2 − τ1F1Þ ¼ ibðlÞG2; ðB7Þ

ðDþ ϵ�0 − ρ�0ÞG2 − ðδþ π�0 − α�0ÞG1 −
3

2
ðτ1G1 − ρ1G2Þ ¼ ibðlÞF2; ðB8Þ

ðΔþ μ�0 − γ�0ÞG1 − ðδ� þ β�0 − τ�0ÞG2 −
3

2
ðμ1G1 − π1G2Þ ¼ ibðlÞF1; ðB9Þ

where we have also redefined fP;Qg → fF;Gg, as per the substitution in (1) and to obtain a form that can be consistently
compared with the primary source material in [9] [Eq. (108)].

APPENDIX C: CALCULATING ðT − SÞμν
In theories which consider a balance between the Riemannian and torsional curvatures (such as in [18]), the tensor

ðT − SÞμν is of paramount importance. Vanishing ðT − SÞμν would take the form of a “balance condition,” and represent a
space with nonzero Riemannian curvature and torsion, but where the two exactly cancel each other out. The ðT − SÞμν
tensor is defined as

ðT − SÞμν ¼ Tμν −
4πl2

ℏc
ημνSαβλSαβλ: ðC1Þ

This tensor has 10 components. The 6 off-diagonal components are as follows:

ðT − SÞ10 ¼
iℏc
4

ðF̄1∂1F1 þ F̄2∂1F2 þ Ḡ1∂1G1 þ Ḡ2∂1G2 − F̄2∂0F1 − F̄1∂0F2 þ Ḡ2∂0G1 þ Ḡ1∂0G2

− ∂1F̄1F1 − ∂1F̄2F2 − ∂1Ḡ1G1 − ∂1Ḡ2G2 þ ∂0F̄2F1 þ ∂0F̄1F2 − ∂0Ḡ2G1 − ∂0Ḡ1G2Þ; ðC2Þ

ðT − SÞ20 ¼
iℏc
4

ðF̄1∂2F1 þ F̄2∂2F2 þ Ḡ1∂2G1 þ Ḡ2∂2G2 þ iF̄2∂0F1 − iF̄1∂0F2 − iḠ2∂0G1 þ iḠ1∂0G2

− ∂2F̄1F1 − ∂2F̄2F2 −G1∂2Ḡ1 − ∂2Ḡ2G2 − i∂0F̄2F1 þ i∂0F̄1F2 þ i∂0Ḡ2G1 − i∂0Ḡ1G2Þ; ðC3Þ

ðT − SÞ30 ¼
iℏc
4

ðF̄1∂3F1 þ F̄2∂3F2 þ Ḡ1∂3G1 þ Ḡ2∂3G2 − F̄1∂0F1 þ F̄2∂0F2 þ Ḡ1∂0G1 − Ḡ2∂0G2

− ∂3F̄1F1 − ∂3F̄2F2 − ∂3Ḡ1G1 − ∂3Ḡ2G2 þ ∂0F̄1F1 − ∂0F̄2F2 − ∂0Ḡ1G1 þ ∂0Ḡ2G2Þ; ðC4Þ

KHANAPURKAR, VARMA, MITTAL, GUPTA, and SINGH PHYS. REV. D 98, 064046 (2018)

064046-22



ðT − SÞ21 ¼
iℏc
4

ðiF̄2∂1F1 − iF̄1∂1F2 − iḠ2∂1G1 þ iḠ1∂1G2 − F̄2∂2F1 − F̄1∂2F2 þ Ḡ2∂2G1 þ Ḡ1∂2G2

− i∂1F̄2F1 þ i∂1F̄1F2 þ i∂1Ḡ2G1 − i∂1Ḡ1G2 þ ∂2F̄2F1 þ ∂2F̄1F2 − ∂2Ḡ2G1 − ∂2Ḡ1G2Þ; ðC5Þ

ðT − SÞ31 ¼
iℏc
4

ð−F̄1∂1F1 þ F̄2∂1F2 þ Ḡ1∂1G1 − Ḡ2∂1G2 − F̄2∂3F1 − F̄1∂3F2 þ Ḡ2∂3G1 þ Ḡ1∂3G2

þ ∂1F̄1F1 − ∂1F̄2F2 − ∂1Ḡ1G1 þ ∂1Ḡ2G2 þ ∂3F̄2F1 þ ∂3F̄1F2 − ∂3Ḡ2G1 − ∂3Ḡ1G2Þ; ðC6Þ

ðT − SÞ32 ¼
iℏc
4

ð−F̄1∂2F1 þ F̄2∂2F2 þ Ḡ1∂2G1 − Ḡ2∂2G2 þ iF̄2∂3F1 − iF̄1∂3F2 − iḠ2∂3G1 þ iḠ1∂3G2

þ ∂2F̄1F1 − ∂2F̄2F2 − ∂2Ḡ1G1 þ ∂2Ḡ2G2 − i∂3F̄2F1 þ i∂3F̄1F2 þ i∂3Ḡ2G1 − i∂3Ḡ1G2Þ: ðC7Þ

The diagonal components are as follows:

ðT − SÞ00 ¼
iℏc
2

ðḠ1∂0G1 þ Ḡ2∂0G2 − ∂0Ḡ1G1 − ∂0Ḡ2G2 þ F̄1∂0F1 þ F̄2∂0F2 − ∂0F̄1F1 − ∂0F̄2F2Þ − 6πℏcl2ξξ�;

ðC8Þ

ðT − SÞ11 ¼
iℏc
2

ð−F̄2∂1F1 − F̄1∂1F2 þ Ḡ2∂1G1 þ Ḡ1∂1G2 þ ∂1F̄2F1 þ ∂1F̄1F2 − ∂1Ḡ2G1 − ∂1Ḡ1G2Þ þ 6πℏcl2ξξ�;

ðC9Þ

ðT−SÞ22¼
iℏc
2

ðiF̄2∂2F1− iF̄1∂2F2− iḠ2∂2G1þ iḠ1∂2G2− i∂2F̄2F1þ i∂2F̄1F2þ i∂2Ḡ2G1− i∂2Ḡ1G2Þþ6πℏcl2ξξ�;

ðC10Þ

ðT − SÞ33 ¼
iℏc
2

ð−F̄1∂3F1 þ F̄2∂3F2 þ Ḡ1∂3G1 − Ḡ2∂3G2 þ ∂3F̄1F1 − ∂3F̄2F2 − ∂3Ḡ1G1 þ ∂3Ḡ2G2Þ þ 6πℏcl2ξξ�:

ðC11Þ

We can now calculate this tensor for the various solutions to the HD equations on Minkowski space with torsion, to probe
the feasibility of a “balance condition.” For example, ðT − SÞμν for nonstatic solutions in 1þ 1 dim ðt; zÞ,

ðT − SÞμν ¼ ℏc

2
66666666664

	
Λ½A2 þ B2� − a½A2−B2�2

2
ffiffi
2

p



0 −ΛAB 0

0
	
a½A2−B2�2

2
ffiffi
2

p



0 0

−ΛAB 0
	
a½A2−B2�2

2
ffiffi
2

p



0

0 0 0
	
½AB0 − BA0� þ a½A2−B2�2

2
ffiffi
2

p



3
77777777775

ðC12Þ

Λ is a free parameter in the solution; we can analyze the tensor T − S for various types of values of Λ.

APPENDIX D: THE LINEAR (TORSIONLESS) DIRAC EQUATION IN 1 + 1 DIMENSIONS

The vanishing of torsion is characterized by the limit aðl2Þ ¼ 3
ffiffiffi
2

p
πL2

Pl → 0. So in a torsionless case, the differential
equations become (with dimensionless constants):

B0 ¼ ð1 − wÞA; ðD1Þ

A0 ¼ ð1þ wÞB: ðD2Þ

Their solutions in various special cases are plotted in Fig. 2.
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