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We investigate the existence of invariantly defined quasilocal hypersurfaces in the Kastor-Traschen
solution containing N charge-equal-to-mass black holes. These hypersurfaces are characterized by the
vanishing of particular curvature invariants, known as Cartan invariants, which are generated using the
frame approach. The Cartan invariants of interest describe the expansion of the outgoing and ingoing null
vectors belonging to the invariant null frame arising from the Cartan-Karlhede algorithm. We show that the
evolution of the hypersurfaces surrounding the black holes depends on an upper-bound on the total mass for
the case of two and three equal mass black holes. We discuss the results in the context of the geometric
horizon conjectures.
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I. INTRODUCTION

The event horizon is a defining feature of black hole
solutions in general relativity (GR). It is defined as the
boundary of the nonempty complement of the causal past
of future null infinity; i.e., the region for which signals sent
from the interior will never escape. The event horizon is
typically identified as the surface of the black hole and
relates its area to the entropy of the black hole. However,
the event horizon is essentially a teleological object, as we
must know the global behavior of the spacetime in order to
determine the event horizon locally [1]. To examine the
interaction of realistic black holes with their environment in
numerical GR [2], in the 3þ 1 approach or in the Cauchy-
problem in GR, it is necessary to locate a black hole locally
[3,4]. A local characterization may not rely on the existence
of an event horizon alone, as black holes are expected to
undergo evolutionary processes and are typically dynamical.
To address this Penrose proposed the concept of closed

trapped surfaces without border, which are compact space-
like surfaces such that the expansions of the future-pointing
null normal vectors are negative [5]. Consequently, to move
from stationary black holes to time-dependent situations, the
event horizons (which are Killing horizons, and hence null
surfaces) are replaced in practice by apparent horizons
defined as the locus of the vanishing expansion of a null
geodesic congruence emanating froma trapped surfaceSwith
spherical topology [6]. A related concept to trapping surfaces
are marginally outer (inner) trapped surfaces (MOTSs or
MITSs) which are two-dimensional (2D) surfaces for which

the expansion θðþÞ (θð−Þ) of the outgoing (ingoing) null vector
normal to the surfaces vanishes. Assuming a smooth time
evolution for the MOTSs (MITSs), the 2D surfaces can be
combined to construct a three-dimensional (3D) surface
known as a marginally trapped tube (MTT) [7]. If the
MTT is foliated by MOTSs for which θð−Þ < 0 as well, then
it is called a dynamical horizon [1].
Unlike the event horizon, the apparent horizon and

MTTs are quasilocal, and they are intrinsically foliation-
dependent. In numerical studies of collapse, the teleological
nature of event horizons makes the apparent horizon a more
practical surface to track. Apparent horizons are employed
in simulations of high precision waveforms of gravitational
waves arising from the merger of compact-object binary
systems or in stellar collapse to form black holes in
numerical relativity, and the observations by the LIGO
collaboration of gravitational waves from black hole
mergers relied upon the numerical simulations based on
apparent horizons [8]. Due to the foliation dependence of the
apparent horizons and MTTs, they are observer dependent,
which can lead to ambiguities if care is not taken to relate
the differing observers’ reference frames. For example, if a
MOTS is taken as the outermost trapped surfaces in some
foliation of hypersurfaces, Σt, where this foliation is defined
as hypersurfaces of “constant time” as determined by a set of
observers with clocks that were synchronized on some initial
hypersuface, then different sets of observers will observe
different MTTs. For this reason it is important to identify
alternative surfaces that are defined invariantly.
For a stationary black hole spacetime, if we know the

Killing vector field which acts as the null generator on the
event horizon then the horizon is defined locally. This is
reflected in the curvature invariants as there is a general
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procedure to produce scalar polynomial curvature invari-
ants (SPIs) which will vanish on the stationary horizon
[9,10] or by employing Cartan invariants [11,12]. This can
be generalized to the concept of an isolated horizon (IH)
which arises as a nonexpanding horizon (NEH) where a
class of null normals, flg, exist for which the Lie derivative
of flg and the induced covariant derivative on the NEH
commute [13–15]. For an IH, the Killing vector field is
restricted to the horizon surface and the exterior region may
be dynamical. Here, a particular set of SPIs and Cartan
invariants vanish on the WIH [16,17] due to the fact that on
the horizon the curvature tensor and its covariant deriva-
tives must be of type II=D relative to the alignment
classification [18–20].
It has been conjectured that dynamical black holes admit

quasilocal hypersurfaces on which the curvature tensor and
its covariant derivatives become more algebraically special.
Such a hypersurface, called a geometric horizon (GH),
can be invariantly defined by the vanishing of a particular
set of curvature invariants [16,17]. There are examples of
dynamical black hole solutions that admit GHs, such as
dynamical black hole solutions which are conformally
related to a stationary black hole solutions [21,22] and
the imploding spherically symmetric metrics [17]. For the
conformal black holes, the event horizon is conformally
invariant and can be detected in the original stationary
black hole solution. Similarly, for any dynamical spheri-
cally symmetric metric the scalar invariant

jj∇rjj2 ¼ ∇ar∇ar; ð1Þ

where r is the areal radius, will detect the unique,
invariantly defined dynamical horizon r ¼ 2M [23].
For the spherically symmetric dynamical black holes and

dynamical black holes conformally related to stationary
black holes the GHs correspond to MTTs. However, in
general a GH will not be a MTT, as the preferred null
direction will not necessarily be geodesic and surface
forming. The geometric interpretation of a GH is different
from that of a MTT; instead of looking for a spacelike
hypersurface constructed from 2D surfaces for which the
expansion of the appropriate null normal vector vanishes, we
determine the invariant null coframe adapted to the geometry
of the dynamical black hole solution and identify the surfaces
where the expansion of the geometrically preferred null
vectors vanish which, in turn, affects the algebraic structure
of the covariant derivatives of the curvature tensor. It is of
interest to determine if less idealized dynamical black hole
solutions will admit GHs as well.
In analogy with the MOTSs and MITSs, we will

introduce invariantly defined closed 2D surfaces, called
geometrically outer (inner) trapped surfaces (GOTSs or
GITSs), for which the expansion scalar θðþÞ (θð−Þ) vanishes
on spatial hypersurfaces and which make up the GH. While
the existence of a GH is not dependent on this foliation, the

introduction of GOTSs will be useful for descriptions and
illustrations in figures. Similarly, we will say any GH for
which θð−Þ < 0 in all GOTSs is a dynamical GH. If a
dynamical black hole solution asymptotically evolves to a
spherically symmetric dynamical black hole, the dynamical
GH will correspond to the dynamical horizon [17,23].
Kastor and Traschen have found a family of exact

solutions to the Einstein-Maxwell equations with a cos-
mological constant representing an arbitrary number of
chargedQ ¼ M black holes in an otherwise closed universe
[24]. The single mass case corresponds to the Carter black
hole solution [25]. This is theQ ¼ M Reissner-Nordström-
de Sitter solution, which has been studied in [26,27]. In the
case of multiple black holes, some aspects of the Kastor-
Traschen (KT) solutions have been investigated [28], from
which it was concluded that small enough black holes
coalesce with each other, while for mass greater than a
critical value there are eternal singularities.
The global structure of the KT solutions has been studied

in greater detail and the existence and evolution of marginal
surfaces in the case of two equal masses was investigated
by Nakao et al. [29]. The marginal surfaces in these KT
solutions belong to four types which bound trapped regions,
and hence foliate trapping horizons, which are MTTs with
θð−Þ ≠ 0 and LnθðþÞ ≠ 0 where n is the ingoing null normal
[30]. The analysis in [29] using trapping horizons has
implications for the merger and coalescence of multiple
black holes. The term “merger” denotes the evolution of
initially disjoint trapping horizons which become a continu-
ous boundary, while “coalescence” denotes the appearance
of new marginal surfaces that enclose the original trapped
regions [29]. If coalescence does not occur, the collision
will presumably either produce a naked singularity (violating
the cosmic censorship conjecture) or the dynamics will keep
the black holes apart.
In principle, the apparent horizons could be used to study

the KT solutions, but the analysis would be difficult to
implement. If a spacetime admits marginal surfaces, then
this is not sufficient to ensure the existence of an apparent
horizon [31]. The determination of an apparent horizon is
problematic since it is necessary to check whether each
surface in a given hypersurface is trapped. Furthermore,
like the MTTs, the apparent horizon depends on the choice
of foliation. While one could determine the connected
component of the boundary of an inextendible trapped
region, known as the trapping boundary, which would be
invariantly defined for a spacetime, in practice this surface
is hard to determine numerically [30].
Motivated by the fact that the event horizons of the

Reisner-Nordström-(anti) de Sitter solution are detected by
SPIs or Cartan invariants [12], we will investigate the
existence of GHs in the multi-black-hole four-dimensional
(4D) KT solutions using the frame approach and utilizing
Cartan invariants. We will compare our results with the
results of [29] in the case of two black holes, and examine
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the upper bound on black holes with area larger than 4π=Λ
[32]. Wewill also examine the existence of GHs in the three
equal mass black hole KT solution to show that these
surfaces persist in KT solutions with more than two
charged Q ¼ M black holes, and to study the correspond-
ing upper bound on the total mass for such solutions.
Finally, we summarize our results and discuss how they
provide further evidence for the geometric horizon con-
jectures [16,17].

II. THE KASTOR-TRASCHEN SOLUTION AND
THE CARTAN-KARLHEDE ALGORITHM

The Kastor-Traschen solution represents N charge-
equal-to-mass black holes in a spacetime with a positive
cosmological constant, Λ. We will consider the metric in
the “contracting chart” with t ∈ ð−∞; 0Þ [24,29]:

ds2 ¼ −W−2dt2 þW2ðdx2 þ dy2 þ dz2Þ;
W ¼ −Htþ ΣN

i¼1

mi

ri
: ð2Þ

Here H ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

, where Λ ≥ 0 is the cosmological con-
stant, mi (i ∈ ½1; N�), are the black hole masses, and

ri ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − xiÞ2 þ ðy − yiÞ2 þ ðz − ziÞ2
q

;

are the black hole positions where ri ¼ 0, i ∈ ½1; N�,
represent a 3D infinite cylinder with 2D cross-sectional
area of 4πm2

i for each black hole. The electromagnetic
4-potential is given by

A ¼ W−1dt: ð3Þ

For N > 1, this solution will generically be of Weyl
type I [16,17]. However, F ¼ dA gives rise to the follow-
ing nonzero SPI:

−2FabFab ¼ F�
abF

ab� ¼ 2W−4W;iW;i; i ∈ ½1; 3�; ð4Þ

implying that the electromagnetic field must be non-null,
and a coframe exists such that the energy-momentum
tensor is of type D:

Tab ¼ 4Φ1Φ̄1ðmðam̄bÞ þ lðanbÞÞ: ð5Þ

This coframe will be an invariantly defined coframe which
can be employed in the Cartan-Karlhede algorithm. To
construct this coframe, we start with

t0 ¼
dt
W

; t1 ¼ Wdx; t2 ¼ Wdy; t3 ¼ Wdz;

ð6Þ

from which we have the null frame

l0 ¼ t0 − t1
ffiffiffi

2
p ; n0 ¼ t0 þ t1

ffiffiffi

2
p ;

m0 ¼ t2 þ it3
ffiffiffi

2
p ; m̄0 ¼ t2 − it3

ffiffiffi

2
p : ð7Þ

Then the electromagnetic field tensor is of the form

F0
ab ¼ dðl0 þ n0Þ ¼ dt0: ð8Þ

Using the self-dual basis of bivectors U0;V0 andW0 [33]:

U0 ¼ 2m̄0 ∧ n0; V0 ¼ 2l0 ∧ m0 and

W0 ¼ 2ðm0 ∧ m̄0 − l0 ∧ n0Þ; ð9Þ
we can express the self-dual electromagnetic field tensor
F0�

ab as

1

2
F0�

ab ¼ Φ0
0U

0
ab þΦ0

1W
0
ab þΦ0

2V
0
ab; ð10Þ

where

Φ0
0 ¼ −Φ̄0

2 ¼ −iðlnWÞ;z − ðlnWÞ;y and Φ0
1 ¼ ðlnWÞ;x:

ð11Þ
Applying a null rotation about n and then a null rotation
about l with their respective parameters defined in [33] as,

Ē ¼ −
Φ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ2
1 þ jΦ2j2

p

Φ̄0

and B ¼ −
Φ0

2ðΦ1 þ B̄Φ0Þ
;

ð12Þ
produces a new null frame fl; n; m; m̄g for which

F�
ab ¼ 2Φ1Wab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W;iW;i
p

W2
ðm½am̄b� − l½anb�Þ: ð13Þ

If N ¼ 1 the Weyl tensor is of Weyl type D, and so no
further frame fixing is possible at zeroth order. When
N > 1, we may additionally choose a boost and spin so that
Ψ0 ¼ 1. While this is necessary for the Cartan-Karlhede
algorithm, for our applications we will neglect this choice
as it will not affect the form of the Cartan invariants we will
use to characterize the GHs.
The Ricci scalar is R ¼ 12H2, and relative to this frame

the Ricci tensor takes the form:

Rab ¼ ½4Φ1Φ̄1 þ 3H2�ðmðam̄bÞ þ lðanbÞÞ
¼ Φ11ðmðam̄bÞ þ lðanbÞÞ: ð14Þ

By considering the covariant derivative of the Ricci
tensor, two real valued spin-coefficients appear,1 ρ and μ.
From the Bianchi identities, they may be expressed in terms

1These spin-coefficients will also appear in the components of
the covariant derivative of the Weyl tensor.
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of the components of the Ricci tensor and its covariant
derivative:

ρ ¼ DΦ11

4Φ11

; μ ¼ ΔΦ11

4Φ11

: ð15Þ

These quantities define the expansion of the outcoming
and ingoing null vectors of the invariant coframe:

θðþÞ ¼ qabla;b ¼ Reðρþ ρ̄Þ ¼ 2ρ;

θð−Þ ¼ qabna;b ¼ −Reðμþ μ̄Þ ¼ −2μ; ð16Þ
where qab ¼ gab þ 2lðanbÞ is the projection operator for l
and n. For spherically symmetric dynamic black holes and
black holes admitting NEHs this is also the two-metric
induced on the surface S for which l and n are normal
vectors [6].
In the case thatN ¼ 1, the coframe can be fixed entirely at

first order [12], while in theN > 1 case, in general, theWeyl
tensor is of Weyl type I, which is reflected in the non-
vanishing of the real SPIs W1 and W2 defined in [17], in
Eqs. (3)–(5). These invariants are constructed from con-
tractions of powers of the Weyl tensor and are equivalent to
the real and imaginary parts of the complex invariant I3 −
27J2which is expressed in terms of the complexWeyl tensor
in the Newman-Penrose formalism [33]. As such the
vanishing of W1 and W2 is a necessary and sufficient
condition for theWeyl tensor to be of type II=D [34,35]. As
the coframe can be fully fixed at first order, we will attempt

to identify the GHs using the first order Cartan invariants ρ
and μ. The hypersurfaces defined by the vanishing of these
invariants will be foliation independent.

III. THE SINGLE MASS KASTOR-TRASCHEN
SOLUTION

In the case of a single Q ¼ M black hole solution, this is
the Reisner-Nordström-de Sitter black hole. We may
choose spherical coordinates for the transverse space,
and place the black hole at the origin [28]:

ds2 ¼ −
dt2

W2
þW2ðdr2 þ r2dθ þ r2sin2θdϕ2Þ;

W ¼ −HtþM
r
: ð17Þ

Relative to the null coframe (7) both the Weyl and Ricci
tensor are in the canonical form for type D relative to the
alignment classification; i.e., the only nonzero Weyl and
Ricci spinor components are [33]:

Ψ2 and Φ11: ð18Þ

Applying a boost to put the covariant derivative of the Weyl
tensor into its canonical form [12] relative to these
coordinates, the Cartan invariants that detect the horizons
are θðþÞ ¼ ρ and θð−Þ ¼ −μ where

ρ ¼ −μ ¼ −
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðH2r2t2 þ 2HMrtþM2 − rtÞðH2r2t2 þ 2HMrtþM2 þ rtÞ
p

ffiffiffi

2
p ðHrtþMÞ2 : ð19Þ

The surfaces on which the Cartan invariants ρ and μ vanish correspond to the surfaces where the timelike Killing vector
V ¼ −t ∂

∂t þ r ∂
∂r becomes null, since

jVj2 ¼ ðH2r2t2 þ 2HMrtþM2 − rtÞðH2r2t2 þ 2HMrtþM2 þ rtÞ
ðHrtþMÞ2 : ð20Þ

From (20), the GHs related to the outgoing and ingoing null
directions coincide. These hypersurfaces correspond to the
bifurcate Killing horizons of the Reisner-Nordström de
Sitter black hole [36], since it is the union of bifurcation
surfaces [37–39]. It is clear that if M < 1

4H, there are three
horizons: the inner and outer horizons, and the de Sitter
horizon; if M ¼ 1

4H, the inner and outer horizons coincide;
and if M > 1

4H there is only one horizon.

IV. THE DOUBLE EQUAL MASS KASTOR-
TRASCHEN SOLUTION

The existence of marginal surfaces and trapping horizons
has been examined in the case of two coalescing black

holes [29]. In this case, we can choose coordinates so that
the black holes are located on the x-axis at a coordinate
distance c > 0 from the origin,

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� cÞ2 þ y2 þ z2
q

: ð21Þ
Due to the upper-bound 4π=Λ on the area of black holes

with cosmological constant Λ, and the fact that the area of a
black hole is nondecreasing, this implies that two black
holes with total area greater than 4π=Λ will not merge, and
also imposes a limit on the total mass to be below the

critical mass, Mc ¼
ffiffiffiffiffiffi

3
16Λ

q

¼ 1
4H. It has been shown that if

the sum of the two black holes,
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M ¼ mþ þm−;

is below the approximate value, 1.01Mc, the black holes
will coalesce into a larger single black hole, in the sense
that a new future outer trapped horizon appears around the
black holes [29].
For these spacetimes the SPI W2 vanishes while W1 is

generally nonzero, implying that the Weyl tensor is not
globally of Weyl type II=D. At earliest times, W1 → 0 as
t → −∞, and for finite t ≪ 0 there are two 3D GHs
enclosing the two black holes which can be located by the
vanishing of W1 [17]. In the N ¼ 2 equal mass Kastor-
Traschen solution the algebraic type II=D discriminant
W1 vanishes on segments of the symmetry-axis and at the
black hole coordinate locations r� ¼ 0 [17]. Relative to
these coordinates the black holes appear to be points, but
they are in fact 2D surfaces of area 4πm2 for any given
time-slice t ¼ constant [29]. These denote the horizons of
the black holes, and since the flux of matter moving
through them is zero, they are isolated horizons.
We will consider two examples in the contracting

chart where H ¼ 0.125, m� ¼ M=2 and c ¼ 0.1 with
M ¼ 0.5Mc and M ¼ 1.01Mc, to examine the surfaces
where the Cartan invariants ρ and μ vanish. We note that
these two examples illustrate the qualitative features of the
spacetimes for the subcritical case M < Mc and the
supercritical caseM ≥ Mc. Unlike the single mass solution
ρ ≠ μ and the explicit form of these Cartan invariants
cannot be displayed in a concise form.

A. Subcritical case: M = 0.5Mc

We note that the surfaces defined by θð−Þ ¼ 0 and the
surfaces surrounding the black holes arising from θðþÞ ¼ 0

will not intersect for all time slices. Additionally, within the
surfaces defined by θðþÞ ¼ 0 the other expansion scalar will
be negative; i.e., θð−Þ < 0. The GOTS defined by θðþÞ ¼ 0

may not constitute a dynamical GH since θð−Þ ≤ 0 at
isolated points within this surface2

At early times, the GOTSs located at the coordinate
locations of the black holes expand creating spherical
GOTSs centred around each of the black holes with addi-
tional spherical GOTSs within them. A third GOTS forms
around the origin and between the hole of the θð−Þ ¼ 0
surface which steadily expands, as illustrated in Fig. 1.
As time increases, the growing GOTSs combine to

make a single GOTS connected through the hole in the
θð−Þ ¼ 0 surface, while new spherical GOTSs centered on
the black hole locations expand. While the black holes
move closer together, the outermost GOTS deforms; this
is depicted in Fig. 2 (Note that due to the scale, the
GOTSs centered on the black holes are not visible in
some of the figures).
As time increases further, the outer GOTS grow outward

and deform, forming a torus shaped GOTS aligned along
the y-axis, together with a larger GOTS that surrounds all
other GOTSs (including the spherical GOTSs centred on
each black hole). As time continues, the outermost GOTS
expands indefinitely outwards away from the black holes.
The start and end of this process is depicted in Fig. 3.
The choice of time-slices did not allow this process to be

shown explicitly during this interval, but the process will
repeat a second time. The 2D surfaces for the time-slice
t ¼ t0 defined by θð−Þ ¼ 0 and θðþÞ ¼ 0 are depicted in 3D
along with one of the smaller surfaces centred on the black
holes in Fig. 4, showing that while the outer GOTSs evolve
dynamically there are always GOTSs centred on the black
holes during this process.
The torus-shaped GOTS aligned with the y-axis defined

by θðþÞ ¼ 0 now expands outwards and deforms, again

FIG. 1. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 500t0 (left) and t ¼ 180t0 (right) with t0 ¼ −0.914=H in the z ¼ 0
plane for the N ¼ 2 subcritical case.

2It is possible this is due to numerical error due to MAPLE and
the choice of digits for floating-point numbers.
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forming two additional GOTSs surrounding the spherical
GOTSs centred on the black holes and contained within a
larger GOTS that expands away from the locations of the
black holes. The intermediate GOTSs will merge into one,
forming a “dumb-bell” shaped GOTS. This is pictured in
Fig. 5. We note that the merger of the intermediate GOTSs
creates a new GOTS surrounding the GOTSs centred on the
black holes.
When this second process of evolving GOTSs is com-

pleted, the innermost GOTSs each constitute dynamical GHs
as θð−Þ < 0, while the outer GOTS make up a GH since θð−Þ
is at best nonpositive within the surface. This is depicted in
Fig. 6. The 2D surfaces of this time slice defined by θð−Þ ¼ 0

and θðþÞ ¼ 0 are depicted in 3D in Fig. 7.
After the coalescence of the black holes, the spacetimewill

eventually settle down to a Reissner-Nordstrom-de Sitter
black hole of mass m1 þm2 (which is known to have two
GHs [12]), since W1 → 0 as t → 0− [17].

B. Supercritical case: M = 1.01Mc

In [29] it was shown that two equal mass black holes can
combine when the total mass is above the critical mass,Mc.
In particular, it was shown that for M ¼ 1.01Mc the black
holes will coalesce and that at late times the outer marginal
surface vanishes. Due to the expectation that KT multi-
black-hole solutions with total massM ≥ Mc correspond to
spacetimes with naked singularities and hence should not be
able to merge at any time due to the upper bound on the area
of the resulting single black hole, this suggests that in the
supercritical case the black holes can potentially coalesce as
a new marginal surface temporarily forms around them.
At early times the GOTSs in the supercritical case will

behave in a similar manner to that in the subcritical case,
yielding spherical GOTSs centred on the black holes
contained within a larger GOTS; this is illustrated in
Fig. 8. However, around t ¼ 50t0 the evolution of the
outermost GOTS differs significantly. Unlike the MTT in

FIG. 3. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 18.6t0 (left) and t ¼ t0 (right) with t0 ¼ −0.914=H in the z ¼ 0 plane
for the N ¼ 2 subcritical case.

FIG. 2. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 130t0 (left) and t ¼ 70t0 (right) with t0 ¼ −0.914=H in the z ¼ 0
plane for the N ¼ 2 subcritical case.
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FIG. 5. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ t0=4 (left), t ¼ t0=4.1 (right) with t0 ¼ −0.914=H in the z ¼ 0 plane
for the N ¼ 2 subcritical case.

FIG. 4. The surfaces definedby thevanishingofρ (top-left) and−μ (top-right) in3Dspace, at t ¼ −0.914=H for theN ¼ 2 subcritical case.
Due to scale, the surfaces surrounding the black holes are not visible in the graph ofρ ¼ 0; one of these surfaces defined by ρ ¼ 0 centered on
the black hole location x ¼ −0.1; y ¼ 0; z ¼ 0 is depicted (below). A similar surface is formed around the other black hole location.
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FIG. 7. The surfaces defined by the vanishing of ρ (left) and −μ (right) in 3D space, at t ¼ 10−10t0 for the N ¼ 2 subcritical case.

FIG. 8. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 180t0 (left) and t ¼ 70t0 (right) with t0 ¼ −0.914=H in the z ¼ 0
plane for the N ¼ 2 supercritical case.

FIG. 6. Slices of the zeroes of ρ (black) and −μ (red) at time t0=4.5 (left) and t ¼ 10−10t0 (right) with t0 ¼ −0.914=H in the z ¼ 0
plane for the N ¼ 2 subcritical case.
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the supercritical case, that appears when the black holes
coalesce and vanishes at late times [29], the outermost GH
that forms around the other GHs does not vanish. Instead,
this surface deforms by contracting along the x-axis
towards the origin and exposes the black holes. The inner
GOTSs centred around the black hole masses which exist at
early times, no longer exist after the outer GOTS has been
pulled back. The end state of this process is depicted
in Fig. 9.

V. THE TRIPLE EQUAL MASS KASTOR-
TRASCHEN SOLUTION

For N ¼ 3 we will consider three black holes with
equivalent masses and critical mass Mc ¼ 4, which gives
the corresponding value H ¼ 1=16. In this case, two
of the black holes are placed on the x-axis, and the third
lies on the y-axis in the following manner:

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� cÞ2 þ y2 þ z2
q

; r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðy− cÞ2 þ z2
q

:

ð22Þ

For illustration, we will consider two examples in the
contracting chart where, mi ¼ M=3; i ∈ ½1; 3� and c ¼ 0.1
with M ¼ 0.75Mc and M ¼ 1.5Mc. As in the N ¼ 1 and
N ¼ 2 cases we employ the invariant coframe determined
by the Cartan-Karlhede algorithm, and examine where the
extended Cartan invariants ρ and μ vanish at fixed time
slices. We note that these two examples illustrate the
qualitative features of the spacetimes for the subcritical
case M < 1.5Mc and the supercritical case M ≥ 1.5Mc.

A. Subcritical Case, M = 0.75Mc

The evolution of the GOTSs in the subcritical case of
three black holes is similar to the case of two black holes.
At early times, around each black hole an inner spherical

GOTS forms, while an outer spherical GOTS gradually
grows larger for each black hole. Along the two lines with
equal length of the isosceles triangle formed by the black
holes’ locations, a GOTS forms at the center point of each
line. As the black holes near, the outer spherical GOTSs
merge with the expanding GOTSs lying on the equal length
lines of the isosceles triangle and forms a single outermost
GOTS. This is shown in Fig. 10.
This newly formed outermost GOTS initially does not

intersect the surface defined by θð−Þ ¼ 0, until it begins to
expand outwards and deform. This is depicted in Figs. 11
and 12.
As this outermostGOTSexpands, it deforms into a surface

with spherical topology that then expands outwards to spatial
infinity. During this process, the spherical GOTSs centred on
each black hole remains. This is depicted in Fig. 12.
While the outermost GOTS expands outwards, the inner

GOTSs expand to form a connected surface, and within this
new connected surface new spherical GOTSs form around
each black hole. We note that the connected surface will not
deform, but instead will remain a connected region that
does not intersect with the surface defined by θð−Þ ¼ 0, as
shown in Fig. 13.
At late times there are GOTSs centred around each black

hole, andanouter connectedGOTSsurrounding them,which
does not intersect the surface defined by θð−Þ ¼ 0. These
GOTSs together formdynamicalGHs as they do not intersect
with the surfaces defined by θð−Þ ¼ 0 and therefore must
have θð−Þ < 0 within them. The outermost surfaces defined
by θð−Þ ¼ 0 and θðþÞ ¼ 0, respectively, at t0 ¼ −0.914=H
and t ¼ 10−10t0 are displayed in 3D in Figs. 14 and 15 to
illustrate the fixed nature of these surfaces at late times.

B. Supercritical case M = 1.5Mc

Following the work of [28,29], there was an expectation
that the GHs would behave in a similar manner to the

FIG. 9. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ t0 ¼ −0.914=H (left), t ¼ 10−10t0 (right) in the z ¼ 0 plane for the
N ¼ 2 supercritical case.
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FIG. 11. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 130t0 (left), t ¼ 40t0 (right) with t0 ¼ −0.914=H in the z ¼ 0 plane
for the N ¼ 3 subcritical case.

FIG. 12. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 35t0 (left), t ¼ 25t0 (right) with t0 ¼ −0.914=H in the z ¼ 0 plane
for the N ¼ 3 subcritical case.

FIG. 10. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 1000t0 (left), t ¼ 500t0 (right) with t0 ¼ −0.914=H in the z ¼ 0
plane for the N ¼ 3 subcritical case.
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FIG. 13. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ t0 (left) and t ¼ 10−10t0 (right) with t0 ¼ −0.914=H in the z ¼ 0
plane.

FIG. 14. The surfaces surrounding the 3 black holes defined by the vanishing of ρ (left) and −μ (right) at t0 ¼ −0.914=H viewed from
above.

FIG. 15. The surfaces surrounding the 3 black holes defined by the vanishing of ρ (left) and −μ (right) in 3D space, at t ¼ 10−10t0.
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N ¼ 2 case. Surprisingly, in the case of three black holes in
the KT solutions the behavior is different at late times.
Instead of a strict inequality M < Mc, the total mass of the
three black holes may exceed the critical mass, giving the
upper bound M ≤ 1.5Mc.
As in the N ¼ 2 case, the behavior of the surfaces is

similar to the subcritical case until late times when certain
parts of the connected outer GOTS pull back, exposing two
of the black holes. Unlike the N ¼ 2 case, the exposed
black holes maintain a GOTS centred around each of them.
This behavior is depicted in Figs. 16 and 17. This appears
to be generic behavior for Mc ≤ M ≤ 1.5Mc. While for
M > 1.5Mc, the black holes coalesce temporarily but the
outer GOTS pulls back and removes the inner GOTSs
leaving the black holes exposed.

VI. SUMMARY AND DISCUSSION

In this paper we have utilized the necessary steps of
the Cartan-Karlhede algorithm needed to construct an

invariant coframe and generated curvature invariants that
can be used to determine the geometrical properties of the
Kastor-Traschen multi-black-hole solutions. Using the
invariant null coframe, we have shown that the expansion
scalars, θðþÞ and θð−Þ, of the geometrically preferred out-
going and ingoing null vectors l and n, are extended Cartan
invariants. Due to their geometrical interpretation and their
appearance in the covariant derivatives of the curvature
tensor, we examined where these curvature invariants
vanish and found hypersurfaces which are necessarily
foliation independent, implying that they are GHs. The
existence of GHs bounding the black holes in each of the
examples gives further support to the geometric horizon
conjectures [16,17].
In general, GHs will not be apparent horizons, dynamical

horizons or MTTs. However, for spherically symmetric
dynamical black hole solutions GHs will coincide with the
unique dynamical horizon r ¼ 2M [17,23]. Furthermore, if
a dynamical black hole solution settles down to a dynami-
cal solution where the black hole is no longer interacting

FIG. 16. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 500t0 (left), t ¼ 70t0 (right) with t0 ¼ −0.914=H in the z ¼ 0 plane
for the N ¼ 3 supercritical case.

FIG. 17. Slices of the zeroes of ρ (black) and −μ (red) at time t ¼ 0.25t0 (left) and t ¼ 10−10t0 (right) with t0 ¼ −0.914=H in the
z ¼ 0 plane for the N ¼ 3 supercritical case.
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with the exterior region, then the GHs will coincide with
IHs [1,7]. For example, in the subcritical Kastor-Traschen
solutions which do not contain naked singularities, after the
N black holes have merged the spacetime will eventually
settle down to a type D Reissner-Nordström-de Sitter black
hole with mass M ¼ Σimi, implying that in the quasista-
tionary regime there will be a single GH. This suggests that
by tracking the GHs that arise in a dynamical black hole
solution we can employ one of these hypersurfaces to
determine a smooth, dynamical hypersurface that shields
all other horizons and identifies the region of interest [16,17].
The vanishing of θðþÞ and θð−Þ provide several distinct

hypersurfaces that evolve over time. By studying the sign
difference on either side of the surfaces defined by θð�Þ ¼ 0

it is possible to determine if and when a given hypersurface
is a dynamical GH, which would be expected to evolve into
a dynamical horizon or an IH at later times [6,40]. The
subcritical examples for the N ¼ 2 and N ¼ 3 cases show
that the outermost GH may not be a global dynamical GH
due to the possibility that θð−Þ ≤ 0 (instead of a strict
inequality), but this needs further numerical confirmation.
The GHs that surround the black holes evolve as would

be expected for collapsing black holes. In particular, in the
N ¼ 2 case, the upper bound on the total mass,M, is strict,
where forM ≥ Mc the GH eventually moves away from the
black holes, potentially leaving naked singularities. In the
N ¼ 3 case, we have found that for a total mass M >
1.5Mc an outer GH forms around the black holes, but
eventually recedes leaving some of the black holes
exposed, without any GHs around them.
The goal of the present analysis is to provide motivation

for the use of GHs in the KT solutions by demonstrating that
they behave in a similar manner to the known foliation-
dependent quasilocal horizons with regards to the upper-
bound on the total mass [28,29]. In addition, we have shown
that by choosing an invariant coframe constructed from the
principal null directions of the curvature tensor, thevanishing
of the Cartan invariants ρ and μ on the GHs affect the form of
the covariant derivatives of the curvature tensor in accor-
dance with the geometric horizon conjectures [16,17].

In future work we will examine the surface area,
intrinsic curvature and extrinsic curvature of the surfaces
as they evolve in time in order to study the dynamics of the
GHs surrounding the black holes. We will also explore the
relevance of other extended Cartan invariants in order to
determine analogues for the scalars related to the flux of
energy across the dynamical horizons [1,41,42] which
correspond to the NP coefficients σ and λ relative to the
coframe adapted to the null normal vector fields of the
dynamical horizon. Assuming there are indeed Cartan
invariants that describe the flux of energy across the GHs,
it is of interest to track their evolution in order to study the
rate of area increase for the GHs in a similar manner to
event horizons [43] and dynamical horizons [7,44].
These issues will also be explored for other dynamical

spacetimes such as, e.g., the quasispherical Szekeres
solutions [45], the extreme-mass ratio limit of a binary
black hole merger [46–48] and dynamical solutions con-
formally related to static multi-black-hole solutions, such as
the Majumdar-Papapetrou (MP) solutions [49–51]. In order
to investigate the GH conjectures for numerical solutions
with analytic initial data [52], or numerical black hole
solutions, we must either consider an implementation of a
covariant frame formalism for numerical relativity [53] or
investigate the possibility that the curvature invariants
dictating the expansion of the outgoing and ingoing null
vectors can be expressed in terms of SPIs. Since spacetimes
are I-nondegenerate they are locally characterized by both
their Cartan invariants and the set of SPIs [54] and it is
expected that it is indeed possible to express the Cartan
invariants in terms of SPIs [54,55].
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