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Twisted gravitational waves (TGWs) are nonplanar unidirectional Ricci-flat solutions of general
relativity. Thus far only TGWs of Petrov type II are implicitly known that depend on a solution of a partial
differential equation and have wave fronts with negative Gaussian curvature. A special Petrov type D class
of such solutions that depends on an arbitrary function is explicitly studied in this paper and its Killing
vectors are worked out. Moreover, we concentrate on two solutions of this class, namely, the Harrison
solution and a simpler solution we call the w-metric and determine their Penrose plane-wave limits. The
corresponding transition from a nonplanar TGW to a plane gravitational wave is elucidated.
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I. INTRODUCTION

Two recent papers [1,2] have discussed a class of Ricci-
flat solutions of general relativity (GR) that represent
nonplanar unidirectional gravitational waves with wave
fronts that have negative Gaussian curvature. These twisted
gravitational waves (TGWs) are of type /I in the Petrov
classification and can be represented by the spacetime
interval

P 2
ds? = —W4(d* — dZ?) + a>¥* (g—) dx*+¥72dy*, (1)
X

where a is a positive constant, u := ¢ — z is the retarded null
coordinate and W(u, x) satisfies the partial differential
equation

Y, = o(u). 2)

Here, v is an arbitrary function of u and ¥, := 0¥/0u, etc.
For v =0, the general solution of Eq. (2) is given by
W = uf(x) + h(x), where f(x) and h(x) are arbitrary
functions of x. The resulting special TGWs are of Petrov
type D and contain Harrison’s spacetime [3,4]. These TGWs
of type D are the main focus of the present investigation.
Twisted gravitational waves have nonexpanding rays and
therefore belong to the Kundt class of solutions of GR
[5,6]; for a detailed treatment of the Kundt’s class, see [7,8]
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and the references cited therein. It is therefore possible to put
metric (1) in the standard Kundt form; see, Appendix A of
Ref. [2]. It is likely that TGWs are known in certain other
forms and expressed in other coordinate systems. In par-
ticular, Kinnersley has employed the Newman-Penrose
method to characterize all Ricci-flat solutions of Petrov
type D [9].

We assume throughout that the waves propagate in the
z direction. In (7,z,x,y) coordinates, simple twisted
gravitational waves of type D have a metric of the form

ds® = (uf + h)*(=dr’ + d2°) + o (uf + h)*

df dh\?  , o n
X (u%—ka) dx* + (uf +h)=2dy*,  (3)

which follows from metric (1) with W(u, x) = uf + h. Itis
evident from this form of the metric that passing to a
coordinate system (u, v, x,y), 9, and 0, are Killing vector
fields, where v := t + z is the advanced null coordinate.

Let us first assume that f is not a constant and use
the freedom in the choice of the x coordinate to define
f(x) = X as the new x coordinate and h(x) := XYH(X);
then, metric (3) takes the form

ds> = X*(u+H)*(—dr* +dz*) + 2 X (u+H)*

X +H+Xﬂ 2dX2+;d 2 (4)
" dxX 2+ H2 D

where H is an arbitrary function of X. Next, we define
A3 == X in order to get the final form for the metric, namely,
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ds?> = X*3(u+ H)*(=dt* + dz*) + a3 (u + H)*

dH\2
X (u+H+3X—) dx?* +

dy?,
X e

(5)

where H(X) := H(X) and ay = a/3.

Harrison’s TGW corresponds to the particular case of a
constant magnitude for H. That is, for constant H we define
U=T-Z:=(u+ H)/(5C,), where Cy # 01is aconstant;
then, defining a new advanced null coordinate V =T + Z
via Cyv := V, a new Y coordinate via y/(5C,)*> := Y and
setting a3(5Cy)%/° = 1, we get Harrison’s TGW metric [3]

1
2 _ y4/3 2 2 6/5 1y2 2
ds* = X*3(=dT? + dZ?) + U®dX +sargas

(6)

Thus for H # constant, we have in Eq. (5) a generalization of
Harrison’s TGW spacetime that depends on an arbitrary
function H(X).

Let us next assume that f is in fact a nonzero constant,
namely, f = y # 0. Then, the freedom in the choice of the x
coordinate implies, as before, that we can set i(x) = #x,
where 7 > 0 is a constant such that a’n*> = 1. The TGW
metric (1) in this case has the simple form

ds? = WH(—dP® + dz%) + Wdx> + W2dy?,  (7)

where W = yu + nx. If we now replace x by x + 1/, W
becomes 1 + W; that is, with a simple translation in x, say,
W can be changed into W = 1 4 yu + nx, which is a TGW
on the Minkowski spacetime background. For y =0,
metric (7) reduces to a static Kasner solution [1,2].
Background material in connection with exact gravita-
tional waves in GR can be found in Refs. [7,8] and the
references cited therein. As mentioned before, the simple
type D solutions representing TGWs under consideration
here are all actually known in other contexts. They are in
Kundt’s class of nondiverging solutions discussed in
Sec. 31.5.2 of Ref. [7] and Sec. 18.6 of Ref. [8].
According to Sec. 31.5.2 of Ref. [7], all such vacuum
solutions have four Killing vectors with a corresponding
timelike three-dimensional orbit. The general form of the
metric under consideration in this paper is given by Eq. (3),
which clearly admits 9, and 0, as Killing vector fields. We
find the other two Killing vectors by first studying the
spacetimes associated with Harrison’s TGW and the w-
metric, which is a special case of Eq. (7) with y =n = 1.

II. HARRISON’S TGW

Inspection of Harrison’s solution, which we henceforth
write in the form

ds? = x*3(=dt* + dz?) + uSdx*> + dy*, (8

225
reveals simply that it has null (9, = 9, + 0,) and spacelike
(9,) Killing vector fields that are hypersurface-orthogonal as
well as a homothetic vector field 510, +6x0, +12y0, +520,.

A. Principal null directions

Plane gravitational waves are of type N in the Petrov
classification and have parallel rays such that the four
principal null directions of the Weyl tensor coincide. The
resulting principal null direction is parallel to the null
propagation vector of the wave and is thus normal to the
wave front. With respect to the set of fiducial observers that
are all at rest in space, timelike geodesics in such space-
times generally line up at late times in the direction of wave
propagation with Lorentz factors that asymptotically tend
to infinity. This cosmic jet feature of plane gravitational
waves has been the subject of previous investigations
[10-13].

Simple TGWs are of type D in the Petrov classification
and thus have two repeated principal null directions. For the
Harrison spacetime, these are given by

i=x"230,+0,),

-1 9 1 3x1/3 1 9 1
’_E[WJFW]&_?@”E[%T/S_W}@“

©)

which satisfy the condition ﬁ”fﬂ = —1 and can be consid-
ered to be the two real legs of a null tetrad frame. We note
that 7 is parallel to the direction of wave propagation and
hence normal to the wave front, while 7 is in some oblique
direction with respect to the direction of wave propagation.
Let us now consider geodesics of Harrison’s gravitational
field. Investigations of the asymptotic behavior of timelike
geodesics with respect to fiducial observers that are all at
rest in space indicate that the cosmic-jet property persists
in such simple TGWs that propagate along the z direction,
but the cosmic jet propagates in the (z,x) plane along a
direction that deviates from the direction of wave propa-
gation [1,11]. Thus this TGW of Petrov type D still exhibits
a single characteristic cosmic jet, but it propagates
obliquely with respect to the direction of wave propagation.

B. Two more Killing vectors
In the Harrison metric (8), let us consider the coordinate
transformation (¢, z, x,y) > (v/,w',x’,y"), where
v = 34/3(t _ Z>_]/5,

¥ = 35/351/3

w =5(t+z),
y =313y, (10)

Then, Harrison’s metric takes the form
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x/4 1}/2
ds? :ﬁ(dv’dw'—l-dx’z) +ﬁdy’2. (11)
In terms of the new coordinates, the two known Killing
vectors are k = 0, and ¢ = Jy. Furthermore, the y’ =
constant hypersurfaces are manifestly conformally flat.
The new form of Harrison’s metric (11) is invariant under
the scaling symmetry (v',w',x’,y") — (B, pw, px’, "),
where f# 0 is a constant. This symmetry corresponds
to the existence of a third Killing field n,

n=v0,+wa,+x0y, (12)

which has the squared norm n,n% = v'~5x*(v'w' + x'2).
All metrics in Kundt’s class admit a G4 symmetry group
acting on a 3-dimensional timelike hypersurface, see

Sec. 31.5.2 of Ref. [7]. Therefore, we search for a fourth
Killing vector field m of the form

m= P, w,x,y)k+ QW ,w,x', y)n, (13)

where P and Q should be determined from the Killing
equation

Mo p+ Mgy = 20,m,. (14)
That is,
m, = Pk, + On,,, (15)
where k, and n, are given by

14 14

Ho— / Ho—
K, dx 276 dv’, n,dx PG

div'w' +x7?).  (16)

Substituting Eq. (15) in the Killing Eq. (14) and noting that
k and n satisfy the Killing equation as well, we find

Pk, + Pk, +Q,n,+Q,n, =0. (17)

Writing out the ten components of this equation, we find
that most of the equations simply imply that P is inde-
pendent of y' and Q only depends on v’; furthermore, the
three components (u,v) = (v/, '), (v/,w') and (¢v/, x’) can
then be written as

oP, dQ_ 0P

L
o' dv

dQ oP dQ
aw Va0 T E =0

(18)

respectively. The integrability condition for the first two of
these three equations implies

_ 99
Q_ Ql =0 dUl (19)

or Q=Qy + Q;, where Q, and Q; are integration
constants. It is then straightforward to solve the three
equations and conclude that P = —Qq(v'w' + x?) + P,
where P, is a new integration constant. It follows from
these results that the fourth Killing vector field is given, up
to a constant multiplicative factor, by

m=—(v'w +x?)k + v'n. (20)

Hence, the fourth Killing vector is null and can be
expressed as

m =19, —x?0,y + v'x'0y. (21)

The corresponding Killing 1-forms for the Harrison sol-
ution are thus

x/4

K= 570 dv’,
/4
m= 5 (=x2dv’ + 2v'x'dx' + v"*aw')
14 I 2
_ %a(v wv—:—x >’
14 x/4
i = 5 (Wdv' + v'dw' + 2x'dx") = 7 d(v'w + x?),
1/2
¢= ?d)"- (22)

It is interesting to note that in terms of the original
(t,z,x,y) coordinates, k = 1071(9, + 9,) and ¢ = 371/39,,
while the new Killing vectors are

34/3
n=—(2t-3z)0,+3x0,+ (3t—=22)0.,, m= _WK’
(23)
where K is given by
30x
— [942/3 _ 4519
K = [9x*/° 4+ 25(t — z)*°]0, TEBE 0
+ [9x2/3 = 25(1 — 2)*/°]0,. (24)

Moreover, a 2-dimensional subspace invariant with respect
to all of the Killing vectors is defined by (dF = 0,dy = 0),
where F(t,z,x,y) = (t — z)*°x. Therefore, the gradient
of F is perpendicular to all the Killing vectors.

The two repeated principal null directions of Harrison’s
spacetime are parallel to the two null Killing vector fields;
that is,

107'/2

- 2
=10V 0k D= = o, (25)
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Of the other two Killing vector fields, one is spacelike (,),
while n could be timelike, null or spacelike, since

ngn® = 5(t> — 22)x*3 +9(t — 2)°/°x2. (26)

The four-parameter group of isometries of Harrison’s
spacetime contains a three-parameter subgroup character-
ized by the Killing vectors x, m and n, which are all
perpendicular to the y direction. For (x, m, n), the commu-
tation relations are

[k, m] =0, [k, n] =k, [m,n] = -m. (27)
This is the Lie algebra of the Lorentz group of 2-dimen-
sional Minkowski spacetime. As a 3-dimensional group it
can also be classified as being of Bianchi type V1. We note
that the orbits of these three Killing symmetries form a
collection of timelike 2-dimensional surfaces of (multiple)
transitivity (cf. Ref. [14]).

The timelike geodesics of Harrison’s spacetime have
been studied in Sec. VI of Ref. [11]. The projection of the
4-velocity of a timelike (or null) geodesic on the new
Killing vectors n and m should result in constants of the
motion C, and C,, respectively. A detailed investigation,
based on the results of Ref. [11], reveals that C,, is indeed a
constant, while

310/3
Cn= 1—0110E, (28)

where 7, and E are constants defined in Eqs. (87) and (95)
of Ref. [11].

III. w-METRIC
A special case of metric (7) for y =n =1 is the
w-metric, namely,

w=u-+x.

(29)

ds? =w*(—di* +dz*) +wdx> + w2dy?,

It follows from simple inspection that the spacetime asso-
ciated with the w-metric has one null and two independent
spacelike Killing vector fields that are all hypersurface-
orthogonal and are given by

k=0,=0,+0.,

p=0,+0., o=0, (30

respectively, as well as a homothetic vector field
10, + x0, + 4y0, + z0,. (31)

An alternative interpretation of the w-metric involves
writing the metric in the form

ds? = wH(=dt* + dx?) + w2dy* + wtdz?,
w=t+x-2z, (32)

which is a twisted gravitational wave propagating in the —x
direction. The metric at the wave front, i.e., t + x = constant,
has essentially the same Gaussian curvature as the standard
form of the w-metric. The normal to the wave front is the null
Killing propagation vector k — p = J, — 0,. Both interpre-
tations are equally valid and provide clear justification for the
fact that the cosmiic jet in this case propagates obliquely in the
(z,x) plane [1]. Let us briefly recall here that in a plane-wave
spacetime, the motion of timelike geodesics with respect to a
set of fiducial observers has the cosmic-jet property, namely,
free test particles generally line up in the direction of wave
propagation with Lorentz factors that asymptotically
approach infinity. In TGWs of type D, however, the direction
of the cosmic jet deviates from the direction of wave
propagation. Thus in the present case the cosmic jet direction
deviates from both the z and x directions, as expected.

A. Principal null directions

The two repeated principal null directions of the
w-metric are

_ 1 -1
A= (04+0).  1=—(0,-0). (33)
w w
where, as before, ﬁ”fﬂ = —1, and hence 7 and I can be

considered to be the two real legs of a null tetrad frame. As
in the case of Harrison’s spacetime, these principal null
directions are parallel to the two null Killing vectors of the
w-metric; that is,

I=k-p (9

B. Fourth Killing vector

As in the case of Harrison’s spacetime, we assume that
the fourth Killing vector field g is a linear combination of
k=0,+0, and p = 0, + 0,. Hence,

q=A(t.z.x.y)k+ B(t.z.x,y)p. (35)
where A and B should be determined from Killing’s

equation. Both k and p satisfy the Killing equation;
therefore, we have

A.,ukl/ + A,uky + B,Mpu + B,l/pﬂ =0, (36)
where k, and p, are given in (1,z,x,y) coordinates by

k, =w*(~1,1,0,0),  p,=w*0,1,0,1). (37)
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Most of the ten equations contained in Eq. (36) simply
imply that A is only a function of x and z, while B is
only a function of ¢ and z. The remaining equations may be
written as

oA _0B_0A __0B. 58)
ox 0t 0z 0z

These results simply imply that A = a(x) + e(z) and
B = b(t) — e(z), where a, b and e are all linear functions
of their arguments with the same constant derivative. Thus
the fourth independent Killing vector field is given by
q = Ak 4+ Bp, where

A=x+z, B=t-z (39)

It follows that

q=(x+2)0+(1-2)0:+ (1 +x)0;  (40)

and its square norm is
qaq® = 2w (1 = 2)(1 + x), (41)

so that g could be timelike, null or spacelike.

The four-parameter group of isometries of the w-metric
contains a three-parameter subgroup characterized by the
Killing vectors k, p and ¢, which are all perpendicular to
the y direction. For (k, p, ¢), the commutation relations are

[k, p] =0, [k, q] = k,

[p.q] =2k—p. (42)

This Lie algebra corresponds to the Lorentz group of
2-dimensional Minkowski spacetime, just as in the case of
Harrison’s TGW. As in that case, the corresponding sym-
metry group acts transitively on 2-dimensional timelike
subspaces. In fact, Eq. (42) is related to Eq. (27) in the
Harrisoncaseviak =k, p =k +y;ymand g =n+y,k+y3m,
where y; # 0, y, and y5; are constants.

The projection of the 4-velocity of a timelike (or null)
geodesic on the fourth Killing vector g should produce a
new constant of the motion C,. Indeed, g generates a
constant of the motion for timelike and null geodesics of
the w-metric given by

Cq = C0<I—Z>_C1)(x+z)’ (43)

where Cy and C,, defined in Eq. (69) of Ref. [1], are
constants of the motion due to the existence of the Killing
vector fields p and k, respectively. In fact, C, is a constant
of the motion for 4y =1 =1 in Sec. IV of Ref. [1].

C. Static representation of the w-metric

Let us start with the following form of the w-metric

ds®> = —w*dudv + w*dx> + w2dy?,

u=1t-—z, vi=t+Z, w=t—z+x. (44)

Consider the coordinate transformation

u:_T+’7’
xX=7—-n+w. (45)

(u,v,x,9) = (z,7,w,y),
v==2(t+w),

The w-metric then takes on the static form
ds? = wH(=dz* + dn* + dw?) + w2dy?.  (46)
In these coordinates, the Killing vectors are

0;, 0y 10, + 70, 0y. (47)
The first three of these correspond precisely to the Killing
vectors of a 2-dimensional Minkowski spacetime expressed
in standard coordinates.

Let us now consider the coordinate transformation
(z,n,w,y) > (T,Z,X,Y), 33 =T,

3
¥p=z, L =x

3 3723y =v. (48)

Then, metric (46) reduces to the static type D Kasner metric
ds? = =X*3(dT? — dZ?) + dX* + X~23dYy*.  (49)

The general form of the spacelike Kasner metric is [1]
ds* = =x*P1di? + dx? + x*P2dy? + x*73dz?,  (50)

where p| + p> + p3 = p? + p5 + p3 = 1. In our case, the
w-metric is equivalent to the static Kasner metric with

1

2
P1=P3=73» Pzz—g- (51)

3

IV. TGWS OF TYPE D

The spacetimes that we have investigated thus far,
namely, those corresponding to Harrison’s TGW and the
w-metric, each contain four Killing vector fields of which
two are null and parallel to the repeated principal null
directions of the corresponding Weyl tensor. This leads us
to conjecture that this could be a characteristic feature of all
TGWs of Petrov type D under investigation in this paper.
Let us therefore consider the general form of the metric
given by Eq. (3) and write it in (u, v, x, y) coordinates as
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o¥
§2 = —Pdudv + o*P* (—
Ox

2
> dx* +¥2dy?, (52)
where W(u,x) = uf(x) + h(x). Using the standard algo-
rithm, we find that the two principal null directions are
given in this case by

f(x)

TEEETO R R
where i1, = —1, f'(x) :=df (x)/dx and I’ (x) == dh(x)/dx.
We can compare Eq. (53) with Eq. (9) for the Harrison
TGW spacetime. It turns out, in agreement with our
conjecture, that W2/ is indeed a Killing vector field in
the spacetime given by metric (52).

The null vectors k = J, and M := ¥?1/2,

fx)

MO R0

0., (54)

are geodesic Killing vector fields in the general spacetime
under consideration, while ¢ = d, is a spacelike Killing
vector field. As in Secs. II and III, we now assume that the
fourth Killing vector field N is in the timelike plane
spanned by k and M; hence, we can write

N, =P(u,v,x,y)k, — Q(u,v,x,y)M,. (55)

Here, P and Q can be determined from Killing’s equation,
namely,

Pk, +P k,—Q M, —Q M, =0, (56)

see Egs. (13)—(17). Of the ten relations in Eq. (56), the first
four involving (u,v) = (u,u), (u,v), (u,x) and (u,y)

imply
2 f’+h’)aQ )
(3—7; 2f2 ay =0, (57)

respectively. On the other hand, the other six relations in
Eq. (56) simply imply that Q is only a function of u. It is
then straightforward to see from Eq. (57) that P is
independent of y and is given by

40 ’
P= Tn [zfz( )u—l—v+2a/f hédé’] (58)

Thus the fourth Killing vector is of the form

N= dQ[%‘Z( s ov2a [ fne d:}k Q(u)M
(59)

and depends on an arbitrary function Q(u). If Q(u) is a
constant, then we get back the third Killing vector;
otherwise, we note that in metric (52), we can simply
replace u by Q(u) and the form of the metric remains
invariant. It follows that we can set Q(u) = u with no loss
in generality. The end result is that the three Killing vectors
k, M and

N = |f2(x)u+ v+ 202 /xf(z:)h’(g)dg} k— uM
(60)

are all hypersurface-orthogonal and form a three-parameter
subgroup perpendicular to the y direction. That is, for
(k,M,N) the commutation relations are

[k,M] =0, [k,N] =k, [M,N]=-M, (61)
just as in the cases of Harrison’s TGW spacetime and the
w-metric. Therefore, as before, this Lie algebra corresponds
to the Lorentz group of 2-dimensional Minkowski space-
time. This symmetry subgroup therefore acts transitively on
timelike 2-dimensional subspaces also in this general case
of TGW spacetime of type D. It should be noted that
the isomorphic Lie algebras (27), (42) and (61) can all be
transformed by a linear transformation with constant coef-
ficients to coincide with the Lie algebra of 2-dimensional
Minkowski spacetime in the standard coordinates given
in Eq. (47).

V. PENROSE LIMIT

According to Penrose, near any null geodesic in a
general relativistic spacetime, the spacetime metric takes
the form of a plane gravitational wave in the Penrose limit
[15]. The Penrose limit has been discussed by a number of
authors, see Refs. [16,17] and the references cited therein.

It is interesting to investigate the Penrose limit in the case
of twisted gravitational wave spacetimes. In this limit, the
negative curvature of the wave front turns to zero and the
nonplanar wave front of the TGW becomes plane.

A. Harrison’s TGW

Let us first consider Harrison’s TGW and write metric (8)
in the form

064039-6
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ds*> = —x*Bdudv + uPdx* 4+ x~>Pu?dy?,

u=t—z, vi=t+z, (62)
where we assume henceforth that 0 <x < oo and
—oo < u < oo. We recall that a spacetime singularity
occurs at either x = 0 or u = 0. The null geodesic about
which we take the Penrose limit is

k=0,. (63)
To render metric (62) in a form appropriate for the Penrose
procedure [15], we consider the coordinate transformation
x=¢éf, (64)

(0.3, y) > (W0, Ey).  u=x"*u,

which turns Eq. (62) into

ds?=—du'dv —l—gu’dvdf—&— w3 eX /3 g 4y =23 =%/ 15 gy

(65)

It is now possible to implement the procedure sug-
gested by Penrose [15]. That is, we define new coordinates
(U,V,X,Y) such that

U=u, QV=v QX=¢ QY=y, (66)
where Q is a positive constant. Then metric (65) takes the
form

4
ds? = Q? [—dUdV + 3 QUAVAX + U3 eXX/5 42
+ U—Z/Se—ZQX/Ide2] ) (67)

Let us define the conformally related metric d5> such that

ds* = Q*ds?, (68)
where
4
ds? = —dUdV + 3 QUAVdX + U®/5e29X/5 %2
+ U_Z/Se_ZQX/ISdYZ. (69)

The Penrose limit is obtained by letting Q — 0 in Eq. (69),
namely,

dsS? = limds2. (70)
Q-0
Hence, the Penrose limit of Harrison’s TGW is
ds? = —dudv + U°Pdx?* + U= dy?,  (71)

which represents a linearly polarized plane-wave spacetime
of Petrov type N. Indeed, it is a special case of a class of
Petrov type N gravitational fields that represent plane
waves, namely,

ds* = —dUdV + U*»dX? + U**dY?, (72)
where U=T—-Z7 and V =T + Z are the retarded and
advanced null coordinates, respectively, and

6, + 063 =03+ 03 (73)
Here, o, and o3 are either both positive, or one is positive
and the other is negative; moreover, if either is equal to zero
or unity, this spacetime is flat. For ¢, =3/5 and
o3 = —1/5, we recover the Penrose limit of Harrison’s
TGW spacetime. This limiting metric can be obtained in
another context as well, see the paragraph containing
Eq. (58) in Ref. [1]. A general discussion of metric (72)
is contained in Sec. V of Ref. [11].

Let us next return to metric (69) and note that it is Ricci
flat. We define A and B by

A = gQ2U4/5€_2QX/5, B = %QU—I/Se—%}X/S (74)

and consider an observer in this spacetime with an
orthonormal tetrad system A, given in (U,V,X,Y) coor-
dinates by

lﬂﬁ — (1 - A)au +av - Bax,
My = (14 A)dy — 0y + Boy,
ﬂ}lé — U_3/5€_QX/58X,

My = UV3eX159, (75)
The projection of the spacetime curvature tensor on this
orthonormal tetrad system

Capys = C

paht oA’ p A3 (76)
can be represented by a 6 x 6 matrix W = (W;;), where the
indices I and J range over the set (01, 02, 03, 23, 31, 12).
Thus we can write the measured components of the Weyl

conformal curvature tensor as

E B

B €l 77)

|

where £ and B are symmetric and traceless 3 x 3 matrices.
The nonzero frame components of the electric part of the
Weyl tensor, &5 = Cy;3, are given by
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e — —ZQXQ2 —6/5
it =5 U
2 —s/5 —lax _ 4 3p-4/5 —20x
gizzgéi:—gQU e s —%QU e s,
6 22

8 s
Eis = —— + —— e FXQAUO/5 4 — QA5
2= 052 T a5 MET e
£

35 = =€ — s (78)

Similarly, the nonzero frame components of the magnetic
part of the Weyl tensor, B;;- = C(i;m]., can be expressed as

2 4
Big = Byj = 55 QU e — L Q3 yiiemiex,

6 8
_W + %94(]_2/56_%9)(. (79)

Bss = Bss =

As Q — 0, the surviving elements of the electric and
magnetic parts of the Weyl tensor can be expressed as

6

= I = —
£=Ko. 25U%°

B=-Klg. K(U) (80)

where /g and /g are 3 x 3 matrices defined by

00 0 00 0
Ig=10 1 0], Ig=|0 0 1|, (81)
00 —1 010

and represent the two (“plus” and “cross”) independent
linear polarization states of gravitational radiation.

B. w-Metric
Next, we concentrate on the TGW spacetime given by
the w-metric. Following Penrose, we must first write the w-
metric (29) in an appropriate form. To this end, we start
with
ds®> = —w*dudv + w*dx* +w=2dy?,

u:=t-7z, vi=t+ 2z, w=t—z+x. (82)

As before, the null geodesic about which we take the
Penrose limit is

k=0,. (83)
Consider now the coordinate transformation
(u,v,x,y) = (w,v,x,y), u=w-—x, (84)

which turns Eq. (82) into

ds* = —whdwdv + w*dvdx + whdx® + w2dy?.  (85)

The next step involves the coordinate transformation
/A ! 5 ! 1
(w,v,x,y) > (', 0, x,y), u'=w, v :§1J, (86)

which turns the metric into
ds> = —du'dv' + u'*3(5dv'dx + dx*) + w'=?1dy*.  (87)

This is the appropriate (Penrose) form for the metric.
According to the Penrose procedure, we now introduce
new coordinates

U=1u, Qv =1, QX = x, QY =y, (88)
where Q is a positive constant. The metric then takes the
form

ds* = Q’[-dUdV + U*>(5QdVdX + dX?) + U~2/3dY?].
(89)

Let us now define the conformally related metric d5> such
that

ds*> = Q72ds> = —dUdV + U*>(5QdVdX + dX?)
+ U23dY?. (90)

In d5?, we take the limit as Q — 0. In this way, we find
dS? = —dUdV + U*PdX?* + U=?3dy?,  (91)

which also represents a linearly polarized plane-wave
spacetime of Petrov type N. Indeed, it is a special case
of Egs. (72) and (73) with

1
03 = —g (92)

03 = 5’
This metric also follows from another limiting procedure
involving the w-metric described in the paragraph containing
Eq. (58) of Ref. [1]. However, an error in that paragraph
should be corrected: The Harrison metric reduces to the plane
wave with (6,,03) = (3/5,-1/5), while the w-metric
reduces to (6,,03) = (2/5,-1/5).

Let us now return to Eq. (90) and note that this Q-
dependent metric is Ricci flat as well. It proves useful to
define A’ and B’ via

A = ?QZUMS’

5
B =-Q. 93
. (93)
Now consider an observer in this spacetime with an

orthonormal tetrad system A#, given in (U, V,X,Y) coor-
dinates by
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My = (1-ANdy + 0y — B'Oy,

My =(1+A")0y — 9y + B0y,

M5 = U210y,

My =U'"A0y. (94)

As in Eq. (77), the projection of the Weyl conformal
curvature tensor on this tetrad system can be expressed in
terms of the gravitoelectric, &; = Cy;45, and gravitomag-
netic, ng = C(f)? 05 components of the curvature tensor as
measured by the fiducial observer. We find that the nonzero
gravitoelectric components can be written as

Epp = —2U0785Q2,
6 ] 75
- -6/502 1 2 y-2/504
Es =5t U +5 U :
€33 = =11 — &3 (95)

In a similar way, the nonzero gravitomagnetic components
are given by

6 75
~mE U (96)

Bss = Bys =
It seems worthwhile to use these results to illustrate the
(1 + 1 4 2) decomposition of the Weyl tensor discussed in
detail in Ref. [18] and Appendix A of Ref. [2]. This
involves, in the present case, the decomposition of our
spatial, symmetric and traceless &;; and B;; into scalar,
vector and tensor parts with respect to the unlt spacelike
vector A#;. The tensor part is in fact a projection on the
2-dimensional screen space normal to A#; and 4#5. For the
scalar parts we find

20?

OEZEii:_W’

°B=B;; =0. (97)
The vector parts vanish
=851 +65E37 =0, B =8Bs;+5,B37=0.  (98)

whereas the nonzero tensor parts are given by

1 6 75 _
"Eys = B33 =5 = &3) = e T g U
. . 6 75
'Byy = "Byy = Byy = — 5o+ g UTRQ (99)

Finally, for Q — 0, we find exactly the same results as in
the Harrison case, see Eqgs. (80) and (81). This remarkable
fact can be traced back to the circumstance that for metric
(72), we have

s3(s3 — 1)
K(U) = — (100)
where s3 = —1/5 for both Egs. (71) and (91); in this
connection, see Appendix B of Ref. [11].

VI. DISCUSSION

We have considered the physical properties of Petrov
type D twisted gravitational wave spacetimes in this paper
and investigated, in particular, their Killing vectors. These
spacetimes admit a 4-dimensional symmetry group with a
multiply transitive action on timelike hypersurfaces. The
symmetry group has a 3-dimensional subgroup having a
multiply transitive action on 2-dimensional timelike sur-
faces which are spanned by the two principal null direc-
tions. This symmetry subgroup coincides with the Lorentz
group of 2-dimensional Minkowski spacetime. This group
is type V1 in the Bianchi classification. The fourth Killing
vector (Jy) is spacelike. Furthermore, the Penrose plane-
wave limit of Harrison’s TGW and the w-metric have been
explicitly determined and the corresponding transition of a
TGW of Petrov type D with a nonplanar wave front to a
plane gravitational wave of Petrov type N has been studied
in detail.

ACKNOWLEDGMENTS

D.B. thanks the Italian INFN (Naples) for partial

support.

APPENDIX: SECTIONAL CURVATURE

Let p be a point on the spacetime manifold and u and v
be tangent vectors at p that span a non-null 2-space X at p.
Let X :=u A v; then, the sectional curvature X, (X) is
defined by [19,20]

2,(X) = 1 Ruspo X X7

_ X" = uvY — u ot
2 Xa/,Xa/’

(A1)

In the special case that the 2-space is spacelike, we can
relate this definition to the (1+ 14 2) decomposition
of the Weyl tensor described near the end of Sec. V.
Consider an observer with orthonormal tetrad A#; such
that /5 = 0, Ay = n*, 5 = u* and A#5 = v¥; that is,
X is in the observer’s rest space. Hence we can write
X = €u,60°n°, where €,,,, is the Levi-Civita symbol
with €5755 =1 and X, X" = 2. Inserting these expres-
sions in the definition (A1) leads to a left/right double dual
of the Riemann tensor. For the Ricci-flat case under
consideration in this paper, we have

2,(X) = "C* o0 n°0°n° = *C,,,,, 0 n*0n°,  (A2)
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where an asterisk denotes the duality operation and we
have used the equality of left and right duals of the Weyl
tensor [7]. Furthermore,

1
Z,(X) = “Cpupt'n’0’n = Zeﬂy’“‘e,lx”ngmH”n”H”n”
= —Cpp0'n*0’n?, (A3)
where we have employed the identity
€0 € = —45@55]. (A4)
Finally,
Z,(X) =—-&;y = —E. (A5)

which shows that the gravitoelectric scalar multiplied by —1
is identical to the sectional curvature of the designated
spatial 2-space as defined in the (1 4 1 + 2) decomposition.

For the observer with orthonormal tetrad A#;, let us define

Xop = Mol — Malp, (A06)
then, it is straightforward to show that
L,(Xo1) ==& T,(X;5) =Z,(X55) = Ry (A7)

In Ricci-flat regions of spacetime, we find from Eq. (77) that
Z,(Xp1) = Z,(X53), etc., so that these sectional curvatures
are given by the measured diagonal gravitoelectric compo-
nents of the Weyl tensor multiplied by —1. For the Harrison
TGW spacetime and the w-metric, the gravitoelectric
components of the Weyl tensor as measured by the static
observers that stay at rest in space can be obtained from the
results presented in Sec. II of Ref. [2].

Finally, it is interesting to note that in the case of
Harrison’s TGW  spacetime, X,(X34) calculated with
respect to the orthonormal tetrad frame of the observers
at rest in space, namely,

/1() = x‘2/38,,
/12 = u_3/5ax,

/11 = x_2/38Z,

Ay = x1/3u1/50y, (A8)

turns out to be the Gaussian curvature K ; of the wave front
[1,2]; that is,

4 1

Zﬂ(xéé) =Kg = —§W,

(A9)

where u = u, is the wave front. Similarly, for the w-metric
the corresponding result is [1,2]

(A10)
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