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Twisted gravitational waves (TGWs) are nonplanar unidirectional Ricci-flat solutions of general
relativity. Thus far only TGWs of Petrov type II are implicitly known that depend on a solution of a partial
differential equation and have wave fronts with negative Gaussian curvature. A special Petrov type D class
of such solutions that depends on an arbitrary function is explicitly studied in this paper and its Killing
vectors are worked out. Moreover, we concentrate on two solutions of this class, namely, the Harrison
solution and a simpler solution we call the w-metric and determine their Penrose plane-wave limits. The
corresponding transition from a nonplanar TGW to a plane gravitational wave is elucidated.
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I. INTRODUCTION

Two recent papers [1,2] have discussed a class of Ricci-
flat solutions of general relativity (GR) that represent
nonplanar unidirectional gravitational waves with wave
fronts that have negative Gaussian curvature. These twisted
gravitational waves (TGWs) are of type II in the Petrov
classification and can be represented by the spacetime
interval

ds2¼−Ψ4ðdt2−dz2Þþα2Ψ4

�∂Ψ
∂x

�
2

dx2þΨ−2dy2; ð1Þ

where α is a positive constant, u ≔ t − z is the retarded null
coordinate and Ψðu; xÞ satisfies the partial differential
equation

ΨΨ;uu ¼ υðuÞ: ð2Þ

Here, υ is an arbitrary function of u and Ψ;u ≔ ∂Ψ=∂u, etc.
For υ ¼ 0, the general solution of Eq. (2) is given by
Ψ ¼ ufðxÞ þ hðxÞ, where fðxÞ and hðxÞ are arbitrary
functions of x. The resulting special TGWs are of Petrov
typeD and contain Harrison’s spacetime [3,4]. These TGWs
of type D are the main focus of the present investigation.
Twisted gravitational waves have nonexpanding rays and

therefore belong to the Kundt class of solutions of GR
[5,6]; for a detailed treatment of the Kundt’s class, see [7,8]

and the references cited therein. It is therefore possible to put
metric (1) in the standard Kundt form; see, Appendix A of
Ref. [2]. It is likely that TGWs are known in certain other
forms and expressed in other coordinate systems. In par-
ticular, Kinnersley has employed the Newman-Penrose
method to characterize all Ricci-flat solutions of Petrov
type D [9].
We assume throughout that the waves propagate in the

z direction. In ðt; z; x; yÞ coordinates, simple twisted
gravitational waves of type D have a metric of the form

ds2 ¼ ðuf þ hÞ4ð−dt2 þ dz2Þ þ α2ðuf þ hÞ4

×

�
u
df
dx

þ dh
dx

�
2

dx2 þ ðuf þ hÞ−2dy2; ð3Þ

which follows from metric (1) with Ψðu; xÞ ¼ uf þ h. It is
evident from this form of the metric that passing to a
coordinate system ðu; v; x; yÞ, ∂v and ∂y are Killing vector
fields, where v ≔ tþ z is the advanced null coordinate.
Let us first assume that f is not a constant and use

the freedom in the choice of the x coordinate to define
fðxÞ ≔ X as the new x coordinate and hðxÞ ≔ XHðXÞ;
then, metric (3) takes the form

ds2 ¼X4ðuþHÞ4ð−dt2þdz2Þþα2X4ðuþHÞ4

×

�
uþHþX

dH
dX

�
2

dX2þ 1

X2ðuþHÞ2 dy
2; ð4Þ

where H is an arbitrary function of X . Next, we define
X3 ≔ X in order to get the final form for the metric, namely,
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ds2 ¼ X4=3ðuþHÞ4ð−dt2 þ dz2Þ þ α20ðuþHÞ4

×

�
uþH þ 3X

dH
dX

�
2

dX2 þ 1

X2=3ðuþHÞ2 dy
2;

ð5Þ

where HðXÞ ≔ HðXÞ and α0 ¼ α=3.
Harrison’s TGW corresponds to the particular case of a

constant magnitude for H. That is, for constantH we define
U ¼ T − Z ≔ ðuþHÞ5=ð5C0Þ, whereC0 ≠ 0 is a constant;
then, defining a new advanced null coordinate V ¼ T þ Z
via C0v ≔ V, a new Y coordinate via y=ð5C0Þ2=5 ≔ Y and
setting α20ð5C0Þ6=5 ¼ 1, we get Harrison’s TGW metric [3]

ds2 ¼ X4=3ð−dT2 þ dZ2Þ þ U6=5dX2 þ 1

X2=3U2=5 dY
2:

ð6Þ

Thus forH ≠ constant, we have in Eq. (5) a generalization of
Harrison’s TGW spacetime that depends on an arbitrary
function HðXÞ.
Let us next assume that f is in fact a nonzero constant,

namely, f ¼ χ ≠ 0. Then, the freedom in the choice of the x
coordinate implies, as before, that we can set hðxÞ ¼ ηx,
where η > 0 is a constant such that α2η2 ¼ 1. The TGW
metric (1) in this case has the simple form

ds2 ¼ W4ð−dt2 þ dz2Þ þW4dx2 þW−2dy2; ð7Þ

where W ¼ χuþ ηx. If we now replace x by xþ 1=η, W
becomes 1þW; that is, with a simple translation in x, say,
W can be changed intoW ¼ 1þ χuþ ηx, which is a TGW
on the Minkowski spacetime background. For χ ¼ 0,
metric (7) reduces to a static Kasner solution [1,2].
Background material in connection with exact gravita-

tional waves in GR can be found in Refs. [7,8] and the
references cited therein. As mentioned before, the simple
type D solutions representing TGWs under consideration
here are all actually known in other contexts. They are in
Kundt’s class of nondiverging solutions discussed in
Sec. 31.5.2 of Ref. [7] and Sec. 18.6 of Ref. [8].
According to Sec. 31.5.2 of Ref. [7], all such vacuum
solutions have four Killing vectors with a corresponding
timelike three-dimensional orbit. The general form of the
metric under consideration in this paper is given by Eq. (3),
which clearly admits ∂v and ∂y as Killing vector fields. We
find the other two Killing vectors by first studying the
spacetimes associated with Harrison’s TGW and the w-
metric, which is a special case of Eq. (7) with χ ¼ η ¼ 1.

II. HARRISON’S TGW

Inspection of Harrison’s solution, which we henceforth
write in the form

ds2 ¼ x4=3ð−dt2 þ dz2Þ þ u6=5dx2 þ 1

x2=3u2=5
dy2; ð8Þ

reveals simply that it has null (∂v ¼ ∂t þ ∂z) and spacelike
(∂y) Killing vector fields that are hypersurface-orthogonal as
well as a homothetic vector field5t∂tþ6x∂xþ12y∂yþ5z∂z.

A. Principal null directions

Plane gravitational waves are of type N in the Petrov
classification and have parallel rays such that the four
principal null directions of the Weyl tensor coincide. The
resulting principal null direction is parallel to the null
propagation vector of the wave and is thus normal to the
wave front. With respect to the set of fiducial observers that
are all at rest in space, timelike geodesics in such space-
times generally line up at late times in the direction of wave
propagation with Lorentz factors that asymptotically tend
to infinity. This cosmic jet feature of plane gravitational
waves has been the subject of previous investigations
[10–13].
Simple TGWs are of type D in the Petrov classification

and thus have two repeated principal null directions. For the
Harrison spacetime, these are given by

n̄ ¼ x−2=3ð∂t þ ∂zÞ;

l̄ ¼ 1

2

�
9

25u4=5
þ 1

x2=3

�
∂t −

3x1=3

5u
∂x þ

1

2

�
9

25u4=5
−

1

x2=3

�
∂z;

ð9Þ

which satisfy the condition n̄μl̄μ ¼ −1 and can be consid-
ered to be the two real legs of a null tetrad frame. We note
that n̄ is parallel to the direction of wave propagation and
hence normal to the wave front, while l̄ is in some oblique
direction with respect to the direction of wave propagation.
Let us now consider geodesics of Harrison’s gravitational
field. Investigations of the asymptotic behavior of timelike
geodesics with respect to fiducial observers that are all at
rest in space indicate that the cosmic-jet property persists
in such simple TGWs that propagate along the z direction,
but the cosmic jet propagates in the ðz; xÞ plane along a
direction that deviates from the direction of wave propa-
gation [1,11]. Thus this TGWof Petrov typeD still exhibits
a single characteristic cosmic jet, but it propagates
obliquely with respect to the direction of wave propagation.

B. Two more Killing vectors

In the Harrison metric (8), let us consider the coordinate
transformation ðt; z; x; yÞ ↦ ðv0; w0; x0; y0Þ, where

v0 ¼ 34=3ðt − zÞ−1=5; w0 ¼ 5ðtþ zÞ;
x0 ¼ 35=3x1=3; y0 ¼ 31=3y: ð10Þ

Then, Harrison’s metric takes the form
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ds2 ¼ x04

v06
ðdv0dw0 þ dx02Þ þ v02

x02
dy02: ð11Þ

In terms of the new coordinates, the two known Killing
vectors are κ ¼ ∂w0 and ς ¼ ∂y0 . Furthermore, the y0 ¼
constant hypersurfaces are manifestly conformally flat.
The new form of Harrison’s metric (11) is invariant under

the scaling symmetry ðv0; w0; x0; y0Þ ↦ ðβv0; βw0; βx0; y0Þ,
where β ≠ 0 is a constant. This symmetry corresponds
to the existence of a third Killing field n,

n ¼ v0∂v0 þ w0∂w0 þ x0∂x0 ; ð12Þ

which has the squared norm nαnα ¼ v0−6x04ðv0w0 þ x02Þ.
All metrics in Kundt’s class admit a G4 symmetry group

acting on a 3-dimensional timelike hypersurface, see
Sec. 31.5.2 of Ref. [7]. Therefore, we search for a fourth
Killing vector field m of the form

m ¼ Pðv0; w0; x0; y0Þκ þQðv0; w0; x0; y0Þn; ð13Þ

where P and Q should be determined from the Killing
equation

mα;β þmβ;α ¼ 2Γμ
αβmμ: ð14Þ

That is,

mμ ¼ Pκμ þQnμ; ð15Þ

where κμ and nμ are given by

κμdxμ ¼
x04

2v06
dv0; nμdxμ ¼

x04

2v06
dðv0w0 þ x02Þ: ð16Þ

Substituting Eq. (15) in the Killing Eq. (14) and noting that
κ and n satisfy the Killing equation as well, we find

P;μκν þ P;νκμ þQ;μnν þQ;νnμ ¼ 0: ð17Þ

Writing out the ten components of this equation, we find
that most of the equations simply imply that P is inde-
pendent of y0 and Q only depends on v0; furthermore, the
three components ðμ; νÞ ¼ ðv0; v0Þ, ðv0; w0Þ and ðv0; x0Þ can
then be written as

∂P
∂v0 þw0dQ

dv0
¼ 0;

∂P
∂w0 þv0

dQ
dv0

¼ 0;
∂P
∂x0 þ 2x0

dQ
dv0

¼ 0;

ð18Þ

respectively. The integrability condition for the first two of
these three equations implies

Q −Q1 ¼ v0
dQ
dv0

ð19Þ

or Q ¼ Q0v0 þQ1, where Q0 and Q1 are integration
constants. It is then straightforward to solve the three
equations and conclude that P ¼ −Q0ðv0w0 þ x02Þ þ P0,
where P0 is a new integration constant. It follows from
these results that the fourth Killing vector field is given, up
to a constant multiplicative factor, by

m ¼ −ðv0w0 þ x02Þκ þ v0n: ð20Þ

Hence, the fourth Killing vector is null and can be
expressed as

m ¼ v02∂v0 − x02∂w0 þ v0x0∂x0 : ð21Þ

The corresponding Killing 1-forms for the Harrison sol-
ution are thus

κ̃ ¼ x04

2v06
dv0;

m̃ ¼ x04

2v06
ð−x02dv0 þ 2v0x0dx0 þ v02dw0Þ

¼ x04

2v04
d

�
v0w0 þ x02

v0

�
;

ñ ¼ x04

2v06
ðw0dv0 þ v0dw0 þ 2x0dx0Þ ¼ x04

2v06
dðv0w0 þ x02Þ;

ς̃ ¼ v02

x02
dy0: ð22Þ

It is interesting to note that in terms of the original
ðt; z; x; yÞ coordinates, κ ¼ 10−1ð∂t þ ∂zÞ and ς ¼ 3−1=3∂y,
while the new Killing vectors are

n¼−ð2t−3zÞ∂tþ3x∂xþð3t−2zÞ∂z; m¼−
34=3

10
K;

ð23Þ

where K is given by

K ¼ ½9x2=3 þ 25ðt − zÞ4=5�∂t −
30x

ðt − zÞ1=5 ∂x

þ ½9x2=3 − 25ðt − zÞ4=5�∂z: ð24Þ

Moreover, a 2-dimensional subspace invariant with respect
to all of the Killing vectors is defined by ðdF ¼ 0; dy ¼ 0Þ,
where Fðt; z; x; yÞ ¼ ðt − zÞ3=5x. Therefore, the gradient
of F is perpendicular to all the Killing vectors.
The two repeated principal null directions of Harrison’s

spacetime are parallel to the two null Killing vector fields;
that is,

n̄ ¼ 10
ffiffiffi
2

p
x−2=3k; l̄ ¼ −

10−1
ffiffiffi
2

p

34=3
x−2=3u−4=5m: ð25Þ
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Of the other two Killing vector fields, one is spacelike (∂y),
while n could be timelike, null or spacelike, since

nαnα ¼ 5ðt2 − z2Þx4=3 þ 9ðt − zÞ6=5x2: ð26Þ

The four-parameter group of isometries of Harrison’s
spacetime contains a three-parameter subgroup character-
ized by the Killing vectors κ, m and n, which are all
perpendicular to the y direction. For ðκ; m; nÞ, the commu-
tation relations are

½κ; m� ¼ 0; ½κ; n� ¼ κ; ½m; n� ¼ −m: ð27Þ

This is the Lie algebra of the Lorentz group of 2-dimen-
sional Minkowski spacetime. As a 3-dimensional group it
can also be classified as being of Bianchi type VI0. We note
that the orbits of these three Killing symmetries form a
collection of timelike 2-dimensional surfaces of (multiple)
transitivity (cf. Ref. [14]).
The timelike geodesics of Harrison’s spacetime have

been studied in Sec. VI of Ref. [11]. The projection of the
4-velocity of a timelike (or null) geodesic on the new
Killing vectors n and m should result in constants of the
motion Cn and Cm, respectively. A detailed investigation,
based on the results of Ref. [11], reveals that Cn is indeed a
constant, while

Cm ¼ 310=3

10
η0E; ð28Þ

where η0 and E are constants defined in Eqs. (87) and (95)
of Ref. [11].

III. w-METRIC

A special case of metric (7) for χ ¼ η ¼ 1 is the
w-metric, namely,

ds2¼w4ð−dt2þdz2Þþw4dx2þw−2dy2; w¼ uþx:

ð29Þ

It follows from simple inspection that the spacetime asso-
ciated with the w-metric has one null and two independent
spacelike Killing vector fields that are all hypersurface-
orthogonal and are given by

k ¼ ∂v ¼ ∂t þ ∂z; p ¼ ∂x þ ∂z; σ ¼ ∂y; ð30Þ

respectively, as well as a homothetic vector field

t∂t þ x∂x þ 4y∂y þ z∂z: ð31Þ

An alternative interpretation of the w-metric involves
writing the metric in the form

ds2 ¼ w4ð−dt2 þ dx2Þ þ w−2dy2 þ w4dz2;

w ¼ tþ x − z; ð32Þ

which is a twisted gravitational wave propagating in the −x
direction. Themetric at thewave front, i.e., tþ x ¼ constant,
has essentially the same Gaussian curvature as the standard
form of thew-metric. The normal to thewave front is the null
Killing propagation vector k − p ¼ ∂t − ∂x. Both interpre-
tations are equally valid and provide clear justification for the
fact that the cosmic jet in this case propagates obliquely in the
ðz; xÞ plane [1]. Let us briefly recall here that in a plane-wave
spacetime, the motion of timelike geodesics with respect to a
set of fiducial observers has the cosmic-jet property, namely,
free test particles generally line up in the direction of wave
propagation with Lorentz factors that asymptotically
approach infinity. In TGWs of typeD, however, the direction
of the cosmic jet deviates from the direction of wave
propagation. Thus in the present case the cosmic jet direction
deviates from both the z and x directions, as expected.

A. Principal null directions

The two repeated principal null directions of the
w-metric are

n̄ ¼ 1

w2
ð∂t þ ∂zÞ; l̄ ¼ 1

w2
ð∂t − ∂xÞ; ð33Þ

where, as before, n̄μl̄μ ¼ −1, and hence n̄ and l̄ can be
considered to be the two real legs of a null tetrad frame. As
in the case of Harrison’s spacetime, these principal null
directions are parallel to the two null Killing vectors of the
w-metric; that is,

n̄ ¼ 1

w2
k; l̄ ¼ 1

w2
ðk − pÞ: ð34Þ

B. Fourth Killing vector

As in the case of Harrison’s spacetime, we assume that
the fourth Killing vector field q is a linear combination of
k ¼ ∂t þ ∂z and p ¼ ∂x þ ∂z. Hence,

q ¼ Aðt; z; x; yÞkþ Bðt; z; x; yÞp; ð35Þ

where A and B should be determined from Killing’s
equation. Both k and p satisfy the Killing equation;
therefore, we have

A;μkν þ A;νkμ þ B;μpν þ B;νpμ ¼ 0; ð36Þ

where kμ and pμ are given in ðt; z; x; yÞ coordinates by

kμ ¼ w4ð−1; 1; 0; 0Þ; pμ ¼ w4ð0; 1; 0; 1Þ: ð37Þ
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Most of the ten equations contained in Eq. (36) simply
imply that A is only a function of x and z, while B is
only a function of t and z. The remaining equations may be
written as

∂A
∂x ¼ ∂B

∂t ¼ ∂A
∂z ¼ −

∂B
∂z : ð38Þ

These results simply imply that A ¼ aðxÞ þ eðzÞ and
B ¼ bðtÞ − eðzÞ, where a, b and e are all linear functions
of their arguments with the same constant derivative. Thus
the fourth independent Killing vector field is given by
q ¼ Akþ Bp, where

A ¼ xþ z; B ¼ t − z: ð39Þ

It follows that

q ¼ ðxþ zÞ∂t þ ðt − zÞ∂x þ ðtþ xÞ∂z ð40Þ

and its square norm is

qαqα ¼ 2w4ðt − zÞðtþ xÞ; ð41Þ

so that q could be timelike, null or spacelike.
The four-parameter group of isometries of the w-metric

contains a three-parameter subgroup characterized by the
Killing vectors k, p and q, which are all perpendicular to
the y direction. For ðk; p; qÞ, the commutation relations are

½k; p� ¼ 0; ½k; q� ¼ k; ½p; q� ¼ 2k − p: ð42Þ

This Lie algebra corresponds to the Lorentz group of
2-dimensional Minkowski spacetime, just as in the case of
Harrison’s TGW. As in that case, the corresponding sym-
metry group acts transitively on 2-dimensional timelike
subspaces. In fact, Eq. (42) is related to Eq. (27) in the
Harrison case via k¼ κ,p¼ κþ γ1m and q¼ nþ γ2κþ γ3m,
where γ1 ≠ 0, γ2 and γ3 are constants.
The projection of the 4-velocity of a timelike (or null)

geodesic on the fourth Killing vector q should produce a
new constant of the motion Cq. Indeed, q generates a
constant of the motion for timelike and null geodesics of
the w-metric given by

Cq ¼ C0ðt − zÞ − Cvðxþ zÞ; ð43Þ

where C0 and Cv, defined in Eq. (69) of Ref. [1], are
constants of the motion due to the existence of the Killing
vector fields p and k, respectively. In fact, Cq is a constant
of the motion for λ0 ¼ λ ¼ 1 in Sec. IV of Ref. [1].

C. Static representation of the w-metric

Let us start with the following form of the w-metric

ds2 ¼ −w4dudvþ w4dx2 þ w−2dy2;

u ≔ t − z; v ≔ tþ z; w ¼ t − zþ x: ð44Þ

Consider the coordinate transformation

ðu; v; x; yÞ ↦ ðτ; η; w; yÞ; u ¼ −τ þ η;

v ¼ −2ðτ þ wÞ; x ¼ τ − ηþ w: ð45Þ

The w-metric then takes on the static form

ds2 ¼ w4ð−dτ2 þ dη2 þ dw2Þ þ w−2dy2: ð46Þ

In these coordinates, the Killing vectors are

∂τ; ∂η; η∂τ þ τ∂η; ∂y: ð47Þ

The first three of these correspond precisely to the Killing
vectors of a 2-dimensional Minkowski spacetime expressed
in standard coordinates.
Let us now consider the coordinate transformation

ðτ; η; w; yÞ ↦ ðT; Z; X; YÞ; 34=3τ ¼ T;

34=3η ¼ Z;
w3

3
¼ X; 3−2=3y ¼ Y: ð48Þ

Then, metric (46) reduces to the static typeDKasner metric

ds2 ¼ −X4=3ðdT2 − dZ2Þ þ dX2 þ X−2=3dY2: ð49Þ

The general form of the spacelike Kasner metric is [1]

ds2 ¼ −x2p1dt2 þ dx2 þ x2p2dy2 þ x2p3dz2; ð50Þ

where p1 þ p2 þ p3 ¼ p2
1 þ p2

2 þ p2
3 ¼ 1. In our case, the

w-metric is equivalent to the static Kasner metric with

p1 ¼ p3 ¼
2

3
; p2 ¼ −

1

3
: ð51Þ

IV. TGWS OF TYPE D

The spacetimes that we have investigated thus far,
namely, those corresponding to Harrison’s TGW and the
w-metric, each contain four Killing vector fields of which
two are null and parallel to the repeated principal null
directions of the corresponding Weyl tensor. This leads us
to conjecture that this could be a characteristic feature of all
TGWs of Petrov type D under investigation in this paper.
Let us therefore consider the general form of the metric
given by Eq. (3) and write it in ðu; v; x; yÞ coordinates as
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ds2 ¼ −Ψ4dudvþ α2Ψ4

�∂Ψ
∂x

�
2

dx2 þΨ−2dy2; ð52Þ

where Ψðu; xÞ ¼ ufðxÞ þ hðxÞ. Using the standard algo-
rithm, we find that the two principal null directions are
given in this case by

n̄ ¼ Ψ−2∂v;

l̄ ¼ 2Ψ−2
�
∂u þ α2f2ðxÞ∂v −

fðxÞ
uf0ðxÞ þ h0ðxÞ ∂x

�
; ð53Þ

where n̄μl̄μ ¼−1, f0ðxÞ≔ dfðxÞ=dx and h0ðxÞ≔ dhðxÞ=dx.
We can compare Eq. (53) with Eq. (9) for the Harrison
TGW spacetime. It turns out, in agreement with our
conjecture, that Ψ2l̄ is indeed a Killing vector field in
the spacetime given by metric (52).
The null vectors k ¼ ∂v and M ≔ Ψ2 l̄=2,

M ¼ ∂u þ α2f2ðxÞ∂v −
fðxÞ

uf0ðxÞ þ h0ðxÞ ∂x; ð54Þ

are geodesic Killing vector fields in the general spacetime
under consideration, while σ ¼ ∂y is a spacelike Killing
vector field. As in Secs. II and III, we now assume that the
fourth Killing vector field N is in the timelike plane
spanned by k and M; hence, we can write

Nμ ¼ Pðu; v; x; yÞkμ −Qðu; v; x; yÞMμ: ð55Þ

Here, P and Q can be determined from Killing’s equation,
namely,

P;μkν þ P;νkμ −Q;μMν −Q;νMμ ¼ 0; ð56Þ

see Eqs. (13)–(17). Of the ten relations in Eq. (56), the first
four involving ðμ; νÞ ¼ ðu; uÞ; ðu; vÞ; ðu; xÞ and ðu; yÞ
imply

∂P
∂u − α2f2

∂Q
∂u ¼ 0;

∂P
∂v −

∂Q
∂u − α2f2

∂Q
∂v ¼ 0;

∂P
∂x − 2α2fðuf0 þ h0Þ ∂Q∂u − α2f2

∂Q
∂v ¼ 0;

∂P
∂y − α2f2

∂Q
∂y ¼ 0; ð57Þ

respectively. On the other hand, the other six relations in
Eq. (56) simply imply that Q is only a function of u. It is
then straightforward to see from Eq. (57) that P is
independent of y and is given by

P ¼ dQ
du

�
α2f2ðxÞuþ vþ 2α2

Z
x
fðξÞh0ðξÞdξ

�
: ð58Þ

Thus the fourth Killing vector is of the form

N¼ dQ
du

�
α2f2ðxÞuþvþ2α2

Z
x
fðξÞh0ðξÞdξ

�
k−QðuÞM

ð59Þ

and depends on an arbitrary function QðuÞ. If QðuÞ is a
constant, then we get back the third Killing vector;
otherwise, we note that in metric (52), we can simply
replace u by QðuÞ and the form of the metric remains
invariant. It follows that we can set QðuÞ ¼ u with no loss
in generality. The end result is that the three Killing vectors
k, M and

N ¼
�
α2f2ðxÞuþ vþ 2α2

Z
x
fðξÞh0ðξÞdξ

�
k − uM

ð60Þ

are all hypersurface-orthogonal and form a three-parameter
subgroup perpendicular to the y direction. That is, for
ðk;M;NÞ the commutation relations are

½k;M� ¼ 0; ½k; N� ¼ k; ½M;N� ¼ −M; ð61Þ

just as in the cases of Harrison’s TGW spacetime and the
w-metric. Therefore, as before, this Lie algebra corresponds
to the Lorentz group of 2-dimensional Minkowski space-
time. This symmetry subgroup therefore acts transitively on
timelike 2-dimensional subspaces also in this general case
of TGW spacetime of type D. It should be noted that
the isomorphic Lie algebras (27), (42) and (61) can all be
transformed by a linear transformation with constant coef-
ficients to coincide with the Lie algebra of 2-dimensional
Minkowski spacetime in the standard coordinates given
in Eq. (47).

V. PENROSE LIMIT

According to Penrose, near any null geodesic in a
general relativistic spacetime, the spacetime metric takes
the form of a plane gravitational wave in the Penrose limit
[15]. The Penrose limit has been discussed by a number of
authors, see Refs. [16,17] and the references cited therein.
It is interesting to investigate the Penrose limit in the case

of twisted gravitational wave spacetimes. In this limit, the
negative curvature of the wave front turns to zero and the
nonplanar wave front of the TGW becomes plane.

A. Harrison’s TGW

Let us first consider Harrison’s TGWand write metric (8)
in the form
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ds2 ¼ −x4=3dudvþ u6=5dx2 þ x−2=3u−2=5dy2;

u ≔ t − z; v ≔ tþ z; ð62Þ

where we assume henceforth that 0 ≤ x < ∞ and
−∞ < u < ∞. We recall that a spacetime singularity
occurs at either x ¼ 0 or u ¼ 0. The null geodesic about
which we take the Penrose limit is

k ¼ ∂v: ð63Þ

To render metric (62) in a form appropriate for the Penrose
procedure [15], we consider the coordinate transformation

ðu;v;x;yÞ↦ ðu0;v;ξ;yÞ; u¼ x−4=3u0; x¼ eξ; ð64Þ

which turns Eq. (62) into

ds2¼−du0dvþ4

3
u0dvdξþu06=5e2ξ=5dξ2þu0−2=5e−2ξ=15dy2:

ð65Þ

It is now possible to implement the procedure sug-
gested by Penrose [15]. That is, we define new coordinates
ðU;V; X; YÞ such that

U ¼ u0; Ω2V ¼ v; ΩX ¼ ξ; ΩY ¼ y; ð66Þ

where Ω is a positive constant. Then metric (65) takes the
form

ds2 ¼ Ω2

�
−dUdV þ 4

3
ΩUdVdX þ U6=5e2ΩX=5dX2

þU−2=5e−2ΩX=15dY2

�
: ð67Þ

Let us define the conformally related metric ds̄2 such that

ds2 ¼ Ω2ds̄2; ð68Þ

where

ds̄2 ¼ −dUdV þ 4

3
ΩUdVdX þ U6=5e2ΩX=5dX2

þU−2=5e−2ΩX=15dY2: ð69Þ

The Penrose limit is obtained by letting Ω → 0 in Eq. (69),
namely,

dS2 ¼ lim
Ω→0

ds̄2: ð70Þ

Hence, the Penrose limit of Harrison’s TGW is

dS2 ¼ −dUdV þ U6=5dX2 þU−2=5dY2; ð71Þ

which represents a linearly polarized plane-wave spacetime
of Petrov type N. Indeed, it is a special case of a class of
Petrov type N gravitational fields that represent plane
waves, namely,

ds2 ¼ −dUdV þU2σ2dX2 þU2σ3dY2; ð72Þ

where U ¼ T − Z and V ¼ T þ Z are the retarded and
advanced null coordinates, respectively, and

σ2 þ σ3 ¼ σ22 þ σ23: ð73Þ

Here, σ2 and σ3 are either both positive, or one is positive
and the other is negative; moreover, if either is equal to zero
or unity, this spacetime is flat. For σ2 ¼ 3=5 and
σ3 ¼ −1=5, we recover the Penrose limit of Harrison’s
TGW spacetime. This limiting metric can be obtained in
another context as well, see the paragraph containing
Eq. (58) in Ref. [1]. A general discussion of metric (72)
is contained in Sec. V of Ref. [11].
Let us next return to metric (69) and note that it is Ricci

flat. We define A and B by

A ¼ 4

9
Ω2U4=5e−2ΩX=5; B ¼ 2

3
ΩU−1=5e−2ΩX=5 ð74Þ

and consider an observer in this spacetime with an
orthonormal tetrad system λμα̂ given in ðU;V; X; YÞ coor-
dinates by

λμ0̂ ¼ ð1 − AÞ∂U þ ∂V − B∂X;

λμ1̂ ¼ ð1þ AÞ∂U − ∂V þ B∂X;

λμ2̂ ¼ U−3=5e−ΩX=5∂X;

λμ3̂ ¼ U1=5eΩX=15∂Y: ð75Þ

The projection of the spacetime curvature tensor on this
orthonormal tetrad system

Cα̂ β̂ γ̂ δ̂ ¼ Cμνρσλ
μ
α̂λ

ν
β̂λ

ρ
γ̂λ

σ
δ̂ ð76Þ

can be represented by a 6 × 6matrixW ¼ ðWIJÞ, where the
indices I and J range over the set (01, 02, 03, 23, 31, 12).
Thus we can write the measured components of the Weyl
conformal curvature tensor as

W ¼
�
E B

B −E
�
; ð77Þ

where E and B are symmetric and traceless 3 × 3 matrices.
The nonzero frame components of the electric part of the

Weyl tensor, E î ĵ ¼ C0̂ î 0̂ ĵ, are given by
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E1̂ 1̂ ¼ −
44

225
e−

2
5
ΩXΩ2U−6=5;

E1̂ 2̂ ¼ E2̂ 1̂ ¼ −
2

25
ΩU−8=5e−

1
5
ΩX −

4

75
Ω3U−4=5e−

3
5
ΩX;

E2̂ 2̂ ¼
6

25U2
þ 22

225
e−

2
5
ΩXΩ2U−6=5 þ 8

75
Ω4U−2=5e−

4
5
ΩX;

E3̂ 3̂ ¼ −E1̂ 1̂ − E2̂ 2̂: ð78Þ

Similarly, the nonzero frame components of the magnetic
part of the Weyl tensor, Bî ĵ ¼ C�

0̂ î 0̂ ĵ
, can be expressed as

B1̂ 3̂ ¼ B3̂ 1̂ ¼
2

25
ΩU−8=5e−

1
5
ΩX −

4

75
Ω3U−4=5e−

3
5
ΩX;

B2̂ 3̂ ¼ B3̂ 2̂ ¼ −
6

25U2
þ 8

75
Ω4U−2=5e−

4
5
ΩX: ð79Þ

As Ω → 0, the surviving elements of the electric and
magnetic parts of the Weyl tensor can be expressed as

E ¼ KI⊕; B ¼ −KI⊗; KðUÞ ¼ 6

25U2
; ð80Þ

where I⊕ and I⊗ are 3 × 3 matrices defined by

I⊕ ≔

2
64
0 0 0

0 1 0

0 0 −1

3
75; I⊗ ≔

2
64
0 0 0

0 0 1

0 1 0

3
75; ð81Þ

and represent the two (“plus” and “cross”) independent
linear polarization states of gravitational radiation.

B. w-Metric

Next, we concentrate on the TGW spacetime given by
the w-metric. Following Penrose, we must first write the w-
metric (29) in an appropriate form. To this end, we start
with

ds2 ¼ −w4dudvþ w4dx2 þ w−2dy2;

u ≔ t − z; v ≔ tþ z; w ¼ t − zþ x: ð82Þ

As before, the null geodesic about which we take the
Penrose limit is

k ¼ ∂v: ð83Þ

Consider now the coordinate transformation

ðu; v; x; yÞ ↦ ðw; v; x; yÞ; u ¼ w − x; ð84Þ

which turns Eq. (82) into

ds2 ¼ −w4dwdvþ w4dvdxþ w4dx2 þ w−2dy2: ð85Þ

The next step involves the coordinate transformation

ðw;v;x;yÞ↦ ðu0; v0; x;yÞ; u0 ¼w5; v0 ¼ 1

5
v; ð86Þ

which turns the metric into

ds2 ¼ −du0dv0 þ u04=5ð5dv0dxþ dx2Þ þ u0−2=5dy2: ð87Þ

This is the appropriate (Penrose) form for the metric.
According to the Penrose procedure, we now introduce
new coordinates

U ¼ u0; Ω2V ¼ v0; ΩX ¼ x; ΩY ¼ y; ð88Þ

where Ω is a positive constant. The metric then takes the
form

ds2 ¼ Ω2½−dUdV þU4=5ð5ΩdVdX þ dX2Þ þU−2=5dY2�:
ð89Þ

Let us now define the conformally related metric ds̄2 such
that

ds̄2 ¼ Ω−2ds2 ¼ −dUdV þ U4=5ð5ΩdVdX þ dX2Þ
þU−2=5dY2: ð90Þ

In ds̄2, we take the limit as Ω → 0. In this way, we find

dS2 ¼ −dUdV þU4=5dX2 þU−2=5dY2; ð91Þ

which also represents a linearly polarized plane-wave
spacetime of Petrov type N. Indeed, it is a special case
of Eqs. (72) and (73) with

σ2 ¼
2

5
; σ3 ¼ −

1

5
: ð92Þ

This metric also follows from another limiting procedure
involving thew-metric described in the paragraph containing
Eq. (58) of Ref. [1]. However, an error in that paragraph
should be corrected: TheHarrisonmetric reduces to the plane
wave with ðσ2; σ3Þ ¼ ð3=5;−1=5Þ, while the w-metric
reduces to ðσ2; σ3Þ ¼ ð2=5;−1=5Þ.
Let us now return to Eq. (90) and note that this Ω-

dependent metric is Ricci flat as well. It proves useful to
define A0 and B0 via

A0 ¼ 25

4
Ω2U4=5; B0 ¼ 5

2
Ω: ð93Þ

Now consider an observer in this spacetime with an
orthonormal tetrad system λμα̂ given in ðU;V; X; YÞ coor-
dinates by
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λμ0̂ ¼ ð1 − A0Þ∂U þ ∂V − B0∂X;

λμ1̂ ¼ ð1þ A0Þ∂U − ∂V þ B0∂X;

λμ2̂ ¼ U−2=5∂X;

λμ3̂ ¼ U1=5∂Y: ð94Þ

As in Eq. (77), the projection of the Weyl conformal
curvature tensor on this tetrad system can be expressed in
terms of the gravitoelectric, E î ĵ ¼ C0̂ î 0̂ ĵ, and gravitomag-
netic, Bî ĵ ¼ C�

0̂ î 0̂ ĵ
, components of the curvature tensor as

measured by the fiducial observer. We find that the nonzero
gravitoelectric components can be written as

E1̂ 1̂ ¼ −2U−6=5Ω2;

E2̂ 2̂ ¼
6

25U2
þ U−6=5Ω2 þ 75

8
U−2=5Ω4;

E3̂ 3̂ ¼ −E1̂ 1̂ − E2̂ 2̂: ð95Þ

In a similar way, the nonzero gravitomagnetic components
are given by

B2̂ 3̂ ¼ B3̂ 2̂ ¼ −
6

25U2
þ 75

8
U−2=5Ω4: ð96Þ

It seems worthwhile to use these results to illustrate the
(1þ 1þ 2) decomposition of the Weyl tensor discussed in
detail in Ref. [18] and Appendix A of Ref. [2]. This
involves, in the present case, the decomposition of our
spatial, symmetric and traceless E î ĵ and Bî ĵ into scalar,
vector and tensor parts with respect to the unit spacelike
vector λμ1̂. The tensor part is in fact a projection on the
2-dimensional screen space normal to λμ0̂ and λμ1̂. For the
scalar parts we find

∘E ¼ E1̂ 1̂ ¼ −
2Ω2

U6=5 ;
∘B ¼ B1̂ 1̂ ¼ 0: ð97Þ

The vector parts vanish

†Eî¼δi2E2̂ 1̂þδi3E3̂ 1̂¼0; †Bî¼δi2B2̂ 1̂þδi3B3̂ 1̂¼0; ð98Þ

whereas the nonzero tensor parts are given by

‡E2̂ 2̂ ¼ −‡E3̂ 3̂ ¼
1

2
ðE2̂ 2̂ − E3̂ 3̂Þ ¼

6

25U2
þ 75

8
U−2=5Ω4;

‡B2̂ 3̂ ¼ ‡B3̂ 2̂ ¼ B2̂ 3̂ ¼ −
6

25U2
þ 75

8
U−2=5Ω4: ð99Þ

Finally, for Ω → 0, we find exactly the same results as in
the Harrison case, see Eqs. (80) and (81). This remarkable
fact can be traced back to the circumstance that for metric
(72), we have

KðUÞ ¼ s3ðs3 − 1Þ
U2

; ð100Þ

where s3 ¼ −1=5 for both Eqs. (71) and (91); in this
connection, see Appendix B of Ref. [11].

VI. DISCUSSION

We have considered the physical properties of Petrov
type D twisted gravitational wave spacetimes in this paper
and investigated, in particular, their Killing vectors. These
spacetimes admit a 4-dimensional symmetry group with a
multiply transitive action on timelike hypersurfaces. The
symmetry group has a 3-dimensional subgroup having a
multiply transitive action on 2-dimensional timelike sur-
faces which are spanned by the two principal null direc-
tions. This symmetry subgroup coincides with the Lorentz
group of 2-dimensional Minkowski spacetime. This group
is type VI0 in the Bianchi classification. The fourth Killing
vector (∂y) is spacelike. Furthermore, the Penrose plane-
wave limit of Harrison’s TGW and the w-metric have been
explicitly determined and the corresponding transition of a
TGW of Petrov type D with a nonplanar wave front to a
plane gravitational wave of Petrov type N has been studied
in detail.
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APPENDIX: SECTIONAL CURVATURE

Let p be a point on the spacetime manifold and u and v
be tangent vectors at p that span a non-null 2-space X at p.
Let X ≔ u ∧ v; then, the sectional curvature ΣpðXÞ is
defined by [19,20]

ΣpðXÞ ¼
1

2

RμνρσXμνXρσ

XαβXαβ ; Xμν ¼ uμvν − uνvμ: ðA1Þ

In the special case that the 2-space is spacelike, we can
relate this definition to the ð1þ 1þ 2Þ decomposition
of the Weyl tensor described near the end of Sec. V.
Consider an observer with orthonormal tetrad λμα̂ such
that λμ0̂ ¼ θμ, λμ1̂ ¼ nμ, λμ2̂ ¼ uμ and λμ3̂ ¼ vμ; that is,
X is in the observer’s rest space. Hence we can write
Xμν ¼ ϵμνρσθ

ρnσ, where ϵμνρσ is the Levi-Civita symbol
with ϵ0̂ 1̂ 2̂ 3̂ ≔ 1 and XμνXμν ¼ 2. Inserting these expres-
sions in the definition (A1) leads to a left/right double dual
of the Riemann tensor. For the Ricci-flat case under
consideration in this paper, we have

ΣpðXÞ ¼ �C�
μνρσθ

μnνθρnσ ¼ ��Cμνρσθ
μnνθρnσ; ðA2Þ
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where an asterisk denotes the duality operation and we
have used the equality of left and right duals of the Weyl
tensor [7]. Furthermore,

ΣpðXÞ ¼ ��Cμνρσθ
μnνθρnσ ¼ 1

4
ϵμν

λκϵλκ
ηξCηξρσθ

μnνθρnσ

¼ −Cμνρσθ
μnνθρnσ; ðA3Þ

where we have employed the identity

ϵμν
λκϵλκ

ηξ ¼ −4δη½μδ
ξ
ν�: ðA4Þ

Finally,

ΣpðXÞ ¼ −E1̂ 1̂ ¼ −∘E; ðA5Þ

which shows that the gravitoelectric scalar multiplied by −1
is identical to the sectional curvature of the designated
spatial 2-space as defined in the ð1þ 1þ 2Þ decomposition.
For the observer with orthonormal tetrad λμα̂, let us define

Xα̂ β̂ ≔ λμα̂λ
ν
β̂ − λνα̂λ

μ
β̂; ðA6Þ

then, it is straightforward to show that

ΣpðX0̂ îÞ ¼ −E î î; ΣpðXî ĵÞ ¼ ΣpðXĵ îÞ ¼ Rî ĵ î ĵ: ðA7Þ

In Ricci-flat regions of spacetime, we find from Eq. (77) that
ΣpðX0̂ 1̂Þ ¼ ΣpðX2̂ 3̂Þ, etc., so that these sectional curvatures
are given by the measured diagonal gravitoelectric compo-
nents of the Weyl tensor multiplied by −1. For the Harrison
TGW spacetime and the w-metric, the gravitoelectric
components of the Weyl tensor as measured by the static
observers that stay at rest in space can be obtained from the
results presented in Sec. II of Ref. [2].
Finally, it is interesting to note that in the case of

Harrison’s TGW spacetime, ΣpðX2̂ 3̂Þ calculated with
respect to the orthonormal tetrad frame of the observers
at rest in space, namely,

λ0̂ ¼ x−2=3∂t; λ1̂ ¼ x−2=3∂z;

λ2̂ ¼ u−3=5∂x; λ3̂ ¼ x1=3u1=5∂y; ðA8Þ
turns out to be the Gaussian curvature KG of the wave front
[1,2]; that is,

ΣpðX2̂ 3̂Þ ¼ KG ¼ −
4

9

1

u6=50 x2
; ðA9Þ

where u ¼ u0 is the wave front. Similarly, for the w-metric
the corresponding result is [1,2]

ΣpðX2̂ 3̂Þ ¼ KG ¼ −
4

ðu0 þ xÞ6 : ðA10Þ
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