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Closed photon orbits around isolated black holes are related to important aspects of black hole physics,
such as strong lensing, absorption cross section of null particles and the way that black holes relax through
quasinormal ringing. When two black holes are present—such as during the inspiral and merger events of
interest for gravitational-wave detectors—the concept of closed photon orbits still exist, but its properties are
basically unknown. With these applications in mind, we study here the closed photon orbits of two different
static black hole binaries. The first one is the Majumdar-Papapetrou geometry describing two extremal,
charged black holes in equilibrium, while the second one is the double sink solution of fluid dynamics, which
describes (in a curved-spacetime language) two “dumb” holes. For the latter solution, we also characterize its
dynamical response to external perturbations and study how it relates to the photon orbits. In addition, we
compute the ergoregion of such spacetime and show that it does not coincide with the event horizon.
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I. INTRODUCTION

High-frequency electromagnetic or gravitational waves
propagating around extremely compact objects—such as
black holes (BHs)—can travel in closed orbits. These can
be either stable or unstable, according to whether or not
small deviations from the orbit grow away from it as time
evolves. In the case of a Schwarzschild BH, the union of all
such orbits forms a sphere, the so-called Schwarzschild
photon sphere. Any inward-directed lightray emitted inside
the photon sphere will eventually end in the singularity,
while any outward-directed lightray emitted outside even-
tually reaches future null infinity. Hence the photon sphere
is not a horizon (for which no lightray would ever be able to
exit) but has a similar fundamental role.
Several BH phenomena are directly related to the

presence of a photon sphere [1–13]. First, the characteristic
modes of oscillation of a spherically symmetric BH can be
related to the parameters of the null closed orbits [1–4,

14,15]. In the eikonal limit, the oscillation frequency of
such modes is a multiple of the orbital frequency while their
characteristic damping time is related to the instability time
scale of such orbits [2–5]. Second, the absorption cross
section of a highly energetic scalar field scattered by the
gravitational field of a spacetime endowed with a photon
sphere is simply described by the orbital frequency and
instability time scale of the associated null closed orbits [6].
Third, the extreme bending of light near the photon sphere
also allows the formation of multiple (possibly infinite)
images on the optical axis [7,8]—in addition to the primary
image typically formed by any weak gravitational lens. In
particular, strong gravitational lenses produce an infinite
number of Einstein rings, and the astrophysical observa-
tion of a sequence of such rings would be another
successful test of general relativity in the strong field
regime [8]. Last but not least, the presence of stable
photon spheres implies the existence of a trapping region
in spacetime where matter can accumulate, potentially
leading to nonlinear instabilities [9–11,16].
The concept of a photon sphere, useful for

Schwarzschild BHs, can be generalized to the concept
of a photon surface in an arbitrary spacetime [17]. The
definition of a photon surface, in simple terms, requires that
any null geodesic tangent to the surface will remain
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everywhere tangent to it. More specifically, in this work our
main interest is in closed null hypersurfaces, i.e., non-
spacelike, chronal hypersurfaces S that admit a null
geodesic (i) which is tangent to S and (ii) whose projection
onto a given spatial cross section of S forms a “closed orbit”
on the cross section.1 The notion of a photon surface is
independent of any symmetry that the spacetime may
possess and is applicable to the situation of two very
compact objects that inspiral into each other and eventually
merge, forming a single compact object. These events,
notably the merger phase, being important sources of
gravitational-waves, are of interest for detectors like
LIGO and LISA. Photon surfaces and closed photon orbits
around such binaries, although never studied before, could
provide important astrophysical information about BH-BH
(and BH-neutron star) collisions, specially now that the
gravitational-wave astronomy era has begun [18].
The main objective of this work is to provide the first

step towards understanding closed photon orbits around
binary systems of astrophysical compact objects. Due to the
complexity of simulating and studying collisions of BHs
and other compact objects, we focus on simpler geometries
of BH binaries that are static and, therefore, never merge.
We expect that our results are useful for low-frequency
binaries whose velocities are much smaller than the speed
of light. This work is also a first step towards understanding
how other peculiarities—such as ergoregions—extend to
dynamical spacetimes. There is a clear motivation for that,
since it could lead to Penrose-like phenomena or interesting
superradiant effects [19].
The first toy model we consider is that of two electrically

charged BHs in equilibrium [20–22] (the Majumdar-
Papapetrou solution of Einstein’s equations), for which
we study null geodesics both on the symmetry plane
between the BHs and on the plane containing both BHs.
Our second model is based on analogue gravity, the fact
that sound propagation in moving fluids is formally
equivalent to a scalar field evolving in curved spacetime
[23,24]. Points where the fluid velocity exceeds the local
sound speed behave as an ergoregion; if this happens on a
normal to a certain surface, such surface is an analogue
horizon. By considering a double sink hydrodynamical
fluid flow (an exact solution of the fluid-dynamic equa-
tions) we are able to study the analogue of a binary BH
system. We should note that extending the notion of
ergoregions to dynamical curved spacetimes is nontrivial
in general, but quite straightforward in acoustic setups. Our
results may thus help in understanding whether phenomena
such as superradiance exist in BH-binary spacetimes [19].2

We note that partial results concerning the structure of
lightray or scalar-field propagation in the background of
BH binaries were reported earlier. The evolution of scalar
fields in the background of an inspiraling BH binary was
investigated in Ref. [26]. The shadow of a static BH binary
(unphysical, since it contains a strut holding the two BHs
apart) was also recently reported [27,28]. However, unlike
our analysis, these references do not address the question of
the structure and time scales associated to the different
possible closed photon surfaces. Therefore, through our
work, we hope to pave the way for future investigations of
closed null orbits in more realistic situations of interest for
LIGO and LISA.

II. THE MAJUMDAR-PAPAPETROU SOLUTION

An exact solution in general relativity which describes
two or more static BHs is known as the Majumdar-
Papapetrou (MP) solution [20–22]. In a cylindrical coor-
dinate system the two-BH version of the MP solution is
written as

ds2 ¼ −
dt2

U2
þ U2ðdρ2 þ ρ2dϕ2 þ dz2Þ; ð1Þ

with

Uðρ; zÞ ¼ 1þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − aÞ2

p þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ aÞ2

p : ð2Þ

This solution represents two maximally charged BHs in
equilibrium, each with mass M and charge Q ¼ M. Here,
and throughout this work, we use geometric units. In these
coordinates, their horizons are shrunk to two points at
z ¼ �a (hence, the parameter a measures the distance
between them). The spacetime ADM mass is 2M.
The Lagrangian for geodesic motion in the Majumdar-

Papapetrou spacetime is given by

2L ¼ −
_t2

U2
þU2ð_ρ2 þ ρ2 _ϕ2 þ _z2Þ ¼ −δ; ð3Þ

where dots refer to derivatives with respect to an affine
parameter. The constant δ on the right-hand side is zero
(δ ¼ 0) for null geodesics and one (δ ¼ 1) for timelike
geodesics. The two conserved quantities are E ¼ _t=U2 and
L ¼ _ϕU2ρ2, which we identify as energy and angular
momentum per unit rest mass, respectively.

A. Geodesics in the meridian ϕ= 0 plane

We can fix the azimuth angle by setting ϕ ¼ 0 (this is
an arbitrary choice as any fixed angle yields the same
behavior) and study geodesic motion confined to the
meridian plane. For a generic separation between the
BHs, the geodesic equations are not separable, as noted

1Note that the “closed orbit” here defined is not the same as a
closed geodesic.

2The existence of ergoregions in static spacetimes describing
two Kerr BHs held apart by a strut was established in Ref. [25].
A generalization to dynamical regular spacetimes has not been
done.
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in Ref. [29]. However, when the two BHs coalesce,
a ¼ 0, and it is easy to solve the corresponding geodesic
equations [2]. We find that there is a null geodesic at
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p
¼ 2M.

With the aid of standard numerical integration methods,
three types of closed null and closed timelike orbits were
identified, as shown in Figs. 1 and 2:

(i) An orbit which encloses both horizons, shown in
blue in both figures. For small separations, i.e.,
a ≪ M, the coordinate radius of such an orbit is 2M,
as expected from the analysis of the a ¼ 0 case.
The corresponding coordinate period is ∼16πM. At
large separations, we find that the period of null
outer orbits is T ∼ 20πM þ 4a, for values of M in
the range 1≲M ≲ 10.

(ii) Orbits which enclose only one horizon, shown in red
in both figures. At large separations, such geodesics
only “see” the gravitational field of one BH. Indeed,
we find that then the orbit is nearly circular with
radius ∼M, and a coordinate period ∼8πM, as
expected from the above.

(iii) An “8-shaped” orbit which encloses each of the
horizons once, shown in black in both figures.

For the two-BH MP geometry these three types of orbits
seem to exist for any separation a. These results are
in complete agreement with both Chandrasekhar’s and
Shipley and Dolan’s recent results [29,30]. A full descrip-
tion of the equations and normalization conditions is given
in the Appendix. We found, numerically, that all these null
geodesics are unstable: the numerical integration requires
fine tuning to follow them. On the other hand, timelike
geodesics are more stable and complete a larger number
of full orbits before collapsing to the singularity (some
“8-shaped” trajectories are actually long-term stable). For

highly relativistic particles, timelike geodesics approach
null geodesics. It is impossible to find closed timelike orbits
for arbitrary energies.

B. Geodesics in the symmetry z= 0 plane

Halfway between the two BHs, there is a symmetry
plane (z ¼ 0) in which the geodesic equations are sepa-
rable. By setting a ¼ 1, which simply amounts to rescaling
units as ρ → ρ=a and M → M=a, Eq. (2) becomes

U ¼ 1þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 1

p : ð4Þ

Substituting E and L and setting δ ¼ 0 in the normalization
condition, the equation for null geodesics becomes

_ρ2 þ VeffðρÞ ¼ E2; ð5Þ

VeffðρÞ ¼
L2

ρ2U4
: ð6Þ

Provided thatM2 > 27=8, the effective potential Veff has
two critical points, which correspond to a stable (inner) and
an unstable (outer) closed orbit.3 The analytic expressions
for these two radii are [31]
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FIG. 1. There are different closed orbits for light in a static
binary. We find, generically, three different closed trajectories:
one global outer geodesic that encircles both holes, an “8-shaped”
trajectory and two “smaller” ones encircling only each of the
BHs. These plots show the different “light rings” for a MP
solution with a ¼ 10M. The “8-shaped” orbit (black curve) has a
period T ¼ 98.79M in coordinate time. The global outer orbit
(blue curve) has a period T ¼ 95.47M. The period of the orbits
around a single hole (red curves) is T ¼ 26.39M.
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FIG. 2. Same as Fig. 1, but for massive free particles instead
of light (i.e., timelike instead of null geodesics). The “8-shaped”
orbit (black curve) has energy E ¼ 0.9159 and period T ¼
291.64M in coordinate time. The global outer orbit (blue curve),
has energy E ¼ 0.9644 and period T ¼ 474.01M. The orbits
around a single hole (red curves) have energy E ¼ 0.9159 and
period T ¼ 38.84M.

3These statements refer to stability on the z ¼ 0 plane only. In
reality, both orbits are expected to be globally unstable: any
perturbation on the z direction would give rise to motion towards
one of the holes.
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ρout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

9

�
1þ 2 cos

�
1

3
cos−1γ

��
2

− 1

s
;

ρin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

9

�
1 − 2 sin

�
π

6
−
1

3
cos−1γ

��
2

− 1

s
;

where γ ≡ 1–27=ð4M2Þ. Notice that ρ2in ¼ 1þ ffiffiffi
2

p
=Mþ

Oð1=M2Þ, and ρ2out ¼ −5þ 4M2 þOð1=M2Þ. When
M ≫ a we have ρout → 2M, so that the single hole solution
is recovered. Besides these circular orbits, more general
closed photon orbits also exist in the symmetry plane, as
shown in Fig. 3. There is, however, no apparent connection
between these closed orbits and the ones found in the
meridian plane.

For timelike geodesics, the number of roots of the
equation dVeff=dρ ¼ 0 (and consequently the number of
circular orbits) depends not only on the mass of the BHs but
also on the angular momentum of the particle due to an
extra term in the effective potential [32]. The Lyapunov
exponent λ associated with the unstable circular orbits can
be computed in a straightforward way [2,5]. A detailed
calculation for null geodesics is given in the Appendix. In
our context, the Lyapunov exponent λ describes the time
scale in which a deviation δρ from a circular orbit grows
exponentially, i.e., λ is characterized by δρ ∼ eλt. As seen in
Fig. 4, the Lyapunov exponent attains its maximum value
0.03158 at M ¼ 2.197, and approaches 0 for very large M.
For instance, at M ¼ 106, the exponent is 8.38 × 10−8.
More general closed timelike orbits—other than circular—
also exist, as shown in Fig. 5.
Closed orbits in the symmetry plane exhibit a “zoom-

whirl” behavior, as seen in Figs. 3 and 5. A brief remark
concerning these orbits is in order. Applying the formalism
presented in Ref. [33], we associate geometric properties of
symmetric orbits in the plane z ¼ 0 with the accumulated
angle between two consecutive apastrons Δϕ given by

Δϕ ¼ 2

Z
ρa

ρp

dϕ
dρ

dρ; ð7Þ

where ρp and ρa are the radial coordinates of the periastron
and apastron respectively. We may look for orbits for
which Δϕ ¼ 2πq, where q is a rational number. We can
always write any noninteger rational number uniquely as
q ¼ wþ v=z, where w ¼ bqc ∈ Z, and v < z are coprime
positive integers. The whirl number w gives the number of
times the orbit whirls between two consecutive apastrons
and its contribution to the accumulated angle is evidently
2πw. The number z gives the number of “leaves” drawn by
the solution before completing a full closed orbit. The path
described by the geodesic will not necessarily follow
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FIG. 3. Null geodesics on the symmetry plane of a two-BH MP
spacetime, characterized by a ¼ M=5. The radii of the circular
orbits do not depend on L and are expressed in units of a.
From left to right, the energy of the orbits are E ¼ 0.0366882,
0.0366939, 0.0367020. The red curve shows the portion of the
motion between two consecutive apastrons, for which the
accumulated angle is given by Δϕ ¼ 2πq. When q is a rational
number, the motion is periodic, and the geometric properties of
the plot can be extracted from q. From left to right, q is given by
(1þ 7=10), (1þ 33=47), and (1þ 45=64). Notice that q in-
creases monotonically with E. Geometrically this means that the
motion is divided into more “leaves”, which creates more vertices
in the figures. The stable circular orbit has a radius ρin ¼ 1.167a,
and the unstable orbit is at ρout ¼ 9.740a.
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FIG. 4. Lyapunov exponent as a function of the BHs masses for
null geodesics in the z ¼ 0 plane of the MP spacetime. The black
dots are the numerical results, while the red dashed line
corresponds to the analytic expression.
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FIG. 5. Timelike geodesics on the symmetry plane of a two-
BH MP spacetime, characterized by a ¼ M=5. From left to
right, the energy and angular momentum of the orbits are:
(E ¼ 0.0920047, L ¼ 0.1a), (E ¼ 0.456023, L ¼ a), and
(E ¼ 0.585419, L ¼ 10a). From left to right, q is given by
56=111, 29=53, and 27=28. The radii of both circular orbits
(stable and unstable) depend on M and L=a for timelike geo-
desics. From left to right, the inner circular orbit radii ρin=a are
given by 0.0977,0.3093,0.8892. There are no unstable outer
orbits for these combinations of M and L=a.
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consecutive “leaves” throughout the motion, so the number
v tells how many vertices the orbit will skip before drawing
the next “leaf”.

III. THE DOUBLE SINK SOLUTION

Our second toy model for a BH binary is inspired in
analogue gravity, a formal equivalence between the propa-
gation of sound waves in fluids and a scalar field in a
(analogue) curved spacetime [24,34,35]. In particular, a
sound wave Φ associated with a velocity field v ¼ ∇Φ is
governed by the equation

□Φ ¼ 0: ð8Þ

The curved spacetime geometry associated with the
D’Alembertian is fixed by the background fluid flow
and contains horizons if and when the fluid flow exceeds,
at some point, the local sound speed [24,34,35]. We
consider a generalization of the 2þ 1 “draining bathtub”
geometry [35], which here describes two acoustic “dumb”
holes. Our background flow is two dimensional, consists
on two sinks of unit strength at x ¼ �a, and can be written
as [36],

vx ¼ −A
2xðr2 − a2Þ

r4 þ 2a2ð−x2 þ y2Þ þ a4
; ð9aÞ

vy ¼ −Ay
�

1

y2 þ ðx − aÞ2 þ
1

y2 þ ðxþ aÞ2
�
; ð9bÞ

v2 ¼ 4A2r2

r4 þ 2a2ð−x2 þ y2Þ þ a4
; ð9cÞ

with r2 ¼ x2 þ y2. The constant A > 0 is arbitrary and
fixes the fluid speed at some radius. For simplicity, we
assume A ¼ 1 throughout the paper.

A. Horizons, ergoregions and soundcurves

Some notions of curved spacetime geometry can be used
to formally describe the propagation of sound waves, with
velocity cs, in irrotational fluids like the one determined by
Eq. (9). Among these, we find useful the following
definitions. Ergocurves are curves at which v2 ¼ c2s and
play the role of spacetime ergosurfaces. Acoustic horizons,
on the other hand, are curves at which n · v ¼ cs, where n is
the normal vector at each point in the curve. Acoustic
horizons play the role of event horizons when the acoustic
geometry is stationary. Finally, soundcurves (which are
analog light rings or analog photon surfaces) are closed
curves for sound waves; a sound wave of velocity vs ≡
ðdx=ds; dy=dsÞ (with s an affine parameter) therefore
satisfies, on a soundcurve, kvs − vk ¼ cs. These analog
light rings were recently investigated experimentally

in a rotating vortex representing the draining bathtub
geometry [37].
These properties can all be recovered using the effective

metric experienced by sound waves (for simplicity we set
the background density to unity),

ds2 ¼ −ðc2s − v2Þdt2 − 2dtðvxdxþ vydyÞ þ dx2 þ dy2;

≡ −ðα2 − βiβiÞdt2 þ 2dtβidxi þ γijdxidxj: ð10Þ

When there is no separation between the sinks (a ¼ 0), the
metric above simplifies to

ds2 ¼ −ðc2s − 4=r2Þdt2 þ 4

r
dtdrþ dr2 þ r2dϕ2: ð11Þ

Transforming t and r into new variables t̃ and r̃, defined
by r ¼ r̃=cs and dt ¼ dt̃=c2s þ 2r̃dr̃=ðc2sðr̃2 − 4ÞÞ, brings
the acoustic metric above to the canonical form [38]

c2sds2 ¼ −
�
1 −

4

r̃2

�
dt̃2 þ 1

1 − 4
r̃2
dr̃2 þ r̃2dϕ2: ð12Þ

1. Soundcurves

When the two holes are sufficiently close to one another,
the metric reduces to (12), and the soundcurves are located
at r ¼ 2

ffiffiffi
2

p
[2] (here and in all numerical calculations we

assume cs ¼ 1). The coordinate time that sound takes to
travel across this single “merged sink” is T ¼ 8π (corre-
sponding to a frequency Ω ¼ 1=2), and the associated
Lyapunov exponent is λ ¼ 1=ð2 ffiffiffi

2
p Þ.

For double sinks, we find that there are different sound
curves, shown in Fig. 6. Global outer orbits (shown in
blue) surrounding both BHs exist for any value of sepa-
ration a. Inner orbits around each sink (shown in red) and
“8-shaped” orbits (shown in black) exist only for values of
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FIG. 6. Different “soundcurves” when the separation between
the sinks is a ¼ 2. These curves were computed by numerically
solving the null geodesic equations for the analogue metric (10)
with the velocity field (9).
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separation a > 1. It is worth noticing that these orbits
are not symmetric, as opposed to the ones found in the
Majumdar-Papapetrou spacetime. Furthermore, the global
outer orbits can cross the other two types of orbits for small
values of a, in contrast to what happens in MP spacetimes.
For double sinks separated by a large distance a ≫ 1, the

coordinate period of the global geodesic (encircling both
holes) is T ∼ 15.6� 0.3þ 4a. This is in rough agreement
with expectations: the total crossing time is of order 4a plus
two semicircles, each of which takes 2π to complete. In the
same regime, the coordinate period of the inner closed lines
is ∼12.5 ∼ 4π, as expected from the single-hole analysis.
For separations a≲ 5 the travel time does not strongly

depend on the separation itself and is∼8π. Thus, depending
on the dynamical aspect under investigation, the two sinks
can be considered to be merged at these separations.

2. Acoustic horizon

Defining ϕ ¼ y0ðxÞ, the normal to the curve yðxÞ can be
written as

n ¼
�
−

ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ2

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϕ2
p �

:

It is straightforward to show that the equation n · v ¼ cs
determining the horizon becomes a first order differential
equation for yðxÞ,

y0ðxÞ þ vxvy �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sðv2 − c2sÞ

p
c2s − v2x

¼ 0; ð13Þ

where the background velocities are given by (9). Since any
acoustic horizon engulfing both sinks must necessarily
intercept the symmetry line (y axis), we look for solutions
of (13) that pass through x ¼ 0. We find that a common
horizon engulfs both sinks only if a ≤ 1. When a > 1, the
sinks are sufficiently apart and we recover a single horizon
around each sink.
For a ≤ 1, by searching the parameter space of the

initial conditions of Eq. (13), we have found that the
acoustic horizon is always a smooth curve with yð0Þ ¼
�ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ and y0ð0Þ ¼ 0. In Fig. 7 we plot the shape

of the horizon at the critical separation a ¼ 1.

3. Ergoregion

Although a notion and definition of ergoregion for
dynamical spacetimes does not exist, the acoustic version
described above is readily extended to any geometry.
Solving the equation v2 ¼ c2s for the double sink flow
given by Eq. (9) yields

y ¼ � 1

cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − a2c2s − x2c2s þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2c2sðx2c2s − 1Þ

qr
:

ð14Þ

The function yðxÞ informs on the location of the ergocurve.
In general, the acoustic horizon and the ergocurve do
not coincide. To show this, assume that they do and that
v2 ¼ c2s everywhere along the horizon surface. At any
given point x where yðxÞ is a smooth function, and vx and
vy are nonzero, the horizon equation (13) implies that

dy
dx

þ vx
vy

¼ 0 ⇒
vy
vx

þ vx
vy

¼ 0 ⇒ v2 ¼ 0; ð15Þ

which clearly contradicts the assumption that vx ≠ 0 and
vy ≠ 0. Consequently, the ergocurve and the acoustic
horizon can only coincide at points for which either
vx ¼ 0 or vy ¼ 0 or yðxÞ is not smooth. This fact is
illustrated in Fig. 7, which exhibits four points where they
coincide.
In other words, for acoustic binaries the horizon lies

inside the ergocurve, raising the interesting prospect of
phenomena such as superradiance [19,39] to occur. These
results suggest that similar phenomena may be present in
gravitational BH binaries which may lead to new effects
during the inspiral.

B. Wave scattering and quasinormal modes

There is an established connection between photon
surfaces and the dynamical response of perturbed, sin-
gle-BH spacetimes [2,13,40,41]. In a nutshell, the photon
surface works as a trapping region where scalar, electro-
magnetic or gravitational perturbations can linger. The
instability time scale of null geodesics is then related
directly to the lifetime of massless perturbations.
We wish to understand if such connection carries over to

binaries. The analysis of wave dynamics in BH binaries
is notoriously difficult. For single BH spacetimes with
certain symmetries, a linearized study where the relevant
partial differential equations are transformed into ordinary

–2 –1 0 1 2
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–1.0

–0.5

0.0

0.5

1.0

1.5

x

y

FIG. 7. Acoustic horizon (solid line) surrounding both sinks for
separation a ¼ 1. The horizon exists only if a ≤ 1. The ergocurve
(dashed line) clearly does not coincide with the horizon, except at
a few points.
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differential equations is possible. Sound waves Φðt; r;ϕÞ ∼
Φðt; rÞeimϕ in single acoustic dumb-hole spacetimes were
studied years ago, and it was concluded that [38,42]:

(i) The early-time response is strongly dependent on the
initial conditions, but is followed by quasinormal
ringdown [4]. In the eikonal regime, such ringdown
is described by sound waves circling the soundcurve
and decaying away. For the geometry (12), the
fundamental (longest-lived) frequencies ωm for the
first few azimuthal numbers m are [38,42]4 (see [43]
for a ringdown analysis in presence of vorticity),

ω1 ¼ 0.20342 − 0.17062i; ð16aÞ

ω2 ¼ 0.47636 − 0.17537i; ð16bÞ

ω3 ¼ 0.73427 − 0.17621i; ð16cÞ

ω4 ¼ 0.98823 − 0.17648i: ð16dÞ

(ii) The ringdown stage eventually gives way to a late-
time power law tail, where the field decays as

Φ ∼ t−ð2mþ1Þ: ð17Þ

Appealing to the correspondence between quasinormal
modes and geodesic properties [2,44], one expects a
relation of the type

ωm ¼ mΩ − iðnþ 1=2Þλ ¼ m
2
− i

ð2nþ 1Þ
4

ffiffiffi
2

p ; ð18Þ

to hold at large m. This relation indeed describes extremely
well the results above for the quasinormal modes of
acoustic holes.5 Nevertheless, as shown in Ref. [44] for
the draining bathtub geometry, expansions of ωm can be
obtained to arbitrary order in powers of m.

1. Numerical approach

For the numerical evolutions of (8), we used the
EINSTEINTOOLKIT infrastructure [45–47], which is based
on the CACTUS Computational Toolkit [48], a software
framework for high-performance computing. The space-
time metric is fixed according to Eq. (10), and we evolve
the Klein-Gordon equation on top of this background using
the same numerical code as the one employed in [49],
herein accordingly adapted to 2þ 1 evolutions. To reduce
the system to a first order form, we introduce the “canonical
momentum” of the scalar field Φ

KΦ ¼ −
1

2α
ð∂t − LβÞΦ; ð19Þ

where L denotes the Lie derivative, to write our evolution
system in the form

∂tΦ ¼ −2αKΦ þ LβΦ

∂tKΦ ¼ α

�
KKΦ −

γij

2
Di∂jΦ

�
−
γij

2
∂iα∂jΦþ LβKΦ;

where Di is the covariant derivative with respect to the
2-metric γij and K is the trace of the extrinsic curva-
ture Kij ¼ 1

2αLβγij.
To numerically evolve this system, we employ the

method-of-lines, where spatial derivatives are approxi-
mated by fourth-order finite difference stencils, and we
use the fourth-order Runge-Kutta scheme for the time
integration. Kreiss-Oliger dissipation is applied to evolved
quantities in order to damp high-frequency noise.
A complication arising from metric (10) is the presence
of curvature singularities at x ¼ �a. To deal with these we
use a simple excision procedure, whereby our evolved
quantities are multiplied by a mask function Mðx; yÞ

∂tu → Mðx; yÞ∂tu;

where u ¼ Φ, KΦ and Mðx; yÞ is a smooth transition
function that evaluates to 1 outside the horizon and 0
inside.6

We evolve the system with initial conditions given by

Φðx; yÞ ¼
�
c0 þ c1

X
R
þ c2

X2 − Y2

R2

�
e−

ðR−R0Þ2
2σ2 ; ð20aÞ

KΦ ¼ 0; ð20bÞ

where X ¼ x − x0, Y ¼ y − y0 and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
. The

constants cm characterize the multipole of order m. The
function Φðx; yÞ represents a Gaussian pulse of width σ
centered at ðx0; y0Þ and peaked at R ¼ R0.

2. Results

We extract the scalar field Φ at x ¼ 30, y ¼ 0 and at
x ¼ 0, y ¼ 30. The first point lies along the symmetry line;
the second extraction point lies along the line joining the
two sinks and is closer to one than to the other. The general
features of our results remain the same at other extraction
points.
Figure 8 shows the result of evolving a Gaussian,

quadrupolar initial data, in the background of a single
sink (a ¼ 0). The signal is exponentially damped at
intermediate times, and we find excellent agreement (to

4These numbers were obtained using a continued fraction
representation [4].

5In fact, one can immediately see that the imaginary part is
captured to better than 4% already for the m ¼ 1 mode. 6We thank D. Hilditch for discussions about this point.
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within ∼2%) with prediction (16b), and hence also with the
soundcurve analysis. The late-time tail, also clear in Fig. 8,
is well described by Φ ∼ t−4.9, in good agreement with
prediction (17).
Figure 9 shows the result of evolving monopolar and

quadrupolar waves in the background of a binary with
finite but small separation, a ¼ 1. We find that the signal
still has all the features of the single-BH spacetime: a
single ringdown stage, followed by a late-time power law
tail. Both the ringdown and the tail are well-described by
single BH geometries. In particular, due to mode-mixing
caused by the lack of axisymmetry, an initial pure-m
data will evolve to a superposition of different m’s.
In particular, the m ¼ 0 mode seems to be present at
late times in the waveform and causes the latetime power-
law tail to be well described by Φ ∼ 1=t [cf. Eq. (17)]. In
other words, binaries separated by a distance a≲ 1
behave very similarly to a single BH. This is not
completely surprising and is most likely connected to
such binaries having a common horizon (cf. Fig. 7). This
feature is also present in nonlinear evolutions of Einstein
equations for the BH-binary problem, where ringdown is
seen to be triggered as soon as merger occurs, and in a
very linear way [50–54].
When the separation is made to increase, the different

scales in the problem become noticeable, as seen in Fig. 10.
For a ¼ 5, the coordinate period of the global geodesic is of
order ∼35, larger by about a factor of 3 than the period of
the geodesics encircling each BH.
Focus on the top panel of Fig. 10. The initial data is

localized around only one of the BHs (located at x ¼ 5).
Therefore the initial data excites this BH first and to a
higher extent than the second BH, farther apart. On the
x-axis, the initial ringdown is well described by the modes

of this BH. After a time ∼25 the ringdown mode of the
perturbed rightmost BH reaches the extraction point x ¼ 30
on the x-axis (black solid curve). Later, starting at t ∼ 55
the ringdown of the leftmost BH can be seen, followed
by the decaying power-law Φ ∼ t−1. The global mode is
encoded in the envelope of this signal, and the only reason
it is not more clearly visible is because the power-law tail
sets in very quickly. Such behavior is similar to the setting
in of global modes of anti–de Sitter spacetime, or of
ultracompact exotic objects [12,13,55,56].
The two lower panels in Fig. 10 show the result of

evolving a monopolar and quadrupolar data, centered at the
origin and localized away from the two holes. The signal is
peaked at some intermediate time, most likely the result of
interference between different modes. We do not have a
simple and elegant explanation for such feature. For any
initial data we looked at, late-time tail is always dominated
by t−1, that of the circularly symmetric mode.

FIG. 8. Evolution of a quadrupole (c0 ¼ c1 ¼ 0, c2 ¼ 1)
Gaussian (with x0 ¼ y0 ¼ 0, R0 ¼ 5, σ ¼ 1=2) profile around
a single (a¼0) acoustic hole. The scalar was extracted at x ¼ 30,
y ¼ 0. A ringdown, exponentially decaying, phase is visible, and
followed by a late-time power-law tail. This and subsequent plots
show the absolute value of the scalar.

FIG. 9. Scattering of a sound wave off a binary dumb-hole with
a ¼ 1. The Gaussian, centered at the origin, has a width σ ¼ 1=2
and is localized at R0 ¼ 5. The field Φ is extracted along the
x-axis (black solid line) and along the y-axis (red, dashed line) at
a distance of 30 from the origin. Top: Monopolar wave, with
c0 ¼ 1. For monopolar waves the prompt signal quickly gives
way to a power-law tail Φ ∼ t−1.1 at late times, in agreement with
prediction (17). Bottom: Quadrupolar wave, with c2 ¼ 1. We find
a ringdown ω ¼ 0.472 − 0.170i and a power law ∼t−1.2.
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IV. ON THE STRUCTURE OF CIRCULAR NULL
GEODESICS FOR ETERNAL AND FOR

COALESCING BINARIES

One may think that even though our geometries of BH
binaries described by the MP metric are stationary, they can
be interpreted as a “snapshot” of a dynamically coalescing
process of two BHs, and therefore the sequences of the
circular null geodesics obtained in this paper could mimic a
photon surface around a dynamical geometry of colliding
BHs in a more astrophysically realistic situation. However,
there is a sharp contrast between the stationary MP binary
and a dynamically colliding BH binary. One should first
note that the BH binaries in the MP solution never merge to
form a single BH; they have two mutually disconnected
components of the event horizon and therefore allow for
closed null/timelike orbits outside the event horizon (see
left panel of Fig. 11). In contrast, when two BHs dynami-
cally coalesce, the event horizon as a three-dimensional
null hypersurface has only a single connected component
from the beginning.
Let us recall that the future event horizon of a BH is

formed by null geodesic generators which have no end
points in the future but can in general admit past end
points. For stationary BHs, the event horizon is a Killing
horizon and the horizon null geodesic generators have no
past end points. As for dynamical BH system, such as
those formed by gravitational collapse or by the merger of
two BHs, (some of) the horizon null geodesic generators
have past end points, which form a subset in the
spacetime. An important feature is that such a past-end-
point set—called crease set—must be spacelike and
achronal rather than timelike or null, since the event
horizon itself must be an achronal null hypersurface. Now
when we say, “a single” BH or “two” BHs, we refer to as
the number of the cross section components of the event
horizon and a Cauchy surface. It has been shown in [57]
that this notion of the “number of cross sections” is in fact
time slice dependent when the event horizon admits a
crease set as a part, since in that case one can choose a
Cauchy slice such that it crosses the crease-set as many
times as one wishes (middle panel of Fig. 11).
Furthermore, depending upon the choice of Cauchy
slicing, even the topology of the horizon cross section
changes (for instance, when the crease set is two dimen-
sional, it can even be temporarily toroidal [58–60]). For
the mathematical structure of the crease set and the
classification of the possible (temporal) horizon cross
section topologies, see Ref. [57]. For the dynamically
coalescing “two” BH binary, the temporarily “two BHs”
are connected by a crease set, and the achronal nature of
this crease set prevents any causal geodesic curve (either
null or timelike) from forming a closed orbit around either
“each single” BH or the “8-shaped” closed orbit that
would encompass the “two BHs.” An exception is a global
outer closed orbit. Therefore one has to be careful when

attempting to make a physical interpretation of closed null
orbits found in static MP solution.
The observation above would be manifest if, for exam-

ple, one examines closed null geodesics in Kastor-Traschen

FIG. 10. Scattering of a sound wave off a binary dumb-hole
with a ¼ 5. The Gaussian width is σ ¼ 1=2. The field Φ is
extracted along the x-axis (black solid line) and along the y-axis
(red, dashed line) at a distance of 30 from the origin. Top:
Quadrupolar wave, with c2 ¼ 1, x0 ¼ 5, y0 ¼ 0, R0 ¼ 3. First
ringdown stage for x matches well that of a one single, individual
BH. Second ringdown is of lower frequency. Ratio is 1.2.Middle:
Monopolar wave, with c0 ¼ 1, x0 ¼ y0 ¼ 0, R0 ¼ 10. Bottom:
Quadrupolar wave, with c2 ¼ 1, x0 ¼ y0 ¼ 0, R0 ¼ 10.
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(KT) solution [61] with two BHs. The KT solution also
describes configuration of multiple BHs with maximal
charge, i.e., M ¼ jQj, but it includes a positive cosmo-
logical constant. Therefore those multiple BHs are on a de
Sitter expanding universe. The time-reverse of the solution
can describe coalescing BHs, and their event horizon must
have crease sets. Since each BH has its own apparent
horizon inside the event horizon, one can presumably find
e.g., “8-shaped” closed null orbits that go around two
“apparent horizons” but the orbits should entirely be inside
the event horizon.
If we consider, instead of a coalescing BH binary, a

coalescing compact star binary, each of the stars is compact
enough to admit its own photon sphere, then we can find
“8-shaped” closed null/timelike orbits, besides the global
null closed orbits. See rightmost panel of Fig. 11.
The above notes of caution refer to the purely formal

description of such geodesics and event horizons. Our
detectors are placed some finite distance away from the
black hole binary and are active for a short amount of time:
they have no access to a teleological quantity such as
eternal horizons. Instead, they measure properties related to
local quantities, such as apparent horizons. Therefore, the

geodesics that we describe should capture basically the
physics at play in gravitational-wave detectors.

V. CONCLUSION

We have given the first steps in our understanding of
wave dynamics around BH binaries. We found three types
of null geodesics, which should play a role in the decay
of perturbed binaries. Our results for sound waves in an
acoustic geometry indeed indicate that the different time
scales can be associated to such geodesics. There are many
open issues, concerning the specific features of the wave
dynamics, and how it generalizes when the binary itself has
dynamics. In particular, defining and exploring the notion
of closed null orbits and ergoregions for dynamical space-
times is challenging, but potentially important, as it raises
the possibility of gravitational lensing effects, superradiant
effects and Penrose energy extraction.

ACKNOWLEDGMENTS

T. A. is grateful to Instituto Superior Técnico for hos-
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APPENDIX: GEODESICS IN THE
MAJUMDAR-PAPAPETROU GEOMETRY:

THE SYMMETRY PLANE

This appendix provides further details on the geodesics
along the symmetry plane of the MP geometry.

1. Integration of geodesic equations
in the MP metric

The geodesic equations are found by varying the action
with respect to the Lagrangian in Eq. (3). The equations of
motion are the well-known Euler-Lagrange equations,

d
dλ

∂L
∂ _xμ

−
∂L
∂xμ ¼ 0; ðA1Þ

where xμ ¼ ft; ρ;ϕ; zg, and λ is an affine parameter. The
two conserved quantities are E ¼ _t=U2 and L ¼ ρ2U2 _ϕ,
which we identify as energy and angular momentum.
We can find an energy conservation equation by sub-

stituting E and L into Eq. (3),

_ρ2 þ _z2 þ Veffðρ; zÞ ¼ E2; ðA2Þ

Veffðρ; zÞ ¼
L2

ρ2U4
þ δ

U2
: ðA3Þ

Here and throughout the Appendix, a dot means derivative
with respect to the affine parameter λ. In terms of E and L,
the Euler-Lagrange equations reduce to the following
system of coupled differential equations for ρ and z:

ρ̈ −
L2ðU þ ρ∂ρUÞ

ρ3U5
þ 2_ρ _z ∂zU − ðE2 þ _z2 − _ρ2Þ∂ρU

U
¼ 0;

ðA4Þ

̈z −
L2∂zU
ρ2U5

þ 2_ρ _z ∂ρU − ðE2 − _z2 þ _ρ2Þ∂zU

U
¼ 0: ðA5Þ

To find symmetric orbits we set initial conditions as
ρð0Þ¼0, zð0Þ¼ z0, and _zð0Þ ¼ 0. By virtue of Eqs. (A2)
and (A3) we find

_ρð0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Veffð0; z0Þ

q
: ðA6Þ

With the above initial conditions, we are able to find
various orbits by choosing values of E, L, and z0. Setting
L ¼ 0 means constraining the motion to the plane that
contains both holes, as explained in the main text. On the
other hand, to look at the symmetry plane z ¼ 0we need to
choose nonzero values for ρð0Þ and L.

2. Oscillating particle in the MP metric

We start with a special case of the three-body problem in
which one the bodies is much lighter than the other two.
The small body is a test particle following a timelike
geodesic motion at z ¼ 0, while the two massive bodies are
the two extremely charged BHs in the Majumdar-
Papapetrou metric. Setting δ ¼ 1 in Eq. (3) yields

_ρ2 þ 1

U2
¼ E2; ðA7Þ

whereU ¼ Uðρ; z ¼ 0Þ. The effective potential 1=U2 tends
to 1 as ρ → �∞ and z ¼ 0. Thus, the solution is bounded
and oscillatory around ρ ¼ 0 for 1=ð1þ 2MÞ2 < E2 < 1.
The first inequality comes from the fact that the initial
velocity must be real. The motion can be parametrized
by the coordinate time t by dividing both sides of Eq. (A7)
by _t2,

�
_ρ
_t

�
2

¼
�
dρ
dt

�
2

¼ 1

E2U4

�
E2 −

1

U2

�
: ðA8Þ

For small-amplitude oscillations,

V ≡ 1

U2
∼

1

ð1þ 2MÞ2 þ
2Mρ2

ð1þ 2MÞ3 þOðρ3Þ: ðA9Þ

Thus, to lowest order E2 ¼ 1=ð1þ 2MÞ2 and the motion is
sinusoidal with (coordinate) frequency

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MV0

ð1þ 2MÞ5
s

; ðA10Þ
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with V0 ¼ 1=ð1þ 2MÞ2. For large separations (in our
units, when M → 0) we recover the Newtonian result.

3. Lyapunov exponent

One can compute the Lyapunov exponent associated
with the unstable circular orbits by considering perturba-
tions in the radial coordinate ρ and in the canonical
momentum pρ ¼ ∂L=∂ _ρ [2,5]. Let pρ ¼ δpρ and
ρ ¼ ρout þ δρ, then the equation for the perturbation reads

d
dt

�
δpρ

δρ

�
¼

�
0 K1

K2 0

��
δpρ

δρ

�
; ðA11Þ

where

K1 ¼ _t−1
d
dρ

�∂L
∂ρ

�
; K2 ¼ ð_tU2Þ−1: ðA12Þ

The Lyapunov exponent λ is the eigenvalue of the matrix in
Eq. (A11), namely

ffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
. It is worth noting that the

Lyapunov exponent depends on the choice of parametriza-
tion. For that reason the perturbed equation is written as an
ordinary differential equation with respect to the coordinate
time t, so that associated time scale is the one measured by
an observer at infinity. By virtue of the Euler-Lagrange
equations,

∂L
∂r ¼ d

dλ
ðgρρ _ρÞ ¼ _ρ

d
dρ

ðgρρ _ρÞ: ðA13Þ

Taking the derivative of Eq. (6) with respect to ρ yields

_ρ
d_ρ
dρ

¼ −
1

2
V 0; ðA14Þ

where V 0 ¼ dV=dρ. From Eqs. (6) and (A14),

_ρ
d
dρ

ðgρρ _ρÞ ¼ gρρ _ρ
d_ρ
dρ

þ _ρ2g0ρρ

¼ −
1

2
gρρV 0 þ ðE2 − VÞg0ρρ

¼ 1

2gρρ
½g2ρρðE2 − VÞ�0: ðA15Þ

For circular geodesics _ρ ¼ 0, which implies that V ¼ E2

and that the radius is a critical point of the potential.
Equations (A13) and (A15) imply

d
dρ

�∂L
∂ρ

�
¼ d

dρ

�
1

2gρρ
½g2ρρðE2 − VÞ�0

�
¼ −

1

2
gρρV 00:

ðA16Þ

Combining Eqs. (A12) and (A16), the Lyapunov exponent
is given by

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
¼

ffiffiffiffiffiffiffiffiffiffi
−
V 00

2_t2

r
: ðA17Þ

We recall that all quantities are evaluated at the unperturbed
(circular) solution. With that in mind, we can arrive at an
expression for λ computed for ρ ¼ ρout, the outermost and
unstable circular null geodesic. The conditions V ¼ E2 and
V 0 ¼ 0 yield

�
L
E

�
2

¼ ρ2U4 and U0 ¼ −
U
2ρ

: ðA18Þ

By substituting these expressions in Eq. (A17) and using
the definition of E, we find

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3U þ 4ρ2U00

2ρ2U5

s ������
ρ¼ρout

: ðA19Þ

It is possible to solve Eq. (A11) by applying the standard
procedure to solve coupled differential equations with
constant coefficients. The solution is

δpρðtÞ ¼ δp0 coshð
ffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
tÞ þ

ffiffiffiffiffiffi
K1

K2

s
δρ0 sinhð

ffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
tÞ;

ðA20Þ

δρðtÞ ¼ δρ0 coshð
ffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
tÞ þ

ffiffiffiffiffiffi
K2

K1

s
δp0 sinhð

ffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
tÞ;

ðA21Þ

where δp0 ¼ δpρð0Þ and δρ0 ¼ δρð0Þ. We can compute λ
numerically from the previous expressions. To simplify the
procedure, we set δp0 ¼ 0 and find that

λ¼1

t
cosh−1

�
δρðtÞ
δρ0

�
¼1

t
cosh−1

�
ρnumðtÞ−ρout

δρ0

�
; ðA22Þ

where ρnumðtÞ is the solution of the radial equation found
with a standard numerical integration technique.
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