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We show that, in contrast to general relativity, in Eddington-inspired Born-Infeld gravity (EiBI), a
violation of the null convergence condition does not necessarily lead to a violation of the null energy
condition, by establishing a relationship between them. This serves as a motivation for finding wormhole
solutions which can be supported by nonexotic matter in this gravity theory. We then obtain exact solutions
of the field equations in EiBI gravity coupled to arbitrary nonlinear electrodynamics and anisotropic fluids.
Depending on the signs and values of different parameters, the general solutions can represent both black
holes and wormholes. In this work, we analyze the wormhole solutions. These wormholes are supported by
nonexotic matter, i.e., matter satisfying all the energy conditions. As special cases of our general solutions,
we work out several specific examples by considering Maxwell, power-law, Born-Infeld electrodynamics

models and a particular form of an anisotropic fluid.
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I. INTRODUCTION

Wormholes are theoretical constructs constituting
short cuts or tunnels or openings to otherwise distant parts
of the cosmos or different universes [1,2]. The idea of such
spacetime geometries came from Einstein and Rosen’s
proposal of the Einstein-Rosen bridge [3]. The term
wormhole was coined by Misner and Wheeler [4]. One
of the first wormhole solutions, the Ellis-Bronnikov worm-
hole, was found in the framework of general relativity
(GR), using a wrong sign (phantom) in the scalar field
Lagrangian [5,6]. Subsequently, the possibility of having
time-machine models using wormholes was introduced
[7-9]. This led to growing interest in wormholes [2].

A wormhole can be thought of as a defocusing lens in the
sense that an initially converging family of radial null rays,
while passing through the wormhole, first becomes parallel
at the wormhole throat and then starts diverging on the
other side. This defocusing of the family of null rays
passing through the wormhole is the outcome of the fact
that the null convergence condition (NCC) is violated in the
vicinity or at least at the wormhole throat [2], as can be seen
from an analysis of the Raychaudhuri equation for this
family. In GR, a violation of the NCC leads to a violation of
the null energy condition (NEC) which, in turn, leads to
violations of the other various energy conditions (weak,
strong, dominant, etc.) [10,11]. Therefore, in the frame-
work of GR, wormholes require energy-condition-violating
matter (often termed “exotic matter”) to be supported [1,2].

However, the above-mentioned requirement of exotic
matter to support a wormhole can be avoided in many

“rajibul.shaikh @tifr.res.in

2470-0010/2018/98(6)/064033(10)

064033-1

alternative or modified theories of gravity. In such gravity
theories, since the structures of the field equations are
different from that of GR, the violation of the NCC does not
necessarily lead to the violations of the various energy
conditions [12,13]. Therefore, in such theories, wormholes
can be supported by matter which satisfies all the energy
conditions but violates the convergence condition. See
[14-30] and references therein for some such examples.
Also see [31-46] for some recent works on different aspects
of wormholes.

Eddington-inspired Born-Infeld gravity (EiBI) [47],
which is a modified theory of gravity, belongs to a class
of Born-Infeld inspired gravity theory first proposed by
Deser and Gibbons [48], inspired by the earlier work of
Eddington [49] and the nonlinear electrodynamics of
Born and Infeld [50]. The theory is equivalent to
Einstein’s GR in vacuum but differs from it within matter.
Since its introduction, various aspects of EiBI gravity have
been studied by many researchers in the recent past,
including black holes [47,51-60], wormholes [61-64],
compact stars [65-69], cosmological aspects [47,70-80],
astrophysical aspects [81-83], gravitational collapse
[84,85], gravitational waves [86,87], implications in non-
gravitational contexts like particle physics [88], etc. See
[89] for a recent review on various studies in EiBI gravity.
In this work, we first show that, in this gravity theory, the
violation of the NCC does not necessarily lead to the
violation of the NEC. We then obtain exact solutions of
the field equations in EiBI gravity coupled to arbitrary
nonlinear electrodynamics and anisotropic fluids. The
general solutions can represent both black holes and
wormholes. In this work, we focus on the wormhole
solutions which are supported by nonexotic matter.

© 2018 American Physical Society
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The plan of the paper is as follows. In the next section,
we briefly recall the EiBI theory. In Sec. III, we establish a
relationship between the NCC and the NEC along a
congruence of radial null geodesics. In Sec. IV, we obtain
exact solutions, which represent both black holes and
wormbholes, of the field equations in EiBI gravity coupled
to arbitrary nonlinear electrodynamics and anisotropic
fluids, and we analyze the wormhole solutions. We work
out some specific examples in Sec. V. We conclude in
Sec. VI with a summary of the key results.

II. EDDINGTON-INSPIRED BORN-INFELD
GRAVITY

The action in FiBI gravity developed in [47] is given by

4

¢ 4
SHGK/ d x|:\/_g;w + KRMD(F” _ﬂ\/ -9

+Su(g,¥),

SB][g, F, T} =

where ¢ is the speed of light, G is Newton’s gravitational
constant, 1 = 1 + kA, « is the EiBI theory parameter, A is
the cosmological constant, R, (") is the symmetric part of
the Ricci tensor built with the independent connection T,
Su(g, W) is the action for the matter field, and the vertical
bars stand for the matrix determinant. Variations of this
action with respect to the metric tensor g,, and the
connection I yield, respectively [47,70,71],

VI = R - R ()

Vi(v=q4") =0, (2)

where k = %, V! denotes the covariant derivative defined

by the connection I', and ¢** is the inverse of the auxiliary
metric g, defined by

Qv = G + KR/HJ(F)' (3)

In obtaining the field equations from the variation of the
action, it is assumed that both the connection I' and the
Ricci tensor R, (I') are symmetric, ie., I'), =7, and
R, (') = R,,(I). Equation (2) gives the metric compati-
bility equation which yields

1
Fﬁp = Eqﬂﬂ(qua,p + 9pov — qW),G)' (4)

Therefore, the connection F,’f,, is the Levi-Civita connection
of the auxiliary metric g,,. Either in vacuum or in the limit
k — 0, GR is recovered [47].

III. CONVERGENCE CONDITION AND ENERGY
CONDITIONS IN EIBI GRAVITY

As we have mentioned in the Introduction, at or in the
vicinity of a wormhole throat, the NCC is violated along a
congruence of radial null geodesics passing through it, and
unlike in GR, in many modified gravity theories, the
violation of the NCC may not lead to violations of the
different energy conditions. In this section, we explore this
possibility in the context of EiBI gravity. To study the NCC
along a radial null geodesic congruence, we consider,
respectively, the following Ansdtze for the physical and
the auxiliary metric:

ds? = —e>di? + ) dr? + r2(d6* + sin® 0d¢?),  (5)

ds? =—e*di> + ¥ dr? + H?(r) (d6” + sin® 0dg?).
(6)

For an energy-momentum tensor of the form T} =
diag(—p, p,, Po- Po), the field equation (1) yields

ea(r) :e”(r), /T(l +Kp)’ eﬂ(r) :e‘l’(r% /T(l _Kpr)’
r=H(r)\/t(1-xpy). (7)

1
V/(1+xp) (1=xp,) (1=kpg)*
G=c=1, A=0, and 87 = 1. Later, in the matter
Lagrangian also, we will set 87 = 1. This is for conven-
ience. Note that the Ricci tensor appearing in the field
equation (3) is that of the auxiliary metric g,,. But, the
Ricci tensor appearing in the NCC is that of the physical
metric g,,. However, for a family of radial null geodesics
with four-velocity k% we can express the NCC in terms of
P, Pr» Do and their derivatives by using (3) and (7). To this
end, we first note that, for a family of radial null geodesics
in the equatorial plane of the physical metric (5), k' = e™2*
and k" = +e~(@+P)_ Therefore, using (7), we obtain

where 7= Here, we have taken

Ry, (D)kik = 724 [—RI(T")e*¥=%) + Ry(T")e* V)]

 klp+pe
= i+ )1 —xpy) D)

+m[—R§(F) + RI(I)], (8)
where R, (") is the Ricci tensor of the auxiliary metric g,
and its indices are raised by using the auxiliary metric (6).
Using the field equation xR,,(I') = q,, — g, the null
geodesic equation g, k*k* = 0 and Egs. (5)-(7), we obtain,
along the family of radial null geodesics,

(p+pe )
t(1+xp)(1=xp;)’

1
R/u/ (F)kﬂku = ; (qlw - g;w)k”kp =
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Now, for the auxiliary metric (6), it can be shown that

2 d
~RY(T) + RIT) = = ¥

U N

where a prime denotes a derivative with respect to r. Using
(7), the last equation can be rewritten as

—kp,)(1=kpy)

(1+xp)

_RY(T) + RY(T) = \/ T(

1
2 d 2
_Z et P (pma Py —Z =2y’
x[ ¢ dr(e ) e ,

(11)

where Y = 7./(1 + xp)(1 —kp,)H'. Denoting the Ricci
tensor of the physical metric g,, by R,,, we obtain, for the
physical metric (5),

Hv

2 d
—R! R =-Z= a—p = (,—a—f 12
PR = e (e ), (12)

where the indices of R, are raised by using the physical
metric (5). Therefore, along the family of radial null
geodesics, we have

d
—RI+ RN e 20 — _Z p—(ath) =
( I+ r)e re dr

R, Jok = (e==F).  (13)

Also, from Egs. (3) and (7), we obtain
1
RIT) = [1 = 2(1 + p)). (14)

Using Egs. (9), (11), (13) and (14) in (8), we obtain, after
some manipulations,

—2a
R Dkﬂky: (p+pr)e
. (I=kp.)X(r)
2 d . [(+xp)/*(1=kp,)'/*
Ze2atp) X
e dar ¢ { (I—xpy) ()]
(15)
where

ot

= 1T =xpo).

and we have used the expression H(r
In the GR limit (x = 0), we obtain

iR, KK = (p + p,)e™. (17)

To satisfy the energy conditions, we must have p + p, > 0
which, in turn, implies R, k*k* > 0 along the family of

radial null geodesics in GR. Therefore, a violation/satis-
faction of the NCC in GR means violations/satisfactions of
different energy conditions. However, in EiBI gravity, the
second term on the right-hand side of Eq. (15), which
vanishes in the limit x — 0, makes the difference between
the NCC and the NEC. Therefore, in this gravity theory, the
second term on the right-hand side of (15) can lead to the
violation of the NCC, which is required to maintain a
wormhole, even though the NEC or any other energy
conditions remain satisfied. In the next section, we show
this explicitly by obtaining a class of wormhole solutions
which violate the NCC but satisfy the NEC as well as all
other energy conditions.

IV. EXACT WORMHOLE SOLUTIONS
SATISFYING ALL THE ENERGY CONDITIONS

In the previous section, we have seen that the second term
on the right-hand side of Eq. (15), which vanishes in the GR
limit x — 0, makes the difference between the NCC and the
NEC. To see whether or not this second term alone can
support wormholes without violating the energy conditions,
we consider an energy-momentum tensor of the form
Ty = diag(—p, —p, pg, Po), such that p, = —p and the first
term appearing on the right-hand side of Eq. (15) vanishes.
This type of energy-momentum can be interpreted as that
due to an anisotropic fluid, or it can be obtained from a
nonlinear electrodynamics action of the form

1
Su =g5 | dxy=g0(F) (18)
where @(F) is a function of the electromagnetic field
invariant F = 2F Wi and F,, =9,A,—0,A, is the

electromagnetic field tensor. For the electrostatic case, the
energy-momentum tensor obtained from the variation of
the above action becomes [90]

1 ..
T :gdlag((p—2F(pp,(p—2F(PF,(ﬂ7(ﬂ)» (19)

where @ is the derivative of ¢(F) with respect to F.
Expressing the above energy-momentum tensor in the
anisotropic fluid form, we have

Po = . (20)

where we have set 87 = 1, as discussed in the previous
section. For the above form of the energy-momentum tensor,
the conservation equation V,T# = 0 becomes

p=-p,=2Fpp -

p+= (p+pe) 0. (21)
In the subsequent calculations, we shall use the above
conservation equation whenever p’ appears. Using the last
equation, we obtain
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1—
X(r) = LT KpPy (22)
1 +xp
Therefore, Eq. (15) becomes
2
R ke = =5 (’) rp 9) e2ath), (23)
r* \1+«kp

Now Egs. (13) and (23) can be combined to obtain

d d
d—log(ea+ﬂ) = —d—log(\/l +Kp), (24)
r r

where we have used the conservation equation (21). The
integration of the last equation yields

1
A (25)

VIi+kp'

Therefore, for an energy-momentum tensor of the form
T, = diag(—p, —p, py, py) in EiBI gravity, we have, along a
congruence of radial null geodesics,

2K
R;wkﬂky = ? (P + p9>‘ (26)

Note that, for the energy-momentum mentioned above, the
necessary and sufficient conditions to satisfy all the energy
conditions are p > 0, py > 0 and p > |pg|. Therefore, we
must have x < O for the violation of the NCC, and hence,
to have wormholes without violating the energy condi-
tions. The spacetime geometry of a spherically symmetric,
static wormhole of the Morris-Thorne class is generically
written as

dr?
b(r)

r

+ 12(d6? + sin20dg?),  (27)

ds? = —e2*(gs? +
1

where ®(r) and b(r) are, respectively, the redshift function
and the wormhole shape function. The wormhole throat,
where two different regions are connected, is given by
(1-"27)] = 0,ie.,by b(ry) = ro, with ry being the radius
of the throat. The redshift function ®(r) is finite everywhere

(from the throat to spatial infinity). Now, using (25), we find
that the physical metric (5) becomes

2
ds? =—e2d + dr

—— + 12(d6? +sin%0d?).
g e2a(r>(1 +kp) ( ¢)

(28)

Comparing (27) and (28), we find that the above spacetime
represents a wormhole, provided the throat radius ry is a
solution of (1 + xp)|,, = 0, and a(r) is finite from the throat
to spatial infinity. This can also be seen from the fact that the
expansion scalar

fa 2—(1 2
szﬂk":i;e(*m:i; l+xp  (29)

of a congruence of radial null geodesics passing through
the wormhole must vanish at the wormhole throat.
Therefore, the wormhole throat radius r must be a solution
of (1 +«p)|,, =0.

To obtain exact wormhole solutions, we rewrite the
physical and auxiliary metrics in the following forms:

d 2
ds2 =~y (1) f(r)d? +——+ r2(d6? +sin20d4?),  (30)

f(r)
ds2 = —G*(r)F(r)di* + Ii—f) + H?(r)(d6* + sin*6d¢?).
(31)

Comparing the above ansatze with Egs. (5) and (6), we find
e =y’f, e = %, e” = G*F and ¢*¥ = 1. Therefore,
from Eqgs. (7) and (25), we find that

1) = FO =kpa). wlr) =t (32
1—xp
G(r) = \/f—:p’ H(r)=ry/1+xp. (33)

Using Eq. (33) and the conservation equation (21), it can be

shown that H' = IIY;Z = G. With G = H', the tt and rr

components of the field equation (3) become identical to
each other. Therefore, we are left with two equations
coming from the # (or rr) and the 89 component. The
energy conservation equation (21) can be solved to obtain
p(r) for a given nonlinear electrodynamics model or
equation of state between p and py of the anisotropic
fluid. The 60 component of the field equation (3) can be
solved to obtain F(r). The other equation (i.e., the 7 or the
rr component of the field equation) will automatically be
satisfied because of the energy conservation equation. The
06 component of the field is given by

H' H? HF 1 1 1
2—+— - =— -1(, (34
H+H2+HF H?’F «F |:1+K'p } (34)
which can be integrated to obtain
1 H> 1 [r H*H
F=——|Ci+H——+- dr|, 35
a1 % Tk 1 +«xp r] (35)

where C| is an integration constant. Therefore, we obtain
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HH/Z
1 +xp { C, r?

:l—Kpg +r\/1—|—1<p 3K( +xp)
2

r 2 r
=7 0L N

K

H> r*H 2 (r
flr) = —KPo {Cl—i—H———i—r———/ err]
3k K K

where we have used H' = llip" Since, in vacuum, the

EiBI gravity reduces to vacuum GR, we must recover the
Schwarzschild solution. This gives C; = —2M, with M
being related to the mass. Therefore, we have obtained a
complete general solution of the field equations. In the GR
limit «x — 0, w = 1 and

M 2 2
F()lewo = 1= =2 = 2 (4 5p) +
2 Kp T, Kp
Kr(l 2>/r<1+2)dr
2M 1 [r
= ————/ pridr, (37)
ror

which is the same as that in GR [91]. For a Maxwell electric
field (pg = p), the integration of the energy conservation
equation (21) gives p = 42 , where Q is an integration
constant representing the charge. Putting this in the last
equation, we obtain the metric function of the Reissner-
Nordstrom spacetime.

The general solution (36) can represent both black holes
and wormholes, depending on the signs and values of the
different parameters. The black hole solutions are charac-
terized by event horizons given by the roots of f(ry) = 0,
with ry being the radius of an event horizon. However, in
this work, we only analyze the wormhole solutions. As we
have already shown, wormhole solutions are possible only
when k < 0. The radius r of a wormhole throat is given by
(1+xp)l,, = 0. Other necessary conditions which have to
be satisfied to construct a wormhole are the no-horizon
condition and the flare-out condition at the throat. The
metric function y? f must be nonzero, positive (no-horizon
condition) and finite everywhere (from the throat to spatial
infinity). However, because of the (1 + kp) factor in the
denominator of the terms containing the mass M and the
integration of (36), w>f diverges as r — r,. However, we
can remove this divergence if we demand that, at the
wormhole throat r,

1 T
:ﬂ/°r2 1+ xpdr. (38)
K

In fact, the above condition not only removes the diver-
gence in w2 f, it also removes the curvature divergences,
thereby making the spacetime regular everywhere. This can

be checked by finding the Ricci scalar R. Expanding the
metric functions around r = r or using the ’'Hotal rule at
r = rg, we obtain

(I =x)xpy = 2x 2
R, =Py X+ S x—1), (39
I r(1 —xpg) +3r(2)Kp0+r(2)( x=1) (39)

2
where x = ¢ and p, is the tangential pressure at the throat
Ix|

r = rg,i.e., po = py(ro). Note that the Ricci scalar is finite
at the throat. In terms of f(r), the flare-out condition reads

s> > 0 [62]. At r = ry, we have

(1 f)
5 B 1
F0, =0, WS, = (-0 (40)
LA [ NN (1)

2(]_f)2 o o

Note that, to satisfy the no-horizon condition as well as
the flare-out condition at the throat, we must have x < 1,
ie., ry < \/m Since, for x < 1, f =0 and f’ > 0 at the
throat, f(r) does not have any zeros at r > ry. On the other
hand, for x > 1, it always possesses zeros at r > r.
Therefore, we always have a wormhole solution for x <
1 and a regular black hole (or a wormhole whose throat is
covered by an event horizon) solution for x > 1. The
critical value x, = 1 distinguishes the wormhole and black
hole solutions.

V. SOME SPECIFIC EXAMPLES
A. Power-law Maxwell field

For a power-law Maxwell electric field, ¢ = F#. From
Eq. (20), we obtain

p=-p,=Q2f-1F,  py=F =ap, (42)

where a = 2/; D 1.e., = 1+“ For a = 1, it represent the
energy-momentum tensor of a Maxwell field. Wormhole
solutions with the above type of energy-momentum tensor
have already been obtained in [62]. Here, we show that we
can retrieve these solutions as a special case of the general
solution (36). The energy conservation equation (21) can be

integrated to obtain

Co
pP= 2+ (43)
where C is an integration constant. The integration in f(r)
can be performed to obtain
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3
T, kCy r xCy
/ r lJrirz(aJrUdr——3 l+———

La=5

i(r()) 2a+2:| k)

(44)

():H

[1 2a—1 4a+1

1- 2a2 Filz 2a+22a+2

where the upper and lower signs are for k < 0 and « > 0,

—] .
respectively, and ry = (|k|Cy)™= 0. Therefore, we obtain

1+ s oM Co

f(r)* axCy 1-

1- F2lat1)

1 + K‘Co 31’2“

2 a+l)

2 1)C,
_ ((l+ ) 0 I(r) .
3ry /1 + J

which is the same as that obtained in [62]. For k < 0, ry =

(|K|C0)2<“—1+U is the wormhole throat radius. Therefore, for
k < 0, Egs. (38) and (39) become

(a+ l)ré(aﬂ)
mM=—"TJ g
3|K‘ (rO)
0 ta=4
=4 (a+D)r} 1 2a—1 4a+1 |
et p, La#)
3Q2a—1)]x| 22a+22a+2

Rl,, :-rl(% [Z(a—l— 1) —4(§+ 1>x}

The above results match with those obtained in [62]. For
the Maxwell electrodynamics @ = 1 and C, = Q?, with Q
being the charge. In this Maxwell electrodynamics case,
f(r) becomes

1+ oM Q2
f(r):<1—@> - 32

where we have used r§ = [k|Q? in I(r). For k < 0, ry is the

throat radius.

B. Born-Infeld electrodynamics

For a static electric field in Born-Infeld electrodynamics,

@ 1s given by
F
_ ﬁ> , (46)

where b is the Born-Infeld electrodynamics parameter. In
the limit »*> — oo, it reduces to Maxwell electrodynamics.
Black hole solutions in EiBI gravity coupled to the above
Born-Infeld electrodynamics have been obtained in [55].
Here, we highlight the wormhole solutions supported by
the above nonlinear electrodynamics. From Egs. (20) and
(46), it can be shown that

o(F) = 2b2<1 —\/1

P
1+2f’7’

Po = (47)

which can be used to integrate the conservation equa-
tion (21) to obtain

2
p=2b2 ,/1+%—1 : (48)

where Q is an integration constant representing the charge.
In this case, however, it is difficult to perform the
integration in f(r) analytically in the Schwarzschild gauge.
To perform the integration analytically, we consider the
coordinate transformation

and obtain
r 1 1 r
/ /(1 + kp)dr zirzf—i/ P2 dr
1 1 [ 7
PR~ .
> 2/ dar (50)

1 +xp

~!I

Now putting r = 7/4/1 + kp in (49), we obtain

1 + bZ 4 4i?2>
1 — 4kb? - G

L 1-2k?(1
1+K'/):

Using the above expression and defining 4kb?> = a, the
integration on the right-hand side of (50) becomes
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N 2—a a 7 4xQ?*(1 — a)
a7 — 7 21+ 20T
/ 1 +«p " 6(1—a)r 2(1—a)/ " * art "
2

_2-a 5, o« s 4KQ2(1—a 4 2/
“6i-a) si-a |'T Q 1+4KQ (52)

Note that the integration on the right-hand side of (52) is similar to that in Eq. (44) (with a = 1 there). This gives

1 115 4x0%*(1-
/ __Lr {_,_’_;_M] (53)
1_'_4:<Q 1—a) 7 244 ar

Combining (50), (52) and (53), we obtain

; 73 4xQ*(1 - 2kQ? 11 4xQ*(1 -
/ r2\/(1+xp)dr:6(1r7 2—a—ay\ll+ <0 (_4 ®) - ’;Q SF [—,Z,Z;_M} (54)
—a r

So, finally, we obtain

o l+xp 2M ar? 4xQ*’(1—a)| 40? 1
=122 |12 (1 1 ) 4

which is the same as that obtained in [55] for —co < @ < 1. In the above expression, py, p and 7(r) are, respectively,
given by (47), (48) and (49). The above solution represents a wormhole for ¥ < 0, i.e., for a < 0. The wormhole throat
radius ry is given by (I +«p)|, =0. This gives 7(ro) =0 or ro = [4|x[?b?Q?/(1 + 4[x|b?)]'/*. In the Maxwell
electrodynamics limit b> — co, the throat radius becomes ry = (|x|@?)'/* which is the same as that obtained in the
previous subsection.

C. Anisotropic fluid with pg=p(1+xp)

As the third example, we consider an anisotropic fluid with the equation of state p, = p(1 + kp). The energy
conservation equation (21) can be integrated to obtain

C, 1
r_41_KC()’

274

where Cj, is an integration constant. Putting r = %, the integration in f(r) can be performed using MATHEMATICA. We obtain

KCO

<2M Co {1 19 K2C2:| kC3 [1 5 13.;<2c3]> kC2
KCO 6|

s 22288 48 305 2788 T 48] 6
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For x<0, the wormhole throat radius is given by

\K\Co)1/4
2

(1 +xp)|,, =0 which gives ry = ( . In this case,

Egs. (38) and (39) become

r 119 r 1513
M=0F |5 g | ot oF i |50 s (57
k| 2 1[28 8 ]4“15|;<|2 1[28 8 } (57)
2x
o

Note that, forx < 0, p, vanishes at the throat and approaches
p asymptotically. Therefore, 0 < p, < p always, implying
that all the energy conditions are satisfied.

VI. CONCLUSION

In this work, we have established a relationship
between the NCC and the NEC in EiBI gravity. We have
shown that, in contrast to GR, in EiBI gravity, a violation
of the NCC does not necessarily lead to violations of the
various energy conditions, thereby implying that worm-
holes can be supported by nonexotic matter in this gravity
theory. Subsequently, we have obtained exact solutions of
the field equations in EiBI gravity coupled to arbitrary

nonlinear electrodynamics and anisotropic fluids having
energy-momentum of the form 7% = diag(—p, —p, pg, Pg)-
Depending on the signs and values of different parame-
ters, the general solutions can represent both black holes
and wormholes. In this work, we have analyzed the
wormhole solutions. We have found that the EiBI theory
parameter k must be negative so that the wormholes are
supported by matter which satisfies all the energy con-
ditions, even though the NCC is violated. As special cases
of our general solutions, we have obtained several specific
wormhole solutions by considering Maxwell, power-law,
Born-Infeld electrodynamics models and an anisotropic
fluid having energy-momentum of the form T} =
diag(—p, —p, p(1 + kp),p(1 + kp)). Currently, we are
studying the black hole aspects of these solutions and
hope to report our results in the future.
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