
 

Maximal efficiency of the collisional Penrose process with spinning particles

Kei-ichi Maeda,1,* Kazumasa Okabayashi,1,† and Hirotada Okawa2,3,‡
1Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan

2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
3Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan

(Received 25 April 2018; published 14 September 2018)

We analyze the collisional Penrose process of spinning test particles in an extreme Kerr black hole. We
consider that two particles plunge into the black hole from infinity and collide near the black hole. For the
collision of two massive particles, if the spins of particles are s1 ≈ 0.01379 μM and s2 ≈ −0.2709 μM, we
obtain the maximal efficiency is about ηmax ¼ ðextracted energyÞ=ðinput energyÞ ≈ 15.01, which is more
than twice as large as the case of the collision of non-spinning particles (ηmax ≈ 6.32). We also evaluate the
collision of a massless particle without spin and a massive particle with spin (Compton scattering), in which
we find the maximal efficiency is ηmax ≈ 26.85 when s2 ≈ −0.2709 μM, which should be compared with
ηmax ≈ 13.93 for the nonspinning case.

DOI: 10.1103/PhysRevD.98.064027

I. INTRODUCTION

A black hole is the most strongly bound system. If we
can extract energy from a black hole, it would be much
more efficient than nuclear energy. However, because of the
black hole area theorem [1], we cannot extract energy from
a Schwarzschild black hole. For a rotating black hole,
instead, Penrose suggested the use of the ergoregion of a
rotating black hole to extract energy [2]. A particle can have
negative energy in the ergoregion. Hence we suppose that a
plunged particle in the ergoregion breaks up into two
particles such that one particle has negative energy and falls
into the black hole, while the other particle with positive
energy, which is larger than the input energy, goes away to
infinity. As a result, we can extract energy from a rotating
black hole, which is called Penrose process.
It was pointed out that this Penrose process could play a

key role in the energy emission mechanism of jets and/or x-
rays from astrophysical objects [3]. It has become one of
the most interesting and important mechanisms in astro-
physics as well as in general relativity. However, some
earlier works [4–6] showed that the incident particle or the
break-up particles must be relativistic, which implies that
the Penrose process is rare in astrophysics and that this
process cannot serve for astrophysical process.
A disintegration of a plunged particle may also not be

practical for extraction of energy from a black hole. Hence
two more plausible methods have been proposed: One is a
superradiance, in whichwe use propagating waves instead of

a particle [7–11]. An impingingwave on a rotating black hole
is amplified for some range of frequencieswhen it is scattered
(see [12] for the recent progress).The other one is a collisional
Penrose process, in which two particles plunge into a black
hole and collide in the ergoregion instead of disintegration of
a single particle [13]. One expects that it may give more
efficient mechanism in astrophysical situations. Unfortu-
nately, the efficiency of the energy extraction, which is the
ratio of the extracted energy to the input energy, turns to be as
modest as the original Penrose process [14].
Recently this process has again attracted much attention

because Bañados, Silk, and West [15] showed that the
center of mass energy of two particles can be arbitrarily
large when the angular momentum of one incident particle
is tuned and the collision occurs near the horizon of an
extreme Kerr black hole. This is referred to the BSWeffect.
If the center-of-mass energy is enough large, new unknown
particles could be created if any. It may reveal new physics.
It could also play an important role in astrophysics.
There have been so far many studies on the BSW effect

after their finding [16–31]. Since the interaction between a
black hole spin and an angular momentum of the particle is
essential for the Penrose process and the BSWeffect, it may
be interesting to discuss collision of spinning particles. As
we will summarize in the text, the 4-momentum of a
spinning particle is not always parallel to its 4-velocity,
resulting in the possibility of violation of the timelike
condition of the orbit. As a result, although the BSW
effect by collision of spinning particles in non-rotating
Schwarzschild spacetime can take place near the horizon,
the motion of the spinning particles becomes superluminal
before the collision point [31]. While, if the particle energy
satisfies E <

ffiffiffi
3

p
μ=6, with which such a particle cannot

*maeda@waseda.jp
†bayashioka@gravity.phys.waseda.ac.jp
‡h.okawa@aoni.waseda.jp

PHYSICAL REVIEW D 98, 064027 (2018)

2470-0010=2018=98(6)=064027(18) 064027-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.064027&domain=pdf&date_stamp=2018-09-14
https://doi.org/10.1103/PhysRevD.98.064027
https://doi.org/10.1103/PhysRevD.98.064027
https://doi.org/10.1103/PhysRevD.98.064027
https://doi.org/10.1103/PhysRevD.98.064027


plunge from infinity, the timelike condition is preserved
until the horizon [32]. Of course, we find the BSW effect
for the collision of spinning particles in a rapidly rotating
Kerr (or Kerr-Newman) black hole [33,34].
We are also very curious about the efficiency of

energy extraction from a black hole, which is defined by
η ¼ ðoutput energyÞ=ðinput energyÞ. Even when the center-
of-mass energy becomes arbitrarily large near the horizon,
a resulting particle may not necessarily escape to infinity.
Thus, it is also important to study how large is the
efficiency of the energy extraction from a black hole.
When two massive particles collide near the horizon on

the equatorial plane and are converted to massless particles
(photons), Bejger et al. [35] showed numerically that the
maximal efficiency is about 1.29. This result has been
confirmed analytically by Harada, Nemoto, and Miyamoto
[36]. However, as Schnittman showed numerically [37], the
maximal efficiency becomes 13.92 when an outgoing fine-
tuned massless particle collides with a massive particle
near the horizon. Leiderschneider and Piran [38] then
derived the maximal efficiency analytically for several
possible processes. They analyzed not only the collision
on the equatorial plane but also more general off-
plane orbits. They concluded that the maximal efficiency
is ð2þ ffiffiffi

3
p Þ2 ≈ 13.93, which is found in the case of the

Compton scattering (collision of massless and massive
particles) on the equatorial plane. The similar analytic
approaches were performed in [39,40]. These results agree
with the numerical result by Schnittman [37].
More efficient way of extracting the energy from a black

hole, which is called the super-Penrose process, has been
proposed in [41,42], but there is still an argument [38]. The
essential problem is how to create the particles which cause
the super-Penrose process. Zaslavskii [43] pointed out that
it is difficult to prepare a suitable initial state only by
preceding mechanical collisions.
One natural question may arise: How the efficiency of the

collisional Penrose process will be enhanced when the
particles are spinning? Recently this subject was discussed
in [44]. However the timelike condition was not properly
taken into account. The value of spin is too large for the orbit
to be timelike. Here we will study the effect of the particle
spin on the efficiency of energy extraction in detail. We
consider the collision of two massive spinning particles and
the Compton or inverse Compton scattering (collision of one
massless and one massive particles). In Sec. II, we briefly
review the equation of motion of a spinning particle in a Kerr
black hole and provide the timelike condition of the orbit. In
Sec. III, we study the collision of two spinning particles in an
extreme Kerr geometry and analyze the maximal efficiency.
We also discuss the collision of one spinningmassive particle
and one massless particle (the Compton and the inverse
Compton scatterings). Section IV is devoted to concluding
remarks. Throughout this paper, we use the geometrical units
of c ¼ G ¼ 1 and follow [45] for the notations.

II. BASIC EQUATIONS

A. Equations of motion of a spinning particle

We consider a spinning particle in Kerr geometry. The
equations of motion of a spinning particle were first derived
by Papapetrou [46] by the use of the pole-dipole approxi-
mation of an extended body, and then reformulated by
Dixon [47–49]. The equations of motion are

Dpμ

dτ
¼ −

1

2
Rμ

νρσvνSρσ

DSμν

dτ
¼ pμvν − pνvμ

where pμ, vμ ¼ dzμ=dτ, and Sμν are the 4-momentum, the
4-velocity and the spin tensor of the particle, respectively. τ
is the proper time and zμðτÞ is the orbit of the particle. We
need a set of supplementary conditions

Sμνpν ¼ 0;

which fixes the center of mass of the particle.
Defining the particle mass μð> 0Þ by μ2 ¼ −pμpμ, we

also use a specific 4-momentum uμ, which is defined by

uμ ¼ pμ

μ
:

The normalized magnitude of spin s is defined by

SμνSμν ¼ 2μ2s2:

We also normalize the affine parameter τ as

uμvμ ¼ −1:

We then find the relation between the 4-velocity and the
specific 4-momentum as

vμ − uμ ¼ SμνRνρσλuρSσλ

2ðμ2 þ 1
4
RαβγδSαβSγδÞ

;

which means that the 4-velocity vμ and the 4-momentum
pμ are not always parallel.

B. Conserved quantities

If we have a Killing vector ξμ in a background geometry,
we obtain the conserved quantity

Qξ ¼ pμξμ þ
1

2
Sμν∇μξν:

In the Kerr geometry, there are two Killing vectors:

ξðtÞμ ¼ −
� ffiffiffiffi

Δ
Σ

r
eð0Þμ þ a sin θffiffiffi

Σ
p eð3Þμ

�

ξðϕÞμ ¼ a

ffiffiffiffi
Δ
Σ

r
sin2θeð0Þμ þ ðr2 þ a2Þ sin θffiffiffi

Σ
p eð3Þμ ;
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where

Δ ¼ r2 − 2Mrþ a2 Σ ¼ r2 þ a2cos2θ;

and the tetrad basis eμðaÞ is defined by

eμðaÞ ¼

0
BBBBBBBB@

ffiffiffi
Δ
Σ

q
0 0 −a

ffiffiffi
Δ
Σ

q
sin2θ

0
ffiffiffi
Σ
Δ

q
0 0

0 0
ffiffiffi
Σ

p
0

− affiffiffi
Σ

p sin θ 0 0
ðr2þa2Þffiffiffi

Σ
p sin θ

1
CCCCCCCCA
:

Hence there are two conserved quantities in Kerr geometry, which are the energy E and the z component of the total
angular momentum J given by

E ≔ −QξðtÞ ¼
ffiffiffiffi
Δ
Σ

r
pð0Þ þ a sin θffiffiffi

Σ
p pð3Þ þMðr2 − a2cos2θÞ

Σ2
Sð1Þð0Þ þ 2Mar cos θ

Σ2
Sð2Þð3Þ

J ≔ QξðϕÞ ¼ asin2θ

ffiffiffiffi
Δ
Σ

r
pð0Þ þ ðr2 þ a2Þ sin θffiffiffi

Σ
p pð3Þ þ asin2θ

Σ2
½ðr −MÞΣþ 2Mr2�Sð1Þð0Þ

þ a
ffiffiffiffi
Δ

p
sin θ cos θ
Σ

Sð2Þð0Þ þ r
ffiffiffiffi
Δ

p
sin θ
Σ

Sð1Þð3Þ þ cos θ
Σ2

½ðr2 þ a2Þ2 − a2Δsin2θ�Sð2Þð3Þ:

C. Equations of motion in the equatorial plane

We introduce a specific spin vector sðaÞ by

sðaÞ ¼ −
1

2μ
ϵðaÞðbÞðcÞðdÞu

ðbÞSðcÞðdÞ;

which is inversed as

SðaÞðbÞ ¼ μϵðaÞðbÞðcÞðdÞ u
ðcÞsðdÞ;

where ϵðaÞðbÞðcÞðdÞ is the totally antisymmetric tensor
with ϵð0Þð1Þð2Þð3Þ ¼ 1.
In what follows, we consider only the particle motion in

the equatorial plane (θ ¼ π=2) [50]. From this constraint,
we find that the spin direction is always perpendicular to
the equatorial plane. Hence only one component of sðaÞ is
nontrivial, i.e.,

sð2Þ ¼ −s:

If s > 0, the particle spin is parallel to the black hole
rotation, while when s < 0, it is antiparallel.
As a result, the spin tensor is described as

Sð0Þð1Þ ¼ −spð3Þ; Sð0Þð3Þ ¼ spð1Þ; Sð1Þð3Þ ¼ spð0Þ:

We then obtain the conserved quantities as

E ¼
ffiffiffiffi
Δ

p

r
pð0Þ þ ðarþMsÞ

r2
pð3Þ

J ¼
ffiffiffiffi
Δ

p

r
ðaþ sÞpð0Þ þ rðr2 þ a2Þ þ asðrþMÞ

r2
pð3Þ.

From those equations, we find

uð0Þ ¼ ½ðr3 þ aðaþ sÞrþ aMsÞE − ðarþMsÞJ�
μr2

ffiffiffiffi
Δ

p ð1 − Ms2

r3 Þ

uð3Þ ¼ ½J − ðaþ sÞE�
μrð1 − Ms2

r3 Þ
:

There exists the normalization condition uμuμ ¼ −1, i.e.,

−ðuð0ÞÞ2 þ ðuð1ÞÞ2 þ ðuð3ÞÞ2 ¼ −1:

Hence we have

uð1Þ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuð0ÞÞ2 − ðuð3ÞÞ2 − 1

q
;

where σ ¼ �1 correspond to the outgoing and ingoing
motions, respectively.
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The relation between the 4-velocity vðaÞ and the specific 4-momentum uðaÞ is given by

vð0Þ ¼ Λ−1
s uð0Þ; vð1Þ ¼ Λ−1

s uð1Þ; vð3Þ ¼ ð1þ 2Ms2

r3 Þ
ð1 − Ms2

r3 Þ
Λ−1
s uð3Þ;

where

Λs ¼ 1 −
3Ms2r½J − ðaþ sÞE�2

μ2Σ3
s

with Σs ¼ r2
�
1 −

Ms2

r3

�
.

Hence we obtain

dt
dτ

≔ v0 ¼ r2 þ a2

r
ffiffiffiffi
Δ

p vð0Þ þ a
r
vð3Þ ¼ 1

rΛs

�
r2 þ a2ffiffiffiffi

Δ
p uð0Þ þ a

1þ 2Ms2

r3

1 − Ms2

r3
uð3Þ

�
;

dr
dτ

≔ v1 ¼
ffiffiffiffi
Δ

p

r
vð1Þ ¼

ffiffiffiffi
Δ

p

rΛs
uð1Þ;

dϕ
dτ

≔ v3 ¼ a

r
ffiffiffiffi
Δ

p vð0Þ þ 1

r
vð3Þ ¼ 1

rΛs

�
affiffiffiffi
Δ

p uð0Þ þ 1þ 2Ms2

r3

1 − Ms2

r3
uð3Þ

�
;

We finally obtain the equations of motion of the spinning particle as

ΣsΛsμ
dt
dτ

¼ Σsμ

r

�
r2 þ a2ffiffiffiffi

Δ
p uð0Þ þ a

1þ 2Ms2

r3

1 − Ms2

r3
uð3Þ

�
¼ a

�
1þ 3Ms2

rΣs

�
½J − ðaþ sÞE� þ r2 þ a2

Δ
Ps

ΣsΛsμ
dr
dτ

¼ Σsμ
ffiffiffiffi
Δ

p

r
uð1Þ ¼ σ

ffiffiffiffiffi
Rs

p

ΣsΛsμ
dϕ
dτ

¼ Σsμ

r

�
affiffiffiffi
Δ

p uð0Þ þ 1þ 2Ms2

r3

1 − Ms2

r3
uð3Þ

�
¼

�
1þ 3Ms2

rΣs

�
½J − ðaþ sÞE� þ a

Δ
Ps

where

Ps ¼ ½r2 þ a2 þ as
r
ðrþMÞ�E −

�
aþMs

r

�
J

Rs ¼ P2
s − Δ

�
μ2Σ2

s

r2
þ ½−ðaþ sÞEþ J�2

�
:

Note that

uð1Þ ¼ σ
r

ffiffiffiffiffi
Rs

p

μ
ffiffiffiffi
Δ

p
Σs

: ð2:1Þ

Now we introduce the dimensionless variables as

Ẽ ¼ E
μ
; J̃ ¼ J

μM
; s̃ ¼ s

M
; t̃ ¼ t

M
; r̃ ¼ r

M
; a� ¼

a
M

; τ̃ ¼ τ

M
;

and

Δ̃ ¼ r̃2 − 2r̃þ a2�;
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Σ̃s ¼
Σs

M2
¼ r̃2

�
1 −

s̃2

r̃3

�
;

P̃s ¼
Ps

μM2
¼

�
r̃2 þ a2� þ

a�s̃
r̃

ðr̃þ 1Þ
�
Ẽ −

�
a� þ

s̃
r̃

�
J̃;

R̃s ¼
Rs

μ2M4
¼ P̃2

s − Δ̃
�
Σ̃2
s

r̃2
þ ½−ða� þ s̃ÞẼþ J̃�2

�
:

The equations of motion are then given by

Σ̃sΛs
dt̃
dτ̃

¼ a�

�
1þ 3s̃2

r̃Σ̃s

�
½J̃ − ða� þ s̃ÞẼ� þ r̃2 þ a2�

Δ̃
P̃s

Σ̃sΛs
dr̃
dτ̃

¼ �
ffiffiffiffiffi
R̃s

q

Σ̃sΛs
dϕ
dτ̃

¼
�
1þ 3s̃2

r̃Σ̃s

�
½J̃ − ða� þ s̃ÞẼ� þ a�

Δ̃
P̃s:

D. Constraints on the orbits

In what follows, we drop the tilde just for brevity. In
order to find an orbit to the horizon rH ≔ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
, the

radial function Rs must be non-negative for r ≥ rH, which
condition is reduced to be

f½r3 þ a�ða� þ s − bÞrþ ða� − bÞs�2
− r2Δða� þ s − bÞ2gE2 ≥ ΔΣ2

s ;

by introducing an “impact” parameter b ≔ J=E. There
exists a critical value of the impact parameter bcr, beyond
which the orbit cannot reach the event horizon. The particle
bounces off at the turning point dr=dτ ¼ 0, which radius is
larger than rH.
The turning point for the critical orbit with b ¼ bcr is

found just at the horizon radius. From the condition such
that RsðrHÞ ¼ 0, we find

bcr ¼
r3H þ a�ða� þ sÞrH þ a�s

a�rH þ s
¼ a� þ sþ r3H − s2

a�rH þ s
:

Hence in order for the orbit to reach the horizon, the
condition such that b ≤ bcr is required.
There exists one more important physical condition that

the 4-velocity must be timelike, which is explicitly written
as

vμvμ ¼ −ðvð0ÞÞ2 þ ðvð1ÞÞ2 þ ðvð3ÞÞ2

¼ ½ð1 − XÞ2ð−ðuð0ÞÞ2 þ ðuð1ÞÞ2Þ þ ð1þ 2XÞ2ðuð3ÞÞ2�
½1 − Xð1þ 3ðuð3ÞÞ2Þ�2

< 0;

where X ¼ s2

r3. It gives

ð1 − XÞ2ð−ðuð0ÞÞ2 þ ðuð1ÞÞ2Þ þ ð1þ 2XÞ2ðuð3ÞÞ2 < 0:

Since −ðuð0ÞÞ2 þ ðuð1ÞÞ2 þ ðuð3ÞÞ2 ¼ −1, this condition
is reduced to be

−ð1 − XÞ2 þ 3Xð2þ XÞðuð3ÞÞ2 < 0:

From

uð3Þ ¼ X1=3

s2=3ð1 − XÞ ½J − ða� þ sÞE�;

we obtain the timelike condition of vμ as

ð1 − XÞ4
ð2þ XÞX5=3 >

3½J − ða� þ sÞE�2
s4=3

: ð2:2Þ

This condition must be satisfied outside of the event
horizon, r ≥ rH. Note that this timelike condition is always
satisfied for s ¼ 0.
Since s2 ≤ 1, X is always smaller than unity outside of

the horizon, and the function on the left hand side in the
inequality (2.2) is monotonic with respect to X, we find the
above condition is reduced to be

ð1 − XHÞ4
ð2þ XHÞX5=3

H

>
3½J − ða� þ sÞE�2

s4=3
; ð2:3Þ

where XH ≔ s2=r3H.
By use of the impact parameter b, we find the above

timelike condition for as

E2 <
s4=3ð1 − XHÞ4

3ðb − a� − sÞ2ð2þ XHÞX5=3
H

;

which gives a constraint on the particle energy E.
It is also regarded as a constraint on the impact parameter

b for given energy E, i.e.,

a� þ s −
Fðs; rHÞ

E
< b < a� þ sþ Fðs; rHÞ

E
ð2:4Þ

where

Fðs; rHÞ ≔
s2=3ð1 − XHÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2þ XHÞ

p
X5=6
H

:

For the critical orbit with J ¼ Jcr, it becomes

E2 <
s4=3ð1 − XHÞ4

3ðbcr − a� − sÞ2ð2þ XHÞX5=3
H

: ð2:5Þ

In what follows, we mainly consider the extreme Kerr
black hole (a� ¼ 1, rH ¼ 1), especially when we discuss
the collisional Penrose process in the next section. For the
extreme black hole, we find bcr ¼ 2, which does not
depend on the spin s.
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If the particle is not critical, by setting b ¼ 2ð1þ ζÞ, the
timelike condition (2.4) is rewritten as

−
ð1 − sÞ

2
−

ð1 − s2Þ2
2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s2ð2þ s2Þ

p < ζ

< −
ð1 − sÞ

2
þ ð1 − s2Þ2
2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s2ð2þ s2Þ

p ð2:6Þ

This gives a constraint on ζ (or the impact parameter
b ¼ J=E).
While, for the critical particle with bcr ¼ 2, from (2.5)

we have the timelike condition as

E2 <
ð1 − sÞ2ð1þ sÞ4
3s2ð2þ s2Þ : ð2:7Þ

If the particle plunges from infinity, E ≥ 1, which gives the
constraint on the spin s as smin < s < smax, where smin and
smax are the solution of the equation

s6 þ 2s5 − 4s4 − 4s3 − 7s2 þ 2sþ 1 ¼ 0;

with the constraint s2 ≤ 1. We find smin ≈ −0.2709
and smax ≈ 0.4499.
Equation (2.7) also gives the constraint on a spin s for

given particle energy E, which is shown in Fig. 1. This
shows the high energy particle cannot reach the horizon if
the spin is too large.
When we will discuss a collision in the next chapter, we

find that the direction of the particle is important. Since we
assume two particles plunge from infinity, those particles
are ingoing. However, if b > bcr, a particle falling from

infinity will find a turning point, and then bounce back to
infinity. Such a particle is moving outward. Hence we
consider both directions of the particle motions at collision.
Solving dr=dτ ¼ 0 for the angular momentum J, we find

J ¼ J�ðr; E; μ; sÞ, where

J� ¼ Ef−2r4 þ r2ðr3 − 3r2 − 2Þs − rðrþ 1Þs2g � ðr − 1Þðr3 − s2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2r4 − μ2ðr2 þ sÞðr2 − 2r − sÞ

p
rðr2 þ sÞðr2 − 2r − sÞ ;

which gives the bounce point r for a given value of
b ¼ b� ≔ J�=E.
Figure 2 shows the turning points for various values of

the spin s for E ¼ 1.
We find that minðbþÞ ¼ bcr. Then, if the particle is near

critical (b ≈ bcr) but b > bcr, the particle bounces back near
the horizon.
For the negative value of b, when b < maxðb−Þ, the

outgoing particle near the horizon will bounce back to the
horizon, while the particle coming from infinity will
bounce back to infinity. We find maxðb−Þ ≈ −4.97,
−4.82, and −4.54 for s ¼ −0.27, 0, and 0.449, respectively.
For nonextreme black hole, from Eq. (2.5), the timelike

condition for the critical orbit withE ≥ 1 gives the necessary
conditions on the parameters of (s, a�), which is shown in
Fig. 3. For a� ¼ 0.9, E ≥ 1 gives −0.3179 < s < 0.5497,
which range is a little larger than the extreme case.While for
a� ¼ 0 (Schwarzschild black hole), no region exists because
there is no critical orbit.

E. Orbit of a massless particle on the equatorial plane

Since we also discuss the scattering of massless particle
later, we shall describe its orbit on the equatorial plane in
the Kerr geometry. A massless particle is not spinning
(s ¼ 0). Hence, the conserved energy and the z-component
of the angular momentum of the massless particle are
defined by

E ¼ −pμξðtÞμ ; and J ¼ pμξðϕÞμ :

Then we find

pð0Þ ¼ ½ðr2 þ a2ÞE − aÞJ�
r

ffiffiffiffi
Δ

p ; and pð3Þ ¼ ½J − aE�
r

:

This gives

FIG. 1. The allowed region for the spin s and the energy E, with
which the particle can reach the event horizon.

MAEDA, OKABAYASHI, and OKAWA PHYS. REV. D 98, 064027 (2018)

064027-6



pð1Þ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpð0ÞÞ2 − ðpð3ÞÞ2

q

¼ σ

r
ffiffiffiffi
Δ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ððr2 þ a2ÞE − aJÞ2 − ðJ − aEÞ2Δ�

q
:

When we discuss the orbit we have to look at the 4-velocity
vμ ¼ dzμ

dλ , where λ is an affine parameter. The 4-momentum
pμ and the 4-velocity vμ are proportional. By choosing the
affine parameter λ appropriately, we can set

pμ ¼ Evμ:

As a result, we find

�
dr
dλ

�
2

¼ Δ
r2

ðvð1ÞÞ2 ¼ Δ
r2
ðpð1ÞÞ2
E2

¼ 1

r4E2
½ððr2 þ a2ÞE − aJÞ2 − ðJ − aEÞ2Δ�:

Using the “impact” parameter b ¼ J=E, we find the
critical value

bcr ¼
r2H þ a2

a
¼ 2MrH

a
;

beyond which the photon orbit bounces before the horizon.
For the extreme black hole, we find the same critical value
bcr ¼ 2 as that for the massive particle.

III. COLLISION OF SPINNING PARTICLES

Now we discuss the collision of two particles moving in
extreme Kerr geometry (a� ¼ 1), in which we expect the
maximal energy extraction. Two particles 1 and 2, whose
4-momenta are pμ

1 and pμ
2, are moving to a rotating black

hole and collide just before the horizon. After the collision,
the particles 3 with the 4-momentum pμ

3 is going away to
infinity, while the particle 4 with the 4-momentum pμ

4 falls
into the black hole.
We assume that the sum of two momenta and spins, if

any, are conserved at the collision, i.e.,

pμ
1 þ pμ

2 ¼ pμ
3 þ pμ

4

Sμν1 þ Sμν2 ¼ Sμν3 þ Sμν4 :

From those conservations with the Killing vectors, we find
the conservations of the energy and total angular momen-
tum,

E1 þ E2 ¼ E3 þ E4

J1 þ J2 ¼ J3 þ J4:

We also obtain that the sum of the spins and the radial
components of 4-momenta are conserved at the collision;

μ1s1 þ μ2s2 ¼ μ3s3 þ μ4s4

pð1Þ
1 þ pð1Þ

2 ¼ pð1Þ
3 þ pð1Þ

4 :

In what follows, we discuss two cases: (A) collision of
two massive particles (MMM), and (B) collision of
massless and massive particles; the Compton scattering
(PMP) and inverse Compton scattering (MPM), where we
use the symbols of MMM, PMP, and MPM following
[38]. P andM describe a massless particle (a photon) and a
massive particle, respectively. The first and the second

FIG. 2. The relation between the turning point r and the impact
parameter b for a spinning particle with E ¼ 1. The particle with
b > bcr or b < maxðb−Þ falling from infinity will bounce at the
turning point and escape to infinity, while the outward particle
with r < rmax and b < maxðb−Þ will bounce at the turning point
and go back to the horizon, where maxðb−Þ ¼ −4.97, −4.82, and
−4.54 and rmax ¼ 5.48, 5.82, and 6.30 for s ¼ −0.27, 0, and
0.449, respectively.

FIG. 3. The parameter region (s, a�) for the existence of the
timelike critical orbit with E ≤ 1 until the event horizon.
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letters denote colliding particles, while the third letter
shows an escaped particle.
For the case (A) MMM, we assume all masses of the

particles are the same, i.e., μ1 ¼ μ2 ¼ μ3 ¼ μ4 ¼ μ. Hence
the conservation equations hold for the dimensionless
specific variables:

Ẽ1 þ Ẽ2 ¼ Ẽ3 þ Ẽ4 ð3:1Þ

J̃1 þ J̃2 ¼ J̃3 þ J̃4 ð3:2Þ

s̃1 þ s̃2 ¼ s̃3 þ s̃4 ð3:3Þ

uð1Þ1 þ uð1Þ2 ¼ uð1Þ3 þ uð1Þ4 : ð3:4Þ

For the case (B) PMP, we assume that the particles 1 and
3 are massless and nonspinning, corresponding to a photon,
while the particles 2 and 4 have the same mass, i.e.,
μ2 ¼ μ4 ¼ μ. We then have

s̃2 ¼ s̃4 ð3:5Þ

pð1Þ
1 þ pð1Þ

2 ¼ pð1Þ
3 þ pð1Þ

4 ; ð3:6Þ

in addition to two conservation equations (3.1) and (3.2). In
the case of (B) MPM, the particles 2 and 4 are massless
and nonspinning, while the particles 1 and 3 are massive
with the same mass, i.e., μ1 ¼ μ3 ¼ μ, and Eq. (3.5) is
replaced by

s̃1 ¼ s̃3: ð3:7Þ

As we showed, there exists a critical orbit, which
satisfies J ¼ Jcr ¼ 2E in the extreme Kerr spacetime.
This orbit will reach to the event horizon, and then bounce
there. If J < Jcr, the orbit gets into a black hole. While
when J > Jcr, the orbit bounces back before the horizon.
We assume that the particles 1 and 2 starting from

infinity are falling toward a black hole, and collide near the
event horizon, i.e., the collision point rc is very close to the
horizon (rH ¼ 1), i.e., rc ¼ 1=ð1 − ϵÞ (0 < ϵ ≪ 1). Hence
the leading order of the radial component of the 4-
momentum pð1Þ is

pð1Þ ≈ σ
j2E − Jj
ϵð1 − sÞ þ � � � :

The momentum conservation equation (pð1Þ
1 þ pð1Þ

2 ¼
pð1Þ
3 þ pð1Þ

4 ) yields

σ1
j2E1 − J1j
1 − s1

þ σ2
j2E2 − J2j
1 − s2

¼ σ3
j2E3 − J3j
1 − s3

þ σ4
j2E4 − J4j
1 − s4

þOðϵÞ ð3:8Þ

In what follows, we consider just the case such that the
particle 1 is critical (J1 ¼ 2E1).
To classify the case, we consider two situations for the

particle orbits: One is near-critical [J ¼ 2EþOðϵÞ], and
the other is noncritical [J ¼ 2EþOðϵ0Þ]. Since we con-
sider the collision near the horizon, non-critical orbit must
have a smaller angular momentum J < 2E.
From Eq. (3.8), we find the following four cases:
(1) Both particle 2 and particle 3 are near-critical. In this

case there is no constraint on σ2, σ3 and σ4.
(2) The particle 2 is near-critical but the particle 3 is

noncritical (J3 < 2E3). In this case, using the con-
servation equations (3.1) and (3.2), we find

�
σ3

1 − s3
þ σ4
1 − s4

�
ðJ3 − 2E3Þ ¼ OðϵÞ:

We find σ4 ¼ −σ3 and s4 ¼ s3 ¼ s. For the case (B),
since s3 ¼ 0 or s4 ¼ 0, the massive particles are also
nonspinning.

(3) The particle 3 is near-critical but the particle 2 is
noncritical (J2 < 2E2). In this case, we find

�
σ4

1 − s4
−

σ2
1 − s2

�
ðJ2 − 2E2Þ ¼ OðϵÞ:

We find σ4 ¼ σ2 and s4 ¼ s2. Hence we have to
impose s3 ¼ s1.

(4) Both particle 2 and particle 3 are noncritical
(J2 < 2E2 and J3 < 2E3). In this case there is no
constraint on σ2, σ3 and σ4.

Here we shall analyze only the case (3). It is because it
gives a good efficiency as we will show below. We will not
discuss the other three cases (1), (2), and (4) in this paper. It
is because it does not seem to get a good efficiency for the
cases (1) and (2). For the case (4), the super-Penrose
process could be possible, but it is not possible to analyze it
by our present method.
Since we consider the collision of the particle 1 and the

particle 2, the noncritical particle 2 with J2 < 2E2 must be
ingoing (σ2 ¼ −1). So we assume that σ4 ¼ σ2 ¼ −1.
While the critical particle 1 can be either ingoing
(σ1 ¼ −1) or outgoing after a bounce near the horizon
(σ1 ¼ 1). The latter case is not exactly correct. In order for
the particle 1 to bounce, it must be supercritical such that
J1 ¼ 2E1 þ δ with δ > 0. We then take a limit of δ → 0,
which gives the “critical orbit” with a bounce. Since we
also have a small parameter ϵ, we have to take a limit of
δ → 0 first, which implies δ ≪ ϵ.
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The above setting gives

J1 ¼ 2E1 ð3:9Þ

J3 ¼ 2E3ð1þ α3ϵþ β3ϵ
2 þ � � �Þ; ð3:10Þ

where α3 and β3 are parameters of Oðϵ0Þ.
As for the particle 2, we assume

J2 ¼ 2E2ð1þ ζÞ; ð3:11Þ

where ζ < 0 with ζ ¼ Oðϵ0Þ.

From the conservation laws, we find

E4 ¼ E1 þ E2 − E3; J4 ¼ J1 þ J2 − J3; ð3:12Þ

giving

J4 ¼ 2E4

�
1þ E2

E4

ζ þ � � �
�
:

Now we evaluate E2 and E3 for the cases (A) and
(B) separately.

A. Case (A) MMM (Collision of two massive particles)

For the massive particle, the radial component of the specific 4-momentum is written as

uð1Þ ¼ σ
r

ffiffiffiffiffi
Rs

p

Σs

ffiffiffiffi
Δ

p ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2½ðr3 þ ð1þ sÞrþ sÞE − ðrþ sÞJ�2 − ðr − 1Þ2½ðr3 − s2Þ2 þ r4ðJ − ð1þ sÞEÞ2�

p
ðr − 1Þðr3 − s2Þ : ð3:13Þ

Plugging the conditions (3.10) and (3.11) into Eq. (3.13), and using the conservation equations (3.12) we find

uð1Þ1 ¼ σ1

�
fðs1; E1; 0Þ
ð1 − s21Þ

− ϵ
E2
1hðs1Þ

ð1 − s21Þ2fðs1; E1; 0Þ
þOðϵ2Þ

�
ð3:14Þ

uð1Þ2 ¼ ϵ−1
2E2ð1þ s2Þζ

1 − s22
−
E2ð2þ s2Þð1 − s2 þ 2ζÞ

ð1 − s2Þ2ð1þ s2Þ

− ϵ
ð1 − s2Þ4ð1þ s2Þ2 þ E2

2ð1 − s2 þ 2ζÞ½ð1 − s2Þ3 − 2ð1þ 2s2Þð1þ 4s2 þ s22Þζ�
4ð1 − s2Þ3ð1þ s2Þ2E2ζ

þOðϵ2Þ ð3:15Þ

uð1Þ3 ¼ σ3

�
fðs1; E3; α3Þ
ð1 − s21Þ

−
�

ϵE2
3

ð1 − s21Þ2fðs1; E3; α3Þ
× ðhðs1Þ − 2ð1þ s1Þ2ð2þ s1Þg2ðs1; α3Þ

þ 2β3ð1þ s1Þð1 − s21Þg1ðs1; α3ÞÞ� þOðϵ2Þ
�

ð3:16Þ

uð1Þ4 ¼ ϵ−1
2E2ð1þ s2Þζ

1 − s22
−
½E1ð1 − s2Þð2þ s2Þ − E3ð1 − s2Þg1ðs2; α3Þ þ E2ð2þ s2Þð1 − s2 þ 2ζÞ�

ð1 − s2Þ2ð1þ s2Þ
−

ϵ

4ð1 − s2Þ3ð1þ s2Þ2E2ζ
½ð1 − s2Þ4½ðE1 − E3Þ2 þ ð1þ s2Þ2�

− 2E2ð1 − s2Þf4ð1þ s2ÞE3ζ½α3ð2þ s2Þ − β3ð1 − s22Þ� þ ðE3 − E1Þ½ð1 − s2Þ3 − 2s2ð2þ s2Þ2ζ�g
þ E2

2ð1 − s2 þ 2ζÞ½ð1 − s2Þ3 − 2ð1þ 2s2Þð1þ 4s2 þ s22Þζ�� þOðϵ2Þ; ð3:17Þ

where

fðs; E; αÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2½3 − 2αð1þ sÞ�½1þ 2s − 2αð1þ sÞ� − ð1 − s2Þ2

q
;

g1ðs;αÞ ≔ 2þ s − 2αð1þ sÞ;
g2ðs;αÞ ≔ αð2þ s − 2αÞ;

hðsÞ ≔ 1þ 7sþ 9s2 þ 11s3 − s4

MAXIMAL EFFICIENCY OF THE COLLISIONAL PENROSE … PHYS. REV. D 98, 064027 (2018)

064027-9



Since uð1Þ1 þ uð1Þ2 ¼ uð1Þ3 þ uð1Þ4 , we find the leading order of ϵ−1 is trivial. From the next leading order of ϵ0, we find

σ3
fðs1; E3; α3Þ

1 − s21
¼ σ1

fðs1; E1; 0Þ
1 − s21

þ ½E1ð2þ s2Þ − E3g1ðs2; α3Þ�
1 − s22

;

which is reduced to

AE2
3 − 2BE3 þ C ¼ 0; ð3:18Þ

where

A ¼ −½3 − 2α3ð1þ s1Þ�½1þ 2s1 − 2α3ð1þ s1Þ� þ
ð1 − s21Þ2
ð1 − s22Þ2

g21ðs2; α3Þ ð3:19Þ

B ¼ g1ðs2; α3Þ
ð1 − s21Þ
ð1 − s22Þ

�
ð2þ s2Þ

ð1 − s21Þ
ð1 − s22Þ

E1 þ σ1fðs1; E1; 0Þ
�

ð3:20Þ

C ¼ E1

��
3ð1þ 2s1Þð1 − s22Þ2 þ ð1 − s21Þ2ð2þ s2Þ2

ð1 − s22Þ2
�
E1 þ 2σ1

ð1 − s21Þð2þ s2Þ
ð1 − s22Þ

fðs1; E1; 0Þ
�
; ð3:21Þ

with the condition such that E3 ≤ E3;cr for σ3 ¼ 1, or E3 ≥ E3;cr for σ3 ¼ −1, where

E3;cr ≔
1

g1ðs2;α3Þ
�
ð2þ s2ÞE1 þ σ1

ð1 − s22Þ
ð1 − s21Þ

fðs1; E1; 0Þ
�
:

Here we focus just into the case of σ3 ¼ −1. We should
stress that for the outgoing particle 3 after collision
(σ3 ¼ 1), the energy E3 has the upper bound E3;cr, which
magnitude is the order of E1. Hence we may not expect
large efficiency. We will present the concrete analysis for
the case of σ3 ¼ 1 in Appendix, in which we confirm the
efficiency is not so high.
Since the particle 3 is ingoing after the collision, the orbit

must be super-critical, i.e., J3 > 2E3, which means either
α3 > 0 or α3 ¼ 0 with β3 > 0. Once we give α3, the value
of E3 is fixed in terms of s1, s2 and E1 by

E3 ¼ E3;þ ≔
B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

A
; ð3:22Þ

where we have chosen the larger root because it gives the
larger extracted energy as it turns out that A is always
positive.
The next leading order terms give

PE2 ¼ ð1 − s2Þ3ðE1 − E3Þ2; ð3:23Þ

where

P ≔ 2ðE3 − E1Þð1 − s2Þ3 þ 4ζ

�ð1 − s22Þ2
ð1 − s21Þ2

Q

þ 2ð1þ s2ÞE3½α3ð2þ s2Þ − β3ð1 − s22Þ�

− s2ð2þ s2Þ2ðE3 − E1Þ
�
: ð3:24Þ

with

Q ≔ σ1
E2
1hðs1Þ

fðs1; E1; 0Þ
− σ3

�
E2
3

fðs1; E3; α3Þ
× ðhðs1Þ − 2ð1þ s1Þ2ð2þ s1Þg2ðs1; α3Þ

þ 2β3ð1þ s1Þð1 − s21Þg1ðs1; α3ÞÞ
�

Since this fixes the value of E2, we obtain the efficiency
by

η ¼ E3

E1 þ E2

;

when α3, β3 and ζ are given.
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B. Case (B)

1. (B) PMP (Compton scattering)

For the massless particle, we normalize the 4-momen-
tum, the energy and the angular momentum by the mass μ
of the massive particle. The radial component of the
normalized 4-momentum is written as

pð1Þ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r½ðrþ 1ÞE − J�½ðr2 − rþ 2ÞEþ ðr − 2ÞJ�

p
rðr − 1Þ ;

ð3:25Þ

where E and J are normalized by μ and μM just as those of
the massive particle.
For the momenta of the massive particles 2 and 4,

Eqs. (3.15) and (3.17) do not change, while for the massless
particles 1 and 3, we find

pð1Þ
1 ¼ σ1

� ffiffiffi
3

p
E1 − ϵ

E1ffiffiffi
3

p þOðϵ2Þ
�

ð3:26Þ

pð1Þ
3 ¼ σ3

�
E3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − α3Þð1 − 2α3Þ

p

− ϵE3

�½1 − 4ð2α3 − β3Þð1 − α3Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3 − 2α3Þð1 − 2α3Þ
p

�
þOðϵ2Þ

�
:

ð3:27Þ

From the conservation of the radial components of the
4-momenta, we find

E3 ¼ SE1; ð3:28Þ

where the magnification factor S is given by

S≔
σ1

ffiffiffi
3

p ð1−s22Þþ2þs2
σ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3−2α3Þð1−2α3Þ
p ð1−s22Þþ2þs2−2α3ð1þs2Þ

and

PE2 ¼ ð1 − s2Þ3ðE1 − E3Þ2; ð3:29Þ

where P is given by Eq. (3.24) with s1 ¼ 0 but replacingQ
by T , which is defined by

T ≔ σ1
E1ffiffiffi
3

p − σ3E3

�
1 − 4ð2α3 − β3Þð1 − α3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3 − α3Þð1 − 2α3Þ
p

�
:

2. Case (B) MPM (Inverse Compton scattering)

For the momenta of the massive particles 1 and 3,
Eqs. (3.14) and (3.16) do not change, while for the massless
particles 2 and 4, we find

pð1Þ
2 ¼ 2ϵ−1E2ζ − 2E2ð1þ 2ζÞ − ϵ

E2ð1 − 4ζ2Þ
4ζ

þOðϵ2Þ

ð3:30Þ

pð1Þ
4 ¼ 2ϵ−1E2ζ − 2½E4 þ 2E2ζ þ E3α3�

− ϵ
E2
4 − 8E2E3ð2α3 − β3Þζ − 4E2

2ζ
2

4E2ζ
þOðϵ2Þ:

ð3:31Þ
where E4 ¼ E1 þ E2 − E3

From the conservation of the radial components of the 4-
momenta, we find

E3 ¼
B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

A

				
s2¼0

; ð3:32Þ

and

E2 ¼
ðE1 − E3Þ2

P

				
s2¼0

; ð3:33Þ

where A, B, C and P are given by Eqs. (3.19)–(3.21), and
(3.24), which should be evaluated with s2 ¼ 0. As a result,
E2 and E3 coincide with those found at the collision of a
spinning massive particle and a nonspinning massive
particle.

IV. THE MAXIMAL EFFICIENCY

A. Efficiency of collision of massive particles

Now we discuss the necessary condition to find the
maximal efficiency. As we showed, giving the particle 1
energy (E1) and two particle spins (s1 and s2), we find the
energies of the particle 3 and particle 2 in terms of the orbit
parameters of the particles 2 and 3 (α3, β3 and ζ). In order to
get the large efficiency, we must find large extraction
energy, i.e., the energy of the particle 3 (E3) for given
values of E1 and E2 of the ingoing particles. Although E1 is
arbitrary, the energy of the particle 2 (E2) is fixed in our
approach. Hence we also have to find the possible mini-
mum value of E2. Since we consider two particles are
plunging from infinity, we have the constraints of E1 ≥ 1
and E2 ≥ 1.
We then assume that E1 ¼ 1 and σ1 ¼ 1, and find the

maximal value of E3 as well as the minimum value of E2.
Note that we do not find a good efficiency for σ1 ¼ −1,
although the off-plane orbits may give a little better
efficiency [38].
First we analyze E3, which is determined by Eq. (3.22)

for given value of α3. Since the orbit of the particle 3 is near
critical, we have two constraints: E3 ≥ E3;cr for σ3 ¼ −1
and the timelike condition (2.7).
In order to find the large value of E3, from the timelike

condition we find that the spin magnitude s3ð¼ s1Þmust be
small (see Fig. 1). Hence we first set s1 ¼ 0. We then show
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the contour map of E3 in terms of α3 and s2 in Fig. 4. We
find α3 ≈ 0 gives the largest efficiency. Hence next we set
α3 ¼ 0þ, and analyze the maximal efficiency. Here 0þ
means that we assume α3 > 0 but take a limit of α3 → 0
after taking the limit of ϵ → 0. This is justified because E2

and E3 change smoothly when we take the limit of α3 → 0.
Assuming α3 ¼ 0þ, we look for the maximal value of E3

for given s1 and s2. In Fig. 5, we show the contour map of
E3 in terms of s1 and s2. The red point, which is
ðs1; s2Þ ≈ ð0.01379; sminÞ, gives the maximal value of E3.

Since E2 ≥ 1 when we plunge the particle 2 from
infinity, if E2 ¼ 1 is possible, we find that the maximal
value of E3 gives the maximal efficiency. However E2 is
fixed in our approach. So we have to check whether E2 ¼ 1
is possible or not and then provide which conditions are
required if possible.
The condition for E2 ¼ 1 in Eq. (3.23) gives the relation

between ζ and β3, which is a linear equation of β3. Hence
we always find a real solution of β3. While the timelike
condition of the particle 2 gives the constraint on ζ, which
is Eq. (2.6) with E ¼ 1, i.e.,

ζmin < ζ < 0;

where

ζmin ≔ −
ð1 − s2Þ

2

�
1þ ð1 − s2Þð1þ s2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3s22ð2þ s22Þ
p

�

since the upper bound in Eq. (2.6) is always positive for the
range of smin < s2 < smax. For the parameters giving the
maximal value of E3, we find the relation between ζ and β3,
which is shown in Fig. 6. From the timelike condition for
the particle 2 orbit, we have the constraint of ζmin < ζ < 0
where ζmin ≈ −1.271.
Since there exists a possible range of parameters with

E2 ¼ 1, we find the maximal efficiency is given by ηmax ¼
E3;max=2 ≈ 15.01.

FIG. 4. The contour map of E3 in terms of α3 and s2 with
s1 ¼ 0. E3 changes smoothly with respect to two parameters α3
and s2, and α3 → 0 and small s2 give larger value of E3.

FIG. 5. The contour map of E3 in terms of s1 and s2. The
timelike condition for the particle 3 orbit is satisfied in the light
green shaded region. As a result, the maximal value of E3 ¼
E3;max ≈ 30.02 is obtained when s2 ¼ smin ≈ −0.2709 and s1 ≈
0.01379 (the red point in the figure).

FIG. 6. The relation between ζ and β3 for E2 ¼ 1. The other
parameters are chosen to give the maximal value of E3. The
timelike condition for the particle 2 orbit gives the constraint of
ζmin < ζ < 0 with ζmin ≈ −1.271.
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Hence we find the maximal efficiency ηmax ¼ E3=2
for given s1 and s2, which is shown in Fig. 7. We also
show the efficiency in terms of s2 for fixed values of
s1 ¼ −2.111 × 10−2, 0 and 1.379 × 10−2 in Fig. 8. The
efficiency gets larger as s2 approaches the minimum value
smin. It shows that the effect of spin is very important. Note
that we obtain the maximal efficiency ηmax ≈ 6.328 for
non-spinning case, which is consistent with [38].

B. Efficiency of Compton scattering

We find the efficiency η by

η ¼ E3

E1 þ E2

¼ S

1þ ðS−1Þ2ð1−s2Þ3
P=E1

where

P=E1 ¼ 2ðS − 1Þð1 − s2Þ3
þ 4ζ½ð1 − s22Þ2T =E1 þ 2ð1þ s2ÞS½α3ð2þ s2Þ
− β3ð1 − s22Þ� − s2ð2þ s2Þ2ðS − 1Þ�

with

T =E1 ¼
σ1ffiffiffi
3

p − σ3S
�
1 − 4ð2α3 − β3Þð1 − α3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3 − α3Þð1 − 2α3Þ
p

�
:

Although the extracted photon energy depends on the input
photon energy E1, the efficiency does not depend on E1 and
E2. It is determined by the orbital parameters α3, β3, and ζ
as well as the spin s2.
We first look for when we find the largest value of E3, or

the magnification factor S, which is determined by α3. In
Fig. 9, we show the magnification factor S in terms of α3
and s2. Just as the case (A), α3 → 0 and small s2 give larger
value of S. The maximal value is Smax ≈ 26.85 at α3 ¼ 0þ
and s2 ¼ smin ≈ −0.2709.
Since the maximal value of S is obtained when α3 → 0

and s2 ¼ smin, setting α3 ¼ 0þ and s2 ¼ smin, we show the
contour map of the efficiency η in terms of β3 and ζ
in Fig. 10.
Although β3 is arbitrary as long as α3 > 0, ζ is con-

strained as ζmin < ζ < 0 in order for the particle 2 can reach
the horizon, where the minimum value ζmin depends on the
spin s2. For s2 ¼ smin, we find ζmin ¼ −3.890. We then
obtain the maximum efficiency for the Comptom scattering
as ηmax ¼ 26.85 in the limit of β3 → −∞. If s2 ¼ 0, the
maximal efficiency is ηmax ≈ 13.93, which is consistent

FIG. 7. The contour map of the maximal efficiency for given s1
and s2. The green shaded region is the constraint from the timelike
condition of the particle 3. The red point, ðs1; s2Þ ≈ ð0.01379;
sminÞ, gives the maximal efficiency ηmax ≈ 15.01.

FIG. 8. The efficiency in terms of s2 for fixed values of
s1 ¼ −2.111 × 10−2, 0 and 1.379 × 10−2.

FIG. 9. The contour map of S in terms of α3 and s2. S changes
smoothly with respect to two parameters α3 and s2, and α3 → 0
and small s2 give larger value of S.
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with the results by Schnittman [37] and Leiderschneider-
Piran [38].

C. Efficiency of inverse Compton scattering

Since the particles 1 and 2 plunge from infinity, we have
the constraint E1 ≥ 1 and E2 ≥ 0. We then assume that
E1 ¼ 1, and find the maximal value of E3 as well as the
minimal value of E2. Since E3 is determined only by α3 and
s1, we first discuss E3.

In Fig. 11, we show the contour map of E3 in terms of α3
and s1. The red point, which is ðα3; s1Þ ¼ ð0; 0.02679Þ,
gives the maximal value of E3.
If E2 → 0 is possible, it gives the minimal value of E2

and then the maximal efficiency is given by ηmax ¼ E3;max.
Hence, assuming α3 ¼ 0þ and s1 ¼ 0.02679, we analyze
whetherE2 → 0 is possible or not. From Eq. (3.24), we find
the asymptotic behavior of P as

P ≈ 8E3ζβ3

�
E3ð2þ s1Þ

ð1 − s1Þfðs1; E3; 0Þ
− 1

�
;

if ζβ3 → ∞. It gives E2 → 0. ζ is constrained as −∞ <
ζ < 0 because the particle 2 is nonspinning, while β3 is
arbitrary as long as α3 > 0. As a result, we obtain E2 → 0 is
obtained in the limit of ζβ3 → ∞. β3 must be negative.
Hence, we find the maximum efficiency ηmax ≈ 15.64
for the inverse Compton scattering. For s1 ¼ 0, the maxi-
mum efficiency becomes ηmax ¼ 7þ 4

ffiffiffi
2

p
≈ 12.66, which

is consistent with the result by Leiderschneider and
Piran [38].

V. CONCLUDING REMARK

We have analyzed the maximal efficiency of the energy
extraction from the extreme Kerr black hole by collisional
Penrose process of spinning test particles. We summarize
our result in Table I.
For the collision of two massive particles (MMMþ), we

obtain the maximal efficiency is about ηmax ≈ 15.01, which
is more than twice as large as the case of the collision of
non-spinning particles. It happens when the particle 1 with
E1 ¼ μ, J1 ¼ 2 μM and s1 ≈ 0.01379 μM and the particle
2 with E2 ¼ μ, −0.5418 μM < J2 < 2 μM and s2 ¼
smin ≈ 0.2709 μM plunge from infinity, and collide near
the horizon. After collision, the particle 3 with E3 ≈
30.02 μ and J3 ≈ 60.03 μM escapes into infinity, while
the particle 4 with E4 ≈ −28.02 μ and −58.57 μM < J4 <
−56.03 μM falls into the black hole.
As for the collision of a massless and massive particles,

we obtain the maximal efficiency ηmax ≈ 26.85 for the case
of PMPþ(the Compton scattering), which is almost
twice as large as the nonspinning case. In the case of
MPMþ(the inverse Compton scattering), however, we find
ηmax ≈ 15.64, which value is not so much larger than the
non-spinning case. It is because that the timelike condition
forces the magnitude of spin not to be so large for the
energetic spinning particle.
Although we have presented some examples to give a

large efficiency of the energy extraction from a rotating
black hole, the following cases should also be studied:
(1) Nonextreme black hole.—The spin of the astrophysi-

cal black hole may not exceed a=M ¼ 0.998 as
pointed out by Thorne [51]. Hence we should
analyze the efficiency for a non-extreme black hole.

FIG. 10. The contour map of the efficiency in terms of β3 and ζ.
Fixing ζ with 0 > ζ > ζminð≈ − 3.890Þ, in the limit of β3 → ∞,
we find the maximal efficiency of ηmax ≈ 26.85.

FIG. 11. The contour map of E3 in terms of α3 and s1. The
timelike condition for the particle 3 is satisfied in the light-green
shaded region. The maximum value of E3 ¼ E3;max ¼ 15.64 is
obtained at the red point ðα3; s1Þ ¼ ð0; 0.02679Þ.
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(2) Super-Penrose process.—We have not analyzed the
case (4) : Collision of two subcritical particles. If
σ1 ¼ 1, which is not a natural initial condition for a
subcritical particle, there is no upper bound for the
efficiency [38]. This super-Penrose process may be
interesting to study for spinning particles too,
although there still exists the question about its
initial set up [43]. Recently it was discussed in [52],
but the timelike condition has not been taken into
account.

(3) Spin transfer.—Since a spin plays an important role
in the efficiency, it is also interesting to discuss a
transfer of spins. For example, s1 ¼ s2 ¼ smin≈
−0.27 to s3 ¼ 0 and s4 ¼ 2smin ≈ −0.54.

(4) Collision of particles in off-equatrial-plane orbits.—
In [38], they also analyzed the collision of the
particle in off-plane orbits, which gives the maximal
efficiency for the case of σ1 ¼ −1. Although it may
be interesting to analyze the orbits not in the
equatorial plane, the equations of motion for a
spinning particle are not integrable. As a result,
such an analysis would be very difficult.

(5) Backreaction effect.—In this paper, we have adopted
a test particle approximation. However because of
lack of the back reaction, it may not reveal the proper
upper bound on the efficiency of the energy ex-
traction. In the Reissner-Nordström spacetime, we
could perform such an analysis for the collision of
charged shells [53]. However it would be difficult to
analyze the back reaction effect in Kerr black hole
background although it is important.

Finally one may ask how large the magnitude of spin can
be in a realistic astrophysical system since we have
assumed a theoretically (or logically) allowed value of a
spin in this paper. The orbital angular momentum is given
by jLj ¼ jr × pj ∼ Rorbit × μv≳OðμMÞ, while the spin
angular momentum is s ∼ Rbody × μv ≳Oðμ2Þ. Hence the
ratio s=L ∼ Rbody=Rorbit should be small for a test particle
approximation. In fact, if a test particle is a black hole

(s ≤ μ2), we find s=μM ¼ s=μ2 × ðμ=MÞ ≪ 1. Hence the
value assumed here may be too large for astrophysical
objects. However, for a fast rotating star, s can be much
larger than μ2. For example, we find s=μ2 ≲ 500 for a fast
rotator α LEONIS (REGULUS) [54]. Hence the validity of
the test particle approximation would be marginal in this
case. The present spin effect might become important when
we extend beyond a test particle limit including nonlinear
or nonperturbed process.
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APPENDIX: THE CASE (3) WITH σ3 = 1

1. Case (A)MMM (Collision of two massive particles)

In this case, the condition E3 ≤ E3;cr must be satisfied.
As a result, E3;þ, which is the larger root of Eq. (3.18), is
excluded. The possible solution is

E3 ¼ E3;− ≔
B −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

A
:

E3;cr increases monotonically with respect to α3. E3;cr

is positive for α3 < α3;∞ ≔ 2þs2
2ð1þs2Þ, and E3;cr → ∞ as

α3 → α3;∞, while beyond α3;∞, E3;cr becomes negative,
which case should be excluded. As α3 increases, E3 also
increases but faster than E3;cr and reaches the upper bound
E3;cr at some value of α3 ¼ α3;cr.
For given values of s1 and s2, we find the quadratic

equation for α3;cr from the condition E3;cr ¼ E3. Inserting
the solution α3;crðs1; s2Þ into the definition of E3, we find
the largest value of E3, E3;crðs1; s2Þ in terms of s1 and s2.
We show its contour map in Fig. 12, in which we also plot
the timelike condition by the light-green shaded region.

TABLE I. The maximal efficiencies and energies for three processes. We include the nonspinning case obtained
by [38] as a reference. The maximal efficiencies and maximal energies are enhanced twice or more when the spin
effect is taken into account. Following [38], we use the symbols of MMMþ, PMPþ, MPMþ for each process,
where þ means the case of σ1 ¼ 1.

Collisional process Spin (s1, s2)
Input energy
(E1, E2)

Output energy
(E3)

Maximal
efficiency

MMMþ
(Collision of Two Massive Particles)

Non-spinning
(μ, μ)

12.66 μ 6.328
(0.01379 μM, −0.2709 μM) 30.02 μ 15.01

PMPþ
(Compton Scattering)

Non-spinning
(þ∞, μ)

þ∞ 13.93
(0, −0.2709 μM) þ∞ 26.85

MPMþ
(Inverse Compton Scattering)

Non-spinning
(μ, 0)

12.66 μ 12.66
(0.02679 μM, 0) 15.64 μ 15.64
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This gives the maximal value E3;max ≈ 4.187 at the red
point ðs1; s2Þ ≈ ð0.10635; 0.3899; 0.534Þwith α3 ≈ 0.5342.
We then check that E2 ¼ 1 is possible for the above

parameters. Figure 13 shows the relation between ζ and β3
for E2 ¼ 1. We conclude that the maximal efficiency
is ηmax ¼ E3;max=2 ≈ 2.093.

2. Case (B) PMP Compton scattering

In this case, since the particle 1 is massless, we first draw
the contour map of the magnification factor S, which is

defined by Eq. (3.29), in Fig. 14. The maximal value
of S is Smax ≈ 3.876, which is found at the red point
ðα3; s2Þ ≈ ð0.5; 0.2887Þ. We note that the value of α3 must
be either α3 ≤ 0.5 or α3 ≥ 1.5 in order to find a real value of
S. However there is the constraint as α3 ≤ 1 from the
future-directed proper time condition of dt=dλ > 0,
although the larger value of S is possible for α3 > 1.5.
As a result, we find the above maximal value of Smax.
Figure 15 show that the efficiency is more than 3.85 in

the wide range of parameters (ζmin ≈ −3.326≲ ζ ≲ −0.5
and β3 ≳ 0.5) and it takes the maximal value 3.854, which

FIG. 12. The contour map of E3;crðs1; s2Þ with α3 ¼ α3;cr, which gives the largest value of E3 for given s1 and s2. The timelike
condition for the particle 3 is satisfied in the light-green shaded region. The right figure is enlarged near the maximal point
(ðs1; s2Þ ∈ ð0.1063534539; 0.1063534540Þ × ð0.38986; 0.38988Þ). The maximal value E3;max ≈ 4.187 is obtained at the red point
ðs1; s2Þ ≈ ð0.10635; 0.3899Þ with α3 ≈ 0.5342.

FIG. 13. The relation between ζ and β3 for E2 ¼ 1 when E3

takes the maximal value.

FIG. 14. The contour map of the magnification factor S in
terms of α3 and s2 for the Compton scattering in the case of
σ3 ¼ 1. The maximal value Smax ≈ 3.876 is found at the red point
ðα3; s2Þ ≈ ð0.5; 0.2887Þ.
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is close to Smax, in the limit of ζ → ζmin ≈ −3.326 and
β3 → ∞.
However we find E2 ¼ 0 when α3 ¼ 0.5. Since E2 ≥ 1,

we cannot choose α3 ¼ 0.5. Hence choosing α3 ¼ 0.49999
as well as s2 ¼ 0.288675, we show the contour maps of the
efficiency η and E1=E2 in Fig. 15 and 16.

The value of E1=E2 is larger than 1000 in the above
range of parameters. Since E2 ≥ 1, we find the efficiency is
about 3.85 when E1 ≳ 103 [see Fig. 16]. If we take the limit
of α3 ¼ 0.5, the maximal efficiency is obtained ηmax ¼
Smax ≈ 3.876 when E1 → ∞.
The above result shows the efficiency can be larger than

3.5 but never exceeds Smax ≈ 3.876 when the plunged
photon energy is much larger than the particle 2 rest mass.
Note that we find the upper bound of the efficiency is

about 3.732 even for the nonspinning case (s2 ¼ 0).

3. Case (C) MPM Inverse Compton scattering

We first depict the contour map of E3 in terms of α3 and
s1 in Fig. 17.
The maximal value E3ðmaxÞ ≈ 4.202 is obtained at the red

point ðα3; s1Þ ≈ ð0.5331; 0.1059Þ. From Eq. (3.24), we find
the asymptotic behavior of P as

P ≈ −8E3ζβ3

�
E3g1ðs1;α3Þ

ð1 − s1Þfðs1; E3; α3Þ
þ 1

�
;

when we take a limit of ζβ3 → −∞. Since g1ðs1; α3Þ > 0 in
the plotted region of Fig. 17, we find E2 → 0 as
ζβ3 → −∞. For the non-spinning particle 2, only the
condition ζ < 0 is required. As a result β3 must be positive
to get E2 → 0. We obtain the maximal efficiency as ηmax ¼
E3ðmaxÞ ≈ 4.202.

FIG. 15. The contour map of the efficiency η in terms of ζ and
β3. The maximal value of the efficiency is about 3.853 in the limit
of ζ → ζmin ≈ −3.326 and β3 → ∞.

FIG. 16. The contour map of E1=E2 in terms of ζ and β3. The
dynamic range of E1=E2 is very wide from 1 to 104.

FIG. 17. The contour map of E3 in terms of α3 and s1 for the
inverse Compton scattering in the case of σ3 ¼ 1. The timelike
condition for the particle 3 is satisfied in the green shaded region.
The maximal value E3 ≈ 4.202 is found at the red point ðα3; s1Þ≈
ð0.5331; 0.1059Þ.
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