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In a very interesting paper, Andréasson has recently proved that the gravitational mass of a spherically
symmetric compact object of radius R and electric charge Q is bounded from above by the relationffiffiffiffiffi
M
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R

p
3
þ
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R
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q
. In the present paper we prove that, in the dimensionless regime Q=M <

ffiffiffiffiffiffiffiffi
9=8

p
,

a stronger upper bound can be derived on the masses of physically realistic (stable) self-gravitating

horizonless compact objects: M < R
3
þ 2Q2

3R .
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I. INTRODUCTION

The asymptotically measured gravitational mass M of a
spherically symmetric asymptotically flat Schwarzschild
black-hole spacetime is directly related to the horizon
radius R by the simple relation M ¼ R=2 [1,2]. It is well
known that a stronger upper bound on the gravitational
masses of spatially regular self-gravitating horizonless
compact objects is provided by the physically important
Buchdahl bound M ≤ 4R=9 [3].
Similar bounds are known to exist for charged self-

gravitating compact objects. In particular, charged
Reissner-Nordström black holes are characterized by the
simple relation M ¼ R=2þQ2=2R [1]. In a physically
interesting paper, Andréasson [4] has recently derived the
stronger upper bound

ffiffiffiffiffi
M
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ffiffiffiffi
R

p

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
9
þQ2

3R

r
ð1Þ

on the gravitational masses of spatially regular horizonless
charged compact objects.
In the present paper we raise the following physically

intriguing question: Can one improve the important upper
bound (1) on the masses of self-gravitating charged
compact objects by adding to the characteristic properties
of the corresponding horizonless curved spacetimes the
physically motivated requirement of dynamical stability?
As we shall explicitly show below, the above-stated

question is directly related to the physically important
theorem presented recently in [5] (see also [6,7]), according
towhich the innermost null circular geodesic of a horizonless
compact object, if it exists, is stable [8]. In particular,
combining this interesting physical property of the spatially
regular self-gravitating compact objects that we consider in

the present paper with the intriguing assertion made in [9]
(see also [10,11]), according towhich horizonless spacetimes
which possess stable null circular geodesics (stable closed
light rings) are expected to develop nonlinear instabilities in
response to the presence of time-dependent massless per-
turbation fields [12], one concludes that spatially regular
compact objects that possess light rings in their exterior
spacetime regions are dynamically unstable.
Motivated by the physically important observations

made in [5,9] regarding the (in)stability properties of
horizonless compact objects, in the present paper we shall
use analytical techniques in order to derive an improved
upper bound [see Eq. (22) below] on the maximally
allowed gravitational masses MmaxðR;QÞ of dynamically
stable spatially regular charged compact objects.

II. DESCRIPTION OF THE SYSTEM

We consider self-gravitating horizonless charged
compact objects whose spatially regular curved spacetimes
are described by the spherically symmetric line element
[1,10,11,13–15]

ds2 ¼ −e−2δμdt2 þ μ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð2Þ

The radially dependent metric functions μ ¼ μðrÞ and
δ ¼ δðrÞ are related to the composed energy-momentum
tensor Tμ

νðtotalÞ ¼ Tμ
νðmatterÞ þ Tμ

νðelectromagnetic fieldÞ
of the charged matter configurations by the Einstein field
equations [1]

Gμ
ν ¼ 8π½Tμ

νðmatterÞ þ Tμ
νðelectromagnetic fieldÞ�; ð3Þ

which, using the curved line element (2) and the functional
expressions [16]
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Temt
t ¼ Temr

r ¼ −Temθ
θ ¼ −Temϕ

ϕ ¼ −
Q2ðrÞ
8πr4

ð4Þ

for the components of the electromagnetic (em) energy-
momentum tensor, can be expressed in the differential
forms [11,16,17]

μ0 ¼ −8πr
�
ρþQ2ðrÞ

8πr4

�
þ 1 − μ

r
ð5Þ

and

δ0 ¼ −
4πrðρþ pÞ

μ
: ð6Þ

HereQðrÞ is the electric charge contained within a sphere of
areal radius r [16],ρ≡−Tt

tðmatterÞ, andp≡Tr
rðmatterÞ [18].

The metric functions fμ; δg of the horizonless spatially
regular asymptotically flat spacetime (2) are respectively
characterized by the near-origin and far-region functional
relations [11]

μðr → 0Þ → 1; μðr → ∞Þ → 1 ð7Þ

and [11]

δð0Þ < ∞; δðr → ∞Þ → 0: ð8Þ

In particular, the Einstein equation (5) implies that
the radial metric function μðrÞ can be expressed in the
mathematically compact form [4]

μðrÞ ¼ 1 −
2mðrÞ

r
þQ2ðrÞ

r2
; ð9Þ

where mðrÞ is the gravitational mass contained within a
sphere of radius r [4,16]. For later purposes we note that, as
explicitly proved in [11], regular self-gravitating matter
configurations with asymptotically measured finite masses
are characterized by the asymptotically decaying functional
behavior

r3Tr
rðtotalÞ → 0 for r → ∞: ð10Þ

III. THE UPPER BOUND ON THE
GRAVITATIONAL MASSES OF STABLE
SPATIALLY REGULAR HORIZONLESS

CHARGED COMPACT OBJECTS

In the present section we shall prove that, in the
dimensionless regime [19,20]

Q
M

≤
ffiffiffi
9

8

r
; ð11Þ

one can use the instability properties of spatially regular
horizonless spacetimes which possess light rings [5–7,9] in

order to derive an upper bound on the gravitational masses
of physically realistic (stable) charged compact objects. In
particular, below we shall explicitly show that the newly
derived bound [see Eq. (22) below] is stronger than the
important upper bound (1).
The functional equation which determines the radii of

light rings in the curved spacetime (2) was derived
in [1,10,11]. For completeness of the presentation, we
shall first provide a brief sketch of the analytical derivation
of the functional relation which characterizes the null
circular geodesics of the charged spacetime. As explicitly
shown in [1,10], the circular null trajectories which
characterize the spherically symmetric spacetime (2) are
determined by the two relations [21,22]

Vr ¼ E2 and V 0
r ¼ 0; ð12Þ

where the effective potential Vr is given by the functional
expression [1,10,11]

E2 − Vr ≡ _r2 ¼ μ

�
E2

e−2δμ
−
L2

r2

�
: ð13Þ

Here the energy E and the angular momentum L are
conserved quantities which reflect the fact that the metric
components of the spherically symmetric static spacetime
(2) are independent of the time and angular coordinates
ft;ϕg [1,10,11].
Substituting Eq. (13) into Eq. (12) and using the Einstein

differential equations (5) and (6), one finds that the light
rings of the spherically symmetric static curved spacetime
(2) are determined by the compact functional relation

RðrÞ≡ 3μ− 1− 8πr2
�
p−

Q2ðrÞ
8πr4

�
¼ 0 for r¼ rγ: ð14Þ

In addition, taking cognizance of Eqs. (7), (10), and (14),
one deduces that the dimensionless function RðrÞ, whose
zeroes determine the discrete radii of the null circular
geodesics of the spherically symmetric spacetime (2), is
characterized by the two boundary relations

Rðr ¼ 0Þ ¼ 2 and Rðr → ∞Þ → 2: ð15Þ

These simple relations imply that spatially regular hori-
zonless compact objects are generally characterized by an
even number of null circular geodesics [5,6,23].
The stability properties of the null circular geodesics are

generally determined by the second spatial derivative of the
effective curvature potential (13) [1,10]. In particular,
unstable light rings are characterized by locally concave
radial potentials with V 00

r ðr ¼ rγÞ < 0, whereas stable
circular geodesics which, as discussed in [9], are associated
with nonlinear instabilities of the corresponding curved
spacetimes, are characterized by locally convex curvature
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potentials with the property V 00
rðr ¼ rγÞ > 0 [1,10]. Taking

cognizance of Eqs. (5), (6), (12), and (13), and using the
conservation equation Tμ

r;μ ¼ 0 [16], one finds the simple
functional relation [6,7]

V 00
r ðr ¼ rγÞ ¼ −

E2e2δ

μrγ
×R0ðr ¼ rγÞ: ð16Þ

From Eqs. (14) and (15) one deduces that the innermost
null circular geodesic, r ¼ rinnermost

γ , of a spatially regular
horizonless compact object is generally [23] characterized
by the properties

Rðr ¼ rinnermost
γ Þ ¼ 0 and R0ðr ¼ rinnermost

γ Þ < 0: ð17Þ

In particular, the innermost light ring of a spatially
regular compact object, if it exists, is generally stable
with the property V 00

r ðr ¼ rinnermost
γ Þ > 0 [see Eqs. (16) and

(17)] [5–7].
The exterior spacetime regions (r ≥ R) of the spherically

symmetric charged compact objects that we consider in the
present paper are characterized by the relations [4]

ρ ¼ p ¼ 0 ð18Þ

and [1]

μðrÞ ¼ 1 −
2M
r

þQ2

r2
for r ≥ R; ð19Þ

where fM;Qg are respectively the total gravitational mass
and the total electric charge of the spherically symmetric
spacetime as measured by asymptotic observers.
Let us assume that the spatially regular charged compact

object possesses an external light ring with rγ > R.
Substituting Eqs. (18) and (19) into the functional relation
(14), which characterizes the null circular geodesics of the
spherically symmetric spacetime (2), one finds the remark-
ably simple expression

routerγ ¼ 1

2
ð3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ for

Q
M

≤
ffiffiffi
9

8

r
ð20Þ

for the radius of the outer light ring.
As discussed above, the presence of the light ring (20)

outside the surface of a spatially regular horizonless
compact object [24] implies the existence of a second
(stable) light ring (with the property rinnermost

γ < routerγ ) in
the charged curved spacetime. In particular, as suggested
in [9], the presence of this inner stable null circular
geodesic in the spherically symmetric curved spacetime
(2) may indicate that the corresponding horizonless com-
pact object is nonlinearly unstable to massless perturbation
fields [12,25]. One therefore concludes that spatially
regular horizonless spacetimes describing physically

realistic (stable) compact objects must not possess light
rings. This physical fact yields the lower bound [see
Eq. (20)]

R >
1

2

�
3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p �
ð21Þ

on the radii of stable horizonless charged compact objects.

IV. SUMMARY AND DISCUSSION

In a physically important paper, Andréasson [4] has
recently derived the upper bound (1) on the gravitational
masses of spatially regular horizonless charged compact
objects. In the present paper we have raised the physically
interesting related question: Can one derive a stronger
upper bound on the gravitational masses of stable charged
compact systems?
This physically intriguing question is motivated by the

recent theorem presented in [5] which, when combined
with the results presented in [9], asserts that horizonless
compact objects whose curved spacetimes possess null
circular geodesics (light rings) are nonlinearly unstable to
massless perturbation fields.
Using analytical techniques, we have proved that the

answer to the above-stated question is “yes.” In particular, it
has been explicitly proved that the masses of physically
realistic (stable) self-gravitating horizonless compact
objects are bounded from above by the compact functional
relation [see Eq. (21)]

M <
R
3
þ 2Q2

3R
for

Q
M

≤
ffiffiffi
9

8

r
: ð22Þ

Taking cognizance of (1) and (22) one finds that, in the
dimensionless regime Q=M ≤

ffiffiffiffiffiffiffiffi
9=8

p
, the analytically

derived upper bound (22) on the gravitational masses of
stable spatially regular charged compact objects is stronger
than the physically important bound (1). In particular, one
finds that the newly derived upper bound (22) is stronger
than (1) in the R ≥ Q regime. In addition, we recall that in
the present paper we consider compact objects which are
characterized by the dimensionless inequality Q=M ≤ffiffiffiffiffiffiffiffi
9=8

p
[see (11)] which, taking cognizance of Eq. (21),

corresponds to R >
ffiffiffi
2

p
Q. One therefore concludes that, in

the Q=M ≤
ffiffiffiffiffiffiffiffi
9=8

p
regime, the bound (22) for stable

charged compact systems is stronger than the bound (1).
Finally, it is worth mentioning that a universal upper

bound on the entropies of charged compact systems has
been presented in [2,26,27]

S ≤ πð2MR −Q2Þ: ð23Þ

Interestingly, substituting the newly derived upper bound
(22) on the masses of physically realistic charged compact
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objects into (23), one can express the entropy upper bound
in terms of the surface area A ¼ 4πR2 of the corresponding
charged stable physical system [28]:

S ≤
A
6
−
πQ2

3
: ð24Þ
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