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A significant fraction of stars are members of gravitationally bound hierarchies containing three or more
components. Almost all low-mass stars in binaries with periods shorter than three days are part of a
hierarchical system. We therefore anticipate that a large fraction of compact galactic binaries detected by
the Laser Interferometer Space Antenna will be members of hierarchical triple or quadruple system.
The acceleration imparted by the hierarchical companions can be detected in the gravitational wave signal
for outer periods as large as 100 years. For systems with periods that are shorter than, or comparable to, the
mission lifetime, it will be possible to measure the period and eccentricity of the outer orbit. Laser
Interferometer Space Antenna observations of hierarchical stellar systems will provide insight into stellar
evolution, including the role that Lidov-Kozai oscillations play in driving systems toward merger.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) [1] is
expected to individually resolve the signals from tens of
thousands of compact galactic binaries during its nominal
four year mission lifetime [2]. Roughly 13% of low-mass
stellar systems contain three or more stars [3–5], and
roughly 96% of low-mass binaries with periods shorter
than 3 days are part of a larger hierarchy [6,7]. While the
multiplicity distribution for ultracompact binaries is cur-
rently unknown, it is reasonable to expect that a significant
fraction of compact galactic binary systems detected by
LISA will be members of a hierarchical system. Indeed,
dynamical effects in hierarchical stellar systems such
as oscillations in the eccentricity due to the (regular
eccentric) Lidov-Kozai mechanism [8–10] can cause the
inner binary orbit to harden, potentially enhancing the
fraction of compact binary systems with companions
[11–17].
The hierarchal companions to the ultracompact binaries

detected by LISAwill impart accelerations on the center of
mass of the binary that can lead to observable doppler shifts
in the signals. This effect has previously been considered in
the context of LISA observations of extreme mass ratio
binaries [18] and merging black hole binaries detected by
laser interferometer gravitational-wave observatory and
LISA [19–22]. The mathematical description is essentially

identical to that in pulsar timing, where the orbital
parameters of pulsars found in binary systems can be
inferred from modulations of the radio pulses [23]. One
difference between the radio and gravitational wave analy-
ses is that wavelengths of the gravitational waves are
significantly larger than the gravitational radii of the stars,
which modifies the calculation of the Shapiro time delay.
Here, we consider LISA observations of compact galac-

tic binaries in hierarchical systems and identify three main
regimes that are governed by the ratio of the outer orbital
period to the observation time:
(1) When the outer period is much larger than the

observation time, the hierarchical orbit imparts an
overall unobservable doppler shift.

(2) When the outer period is up to a factor 10 or so larger
than the observation time, the influence of the
companion can be detected.

(3) When the outer period is shorter than or comparable
to the observation time, the eccentricity and period
of the hierarchical orbit can be inferred. In rare cases,
a fourth regime can occur.

(4) The acceleration due to the hierarchal perturber can
be mistaken for frequency changes due to gravita-
tional wave emission or mass transfer.

This regime occurs when the outer period is larger than the
observation time, and the chirp mass and gravitational wave
frequency of the compact binary lie in a narrow range of
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values. The precise location of the boundaries between the
four cases depends on several factors, including the signal-
to-noise ratio, the gravitational wave frequency, the mass
ratio between the inner binary and the perturber, and the
eccentricity of the outer orbit. Using a simple Fisher matrix
based estimate for when the frequency change of a nearly
monochromatic signal can be detected, we arrive at the
condition that, on average, the outer binary can be detected
when the period of the outer orbit P2 obeys the inequality

P2 ≲ 43.2 yrs

�
ρ

10
·
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1.0 M⊙
·

f
5 mHz

�
3=4

�
m2

2 M⊙

�
−1=2

×

�
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�
3=8

�
1þ 1

2
e22

ð1 − e22Þ5=2
�

3=8

: ð1Þ

This expression is valid for P2 > Tobs, where Tobs is the
observation time. For shorter periods, higher derivatives of
the frequency change with respect to time need to be
accounted for. Other quantities that appear in the expres-
sion are the signal-to-noise ratio ρ, the mass of the perturber
mc, the gravitational wave frequency f, the total mass of the
system m2, and the eccentricity of the hierarchical orbit e2,
and we work in geometrical units with G ¼ c ¼ 1. To
derive this expression, we computed the rms line-of-sight
acceleration of the inner binary due to the distant
companion, averaging over the orbital period and orienta-
tion. Note that some systems will be detectable with longer
periods if the orientation and phase of the orbit is more
favorable. Also note that LISA is expected to detect
hundreds of galactic binaries with signal-to-noise ratios
(SNRs) ρ > 100 [2], and for these systems, it will be
possible to detect systems with P2 > 100 yr.
The outline of the paper is as follows. In Sec. II, we review

what is known about compact binaries in hierarchical
systems. In Sec. III, we summarize the models and methods
used in our study. The orbital model is described in more
detail in Sec. IV, and the gravitational wave modeling is
outlined in Sec. V. The detectability of hierarchical com-
panions is considered in Sec. VI, and the characterization of
the orbits is investigated in Sec. VII. The possibility of
confusing the acceleration caused by a distant perturber with
orbital evolution due to radiation reaction or mass transfer is
discussed in Sec. VIII. We conclude with a summary and
discussion of future studies in Sec. IX.

II. COMPACT BINARIES IN
HIERARCHICAL SYSTEMS

The majority of stars are members of multiple systems,
including binaries, triples, and higher-order hierarchies.
The triple fraction is best known for stellar systems with
main-sequence components, in particular for lower-mass
stars of F and G type where a triple fraction of 11%–20% is
found [3,5,24]. There are indications that the triple fraction
increases for higher-mass stars as for binaries [25,26]. The

period distribution of the inner and outer orbits of triples
with F- and G-type primaries are distributed similarly as
those of binaries, however, with the additional constraint
that the triple is dynamically stable [27]. As a result, the
inner orbits tend to be more compact, leading more often to
mass transfer episodes and compact binaries [28]. Besides
the initial structure of the triple, three-body dynamics can
provide additional means to harden the inner binary. The
classical low-order quadrupole approximation of the three-
body leads to Lidov-Kozai cycles, in which the mutual
inclination between the two orbits and the eccentricity of
the inner binary vary periodically [8–10]. The octupole
terms give rise to the eccentric Lidov-Kozai mechanism, in
which even higher eccentricities can be reached [10]. As a
result, the (regular and eccentric) Lidov-Kozai mechanism
is linked to a variety of exotic astrophysical phenomena,
such as stellar mergers in isolated triples [29–33], stellar
mergers in binaries near massive black holes [34–38], low-
mass x-ray binaries [39–41], blue stragglers [15,42], as
well as enhanced dissipation through gravitational wave
emission and tides [43,44]. Due to the latter mechanism,
also known as high-eccentricity migration or Lidov-Kozai
cycles with tidal friction (LKCTF), the inner binary
tightens, forming hot Jupiters, e.g., Refs. [45–50], and
compact binaries [14,15,43,44]; observationally, roughly
96% of low-mass binaries with periods shorter than 3 days
have outer companions [6,7].
In the context of gravitational wave (GW) sources,

Lidov-Kozai cycles are relevant, as the gravitational wave
inspiral time of a close (inner) binary with compact objects
can be significantly reduced, if an outer star is present.
Whereas isolated compact binaries need to be formed at
periods ≲0.3 days to merge within a Hubble time, the
presence of an outer companion extends the inner period
range to hundreds of days if LKCTF is efficient. Even
wider inner orbits can be brought to merge or collide if the
triple system is weakly hierarchical for which the secular
perturbation theory breaks down [17,34,51,52]. Such
mergers of compact objects occur in orbits with higher
residual eccentricities, e.g., Refs. [53–55].
On the observational side, our knowledge of the triple

fraction and orbital structures of triples with compact
objects is limited. The highly complete sample of white
dwarfs within 20 pc from the Sun contains one to two
triples with an inner compact double WD, showing that
indeed its possible to form such objects, e.g., Ref. [52].
Moreover, out of about 130 objects in total, there is one
confirmed isolated compact double WD and four candi-
dates, indicating that triple sources are relatively abundant.
When shifting our attention from compact double white

dwarfs to wide systems, there are only two such binaries
within 20 pc. This is in contradiction to theory, from which
one would expect 15–30 such systems within 20 pc [52].
As destruction mechanisms (e.g., dynamical interactions or
stellar winds) are not efficient enough to explain the
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discrepancy, it has been claimed that the progenitor systems
are not formed as efficiently as expected, e.g., Ref. [52], or
that the wide double white dwarfs have been missed
observationally [56]; however, in the state-of-the-art sam-
ple of Gaia, no new wide double white dwarfs were found
within 20 pc [57].
It is interesting to mention PSR J0337þ 1715, the

millisecond pulsar in a hierarchical triple with two white
dwarfs [58] with periods of 1.6 and 327 days. As both white
dwarfs are low-mass heliumdwarfs, the systemdemonstrates
that it is possible in nature for a triple to survive several
phases of mass transfer (see, e.g., Refs. [59,60] for possible
formation scenarios) and have outer periods in the range of
the LISA mission lifetime.

III. SUMMARY OF MODELS AND METHODS

The natural separation of scales found in hierarchical
systems allows us to make a number of simplifying
assumptions. The few-body Hamiltonian for a hierarchical
system can be expanded in the ratio of the semimajor axes
yielding terms at monopole, quadrupole, octapole, and
higher orders [61–63]. Here, we are mostly interested in
2∶1 and 2∶2 component hierarchies where the semimajor
axis of the binary components is much smaller than
semimajor axis of the overall system. Because the hierar-
chical periods we are considering will be comparable to or
larger than the observation time, we can restrict our analysis
to the leading order, Newtonian monopole interactions. In
this approximation, the motion of the binaries is separate
from that of the hierarchical system, and each can be treated
as a separate Keplarian system. The center of mass of the
inner binary follows a Keplarian orbit around the distant
perturber. We are justified in doing this since the Lidov-
Kozai [64,65] and eccentric Lidov-Kozai [61,66] oscilla-
tions induced by the quadrupole and octapole terms occur
on timescales that are long compared to the period of
the hierarchical orbit, and very much longer than the
observation time. The same is true for the high-order
post-Newtonian effects such as periastron precession.
To check that the monopole description is sufficient for

our analysis, we can derive qualitative estimate of the
contribution of the Lidov-Kozai and eccentric Lidov-Kozai
mechanisms on the triple systems under consideration. We
compute the variation over the LISA mission lifetime of the
inner (e1) and outer (e2) eccentricities and the inner (ι1) and
outer (ι2) inclination angles, due to the combined effect
of those two mechanisms. We consider the expressions for
the time variation of these physical quantities given in
Ref. [10], and in order to obtain rough conservative
estimates, we set all geometrical factors (sines and cosines)
to unity and then add the absolute value of any additive
term in those expressions. From this analysis, we find that
the variation over a four year LISA mission duration of the
outer inclination angle (ι2) and the outer eccentricity (e2)
are always negligible, irrespectively of the triple’s

parameters. Similarly, the change on the values of the
inner inclination angle (ι1) and inner eccentricity (e1) is
always below a few percent, unless we have very small WD
masses (≲0.2 M⊙), large inner eccentricities (e1 ≳ 0.3),
and/or low GW frequencies (f < 1 mHz). We will leave
the investigation of these particular systems to future
studies, and in what follows, we will assume the quantities
ι1, e1, ι2, and e2 to be constant. This approximation should
work well for the majority of the systems that LISAwill be
able to observe.
In light of this, we allow for the outer hierarchical orbit to

be eccentric but make the further simplifying assumption
that the inner orbit responsible for the gravitational wave
emission is circular. We can justify this choice in two ways.
First, gravitational radiation acts to quickly circularize
orbits, and second, even if effects such as Lidov-Kozai
oscillations have managed to maintain the eccentricity of
the inner binary, our results will be little changed, at least
for moderate eccentricities. The reasoning is as follows: for
slowly evolving, moderately eccentric systems, the gravi-
tational wave signal can be expressed as a sum of circular
binaries with periods at harmonics of the orbital period. The
separation of these harmonics in frequency is very much
larger than the sidebands imparted by the hierarchical orbit,
so there is zero confusion between the two effects. The sum
of circular binary signals for an eccentric system contains
information almost identical to that of a single circular
binary for the purposes of the current analysis, so in the
interests of computational efficiency, we neglect the eccen-
tricity of the inner binary. To verify this argument. we
model a triple system with nonzero inner eccentricity and
perform parameter estimation by obtaining the margin-
alized posteriors for the outer orbit parameters. We com-
pare the posteriors to those for the exact same system but
with zero inner eccentricity and find that the posteriors are
identical, hence demonstrating that the presence of side-
bands due to eccentricity of the inner orbit will not affect
our results—see the end of Sec. VII for details.
To assess the detectability of the distant companion and

the accuracy with which the parameters of the orbits can be
inferred, we use a mixture of methods. To make quick
estimates and derive analytic scalings, we compute Fisher
information matrices, and to spot check these estimates and
provide more detailed results, we employ Bayesian infer-
ence via the Markov Chain Monte Carlo algorithm.

IV. HIERARCHICAL ORBIT MODEL

In this section, we derive how the perturbing companion
affects the center-of-mass motion of the inner binary in the
hierarchical orbit which will impart perturbations to the
gravitational waveform. We desire to extract the line-of-
sight component of the inner binary’s center-of-mass
velocity. For an isolated binary, its center of mass is
stationary with respect to the solar system barycenter
(ignoring unobservable constant peculiar velocities), but
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this line-of-sight component of the induced center of mass
will create a time-dependent redshift as seen in the bary-
center frame. We will use “1” subscripts to denote orbital
parameters of the inner gravitational wave emitting binary
composed of massesma andmb for a total mass ofm1. The
subscript “2” will denote the Keplerian outer orbit describ-
ing the motion of the perturber mc and the monopole mass
of the inner binary. In our hierarchical approximation, in
which we essentially have a circular Keplerian orbit
emitting a gravitational wave visible to LISA inside of a
larger outer Keplerian orbit that is governed by

a2 ¼ −
Gm2

r22
r̂2; ð2Þ

where a2 is the relative acceleration and r̂2 ¼ r̂c − r̂1 is the
unit separation vector as defined in an inertial coordinate
system of the triple and m2 ¼ ma þmb þmc.
The solution for the orbital motion is then

r2ðtÞ ¼ r2ðtÞðcosφ2; sinφ2; 0Þ; ð3Þ

where

r2ðtÞ ¼
a2ð1 − e22Þ

1þ e2 cosφ2

; ð4Þ

defining the standard Keplerian ellipse. The quantities
introduced are defined as follows: φ2 is the orbital phase
of the outer orbit and e2 and a2 are its eccentricity and
semimajor axis respectively. To relate the orbital phase to
time, it is convention to introduce the eccentric anomaly.
The eccentric anomaly is an angle related to the orbital
phase through the geometric equation

φ ¼ φ0 þ 2 tan−1
� ffiffiffiffiffiffiffiffiffiffiffi

1þ e
1 − e

r
tan

u
2

�
; ð5Þ

where u is the eccentric anomaly. The eccentric anomaly is
then related to time through Kepler’s equation

n2ðt − T2Þ ¼ u2 − e2 sin u2; ð6Þ

where n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=a32

p
defines the mean motion, or mean

angular frequency associated with an orbit. The mean
motion is related to P2, the outer period, n2 ¼ 2π=P2,
and lastly the parameter T2 is the time of pericenter
passage, a constant of integration.
The desired velocity of the inner binary’s center of mass

is simply obtained by v1 ¼ ðmc=m2Þv2, and differentiating
Eq. (3)

v1 ¼
mc

m2

ffiffiffiffiffiffiffiffiffiffi
Gm2

p2

s
ð− sinφ2; cosφ2 þ e2; 0Þ; ð7Þ

where p2 ¼ a2ð1 − e22Þ is the semilatus rectum. Up to this
moment, we have been working in a coordinate system
where the outer orbit defines the xy-plane. We must rotate
our system to properly orient it into the coordinate system
used by our detector model: the Solar System barycenter
frame. This may be accomplished through a series of Euler
rotations: a rotation of −ω2, around the barycenter’s z axis,
then by −ι2 around the new x axis, and finally −Ω2 around
the new z axis, which are given by the matrices

R1 ¼

0
B@

cosω2 − sinω2 0

sinω2 cosω2 0

0 0 1

1
CA; ð8Þ

R2 ¼

0
B@

1 0 0

0 cos ι2 − sin ι2
0 sin ι2 cos ι2

1
CA; ð9Þ

R3 ¼

0
B@

cosΩ2 − sinΩ2 0

sinΩ2 cosΩ2 0

0 0 1

1
CA; ð10Þ

operated in the order R ¼ R3 ·R2 ·R1. As shown in Fig. 1,
the line of ascending nodes (labeled in the figure) is defined
by a rotation of angle Ω2 from the barycenter x axis to
where the outer orbital plane intersects the ecliptic. The
angle ω2 defines the rotation angle from the line of nodes to
the argument of periapsis (the position of which is given by
the solid line passing through the semimajor axis of the
orbit), and ι2 is the inclination angle, i.e., the angle between
the outer orbit’s angular momentum L̂2 and the z axis of the
barycenter coordinates (here neglecting any contribution to

FIG. 1. The geometry of the outer orbit consisting ofmc and the
inner binary’s monopole moment m1 as displayed above, where
the orientation angles are with respect to the solar system
barycenter frame with the z axis normal to the plane of the
ecliptic.
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angular momentum due to the fact that the inner binary is
extended and has an orbit of its own). Note that here that
cos ι1 ¼ n̂ · L̂1 defines the inner binary’s inclination with
respect to the line of sight.
Finally, we may construct the desired quantity: the line-

of-sight velocity vk. We can use the line-of-sight vector n̂
pointing from the origin of the barycenter coordinates to the
triple center of mass. Due to the large distances involved,
we will assume that the sky location (θ, ϕ) of the inner
binary and of the triple’s center of mass are located at the
same point on the sky. This vector is given by
n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. At last, we obtain the
expression

vkðtÞ¼ n̂ ·R ·v1; ð11Þ

¼ n̂ ·R ·

�
mc

m2

v2

�
;

¼ mc

m2

ffiffiffiffiffiffiffiffiffiffi
Gm2

p2

s

× fCðθ; ι2;ϕ −Ω2Þ½cosðφ2 þ ω2Þ þ e2 cosω2�
− Sðθ;ϕ −Ω2Þ½sinðφ2 þ ω2Þ þ e2 sinω2�g; ð12Þ

where Cðθ;ι2;ϕ−Ω2Þ¼ cosθsin ι2þsinθcos ι2 sinðϕ−Ω2Þ
and Sðθ;ϕ −Ω2Þ ¼ sin θ cosðϕ − Ω2Þ. In the above form,
it is unclear how many extra parameters are truly involved
in the modeling of the triple system, so we rewrite the line-
of-sight velocity in the simpler form

vkðtÞ ¼ A2½sinðφ2 þϖÞ þ e2 sinðϖÞ�; ð13Þ

where A2 ¼ mc
m2

ffiffiffiffiffi
m2

p2

q
Ā and Ā2 ¼ C2 þ S2 and finally

ϖ ¼ ωþ ϕ̄, where tan ϕ̄ ¼ C
−S. With the line-of-sight

velocity written this way, we can see what combination
of parameters can be measured. To specify vkðtÞ, we needed
the parameters n2, e2, T2, ι2, ω2, Ω2, mc, and m2 (note that
the sky location angles are part of the binary model), but
unfortunately we do not have access to all of these
parameters due to degeneracies in the model which can
be seen from Eq. (13). The parameters ω2, Ω2, and ι2 get
lumped into A2 and ϖ, leaving us in no position to parse
the dynamically interesting ι2 from other orientation angles.
This amplitude has an average value of roughly 0.77, which
will be used in the analysis contained in later sections.
Also, hidden in A2 are m2 and mc, which we will not have
access to individually. The orbital phase φ2 contains the
uninteresting parameter T2 and is also controlled strongly
by the mean motion n2 and eccentricity e2 parameters. We
are now in a position to incorporate the line-of-sight
velocity into the gravitational waveform. For eclipsing
systems, the Shapiro time delay can break some of the
degenerates and allow us to measure ι2. We will leave the

analysis of the gravitational wave Shapiro time delay to
future work.

V. GRAVITATIONAL WAVE
AND INSTRUMENT MODEL

We will first briefly review the gravitational wave model
for an isolated galactic binary as seen by LISA and then
incorporate the effects due to the companion body. These
are low-mass binaries which are millions of years away
frommerging, and therefore we will only be capturing them
in the inspiral phase. The plus and cross gravitational wave
polarizations in the compact binary’s barycenter frame are
given by

hþ ¼ 2M
DL

ðπfgwðtÞÞ2=3ð1þ cos2ι1Þ cosΨgw; ð14Þ

h× ¼ −
4M
DL

ðπfgwðtÞÞ2=3 cos ι1 sinΨgw; ð15Þ

whereDL is the luminosity distance,M¼ðmambÞ3=5=m1=5
1

is the chirp mass, fgw is the instantaneous gravitational
wave frequency (as measured in the compact binary’s
barycenter frame), Ψgw the corresponding gravitational
wave phase, and lastly ι1 is the inclination of the inner
binary, i.e., cos ι1 ¼ L̂1 · n̂. One may obtain the gravita-
tional wave phase from the frequency through Ψgw ¼
2π

R
t fgwðt0Þdt0 þ ϕ0 where ϕ0 is an arbitrary phase shift.

A. Numerical implementation

For galactic binaries of which the orbital evolution is
dominated by the gravitational wave radiation reaction, the
frequency evolution is given by

fgwðtÞ ¼
1

8πM

�
5M
tc − t

�
3=8

; ð16Þ

where tc is the time of coalescence for the binary; a 3 mHz,
0.265 M⊙ galactic binary will merge in one million years.
The number of 1=Tobs frequency bins a fiduciary source
evolves through over the LISA mission lifetime is given
by [67]

_fT2
obs ¼ 5.1

�
M

0.32 M⊙

�
5=3

�
f

5 mHz

�
11=3

�
Tobs

4 yrs

�
2

ð17Þ

f̈T3
obs ¼ 1.5 × 10−4

×

�
M

0.32 M⊙

�
10=3

�
f

5 mHz

�
19=3

�
Tobs

4 yrs

�
3

: ð18Þ

The strong frequency dependence in these expression
implies that the higher frequency sources will have more
measurable chirps. It is this frequency dependence that will
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allow us to determine the physics responsible for the
evolution of a population of binaries. A similar order of
magnitude frequency evolution is experienced by galactic
binaries which involve stable mass transfer [68]. A key
difference is that mass transfer tends to widen orbits leading
to a frequency decrease over time. The mild evolution in
gravitational wave frequency lends itself to a Taylor
expansion,

fgw ¼ f þ _ftþ 1

2
f̈t2; ð19Þ

the coefficients of which are determined by the dynamics at
play in the binary. We shall refer to f (and the equivalently
redshifted version during the triples discussion) as the
carrier frequency.
Cornish and Littenberg [69] present a frequency domain

model for galactic binaries measured by LISA. Under the
rigid adiabatic approximation to the LISA motion, one is
able to perform a fast-slow decomposition, due to the
slowly evolving amplitude (varying on timescales of a year
mostly due to LISA’s motion) and the fast varying phase
due the larger carrier frequency (corresponding to orbital
periods of minutes to hours for galactic binaries) of the
waveform allowing a rapid evaluation of the waveform,
specifically the time-delay interferometry (TDI) variables
X, Y, and Z (where tildes over these variables will denote
their Fourier transform). Through a linear superposition,
these data channels form noise-orthogonal variables A, E,
and T [70] (of which only A and E will be sensitive to the
triple systems of interest).
The presence of a perturbing companion star mc leads to

an acceleration of the center of mass with respect to the
barycenter frame, hence redshifting the signal such that the
gravitational wave phase gets modified,

Ψgw ¼ 2π

Z
t ½1þ vkðt0Þ�fgwðt0Þdt0 þ ϕ0; ð20Þ

where vk is the line-of-sight velocity obtained in the
previous section.1 In Fig. 2, the quantity hþ (normalized
to 1) is displayed for a circular triple system of which the
outer period was chosen to be very short to exaggerate the
effects. The frequency oscillates around the carrier fre-
quency f modulating the gravitational wave phase.
To account for the aforementioned differences between

an isolated galactic binary and a triple, the Cornish &
Littenberg code [69] must be modified. To properly
calculate the gravitational wave transfer function, one must

evaluate it at the gravitational wave frequency observed by
the LISA detectors. The Taylor expanded frequency evo-
lution [as in Eq. (19)] is redshifted with respect to the solar
system barycenter, i.e., fgw → ð1þ vkÞfgw. The line-of-
sight velocity is numerically obtained through Eq. (13) and
the inversion of Kepler’s equation. For the isolated galactic
binaries, the gravitational phase may be easily integrated.
When this binary resides in a triple system, an extra term in
the gravitational wave phase integral crops up
2π

R
vkfgwdt, which is numerically integrated, interpolated

at the detector sampling intervals, and then appended to the
isolated galactic binary gravitational wave phase. These
modifications to the gravitational wave frequency get
applied to the slow portion of the waveform model, which
is sampled at cadence much longer than the orbital period.
The log likelihood function used in our analysis involves

noise-weighted inner products of the form

ðgjkÞ ¼ 4R
Z

∞

0

g̃�ðfÞk̃ðfÞ
SnðfÞ

df; ð21Þ

where g and k are arbitrary waveforms as seen by LISA and
SnðfÞ is the one-sided noise power spectral density. Further
discussion of this quantity and the noise model for LISA,
including both instrumental noise and unresolved galactic
binary confusion noise, can be found in Refs. [2,71,72]. The
SNR ρ is defined as ρ2 ¼ ðhjhÞ for a given waveform h.
Examples of the frequency domain strain amplitude can

be found in Figs. 3 and 4. Both of these waveforms were
generated for inner binaries with f ¼ 5 mHz and a chirp
mass of 0.32 M⊙ (which fixes the source frame frequency
evolution as determined by General Relativity) for a four

FIG. 2. The gravitational waveform seen at the solar system
barycenter for a system with outer period P2 ¼ 1.1 hr and the
line-of-sight velocity amplitude 0.1. The carrier frequency f of
the gravitational wave in this example is 5 mHz. The strain
amplitude has been normalized to 1 such that the only time
dependence crops up in the gravitational wave phase. The
frequency of the oscillations is clearly changing.

1Note that there should be an additional correction to Eq. (20)
due to the fact that time in the two frames is related by
t ↦ tþ rk=c. This correction is, however, negligible for the
triple systems considered in this work, but it might be relevant for
systems closer to coalescence, e.g., hierarchical triple black hole
systems observable with LISA.
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year observation period at a 15 sec cadence. In Fig. 3, the
outer orbit revolves every 1.5 years and has an eccentricity
of 0.3. An isolated binary is nearly monochromatic,
resulting in a near delta function in the frequency domain
but, due to the modulations caused by the cartwheel motion
of the LISA observatory around the Sun, picks up side-
bands of which the phase and relative amplitude are
determined by the sky location and gravitational wave
polarization of the binary. The introduction of a perturbing

third body generates more harmonics of the frequencies
already present and tends to increase the bandwidth of the
signal. Increasing the eccentricity of the outer orbit shifts
the distribution of power into higher modes of the triple
harmonics.
In Fig. 4, the system has a tighter outer period of

0.6 years and a larger eccentricity of 0.7. Here, the orbital
period P2 is comparable to the orbital timescale of LISA,
leading to a strong interference of harmonics. The side-
bands of the carrier frequency induced by the triple are now
more widely spaced than those imparted by LISA orbit,
leading to a much broader signal, which is amplified by the
larger eccentricity. If one were to consider a system of an
even shorter period, then the triple induced harmonics
separate out into isolated sidebands.
One can gain insight visually into our ability to dis-

tinguish a triple system from a binary by considering Fig. 5.
In both panels, the blue lines represent the power in the X
TDI channel for an isolated binary signal, and orange

FIG. 3. The X TDI channel is displayed for a triple system with
an outer orbital period P2 ¼ 1.5 yr and e2 ¼ 0.3. The presence of
the perturbing companion induces harmonics of the carrier
frequency and of the harmonics present due to LISA’s modu-
lations. The amplitude (therefore, distance) of the system was
modified to give a SNR of 20. The other parameters of this
system were chosen as follows: _f ¼ 1.11 × 10−15, θ ¼ 1.52,
ϕ ¼ 4.577, ϕ0 ¼ 0.346, and ψ ¼ 1.58. The masses were chosen
as ma ¼ 0.6 M⊙, mc ¼ 1.0 M⊙, and M ¼ 0.32 M⊙. The ob-
servation period for this figure was four years.

FIG. 4. The X TDI channel is displayed for triple system with
an outer orbital period P2 ¼ 0.6 yr and e2 ¼ 0.7. In this example,
the harmonics induced by the companion star and LISA are
interfering. Eccentricity in the outer orbit changes the distribution
of power in the triple induced harmonics. The other parameters
were chosen to be the same as in Fig. 3.

FIG. 5. The TDI X-channel response for isolated binary
signals—denoted in orange—and for triple signals—colored
blue. The SNRs of these signals were chosen to be 20 and were
observed for four years. The outer eccentricity of the triple signals
was set to 0.3. The outer period in the upper figure is 100 years
(much larger than observation period) and in the lower figure is
3.6 years (comparable to observation period). The other param-
eters are identical to those chosen for Fig. 3.
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represents the same data channel for a triple system where
the parameters characterizing the inner binary are the same
for all signals displayed in this figure. The orange lines are
therefore signals of the same system in both panels. The
blue lines differ from each other purely in their outer orbital
period. These signals are the result of a four year obser-
vation period. In the regime where the outer period is much
larger than the observation period, we are still able to
measure the frequency evolution of the signal. This is seen
in the upper panel of Fig. 5, where the outer orbital period
was set to 100 years. Considering the triple signal in
relation to the binary signal you can see that the redshifting
through the rightward shift in frequency of the triple signal.
For this very large outer period, one might in fact mistake
this signal for an isolated binary with slightly different
parameters than those in the actual inner binary.
In the lower panel, we see a more severe difference since
the outer orbital period was set to 3.6 years, comparable to
the observation period. There is a severe broadening of the
signal, and the power structure is vastly different than that
seen in the upper panel. This difference allows us to detect
the presence of the triple and characterize the parameters of
the outer orbit, which will be demonstrated later.

B. Eccentric inner binary signal

In order to demonstrate that the presence of gravitational
wave harmonics due to an eccentric inner binary, e1 ≠ 0,
does not affect the characterization of the outer orbit, we
extend the waveform model to cover inner binaries with
moderate eccentricity. The gravitational wave plus and
cross polarizations at Newtonian order for eccentric bina-
ries are given by

hþ;× ¼ −
m1η1
DL

ð2πm1F1Þ2=3
X∞
j¼1

½CðjÞ
þ;×ðe1; β1; ι1Þ cos jl1

þSðjÞþ;×ðe1; β1; ι1Þ sin jl1�; ð22Þ
where η1 ¼ mamb=m2

1 is the symmetric mass ratio, F1 is
the mean orbital frequency, β1 defines the pericenter angle,
and ι1 is the inclination angle of the inner binary. The
sum is over harmonics of the gravitational wave signal,
and the coefficients CðjÞ

þ;× and SðjÞþ;× are the amplitudes of
these harmonics. Their functional form is given by Moore
et al. [73].
For mild eccentricities, the second harmonic is domi-

nant, and the frequency associated with it is Taylor
expanded as in Eq. (19),

fj¼2
gw ¼ f þ _ftþ 1

2
f̈t2: ð23Þ

In order to calculate the other harmonics, wemake use of the
Cornish and Littenberg galactic binary waveform generator,
but with the following harmonic dependent conditions:
(1) The gravitational wave frequency seen gets modified

by fjgw → j
2
fj¼2
gw .

(2) Similarly, the phase must be modified Ψj
gw→ j

2
Ψj¼2

gw .

The amplitudes of the TDI variables were thenmodulated by
the harmonic coefficients. For these eccentricwaveforms,we
keep the first four harmonics in our analysis, which is enough
to maintain 99% of the gravitational wave power up to
e1 ¼ 0.2 (as determined by the harmonic coefficients). There
is an important feature to keep in mind about the structure of
the gravitational wave signal. The harmonics are separated
by Δf ¼ f1 Hz, which for a 1.5 mHz orbital frequency
corresponds to 47 000 frequency bins for a one year
observation period. The bandwidth for these harmonics is
at most a couple thousand bins, which tells us that the
harmonics are well separated and do not interfere with each
other, nor do the harmonics due to the eccentricity overlap in
any way with the harmonics imparted by a hierarchical
companion. This is why we are justified in neglecting any
eccentricity of the inner binary and using the simpler circular
orbit model. This argument is confirmed by simulations in
Sec. VII.

VI. DETECTING HIERARCHICAL COMPANIONS

When LISA first detects a triple, only the intrinsic
gravitational wave frequency of the inner binary will be
measurable. As more cycles are accumulated, and the
center of mass of the inner binary has moved through a
significant portion of the outer orbit, the data will support
the inclusion of orbitally induced redshifts. We will now
estimate when we expect the frequency evolution to be
measurable; i.e., for a given source and observation period
and an average oriented source, whatP2’s will we be able to
detect with the effect of this center-of-mass motion?
From the gravitational wave phase quoted in Eq. (20), it

is straightforward to obtain the time derivative of the
frequency in the barycenter frame for a binary in a triple
system which has negligible source frame frequency
evolution

_f ¼ a1;kf; ð24Þ

where ak is the line-of-sight acceleration of the inner
binary’s center of mass. The line-of-sight acceleration
can be obtained by differentiating Eq. (7)

a1 ¼ −
mc

p2
2

ð1þ e2 cosφ2Þ2ðcosφ2; sinφ2; 0Þ; ð25Þ

rotating the resulting vector by applying the rotation
matrices, and projecting the rotated vector along the
line-of-sight. This gives

a1;k ¼ −
mc

p2
2

ð1þ e2 cosφ2Þ2

× ½S cosðω2 þ φ2Þ þ C sinðω2 þ φ2Þ�; ð26Þ

where S and C are defined as before; cf. Eq. (12). Wewould
like to consider the average magnitude of this acceleration
for a given orientation and sky location. We may square this
quantity and then average it over the angles ϕ, θ, ω2, and ι2,
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ha2
1;ki ¼

1

ð4πÞ2
Z

2π

0

dϕ
Z

1

−1
dðcos θÞ

×
Z

2π

0

dω2

Z
1

−1
dðcos ι2Þa21;k ð27Þ

¼ m2
c

3p4
2

ð1þ e2 cosφ2Þ4: ð28Þ

To calculate the rms acceleration, we average the previous
result over the course of an orbit,

a2kRMS ¼
1

P2

Z
P2

0

ha2
1;kidt ð29Þ

¼ 1

P2

Z
P2

0

ha2
1;ki _φ−1

2 dφ2 ð30Þ

¼ m2
c

3m4=3
2

�
2π

P2

�
8=3 1þ 1

2
e22

ð1 − e22Þ5=2
: ð31Þ

In the regime that P2 > Tobs, we may Taylor expand the
gravitational wave frequency. Equation (24), when aver-
aged over angles and over an orbit, provides us with a
rough estimate of the size of _f for an average outer orbit
orientation which started at an average spot in its orbit
when LISA began to collect data. With this, we can
ascertain how many frequency bins this _f estimate will
evolve the carrier frequency through,

_fT2
obs ¼ 573

�
P2

1 yr

�
−4=3

�
mc

1 M⊙

��
m2

2 M⊙

�
−2=3

×

�
Tobs

4 yr

�
2
�

f
5 mHz

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
e22

ð1 − e22Þ5=2

s
: ð32Þ

In order to ascertain when this effect is measurable, we
utilize Fisher matrix estimates for the error in measurement
of _f. The Fisher matrix, by the Cramer-Rao bound,
provides an estimate of the covariance matrix (upon
inversion of the Fisher matrix), thereby providing error
estimates. The Fisher matrix is defined as

Γij ¼ ðh;ijh;jÞ; ð33Þ

where h;i are derivatives of the waveform with respect to
parameter λi and then evaluated at the true parameters. For a
triple signal of which the outer period is larger than LISA’s
observation period, we may readily approximate the
frequency evolution of the system by a Taylor expansion
as we would for a mildly chirping isolated binary. This
allows us to utilize the fast galactic binary waveform to
calculate the Fisher matrix.
Seto [67] used a simple toy model for a Fisher matrix

analysis to estimate the measurement errors in some of the

galactic binary parameters. In the Appendix, we expand
upon these results and investigate how the errors get
inflated by including more parameters through the use of
the full galactic binary model. We find that the _f and f̈
errors become inflated through the inclusion of the full set
of galactic binary parameters. The criterion which we use to
determine whether _f is a measurable parameter is that _f
must be larger than 3σ (as estimated by the Fisher matrix)
compared to no frequency evolution at all. This yields the
expression quoted in Eq. (1) in the Introduction, which we
repeat here for completeness:

P2 ≲ 43.2 yrs

�
ρ

10
·

mc

1.0 M⊙
·

f
5 mHz

�
3=4

�
m2

2 M⊙

�
−1=2

×

�
Tobs

4 yr

�
3=8

�
1þ 1

2
e22

ð1 − e22Þ5=2
�

3=8

: ð34Þ

A fiducial source with an outer orbital period of 40 years
would have a measurable frequency evolution by the time
the nominal LISA mission concluded. When the outer
eccentricity reaches e2 ¼ 0.7, the outer periods is meas-
urable out to P2 ¼ 110 yr for typical systems. We see that
for larger companion masses (assuming fixed total mass
m2) the larger the outer period we can measure. Thus, we
see an increase in the detectability of triples with large
companion masses. The opposite is true as we increase the
total mass.
We may make similar applications of the Fisher analysis

to ascertain when the gravitational wave carrier frequency
becomes biased (i.e., differs from the source frame value in
a measurable way) for a given P2. The rms line-of-sight
velocity is given by

v2kRMS ¼
m2

c

3m4=3
2

�
2π

P2

�
2=3

; ð35Þ

such that when

P2 ≲ 71.8 yrs

�
ρ

10
·

mc

1.0 M⊙
·

f
5 mHz

�
3

×
�

m2

2 M⊙

�
−2
�
Tobs

4 yrs

�
3

ð36Þ

our measurements of the carrier frequency f will be biased.
This is potentially the most concerning result if one is
interested in the orbital period distribution of the galactic
binaries, as for sources which only have f measured, this
yields a quite large range of outer orbital periods which
could bias the frequency measurement.
Another question of interest is when the parameter f̈ is

measurable (recall that here we are only considering the
frequency evolution coming from the center-of-mass
motion). Upon measuring f, _f, and f̈, we have the best
chance of determining the underlying physics for mildly
evolving sources. The rms jerk is given by
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_a2kRMS ¼
m2

c

3m4=3
2

�
2π

P2

�
14=3 1þ 19

2
e22 þ 69

8
e42 þ 9

16
e62

ð1 − e22Þ11=2
; ð37Þ

which for fiduciary values becomes measurable when

P2 ≲ 16.7 yrs

�
ρ

10
·

mc

1.0 M⊙
·

f
5 mHz

�
3=7

×

�
m2

2 M⊙

�
−2=7

�
Tobs

4 yrs

�
3=7

: ð38Þ

To verify the validity of the preceding results, based
on a Fisher matrix analysis, we now spot check the
measurability of the frequency evolution of a triple system
using Markov Chain Monte Carlo (MCMC) simulations.
Simulated data were produced for a triple system and
analyzed using the Taylor expanded frequency evolution
model. The MCMC consisted of a burn-in phase such that
the galactic binary model could search through parameter
space to identify a regime in which the triple signal was
described well by the binary model. A mixture of the Fisher
matrix proposal, differential evolution proposals, and draws
from the prior distribution were utilized to explore the
posterior distribution [74,75]. Since we have developed a
quick numerical model to generate the signal from these
triple systems, the proposal distributions may choose any
parameters randomly, and we can generate a model for
those parameters on the spot. Parallel tempering was also
used to ensure a wide exploration of parameter space and to
move between secondary modes of the posterior.
In Fig. 6, the posteriors for the parameter _f (marginalized

over all other parameters) are displayed for two triple
systems. The outer period was chosen to be 46 years, i.e.,
the value obtained from the relation (1) using the modified
triple parameters. The errors predicted by the Fisher matrix
for _f are a bit smaller compared to the error measured by

the MCMC, suggesting that we might be marginally
overestimating the outer periods we can confidently mea-
sure. The difference between these two posteriors is the
time of pericenter passage T2 which differed by an eighth of
an orbit between the two systems. This demonstrates that it
is very important where we catch the triple in its orbit when
LISA turns on, as the measurability of _f is quite sensitive to
T2. This is especially important point to consider for larger
outer period sources. Here, we have seen that the Fisher
analysis has roughly identified the regime in which we may
hope to identify the presence of a triple system depending
on where in the orbit we are measuring the gravitational
wave signal.

VII. CHARACTERIZING
THE HIERARCHICAL ORBIT

Now that we have ascertained when the effects of a triple
system are detectable, we would like to know when the
parameters of the triple orbit can be measured. To deter-
mine this, we utilized the Fisher information matrix for the
triple signal. The criterion that we use to determine if a
parameter is measurable is as follows: if the error in a
parameter, as estimated by the Fisher matrix, is less than
50% of its true value, then we claim this parameter can be
measured. For triple systems, the best measured parameter
pertaining to the outer orbit is the outer orbital period, and if
this quantity can be measured, we say that the triple can be
characterized (at least to some level).
In Fig. 7, we display the results of the Fisher matrix

based analysis. Systems with carrier frequencies and outer
periods in the shaded region have orbits of which the
parameters cannot be measured. To determine the separat-
ing line, we construct a system with a given carrier
frequency f and a very short outer period P2 and estimate
its error with a Fisher analysis. The outer orbital is
gradually made larger until its effects on the gravitational

FIG. 6. Here, we display the posteriors for the parameter _fT2
obs marginalized over all other system parameters. The simulated systems

had a total mass of m2 ¼ 1.77 M⊙, withM ¼ 0.32 M⊙, ρ ¼ 20, and an observation period of one year. The time of pericenter passage
for the left-hand figure was set to 0, while for the right-hand side, T2 was set to −P2=8, i.e., an eighth of an orbit. The remaining
parameters _f, θ, ϕ, ψ , and ϕ0 have been set to those chosen in Fig. 3.
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signal are marginal such that its error breaches 50%. The P2

at which this happens defines the border in Figs. 7 and 8.
We see that as the carrier frequency gets larger the outer
period can be measured. This is due to this being a redshift

phenomenonwhere the deviations in the frequency observed
by LISA are proportional to the frequency itself, coupled
with the fact that the error in the frequency is independent (to
leading order; see Appendix) of the frequency itself.
Figure 8 reveals the effect that eccentricity of the outer

orbit has on the characterization of the triple parameters.
Typically, for larger f, increasing the eccentricity allows
one to measure orbital periods that are larger than for the
circular case. It is important to note that with such large
orbits (in fact, any time when P2 > Tobs) these results will
depend on where we captured the triple in its orbits. For the
systems considered here, we choseϖ ¼ 0 and T2 ¼ 0. This
Fisher analysis demonstrates that we will be able to
characterize the parameters for triple systems of which
the orbital period is up to ten times that of the LISAmission
lifetime, though the details get slightly modified by the
other parameters and SNR.
Let us now address how well the parameters of the triple

system can be measured. The period and eccentricity of the
outer orbit have the largest effect on the gravitational wave
signal and are therefore the most readily measured quan-
tities. It is instructive to consider the strong parallels
with the pulsar timing case. The analogy is clear; pulsars
in a binary emit pulses at a very regular rate, with mild
frequency evolution, and the arrival of these pulses gets
modulated by Earth’s motion and the presence of a
companion. However, for pulsar timing, the source is
localized well on the sky, whereas the sky localization is
in general poor for galactic binaries detected by LISA [76].
Another parameter that is measured well in pulsar timing is
ðmb sin ι2Þ3=m2

total, but it is only with the measurement of a
Shapiro time delay for eclipsing binaries which allows the
masses and inclination to be untangled. An additional
effect, which will be negligible for the triples we are
considering, is the variations in the path length of light
which allows the longitude of the ascending node Ω2 to be
measured.
Figures 9 and 10 are the results of MCMC of triple

systems with a SNR of 50 and a range of outer orbital
periods and eccentricities. The injected values are marked
by red lines and dots in these figures. As expected, the outer
period and eccentricity are measured well for both systems.
For both of these systems, the line-of-sight amplitudeA2 is
also measured well but, as discussed earlier, on its own not
terribly informative, which means that the companion mass
cannot be determined. One sees that A2 and e2 are
correlated, which gets amplified in the more eccentric
case. The fact that both of these parameters influence the
amplitude of the harmonics induced by the triple is
responsible for this correlation. In Fig. 11, marginalized
posteriors for the parametersϖ and T2 are displayed for the
more eccentric system. We see that these quantities are
measured well, but they are of little physical interest.
One typically finds that as P2 increases, such that fewer

orbits are captured by LISA, the worse the parameters are

FIG. 7. The shaded regions denote triple systems which cannot
have their outer orbital parameters measured. In other words,
systems to the right of the shaded regions can have at least the
outer orbital period determined. Note the orbits period P2 is given
in units of the observation time Tobs, which could be as large as ten
years. The left black line is for a SNR20 system, and the right line is
for SNR 100. This system had the parameters m2 ¼ 2.0 M⊙,
mc ¼ 1.0 M⊙, ma ¼ 0.5 M⊙, and M ¼ 0.32 M⊙. The triple
systems here had circular outer orbits. The remaining parameters
have been set to the same values used to produce Fig. 3.

FIG. 8. Just as in the previous figure, the shaded regions denote
the triple system which cannot be characterized. Note the orbits
period P2 is given in units of the observation time Tobs,. These
figures are different in that the outer orbits are now eccentric. The
red region denotes e2 ¼ 0.1, blue denotes e2 ¼ 0.4, and green
denotes e2 ¼ 0.9 These systems had a SNR of 10. We see that
more eccentric outer orbits may allow for the characterization of
triple systems with much larger outer orbital periods. The mass
parameters were chosen to be these same as the previous figure.
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characterized. In Fig. 10, the eccentricity has a standard
deviation of 0.6% relative to e2, and the outer period has a
standard deviation of 0.037% or 14.6 hours. The tighter
system with P2 ¼ 0.6 years had its outer orbital period
determine a standard deviation of 4.5 hours. However, this
does not seem to hold steadfast for the measurement of
eccentricity. The tighter system had a relative standard
deviation of 2.5%, i.e., larger than the system with a wider
orbit. This exception occurs as the outer orbital period starts
to encroach upon the LISA modulation frequency (one
year). The distribution of power in the higher modes of the
carrier frequency, induced by the triple, get shifted as e2
changes. These harmonics, when their fundamental fre-
quency 1=P2 is comparable to the LISA modulation
frequency, begin to interfere strongly, making it harder
to accurately extract the eccentricity.
By considering the posteriors in presented in this section,

we see that the outer orbital period and outer eccentricity
are well-measured parameters.
Lastly, we would like to address the effect of eccentricity

in the inner orbit on the characterization of the outer orbital
parameters. To do this, we injected a signal with e1 ¼ 0,
a SNR of 20, e2 ¼ 0.3, and P2 ¼ 0.6 yr. Again, all other
parameters were set to those for Fig. 3. A MCMC was used
to calculate the marginalized posterior for the outer orbital
parameters denoted by the solid blue line in the upper
panels of Fig. 12. Next, a signal where the inner binary was
eccentric was simulated; the parameters were set exactly
the same as before but with e1 ¼ 0.1 and β1 ¼ 0. The
resulting marginalized posteriors are displayed by the
dashed red line in the upper panels of Fig. 12. As an

FIG. 9. This is a corner plot of the posteriors for the parameters
A2, e2, and P2. The one-dimensional histograms are posteriors
marginalized over all other parameters, and the other histograms
are joint posteriors between pairs of the aforementioned param-
eters, marginalized over the rest of the triple system parameters.
The line-of-sight velocity amplitude is 19.5 km= sec, its eccen-
tricity is 0.3, and outer period is 0.6 years. The remaining
parameters were chosen to be the same as those chosen in Fig. 3.

FIG. 10. This corner plot displays some marginalized posteriors
for a more eccentric system with a larger outer period. The line-
of-sight velocity amplitude is 18.0 km= sec, its eccentricity is 0.7,
and the outer period is 1.8 years. The other parameters were
chosen to be the same as the previous corner plot figure.

FIG. 11. These are marginalized posteriors for the variables ϖ
and T2 for the system represented by Fig. 9. Both ϖ and T2 were
set to 0 for this system.
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added bonus, we obtain the marginalized posterior for the
inner eccentricity displayed in the lower left panel of the
same figure. Since there is zero posterior weight at e1 ¼ 0
this eccentricity is measurable.
Comparing the posteriors for the important and meas-

urable outer binary parameters e2 and P2, we see that
they are essentially the same distribution. More specifi-
cally, the posteriors for the inner eccentric case lie well
within the error associated with the posteriors for the
inner circular case. Thus, we can conclude that the
presence of harmonics in the gravitational waveform
due to the existence of eccentricity in the inner binary
does not affect the characterization of the outer orbital
parameters. The evidence for this is also seen by the lack
of any correlation between the outer orbital parameters
and e1. A scatter plot of e1 and e2 is displayed in the
lower right panel of Fig. 12, and no correlation is
evident. This results from the clean separation of har-
monics, i.e., the fact that the bandwidth of each harmonic
in frequency is much less than their spacing in frequency.
Thus, the results we have derived for binaries with
circular inner orbits apply unchanged to systems where
the inner orbit is eccentric.

VIII. AMBIGUOUS SYSTEMS

Assuming a nominal four year mission lifetime, its been
estimated that frequency evolution due to gravitational
wave emission or mass transfer will be measurable for
roughly 9000 isolated galactic binaries [2]. It is interesting
to consider if a regime where the orbital acceleration due to
hierarchical companions may be confused with these
effects exists. The chance of confusion is greatest when
only f and _f are measurable. In most cases, a measurement
of f̈ will break the degeneracy. To determine the risk of
confusion, consider Fig. 13, which compares the frequency
evolution for an isolated binary and a binary in a hierar-
chical system. The frequency range over which the effects
might be confused is very small since the frequency
evolution scales very differently: _f ∝ f from the hierar-
chical orbit [see Eq. (24)] and _f ∝ f11=3 for mass transfer
and gravitational wave emission. We see that for an outer
period of one year there is no chance of confusion for this
system. Even up to outer periods of ten years, the amount of
overlap is small. The system with an outer period of
30 years, which is approaching the largest period for which
there is a measurable _f, has the greatest potential for

FIG. 12. The solid blue lines denote marginalized posteriors for outer orbital parameters for a circular inner binary injection in the
upper panels. The red dashed lines represent the marginalized posteriors for the same parameter for eccentric inner binary injections. The
vertical black lines denote the injected parameter values. The marginalized posteriors in the upper panel are statistically equivalent for
each parameter. The lower left panel displays the marginalized posterior for the inner eccentricity. The lower right panel is a scatter plot
of the e1 and e2 samples from the MCMC and shows no correlation.
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confusion. The larger the gravitational wave frequency, the
less likely it is that the effects will be confused.
We now directly test how well a binary signal can

reproduce a triple signal. To do so, we inject a triple system
into the LISA data stream and perform a MCMC with
simulated annealing utilizing a galactic binary waveform
model. The simulated annealing cools down the MCMC
such that the chain settles into the peak of the posterior, thus
allowing us to find the best values for the parameters as
suggested by the data. The maximum posterior signal
allows us to calculate the fitting factor (FF)

FF ¼ maxλ
ðhTjhðλÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhTjhTÞðhðλÞjhðλÞÞ

p ; ð39Þ

where λ are the parameters which maximize the galactic
binary model. The fitting factor is a measure of how well
the maximum posterior galactic binary waveform hðλmaxÞ
resembles the true triple waveform hT, which returns 1
when the signals are equivalent and 0 when they are
perfectly orthogonal.
In Fig. 14, we show an example where the observation

period was one year and the carrier frequency f was 3 mHz
for a circular outer orbit. We are now strictly concerned with
how well we can fit a triple signal with an isolated binary
model, not with how well parameters can be measured. The
relevantmasses for the triplewere as follows:ma ¼ 0.5 M⊙,
M ¼ 0.32 M⊙, and mc ¼ 1.0 M⊙. The parameters T2 and
ω2 were set to 0. There are three different models under
consideration which will be used to fit the injected signal

from a triple system. The symbol T̂ indicates models that use
a Taylor expanded frequency evolution. The T̂0 model
assumes the signal is monochromatic, i.e., it is characterized
by only f. The T̂GR model utilizes a three-term Taylor
expansion (i.e., f, _f, and f̈) in which the coefficients are
related by the radiation reaction equations. Lastly, we
consider the model T̂free which also utilized a three-term
Taylor expansion, but one in which there is no relation
between the coefficients.
The T̂0 model is able to fit the signal from the

hierarchical system for outer orbital periods that exceed
∼4 times the observation period, while the T̂GR model does
a little better and is able to fit the signal for outer orbital
periods that exceed ∼3 times the observation period. The
T̂free mode provides a good fit for outer orbital periods that
exceed ∼1.2 times the observation period. When the outer
period is comparable to, or shorter than, the observation
time, the Taylor expansion representation of the frequency
evolution will begin to fail, and we need to use the full
orbital model. Note that in a time-evolving analysis of the
LISA data, where the analysis is updated as the data arrives
on Earth, the simple Taylor expansion model will initially
work well for all systems, but as time goes on, it will begin
to break down for systems in hierarchical orbits. Long
before that happens, it will be obvious that these systems
are part of a hierarchical system as the frequency deriv-
atives will be far in excess of what we expect from mass
transfer or gravitational wave emission (or equivalently, the
chirp masses needed to explain the frequency evolution in
terms of gravitational wave emission will be much larger
than is expected for stellar remnants).

FIG. 13. The solid lines denote the gravitational wave frequency
for an isolated binary and for several binaries in hierarchical orbits
with outer periods of 1, 10, and 30 years. In each case, the outer
orbit is circular, and the SNR of the gravitational wave signal is
ρ ¼ 50. The dotted lines indicate the Fisher matrix error estimate
for the frequency derivatives. Note the difference in power laws for
the frequency derivatives and the small region of overlap between
the curves. The chirp mass was chosen to be 0.32 M⊙,
m2 ¼ 2 M⊙, mc ¼ 1 M⊙.

FIG. 14. The blue line represents the fitting factor for a purely
monochromatic galactic binary mode T̂0), the orange includes
_f in the frequency evolution (T̂GR), and the red includes _f and f̈
(T̂free). These fitting factors are for circular outer orbits. As the
outer orbital period increases, the ability of the binary model to
match the triple signal is improved. The parameters θ, ϕ, ψ , and
ϕ0 were chosen to be the same as Fig. 3 for the injected triple
signal.
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The dashed horizontal black line in Fig. 14 denotes a
fitting factor of 99%, which is what we expect for a
perfectly modeled signal with SNR 20. For a given SNR
and model dimension D (for which the galactic binary
models we are considering vary from 7 to 9), the presence
of noise will cause the fitting factor to deviate from unity
even with a perfect model for the signal. The expectation
value for the fitting factor in the presence of noise is [77]

FF ¼ 1 −
D − 1

2ρ2
: ð40Þ

Above the dashed line, it may not be possible to distinguish
the Taylor expanded models from the full hierarchical
model, though it will still be possible measure some
parameters of the hierarchical orbit past where the dashed
black line and fitting factor lines cross. Figure 13 allows
one to see what outer periods could reproduce _f’s, which
resemble radiation reaction, i.e., when the tracks overlap.
In Fig. 15, the eccentricity of the outer orbit is set to 0.7.

We see that the same general description holds. The fitting
factors for the various Taylor expansion models decrease as
P2 approaches the LISA orbital timescale. The details of
the interference’s effects on the fitting factor change, and
the fitting factors on the left side of the plot are generally a
little higher. This is due to the shift of power to higher
modes in the sidebands due to the larger eccentricity such
that the most visible fundamental mode has less power.
There is again no danger here of mismodeling, as even
larger frequency derivatives will be needed to accurately
model these signals. Lastly, in Fig. 16, we see how a 5 mHz
source compares. We see that again the broad picture is
intact, but the outer period at which the Taylor expanded
models proves an “acceptable” fitting factor grows, leaving
even less room for confusion between the models.

IX. DISCUSSION

Motivated by the possibility that many of the galactic
binaries observed by LISA may belong to hierarchical
systems, we sought to answer three main questions:
(1) Under what circumstances can we detect the effects

on a binary in a triple system?
(2) How well can we characterize the outer orbit of this

system?
(3) Where in parameter space might we confuse a triple

system with an isolated binary.
The frequency evolution incurred by a center-of-mass
acceleration of the inner binary due to the presence of a
perturbing companion will be measurable for outer periods
as many as ten times larger than the LISA mission lifetime.
The outer orbital period and eccentricity will be measurable
for systems of which the outer periods are no larger than a
few times the LISA mission lifetime. LISA will likely
detect many triple systems and characterize their orbits and
in doing so provide unique insights into the role that
hierarchical companions have on binary evolution.
There will only be a small regime of parameter space in

which we would expect to confuse the frequency evolution
of an isolated binary with that imparted by a hierarchical
companion. Analysis of the LISA data will require a global
fit, simultaneously considering all detectable sources to
account for covariances between the signals. One might be
concerned about how the presence of binaries in hierar-
chical orbits will complicate the analysis, but it is only a
mild complication. The simple Taylor expansion model
will pick up the signals accurately at first, and once it
becomes clear that the systems are undergoing large
accelerations due to a distant companion, the signal model
can be switched to the full orbital model.

FIG. 15. The fittings factors between an isolated binary model
and a highly eccentric triple system are displayed above. These
systems have a large eccentricity, e2 ¼ 0.7. Fitting factors are
larger compared to the circular outer orbit case in the previous
figure.

FIG. 16. These triples systems have a circular outer orbit, but
the carrier frequency is 5 mHz. This is more challenging for the
isolated binary model to replicate the triple data, resulting in
worse fitting factors.
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There are many avenues for future research. For suffi-
ciently tight systems, Lidov-Kozai oscillation or finite size
effects may be measurable. Another interesting scenario is
that of eclipsing systems. In pulsar timing, an eclipsing
system allows one to disentangle the mass and inclination
of a binary through the measurement of time delays in the
light. For a triple system, the eclipsing companion might
induce a measurable Shapiro time-delay-type effect into the
gravitational wave, allowing us to learn more about the
system.
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APPENDIX: BASIC BINARY FISHER ANALYSIS

In this Appendix, we generalize the toy model intro-
duced by Seto [67], which approximates rather well the
errors in parameter estimation that one faces with a galactic
binary signal in LISA. We model the signal as
h ¼ A cos ð2πfgwtþ ϕÞ, where A is a constant amplitude,

ϕ is an arbitrary phase shift, and fgw ¼ f þ _ftþ 1
2
f̈t2 (note

the difference in 1
2
for the definition between our _f and

Seto’s). In this section, we will investigate how the error
analysis changes as we include more or fewer parameters in
the model.
Under the assumption that the gravitational wave fre-

quency is mildly chirping (such that the Taylor expansion is
valid), one may approximate the noise-weighted inner
product in the time domain as

ðgjkÞ ¼ 2

SnðfÞ
Z

T

0

gðtÞkðtÞdt: ðA1Þ

The Fisher matrix, in the approximation in which many
cycles aremeasured, i.e., fTobs ≫ 1, can be approximated as

Γ ≈ ρ2

0
BBBBBBBB@

1 0 0 0 0

0 4
3
π2T2 π2T3 2

5
π2T4 πT

0 π2T3 4
5
π2T4 1

3
π2T5 2

3
πT2

0 2
5
π2T4 1

3
π2T5 1

7
π2T6 1

4
πT3

0 πT 2
3
πT2 1

4
πT3 1

1
CCCCCCCCA
; ðA2Þ

where the matrix is ordered as logA, f, _f, f̈, ϕ. Upon
inversion, we may obtain estimates of the errors in the
parameters of interest by inverting the full Fishermatrix (or in
versions where the f̈ and/or _f dimensions are dropped).
Whenonly amonochromatic signal is used, the rms errors are

ΔfTobs ¼
ffiffiffi
3

p

π
ρ−1 ≈ 0.06

�
10

ρ

�
ðA3Þ

Δϕ ¼ 2ρ−1 ≈ 0.20

�
10

ρ

�
: ðA4Þ

Including _f inflates the errors to the following:

ΔfTobs ¼
4

ffiffiffi
3

p

π
ρ−1 ≈ 0.22

�
10

ρ

�
ðA5Þ

Δ _fT2
obs ¼

3
ffiffiffi
5

p

π
ρ−1 ≈ 0.21

�
10

ρ

�
ðA6Þ

Δϕ ¼ 3ρ−1 ≈ 0.30
�
10

ρ

�
: ðA7Þ

Lastly, if one also includes the f̈ term,

ΔfTobs ¼
10

ffiffiffi
3

p

π
ρ−1 ≈ 0.55

�
10

ρ

�
ðA8Þ

Δ _fT2
obs ¼

18
ffiffiffi
5

p

π
ρ−1 ≈ 1.28

�
10

ρ

�
ðA9Þ

Δf̈T3
obs ¼

20
ffiffiffi
7

p

π
ρ−1 ≈ 1.68

�
10

ρ

�
ðA10Þ

Δϕ ¼ 4ρ−1 ≈ 0.40

�
10

ρ

�
: ðA11Þ

Now, we will consider a numerically calculated Fisher
matrix for a galactic binary seen by LISA, which includes
only f and _f in its frequency evolution. The following
matrix is ordered as f, cos θ, ϕ, logA, cos ι1, ψ , ϕ0, and _f:
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Γ¼

0
BBBBBBBBBBBBBBB@

5.05×103 2.77×102 −1.77×102 9.85×10−4 2.08 2.49×103 1.24×103 1.82×103

2.77×102 5.25×102 −2.01×102 −3.47 −3.56 2.09×101 1.04×101 1.26×102

−1.77×102 −2.01×102 3.15×104 5.87×10−1 1.37×101 −5.87×101 −2.88×101 5.26×102

9.85×10−4 −3.47 5.87×10−1 4.00×102 4.13×102 −6.67×10−1 5.52×10−9 1.32×10−3

2.08 −3.56 1.37×101 4.13×102 4.27×102 1.09 5.81e−01 1.04

2.49×103 2.09×101 −5.87×101 −6.67×10−2 1.09 1.60×103 8.00×102 8.04×102

1.24×103 1.04×101 −2.88×101 5.52×10−9 5.81×10−1 8.00×102 4.00×102 4.02×102

1.82×103 1.26×102 5.26×102 1.32×10−3 1.04 8.04×102 4.02×102 6.95×102

1
CCCCCCCCCCCCCCCA

:

ðA12Þ

This system had a carrier frequency of 5 mHz, a chirp
mass of 0.32 M⊙, and a SNR of 20. The Fisher matrix is
inverted, providing an estimate of the covariance matrix.
The error estimates from this covariance matrix are:

ΔfTobs ¼ 0.31; ðA13Þ
Δ _fT2

obs ¼ 0.61: ðA14Þ
These errors are rather robust to choices in the parameters
of the model. Comparing these results to the toy
model considered above, we see that the error in f is

roughly three times larger when using the full galactic
binary model and about six times larger for _f. This
results from the very strong covariance between ϕ0 and
ψ tied with the covariance of both of these parameters
with f and _f. If one considers galactic binaries modeled
with f̈ as well, one finds that the error in f̈ is about
four times as great as the toy model estimate. These
extra inflations are included in the analysis through-
out the body of this paper, in which we consider how
tight the outer orbit must be for certain features to be
measurable.
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