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A crucial property of Weyl gravity is its conformal invariance. It is shown how this gauge symmetry is
exactly reflected by the two constraints in the Hamiltonian framework. Since the spatial 3-metric is one of
the configuration variables, the phase space of Weyl gravity can be extended to include internal gauge
freedom by the triad formalism. Moreover, by canonical transformations, we obtain two new Hamiltonian
formulations of Weyl gravity with an SU(2) connection as one of its configuration variables. The
connection-dynamical formalisms lay the foundation to quantize Weyl gravity nonperturbatively by
applying the method of loop quantum gravity. In one of the formulations, the so-called Immirzi parameter
ambiguity in loop quantum gravity is avoided by the conformal invariance.
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I. INTRODUCTION

Modified gravity theories have increasingly received
attention due to motivations coming from cosmology
and astrophysics as well as quantum gravity. One of the
most interesting theories of modified gravity is Weyl
gravity [1], whose action is defined by the square of the
Weyl tensor Cμνρσ as

I ¼ −
1

4

Z
d4xCμνρσCμνρσ ffiffiffiffiffiffi

−g
p

; ð1Þ

where we consider four-dimensional Lorentzian spacetimes
and use the geometrical unit system and g denotes the
determinant of the spacetime metric gμν. Besides the
diffeomorphism invariance, the other intriguing property
of this theory is its invariance under the local conformal
transformation of the spacetime metric, gμν → Ω2gμν. As a
higher-order derivative theory of gravity, it is argued that its
perturbative quantization is renormalizable [2]. Moreover,
Weyl gravity is closely related to supergravity [3,4]
and it also emerges from the twistor string theory [5].
Furthermore, Weyl gravity is also closely related to
Einstein’s general relativity (GR). This fact can be seen
by comparing the equations of motion of the two theories
[6]. It is also argued that Weyl gravity could be employed to
account for the dark matter problem (see [6] and references
therein).
The variation of action (1) leads to the following Bach

equation [7]:

2∇β∇αCαμνβ þ CαμνβRαβ ¼ 0: ð2Þ

Alternatively, action (1) can also be written as

I ¼
Z

2

�
RμνRμν −

1

3
R2

� ffiffiffiffiffiffi
−g

p
d4xþ

Z
G

ffiffiffiffiffiffi
−g

p
d4x; ð3Þ

where the integral of the term G will give the Gauss-
Bonnet-Chern topological invariant [8]. Hence this term
does not contribute to the equations of motion. The
variation of the first term in action (3) leads to the following
equivalent form of Bach equation [6]:

0¼ 1

2
gμνR;α

;αþRμν;α
;α−Rμα;ν

;α−Rνα;μ
;α−2RμαRν

α

þ1

2
gμνRαβRαβ−

2

3
gμνR;α

;αþ
2

3
R;μ;νþ2

3
RRμν−

1

6
gμνR2:

Then it is straightforward to see that the solution of the
vacuum Einstein equation, Rμν ¼ Λgμν (with the cosmo-
logical constant Λ allowed to be zero or nonzero), is also a
solution of vacuumWeyl gravity. Hence, the solution set of
vacuum Weyl gravity contains all solutions of vacuum
Einstein gravity. An interesting question is whether the
different conformally equivalent classes of the solutions of
Weyl gravity can be characterized by the different solutions
of GR. The answer is negative. In particular, it is shown that
there exist solutions to the Bach equation that are not
conformally equivalent to Einstein spaces [9–11]. This fact
implies richer structures in Weyl gravity than those in GR.
Hence Weyl gravity may bring more interesting physical
phenomena in our eye shot.
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The goal of this paper is to set up a classical Hamiltonian
formulation towards nonperturbative quantization of Weyl
gravity. It is well known that loop quantum gravity (LQG)
has been widely investigated for quantizing GR [12–16] as
well as scalar-tensor theories of gravity [17,18]. One of the
impressive aspects of LQG is the so-called background
independence. This background-independent quantization
approach relies on the key observation that classical GR
and scalar-tensor gravity can be cast into the connection-
dynamical formalism with the structure group of SU(2)
[19–21]. Based on the geometrodynamics of Weyl gravity
in [22], this paper is devoted to establish the connection-
dynamical formalism for Weyl gravity.
In Sec. II, we discuss the two conformal constraints in the

Hamiltonian framework ofWeyl gravity, which turn out to be
generators of spatial and temporal conformal transforma-
tions, respectively. In Sec. III, we bring triad language into
the spatial metric for the sake of going towards connection-
dynamical formalism. The triad formalism has an additional
constraint with respect to the rotation gauge freedom of the
triad. The first-class property of the constraint algebra is
unchanged as the rotation constraint is imposed. The gauge
transformations generated by the constraints are analyzed. In
Sec. IV, we derive the connection-dynamical formalisms of
Weyl gravity in two different schemes by canonical trans-
formations from its triad formalism. The Gaussian and
diffeomorphism constraints in the connection formalism
are similar to those of GR coupling to matter [14]. The
so-called Immirzi parameter ambiguity can be avoided in one
of the schemes. The results of this paper are summarized and
remarked in the last section.

II. CONFORMAL CONSTRAINTS IN
CANONICAL WEYL GRAVITY

A. Geometrodynamics

In this subsection we briefly outline the geometrical
dynamics of Weyl gravity obtained in [22]. By a (3þ 1)
decomposition of spacetime, one obtains the induced spatial
3-metric hab and the extrinsic curvature Kcd of the foliation
hypersurface Σt. The action (1) can be written as

I ¼
Z

dt
Z
Σt

d3xN
ffiffiffi
h

p
ðCabc

nCabcn − 2Ca
n
b
nCanbnÞ; ð4Þ

where h represents the determinant of hab and we
have denoted Cabcn ≡ Cμνρσh

μ
ahνbh

ρ
cnσ and Canbn≡

Cμρνσh
μ
ahνbn

ρnσ, respectively, with nσ being the unit normal
of Σt. Note that the Weyl tensor contains the derivative
of the extrinsic curvature as

Canbn ¼−
1

2

�
δcaδ

d
b−

1

3
habhcd

�

×

�
£nKcd−Rcd−KcdK−

1

N
DcDdN

�
ð5Þ

and

Cabcn ¼ 2D½aKb�c þDdKd
½ahb�c −D½aKhb�c; ð6Þ

where N is the lapse function, £n denotes the Lie derivative
along nν, and Da denotes the spatial covariant derivative
compatible with hab. One could check that action (4) is still
invariant for conformal transformations gμν → Ω2gμν.
The 3þ 1 form consists of basic variables

ðhab; Kab; £tKab; N; NaÞ, where Na is the shift vector. In
order to reduce this higher-order derivative theory into a
second-order derivative one, a Lagrangian multiplier λab is
introduced into the action as

I ¼
Z

dt
Z
Σt

d3xN
ffiffiffi
h

p
ðCabc

nCabcn − 2Ca
n
b
nCanbn

þ λabð£nhab − 2KabÞÞ: ð7Þ

Then the basic variables are increased as ðhab; £thab;
Kab; £tKab; N; Na; λabÞ. In the Hamiltonian formulation,
one obtains momentum variables conjugate to the 3-metric
and extrinsic curvature, respectively, as

πcd ¼ λcd
ffiffiffi
h

p
; Pcd ¼ 2Cc

n
d
n

ffiffiffi
h

p
; ð8Þ

with the canonical relations

fhabðxÞ;πcdðyÞg¼fKabðxÞ;PcdðyÞg¼ δcðaδ
d
bÞδ

3ðx;yÞ: ð9Þ

From action (7), one can easily derive the diffeomorphism
constraint Ha and Hamiltonian constraint H0 as

Ha ¼ −2habDcπ
bc þ PbcDaKbc − 2DbðPbcKacÞ⩮ 0;

H0 ¼ 2πabKab −
PabPab

2
ffiffiffi
h

p þ PabRab þ PabKabK

þDaDbPab −
ffiffiffi
h

p
CabcnCabc

n ⩮ 0; ð10Þ

where the sign “⩮ ” means “equal on the constraint
surface.” Moreover, one obtains the following two con-
formal constraints due to the traceless of Pcd and its
consistency condition:

P ¼ habPab ⩮ 0; Q ¼ 2habπab þ KabPab ⩮ 0: ð11Þ

One can check that all the constraints are of first class.
Hence the physical degrees of freedom (d.o.f.) of Weyl
gravity reduce to 6ð¼ 6þ 6 − 4 − 2Þ.

B. Conformal gauge transformation

The conformal invariance of action (1) is encoded in the
constraints (11) in the Hamiltonian formalism. In this
subsection we will show how to generate spacetime
conformal transformations by those constraints. In order
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to become functions on the phase space, the two constraints
(11) should be smeared over suitable test fields ωlðxÞ and
ω⊥ðxÞ as

Pðω⊥Þ ¼
Z
Σt

d3xPω⊥; QðωlÞ ¼
Z
Σt

d3xQωl: ð12Þ

Then it is straightforward to get

fhab;QðωlÞg ¼ 2ωlhab;

fπab;QðωlÞg ¼ −2ωlπ
ab;

fKab;QðωlÞg ¼ ωlKab;

fPab;QðωlÞg ¼ −ωlPab ð13Þ
and

fhab;Pðω⊥Þg ¼ 0;

fπab;Pðω⊥Þg ¼ −ω⊥Pab;

fKab;Pðω⊥Þg ¼ ω⊥hab;
fPab;Pðω⊥Þg ¼ 0; ð14Þ

respectively. Note that the infinitesimal transformations of
πab in (13) and (14) imply that the Lagrange multiplier λab

introduced in action (7) has to be transformed as

λab → Ω−5ðλab − 2Ca
n
b
nnμ∂μ lnΩÞ ð15Þ

under a finite conformal transformation: gμν → Ω2gμν. The
finite spacetime conformal transformation induces trans-
formations on Σt as

hab → Ω2hab;

Kab → ΩKab þ habnμ∂μΩ;

Pab → Ω−1Pab; ð16Þ
where nμ → Ωnμ and Kab ¼ 1

2
£nhab are used. The relation

between the conformal factor Ω and the test fields ωl and
ω⊥ can be explored, if the transformations (13) and (14)
generated by constraints QðωlÞ and Pðω⊥Þ contribute the
infinitesimal version of (16).
Note that finite conformal transformations on the phase

space can be constructed by the exponential maps of the
Hamiltonian vector fields dual to functions QðωlÞ and
Pðω⊥Þ. However, (13) and (14) imply that the action order
of the exponential maps exp½XQðωlÞ� and exp½XPðω⊥Þ� will
affect the resulted transformation of the extrinsic curvature
Kab. A straightforward calculation gives

exp½XPðω⊥Þ� exp½XQðωlÞ�∘Kab

¼
X∞
k¼0

1

k!

��X∞
n¼0

1

n!
fKab;QðωlÞgðnÞ

�
;Pðω⊥Þ

�
ðkÞ

¼ Ω̄Kab þ ω⊥Ω̄hab; ð17Þ

where Ω̄≡P∞
n

1
n!ω

n
l ¼ eωl and the suffix on the Poisson

bracket denotes the iteration fKab;QðωlÞgðnþ1Þ ¼
ffKab;QðωlÞgðnÞ;QðωlÞg. On the other hand, another
order of action gives

exp½XQðωlÞ� exp½XPðω⊥Þ�∘Kab ¼ Ω̄Kab þ ω⊥Ω̄2hab: ð18Þ

Therefore it is obvious that

exp½XPðω⊥Þ� exp½XQðωlÞ� ≠ exp½XQðωlÞ� exp½XPðω⊥Þ�: ð19Þ

This noncommutative property can be understood as
follows. The Poisson algebra

fPðω⊥Þ;QðωlÞg ¼ Pðωl · ω⊥Þ; ð20Þ

together with Jacobi identity

ffKab;QðωlÞg;Pðω⊥Þg þ ffQðωlÞ;Pðω⊥Þg; Kabg
þ ffPðω⊥Þ; Kabg;QðωlÞg ¼ 0; ð21Þ

gives

ffKab;QðωlÞg;Pðω⊥Þg þ ωlω⊥hab
¼ ffKab;Pðω⊥Þg;QðωlÞg; ð22Þ

which implies (19). However, there is no such problem for
the spatial metric hab due to fhab;Pðω⊥Þg ¼ 0.
Suppose that the Hamiltonian vector field of the linear

combination,

Cðωl;ω⊥Þ ¼ QðωlÞ þ Pðω⊥Þ; ð23Þ
generates a spacetime conformal transformation (16). By
employing the Lie product formula in Lie group theory,

exp½XQðωlÞ þXPðω⊥Þ� ¼ lim
n→∞

ðexp½X1
nQðωlÞ�exp½X1

nPðω⊥Þ�Þn

¼ lim
n→∞

ðexp½X1
nPðω⊥Þ�exp½X1

nQðωlÞ�Þn;
ð24Þ

the above order ambiguity can be avoided. A straightfor-
ward calculation (see the Appendix) shows that the test
fields are related to the conformal factor by

ωl ¼ lnΩjΣt
; ð25Þ

ω⊥ ¼ ðlnΩÞnμ∂μΩ
Ω2 −Ω

����
Σt

: ð26Þ

III. TRIAD FORMALISM

A. Canonical variables in extended phase space

In this subsection wewill extend the phase space of Weyl
gravity coordinatized by ðhab; πcd;Kab;PcdÞ to the triad
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formalism in order to bring some internal gauge d.o.f.
into the theory. Let eai ði ¼ 1; 2; 3Þ be any triad on Σt

such that hab ¼ eai e
b
jδ

ij. The densitized triad is defined as

Ea
i ≔

ffiffiffi
h

p
eai . We denote the inverse of Ea

i by Ej
a and the

determinant of Ea
i by E. Suppose πjb is the variable

conjugate to Ea
i . We equip the extended phase space

coordinatized by ðπia; Eb
j ;Kij;PklÞ with symplectic struc-

ture defined by

fπiaðxÞ; Eb
j ðyÞg ¼ δbaδ

i
jδ

3ðx; yÞ;
fKijðxÞ;PklðyÞg ¼ δkðiδ

l
jÞδ

3ðx; yÞ; ð27Þ
and

fπkaðxÞ; KijðyÞg ¼ fπiaðxÞ;PklðyÞg ¼ fEb
kðxÞ; KijðyÞg

¼ fEb
i ðxÞ;PklðyÞg ¼ 0: ð28Þ

Note that the canonical variables πiaðxÞ and Eb
j ðyÞ have nine

d.o.f., respectively, while KijðxÞ and PklðyÞ have six,
respectively. The new variables are related to the original
variables by

hab ¼ δijEi
aE

j
bE; πcd ¼ to be determined;

Kab ¼ KijEi
aE

j
bE; Pcd ¼ E−1PklEc

kE
d
l : ð29Þ

Note that by contracting with the triad, the canonical
variables Kab and Pcd can be expressed as internal tensors
Kij and Pkl. So the key issue is to find the expression of πcd

in terms of new variables. Let πcd ¼ πcdðπjb; Ea
i ; Kij; PklÞ.

We can solve it from the following equations with respect
to the symplectic structure (27) and (28):

fhabðxÞ; πcdðyÞg ¼ −
Z
Σt

δhabðxÞ
δEf

i ðzÞ
δπcdðyÞ
δπifðzÞ

d3z ¼ δcðaδ
d
bÞδ

3ðx; yÞ;

fKabðxÞ; πcdðyÞg ¼
Z
Σt

�
−
δKabðxÞ
δEf

i ðzÞ
δπcdðyÞ
δπifðzÞ

þ δKabðxÞ
δKijðzÞ

δπcdðyÞ
δPijðzÞ

�
d3z ¼ 0;

fPabðxÞ; πcdðyÞg ¼
Z
Σt

�
−
δPabðxÞ
δEf

i ðzÞ
δπcdðyÞ
δπifðzÞ

−
δPabðxÞ
δPijðzÞ

δπcdðyÞ
δKijðzÞ

�
d3z ¼ 0. ð30Þ

Let πcd ≡ π̄cd − Ucd, where

π̄cd ¼ 1

2E
ðEðc

k E
dÞ
l π

l
fE

fk − Ec
kE

dkπlfE
f
l Þ ð31Þ

and Ucd ¼ UcdðEa
i ; Kij;PijÞ. Note that the Euclidean

metric δij is employed to raise or lower the internal indices
i; j; k;…, while hab is employed to raise or lower the
external spatial indices a; b; c;…. Then the first equation in
(30) is satisfied automatically, while the second and third
equations in (30) give

Ucd ¼ E−1Ki
lP

ljEðc
i E

dÞ
j : ð32Þ

Hence we recover πcd in extended phase space as

πcd ¼ 1

2E
ðEðc

i E
dÞ
j π

j
fE

fi − Ec
i E

diπkfE
f
kÞ −

1

E
Ki

lPljEðc
i E

dÞ
j :

ð33Þ

By a tedious calculation, the Poisson bracket between two
πab reads

fπabðxÞ; πcdðyÞg ¼ 1

16
ðhacGdb þ hbcGda þ hadGcb

þ hbdGcaÞðyÞδ3ðx; yÞ; ð34Þ

where Gab ¼ E−1Ea
i E

b
jG

ij with Gij ≡ 2π½icEj�c þ 4K½i
l P

j�l.
Note that on the extended phase spaceGij generates exactly
the internal SO(3) rotations of the new variables, which
keep the original variables ðhab; πcd;Kab;PcdÞ invariant.
Hence to go back to the original phase space, we need to
impose the “rotation” constraint

GðΛÞ ≔ 1

2

Z
Σt

d3xGijΛji ⩮ 0 ð35Þ

on the extended phase space, where Λij is an arbitrary
internal antisymmetric tensor-valued test function. In ad-
dition, the functions GðΛÞ constitute a closed constraint
algebra as

fGðΛÞ; GðΛ0Þg ¼ Gð½Λ;Λ0�Þ: ð36Þ
It is easy to check that

fGðΛÞ; habðxÞg ¼ 0; fGðΛÞ; πcdðxÞg ¼ 0;

fGðΛÞ; KabðxÞg ¼ 0; fGðΛÞ;PcdðxÞg ¼ 0: ð37Þ

B. Triad formalism as a first-class system

We want to show that all previous constraints together
with the rotation constraints on the extended phase space
constitute a first-class constrained system. Note that, except
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for GðΛÞ, all other constraints can be obtained by the naive
substitution of hab, πcd, Kab and Pcd in (10) and (11) with
(29) and (33), which are denoted as P0, Q0, H0

a and H0
0,

respectively. Since the expressions of P0, Q0, H0
a and H0

0

may contain the rotation constraint which can be neglected
on the constraint surface, one usually uses some alternative
expressions of those constraints without the terms contain-
ing the rotation constraint. We denote P ≡ P0 þ ZP ,
Q≡Q0 þ ZQ, Ha ≡H0

a þ Za, and H0 ≡H0
0 þ Z0, where

ZP , ZQ, Za and Z0 vanish on the constraint surface of the
rotation constraint. Since P0, Q0, H0

a and H0
0 are defined in

terms of (29) and (33), (37) ensures that P0,Q0, H0
a and H0

0

are invariant under the internal rotation generated by GðΛÞ.
Together with (36), we conclude that

fG;Pg; fG;Qg; fG;Hag; fG;H0g ∝ G⩮ 0:

Thus G forms an ideal of the constraint algebra.
Since (10) and (11) are indeed first class, we have
shown that P, Q, Ha, and H0 together with Gij are
also first class in extended phase space. Since the con-
straint algebra in the original phase space is known
[22], one can use the symplectic reduction formulas (30)
and (34) to derive the constraint algebra in extended
phase space. For instance, let H0

0ðξÞ≡
R
Σt
ξH0

0d
3x and

H0
0ðηÞ≡

R
Σt
ηH0

0d
3x be the smeared Hamiltonian con-

straints. To calculate fH0
0ðξÞ; H0

0ðηÞg, we can first
calculate

fH0
0ðξÞ; H0

0ðηÞg ¼
Z
Σt

�
δH0

0ðξÞ
δπiaðxÞ

δH0
0ðηÞ

δEa
i ðxÞ

þ δH0
0ðξÞ

δKijðxÞ
δH0

0ðηÞ
δPijðxÞ − ðξ ↔ ηÞ

�
d3x

¼ fH̄0ðξÞ; H̄0ðηÞgjΓ0
þ
Z
Σt

d3x
Z
Σt

δH̄0ðξÞ
δπabðxÞ

δH̄0ðηÞ
δπcdðyÞ fπ

abðxÞ; πcdðyÞgd3y; ð38Þ

where H̄0 ¼ H̄0ðhab; πcd; Kab;PcdÞ is the Hamiltonian
constraint coordinatized by ðhab; πcd;Kab;PcdÞ, and
fH̄0ðξÞ; H̄0ðηÞgjΓ0

takes the same result as that of the
original constraint algebra. Then we substitute all functions
of ðhab; πcd;Kab;PcdÞ by functions of ðπia; Eb

j ;Kij;PklÞ.
Thus we obtain the constraint algebra in extended phase
space by naive substitution as

fH0
0; H

0
0g ∝ H0

a ⊕ P0 ⊕ G; fH0
a; H0

bg ∝ H0
c ⊕ G;

fH0
0; H

0
ag ∝ H0

0 ⊕ G; fP0; H0
0g ∝ P0 ⊕ Q0;

fQ0; H0
0g ∝ P0 ⊕ H0

0 ⊕ G; fQ0; H0
ag ∝ Q0 ⊕ G;

fP0; H0
ag ∝ P0; fP0;Q0g ∝ P0: ð39Þ

Then it is straightforward to calculate the algebra for the
constraints with G linear combination as

fH0; H0g ¼ fH0
0 þ Z0; H0

0 þ Z0g
¼ fH0

0; H
0
0g þ fZ0; Z0g;

fHa;Hbg ¼ fH0
a þ Za;H0

b þ Zbg
¼ fH0

a;H0
bg þ fZa; Zbg;

fH0; Hag ¼ fH0
0 þ Z0; H0

a þ Zag
¼ fH0

0; H
0
ag þ fZ0; Zag;

� � � : ð40Þ

Since the constraints form a first-class system in extended
phase space, the physical d.o.f. of Weyl gravity can also be
read as 6 ¼ 9þ 6 − 3 − 1 − 2 − 3.

C. Conformal, diffeomorphism and rotation
constraints in extended phase space

The naive substitution of the conformal constraints (11)
in terms of new variables reads

P0 ¼ P ¼ δijPij ⩮ 0;

Q0 ¼ Q ¼ −ð2πiaEa
i þ KijPijÞ⩮ 0: ð41Þ

It is easy to check that they Poisson commute with GðΛÞ:
fGðΛÞ;Pðω⊥Þg ¼ fGðΛÞ;QðωlÞg ¼ 0; ð42Þ

where we omitted the “primes.” QðωlÞ and Pðω⊥Þ still
generate conformal transformations. Note that the minus
sign in the expression of Q arises from the fact that in the
new coordinates we employed the densitized triad Eb

j as the
momentum variable conjugate to πia.
The naive substitution of the diffeomorphism constraint

in (10) reads

H0
a ¼ Eb

i Daπ
i
b −DbðπiaEb

i Þ þ PijDaKij

þ 1

2
ðGijEbjDaEi

b −DbðGijEi
aEbjÞÞ⩮ 0: ð43Þ

By removing the terms containing the rotation constraint,
we obtain

Ha ¼ Eb
i Daπ

i
b −DbðπiaEb

i Þ þ PijDaKij ⩮ 0: ð44Þ

It turns out that it is Ha rather than H0
a that generates the

spatial diffeomorphisms of the new variables, since the
smeared version of Ha takes the form
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HaðξaÞ ¼
Z
Σt

d3xξaðEb
i Daπ

i
b −DbðπiaEb

i Þ þ PijDaKijÞ

¼
Z
Σt

d3xðEa
i £ξπ

i
a þ Pij£ξKijÞ; ð45Þ

where ξa is any test vector field on Σt satisfying a suitable
boundary condition.
The Poisson bracket between two rotation constraints

can be calculated as

fGðΛÞ; GðΛ0Þg ¼ Gð½Λ;Λ0�Þ: ð46Þ

It is easy to see that the canonical transformations generated
by GðΛÞ on ðπia; Eb

j Þ are exactly the internal rotation as in
GR [12,14]. GðΛÞ also generates internal rotations on
ðKij;PklÞ as

fKijðxÞ; GðΛÞg ¼ Λi
lKljðxÞ þ Λj

lKilðxÞ ¼ ½Λ; K�ijðxÞ;
fPijðxÞ; GðΛÞg ¼ Λi

lPljðxÞ þ PilΛj
lðxÞ ¼ ½Λ;P�ijðxÞ:

ð47Þ

The infinitesimal conformal transforms generated by
QðωlÞ and Pðω⊥Þ are calculated as

fπiaðxÞ;QðωlÞg ¼ −2ωlπ
i
aðxÞ;

fEa
i ðxÞ;QðωlÞg ¼ 2ωlEa

i ðxÞ;
fKijðxÞ;QðωlÞg ¼ −ωlKijðxÞ;
fPijðxÞ;QðωlÞg ¼ ωlPijðxÞ ð48Þ

and

fπiaðxÞ;Pðω⊥Þg ¼ 0;

fEa
i ðxÞ;Pðω⊥Þg ¼ 0;

fKijðxÞ;Pðω⊥Þg ¼ δijω⊥ðxÞ;
fPijðxÞ;Pðω⊥Þg ¼ 0; ð49Þ

respectively. The conformal generator P only affects Kij

and thus the Ucd part of πcd.

IV. CONNECTION-DYNAMICAL FORMALISM

A. The first scheme

In the triad formalism studied in the last section, the
configuration variable πia is a Lie algebra soð3Þ [or suð2Þ]
valued one-form. However, πia is not a connection since the
rotation constraint is not the Gaussian constraint of a gauge
theory. Similar to the case of GR, we can construct a suð2Þ
connection by a canonical transformation on the extended
phase space as

Ai
a ¼ Γi

a þ γπia; ð50Þ

where Γi
a is the suð2Þ spin connection determined by Eb

j :

Γi
a ¼

1

2
ϵijkebkð∂beaj − ∂aebj þ ealecj∂belcÞ ð51Þ

and γ is an arbitrary nonzero real number. We further define
ðγÞEb

j ¼ 1
γ E

b
j . Then ðAi

a; ðγÞEb
j Þ constitute a new canonical

pair. Combining the rotation constraint Gijϵijk ⩮ 0 with the
compatibility condition

DaEa
i ¼ ∂aEa

i þ ϵijkΓ
j
aEak ¼ 0; ð52Þ

we obtained the standard Gaussian constraint:

Gi ¼ ∂a
ðγÞEa

i þ ϵijkA
j
a
ðγÞEak þ ϵijkKj

lPlk ⩮ 0: ð53Þ
Hence Ai

a is an suð2Þ connection, and the internal tensor
Kij and Pkl play the role of the source of this gauge theory.
The fundamental Poisson brackets can be derived from

the symplectic structure (27) and (28) as

fAi
aðxÞ; ðγÞEb

j ðyÞg ¼ δijδ
b
aδ

3ðx; yÞ;
fKijðxÞ;PklðyÞg ¼ δkðiδ

l
jÞδ

3ðx; yÞ;
fAi

aðxÞ; Aj
bðyÞg ¼ fAk

aðxÞ; KijðyÞg
¼ fAi

aðxÞ; PklðyÞg ¼ 0;

fðγÞEa
i ðxÞ; ðγÞEb

j ðyÞg ¼ fðγÞEa
j ðxÞ; KijðyÞg

¼ fðγÞEa
i ðxÞ; PklðyÞg ¼ 0: ð54Þ

Since the Gaussian constraint is a linear combination of the
rotation constraint and the compatibility condition, it also
contributes a closed constraint algebra:

fGðΛÞ;GðΛ0Þg ¼ Gð½Λ;Λ0�Þ: ð55Þ
The curvature of Ai

a reads

Fi
ab ¼ 2∂ ½aAi

b� þ ϵi jkA
j
aAk

b: ð56Þ
One can define a new covariant derivative Da associated
with connection Ai

a by

DaVi ¼ ∂aVi þ ϵi jkA
j
aVk: ð57Þ

The original geometric variables can be rewritten in terms
of new variables as

hab ¼ γðγÞEðγÞEi
a
ðγÞEbi;

πcd ¼ 1

2γðγÞE
½ðγÞEðc

j
ðγÞEdÞ

i ðAi
a − Γi

aÞðγÞEaj

− ðγÞEc
j
ðγÞEdjðAi

a − Γi
aÞðγÞEa

i − 2Ki
lP

ljðγÞEðc
i
ðγÞEdÞ

j �;
Kab ¼ γðγÞEðγÞEi

a
ðγÞEj

bKij;

Pcd ¼ γ−1ðγÞE−1ðγÞEc
k
ðγÞEd

lP
kl: ð58Þ

Then the constraints can be recast as
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Gi ¼ Da
ðγÞEa

i þ 2ϵijkKj
lPlk ⩮ 0; P ¼ δijPij ⩮ 0; Q ¼ −2ðAi

a − Γi
aÞðγÞEa

i − KijPij ⩮ 0;

Ha ¼ Fi
ab

ðγÞEb
i þ PijDaKij − γπiaGi ⩮ 0; H0 ¼ γ−

3
2HA þ γ−1HB þHC þ γ

1
2HD ⩮ 0; ð59Þ

where Ha andH0 can be derived from (44) and (10) by naive substitution, respectively, and the termsHA,HB,HC andHD
can be expressed in term of new variables as

HA ¼ −
1

2
ffiffiffiffiffiffiffiðγÞE

p PijPij;

HB ¼ ðγÞEa
ði
ðγÞEb

jÞ
ðγÞE−1½DaDbPij − 4ϵiklðγÞπakDbP

j
l − 2ϵiklPj

lDb
ðγÞπak þ 6PjkðγÞπakðγÞπib

− 4PijðγÞπakðγÞπkb − 2δijPkl
ðγÞπkaðγÞπlb� þ ðγÞE−1Pj

i
ðγÞEa

j
ðγÞEb

kR
ik
ab;

HC ¼ Kij
ðγÞπiaðγÞEaj − 3KðγÞπiaðγÞEa

i − 2KijKi
lPlj;

HD ¼ −
ffiffiffiffiffiffiffi
ðγÞE

q
CabcnCabc

n: ð60Þ

Note that ðγÞπia ≡ γπia ¼ Ai
a − Γi

a does not depend on γ actually, and we have made use of the conformal constraintsQ andP
for sake of obtaining HB and HC. The expression of CabcnCabc

n reads

CabcnCabc
n ¼ ϵabdϵfgcðDaKbcÞDfKgd þ ϵabdϵfgdðDaKbcÞDfKg

c; ð61Þ
which can be rewritten in term of new variables as

CabcnCabc
n ¼ ðγÞE−1ðγÞEa

m
ðγÞEb

nϵ
ijmϵklnðDaKil − 2ðγÞπpaKrðiϵlÞprÞðDbKjk − 2ðγÞπqbK

sðjϵkÞqsÞ
þ ðγÞE−1ðγÞEa

p
ðγÞEbpðDaKij − 2ðγÞπkaKlðiϵjÞklÞðDbKij − 2ðγÞπmb KnðiϵjÞmnÞ

− ðγÞE−1ðγÞEaiðγÞEb
j ðDaKjl − 2ðγÞπkaKmðjϵlÞkmÞðDbKil − 2ðγÞπnbKpðiϵlÞnpÞ: ð62Þ

Note that, except for the Hamiltonian constraint, all of the
rest of the constraints do not contain the parameter γ
explicitly. Hence γ does not affect the gauge transforma-
tions they generate. However, the Hamiltonian constraint
consists of four polynomials of γ with different powers.
This fact may lead to different dynamics for different values
of γ in the quantum theory.
The Poisson bracket between connection variable Ai

aðxÞ
and conformal constraint QðωlÞ reflects the spatial con-
formal transformation of the connection variable. The
conformal constraint reads

QðωlÞ ¼ −
Z
Σt

d3x½2ðAj
b − Γj

bÞðγÞEb
j þ KjlPjl�ωl: ð63Þ

Hence we have

fAi
aðxÞ;QðωlÞg ¼ −2ωlðxÞ½Ai

aðxÞ − Γi
aðxÞ�

þ ϵijkðγÞEaj
ðγÞEb

k∂bωlðxÞ: ð64Þ

B. The second scheme

Unlike GR, Weyl gravity is conformally invariant.
Equation (48) shows that the conformal transformations
of the conjugate pair πia and Eb

j admit the form in the
canonical transformation in the last subsection. Thus it is
reasonable to consider the possibility that the canonical

transformations with different values of γ are actually
conformally equivalent to each other. This is not the case
for the canonical transformations defined in the last
subsection, since the other conjugate pair Kij and Pkl

remains unchanged there while it should be changed by the
conformal transformations. In fact, the conformally equiv-
alent canonical transformations can be defined as

πia → Ai
a ¼ Γi

a þ γπia; Eb
j →

1

γ
Eb
j ≡ ðγÞEb

j ;

Kij →
ffiffiffi
γ

p
Kij ≡ ðγÞKij; Pkl →

1ffiffiffi
γ

p Pkl ≡ ðγÞPkl: ð65Þ

Then the original geometric variables are related to the new
variables by

hab ¼ γðγÞEðγÞEi
a
ðγÞEbi;

πcd ¼ 1

2γðγÞE
½ðγÞEðc

j
ðγÞEdÞ

i ðAi
a − Γi

aÞðγÞEaj

− ðγÞEc
j
ðγÞEdjðAi

a − Γi
aÞðγÞEa

i

− 2ðγÞKi
l
ðγÞPljðγÞEðc

i
ðγÞEdÞ

j �;
Kab ¼ γ

1
2
ðγÞEðγÞEi

a
ðγÞEj

b
ðγÞKij;

Pcd ¼ γ−
1
2
ðγÞE−1ðγÞEc

k
ðγÞEd

l
ðγÞPkl: ð66Þ
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The constraints can be recast as

Gi ¼ Da
ðγÞEa

i þ 2ϵijk
ðγÞKj

l
ðγÞPlk ⩮ 0; P ¼ ffiffiffi

γ
p

δij
ðγÞPij ⩮ 0; Q ¼ −2ðAi

a − Γi
aÞðγÞEa

i − ðγÞKij
ðγÞPij ⩮ 0;

Ha ¼ Fi
ab

ðγÞEb
i þ ðγÞPijDa

ðγÞKij − ðγÞπiaðγÞGi ⩮ 0; H0 ¼ γ−
1
2ððγÞHA þ ðγÞHB þ ðγÞHC þ ðγÞHDÞ⩮ 0; ð67Þ

where

ðγÞHA ¼ −
1

2
ffiffiffiffiffiffiffiðγÞE

p ðγÞPijðγÞPij;

ðγÞHB ¼ 1
ðγÞE

ðγÞEa
ði
ðγÞEb

jÞ½DaDb
ðγÞPij − 4ϵiklðγÞπakDb

ðγÞPj
l − 2ϵiklðγÞPj

lDb
ðγÞπak

þ 6ðγÞPjkðγÞπakðγÞπib − 4ðγÞPijðγÞπakðγÞπkb − 2δijðγÞPkl
ðγÞπkaðγÞπlb� þ

1
ðγÞE

ðγÞPi
jðγÞEa

j
ðγÞEb

kR
ik
ab;

ðγÞHC ¼ ðγÞKij
ðγÞπiaðγÞEaj − 3ðγÞKðγÞπiaðγÞEa

i − 2ðγÞKij
ðγÞKi

l
ðγÞPlj;

ðγÞHD ¼ −
1ffiffiffiffiffiffiffiðγÞE

p ½ðγÞEa
m
ðγÞEb

nϵ
ijmϵklnðDa

ðγÞKil − 2ðγÞπpa ðγÞKrðiϵlÞprÞðDb
ðγÞKjk − 2ðγÞπqb

ðγÞKsðjϵkÞqsÞ

þ ðγÞEa
p
ðγÞEbpðDa

ðγÞKij − 2ðγÞπkaðγÞKlðiϵjÞklÞðDb
ðγÞKij − 2ðγÞπmb ðγÞKnðiϵjÞmnÞ

− ðγÞEaiðγÞEb
j ðDa

ðγÞKjl − 2ðγÞπkaðγÞKmðjϵlÞkmÞðDb
ðγÞKil − 2ðγÞπnbðγÞK

pðiϵlÞnpÞ�: ð68Þ

Note that the Hamiltonian constraint in (67) consists of four
terms of γ with the same power. In this connection-
dynamical formalism, different values of the parameter γ
of the basic variables can be generated by particular
conformal transformations. Since Weyl gravity is confor-
mally invariant, the so-called Immirzi parameter ambiguity
can be avoided in the corresponding loop quantum Weyl
gravity. This observation can be confirmed by the fact that
the parameter γ can be removed from the expressions of all
the constraints in (67).

V. SUMMARY

In previous sections, the Hamiltonian structure of Weyl
gravity has been studied in detail. The conformal invariance
of the theory is encoded in the conformal constraintsQðωlÞ
and Pðω⊥Þ, which generate spatial and temporal conformal
transformations, respectively. The relation of the smeared
fields ωl and ω⊥ with the conformal factorΩ is worked out
as (25) and (26). The Hamiltonian geometrodynamics of
Weyl gravity is then recast into the triad formalism by
including the internal gauge d.o.f. of a triad. The relation of
the basic variables in the triad formalism and the original
ones is worked out as (29) and (33). The rotation constraint
(35) is imposed for recovering the phase space of geo-
metrodynamics from the extended phase space. It is shown
that the new constrained system is still first class as that in
geometrodynamics. In comparison to the case of original
phase space, the conformal transformations generated by
Pðω⊥Þ on the extended phase space take simpler forms.
The variable πia conjugate to the densitized triad Eb

j keeps

unchanged by the temporal conformal transformations, and
only the diagonal elements of the components of the
extrinsic curvature Kij are affected by it.
The main purpose of this paper is to construct a certain

connection-dynamical formalism of Weyl gravity, in order
to apply the method of LQG to this theory. This purpose has
been realized by two schemes of canonical transformations
on the extended phase space. In the first scheme, only the
conjugate pair ðπia; Eb

j Þ are transformed into an SU(2)
connection and its momentum, while the other conjugate
pair ðKij;PklÞ keep unchanged. The so-called Immirzi
parameter γ ambiguity in LQG of GR exists also in the
corresponding quantum theory of Weyl gravity in this
formalism. However, in the second scheme, both conjugate
pairs are transformed, and the canonical transformations
with different values of the parameter γ are related by
certain conformal transformations generated by the con-
straint QðωlÞ. Therefore, the connection formalisms with
different values of γ belong to a conformally equivalent
class. There will be no Immirzi parameter ambiguity in the
corresponding quantum theory in this formalism. This
intriguing feature of the connection formalism of Weyl
gravity deserves further investigating in its loop quantiza-
tion. Another interesting issue in both schemes is the role
played by the conjugate pair ðKij;PklÞ in the connection-
dynamical formalism. From the expressions of the
Gaussian constraint and diffeomorphism constraint in
(59) or (67), ðKij;PklÞ or ððγÞKij; ðγÞPklÞ look like certain
internal tensor valued matter fields in GR. This implies a
possible geometrical origin of certain matter fields from
Weyl gravity, which also deserves further investigating in
its quantum theory.
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APPENDIX: CONFORMAL TRANSFORM BY
ASSEMBLED GENERATOR

One can write down the 0th and first-order terms
of exp½Cðωl;ω⊥Þ�Kab and then iterate the procedure to
obtain

0th Kab;

1st ωlKab þ ω⊥hab;
2nd ω2

lKab þ 3ωlω⊥hab;
3rd ω3

lKab þ 7ω2
lω⊥hab;

4th ω4
lKab þ 15ω2

lω⊥hab;
� � �

nth ωn
lKab þ ð2bn−1 þ 1Þωn−1

l ω⊥hab;

ðnþ 1Þth ωðnþ1Þ
l Kab þ ð2bn þ 1Þωn

lω⊥hab: ðA1Þ

Thus we have to solve the sequence bnþ1 ¼ 2bn þ 1 and get its solution as bn ¼ 2n − 1. Therefore the Taylor series of
exp½Cðωl;ω⊥Þ�∘Kab are expressed by two equations:

Ω̄ ¼ ΩjΣt
¼

X∞
n

1

n!
ωn
l ¼ eωl ; nμ∂μΩ ¼ ω⊥

X∞
n¼0

2n − 1

n!
ωðn−1Þ
l : ðA2Þ
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