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A crucial property of Weyl gravity is its conformal invariance. It is shown how this gauge symmetry is
exactly reflected by the two constraints in the Hamiltonian framework. Since the spatial 3-metric is one of
the configuration variables, the phase space of Weyl gravity can be extended to include internal gauge
freedom by the triad formalism. Moreover, by canonical transformations, we obtain two new Hamiltonian
formulations of Weyl gravity with an SU(2) connection as one of its configuration variables. The
connection-dynamical formalisms lay the foundation to quantize Weyl gravity nonperturbatively by
applying the method of loop quantum gravity. In one of the formulations, the so-called Immirzi parameter
ambiguity in loop quantum gravity is avoided by the conformal invariance.

DOI: 10.1103/PhysRevD.98.064009

I. INTRODUCTION

Modified gravity theories have increasingly received
attention due to motivations coming from cosmology
and astrophysics as well as quantum gravity. One of the
most interesting theories of modified gravity is Weyl
gravity [1], whose action is defined by the square of the

Weyl tensor C,,,, as

1
1=~ / d*xC,s C% /=, (1)

where we consider four-dimensional Lorentzian spacetimes
and use the geometrical unit system and g denotes the
determinant of the spacetime metric g,,. Besides the
diffeomorphism invariance, the other intriguing property
of this theory is its invariance under the local conformal
transformation of the spacetime metric, g,, — Q? G- As @
higher-order derivative theory of gravity, it is argued that its
perturbative quantization is renormalizable [2]. Moreover,
Weyl gravity is closely related to supergravity [3,4]
and it also emerges from the twistor string theory [5].
Furthermore, Weyl gravity is also closely related to
Einstein’s general relativity (GR). This fact can be seen
by comparing the equations of motion of the two theories
[6]. It is also argued that Weyl gravity could be employed to
account for the dark matter problem (see [6] and references
therein).

The variation of action (1) leads to the following Bach
equation [7]:
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Alternatively, action (1) can also be written as

I—/2<RMDR’“’—%R2>./—gd4x+/G\/—gd4x, (3)

where the integral of the term G will give the Gauss-
Bonnet-Chern topological invariant [8]. Hence this term
does not contribute to the equations of motion. The
variation of the first term in action (3) leads to the following
equivalent form of Bach equation [6]:

1 . . . .
0= 5g;wR,w;w + R;w,a;a _ R;m,v;a _ Rba,ﬂ;a _ 2R;¢aRzza

+ lg;wR Ra/i 2g;wR;a + 2R;u;v + 2RRm/ lg;wRZ
27 b 3 3 3 6 ‘

Then it is straightforward to see that the solution of the
vacuum Einstein equation, R, = Ag,, (with the cosmo-
logical constant A allowed to be zero or nonzero), is also a
solution of vacuum Weyl gravity. Hence, the solution set of
vacuum Weyl gravity contains all solutions of vacuum
Einstein gravity. An interesting question is whether the
different conformally equivalent classes of the solutions of
Weyl gravity can be characterized by the different solutions
of GR. The answer is negative. In particular, it is shown that
there exist solutions to the Bach equation that are not
conformally equivalent to Einstein spaces [9—11]. This fact
implies richer structures in Weyl gravity than those in GR.
Hence Weyl gravity may bring more interesting physical
phenomena in our eye shot.
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The goal of this paper is to set up a classical Hamiltonian
formulation towards nonperturbative quantization of Weyl
gravity. It is well known that loop quantum gravity (LQG)
has been widely investigated for quantizing GR [12-16] as
well as scalar-tensor theories of gravity [17,18]. One of the
impressive aspects of LQG is the so-called background
independence. This background-independent quantization
approach relies on the key observation that classical GR
and scalar-tensor gravity can be cast into the connection-
dynamical formalism with the structure group of SU(2)
[19-21]. Based on the geometrodynamics of Weyl gravity
in [22], this paper is devoted to establish the connection-
dynamical formalism for Weyl gravity.

In Sec. 11, we discuss the two conformal constraints in the
Hamiltonian framework of Weyl gravity, which turn out to be
generators of spatial and temporal conformal transforma-
tions, respectively. In Sec. III, we bring triad language into
the spatial metric for the sake of going towards connection-
dynamical formalism. The triad formalism has an additional
constraint with respect to the rotation gauge freedom of the
triad. The first-class property of the constraint algebra is
unchanged as the rotation constraint is imposed. The gauge
transformations generated by the constraints are analyzed. In
Sec. IV, we derive the connection-dynamical formalisms of
Weyl gravity in two different schemes by canonical trans-
formations from its triad formalism. The Gaussian and
diffeomorphism constraints in the connection formalism
are similar to those of GR coupling to matter [14]. The
so-called Immirzi parameter ambiguity can be avoided in one
of the schemes. The results of this paper are summarized and
remarked in the last section.

II. CONFORMAL CONSTRAINTS IN
CANONICAL WEYL GRAVITY

A. Geometrodynamics

In this subsection we briefly outline the geometrical
dynamics of Weyl gravity obtained in [22]. By a (3 + 1)
decomposition of spacetime, one obtains the induced spatial
3-metric h,;, and the extrinsic curvature K., of the foliation
hypersurface Z,. The action (1) can be written as

I:/dt/ dSXN\/E(CuanCabcn_2Canhncanbn)7 (4)
P

where h represents the determinant of 4, and we
have denoted Cpen = Cpppohahiyhen® and  Coppn=
C,puolahiyn’n°, respectively, with n” being the unit normal
of Z,. Note that the Weyl tensor contains the derivative
of the extrinsic curvature as

1 1
Canpn = ) <525§ _ghabh6d>

1
X <£}1ch_Rcd_chK_NDchN> (5)

and

Cupen = 2D[aKb]c + DdKﬁlhb]c - D[aKhb]C’ (6)
where N is the lapse function, £, denotes the Lie derivative
along n*, and D, denotes the spatial covariant derivative
compatible with £,;,. One could check that action (4) is still
invariant for conformal transformations g,, — ngﬂy.

The 341 form consists of basic variables
(hap, K, £,K 41, N, N), where N is the shift vector. In
order to reduce this higher-order derivative theory into a
second-order derivative one, a Lagrangian multiplier 1%° is
introduced into the action as

I = /dt/ d3XN\/E(CaanCabcn _2Canbncanbn
%
+ A (£nhab - 2Kab)>' (7)

Then the basic variables are increased as (hyp, £/,
Koy £,K 4, N,N%, 29%). In the Hamiltonian formulation,
one obtains momentum variables conjugate to the 3-metric
and extrinsic curvature, respectively, as

zcd — ﬂCd\/E, ped — 2CCndn\/Z’ (8)
with the canonical relations
{hap(6). 7 ()} = {K (). P(0) } = 52,50 8 (x.). (9)

From action (7), one can easily derive the diffeomorphism
constraint H, and Hamiltonian constraint H, as

Ha = _ZhathﬂbC + ,PbCDaKbc - ZDb(PbCKaL‘> £ 0’

b 73abpab b b
Hy = 27K, — + PRy + PPKypK
2vh
+ DuDhPab - \/il’cabcncahcn é 0’ (10)

where the sign “Z” means “equal on the constraint

surface.” Moreover, one obtains the following two con-
formal constraints due to the traceless of P4 and its
consistency condition:

P = hy,, P £0, Q = 2h,n® + K, P £ 0. (11)
One can check that all the constraints are of first class.

Hence the physical degrees of freedom (d.o.f.) of Weyl
gravity reduce to 6(=6 +6 —4 —2).

B. Conformal gauge transformation

The conformal invariance of action (1) is encoded in the
constraints (11) in the Hamiltonian formalism. In this
subsection we will show how to generate spacetime
conformal transformations by those constraints. In order
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to become functions on the phase space, the two constraints
(11) should be smeared over suitable test fields w,(x) and
/| (x) as

P(wl):/z dxPw,, Q(a)f):/ &dxQw,.  (12)

%

Then it is straightforward to get

{P, Q(wy)} = —w, P (13)
and

{hap, P(w1)} =0,

(2. Pl@1)} = —0, P,

{Kap- Plw1)} = @1 hgp,

{P*. P(w,)} =0, (14)

respectively. Note that the infinitesimal transformations of
7% in (13) and (14) imply that the Lagrange multiplier A%?
introduced in action (7) has to be transformed as

A% Q=54 —2C9, b 09, In Q) (15)

under a finite conformal transformation: g,, — ngyv' The
finite spacetime conformal transformation induces trans-
formations on X, as

hab - thabv
Kab d QKab + habn“aﬂﬁ,
Ppab Q-1 pab, (16)

where n, — Qn, and K, = %;Enhah are used. The relation
between the conformal factor Q and the test fields w, and
| can be explored, if the transformations (13) and (14)
generated by constraints Q(w,) and P(w ) contribute the
infinitesimal version of (16).

Note that finite conformal transformations on the phase
space can be constructed by the exponential maps of the
Hamiltonian vector fields dual to functions Q(w,) and
P(w, ). However, (13) and (14) imply that the action order
of the exponential maps exp[X g(,,)] and exp[Xp(,,)] will
affect the resulted transformation of the extrinsic curvature
K ;. A straightforward calculation gives

-> 1 (ii,{K Q(w»}(”))w(wl)}(k)

= QK + @, Qhyy, (17)

where Q = Y ® L @” = ¢” and the suffix on the Poisson

bracket denotes the iteration {Kab,Q(a)f)}(n ) =

UKy Q@¢) }(n)> Q(@p)}. On the other hand, another
order of action gives

exp[XQ(w()] exp[XP(wL)} oK. = QKab + wJ_thab' (18)
Therefore it is obvious that

exp[Xp(w, )] eXp[X g(w,)] # eXPIXg(w,)] €XP[Xp(w,)]-  (19)

This noncommutative property can be understood as
follows. The Poisson algebra

{Plwy), Qw)} = Ploy - w,). (20)
together with Jacobi identity
{{Kap, Qo) }. Plw1)} +{{Qwr). Plwr)} Kap}
+{P(o1). Kup}. Qo) } =0, (1)
gives
{Kawp. Qo) }. Plwy)} + wpw i hyy
= {{Kap- Pl@1)}. Qo) }. (22)

which implies (19). However, there is no such problem for
the spatial metric A, due to {h,,, P(w,)} = 0.

Suppose that the Hamiltonian vector field of the linear
combination,

Clog, 1) = Qwe) + Plwy), (23)

generates a spacetime conformal transformation (16). By
employing the Lie product formula in Lie group theory,

exp[X o(v,) T Xp(a,)] = lim (exp[X1g(y,)|exp[Xip(,,)])"
= lim (exp[X1p(,,, )] exp[Xig(w,)])",
(24)

the above order ambiguity can be avoided. A straightfor-
ward calculation (see the Appendix) shows that the test
fields are related to the conformal factor by

(InQ)n*0,Q
L= g . (26)

III. TRIAD FORMALISM

A. Canonical variables in extended phase space

In this subsection we will extend the phase space of Weyl
gravity coordinatized by (A, 7% K, P¢¢) to the triad
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formalism in order to bring some internal gauge d.o.f.
into the theory. Let ¢%(i =1,2,3) be any triad on X,
such that h% = ¢ e”é’f The densitized triad is defined as

= \/ﬁe?. We denote the inverse of EY by E) and the
determinant of EY by E. Suppose 7?2 is the variable
conjugate to EY. We equip the extended phase space
coordinatized by (), E7; K;;, P¥') with symplectic struc-
ture defined by

{ma(x). E}(y)} = 52858° (x. 7).

{K (). Py} = 646, 5° (x. ). (27)

and

{”Z(x)’Kij(y)} = {”Z(x)vpkl()’)} = {Ef(x) Kij()’)}
={E!(x), P (y)} =0. (28)

Note that the canonical variables 7, (x) and E%(y) have nine
d.of., respectively, while K;;(x) and P¥(y) have six,

respectively. The new variables are related to the original
variables by

hab = (SIJEIaE{}E, ﬂcld =

K. = K, ELEJE, P4 =E"

to be determined,

I'PHECE]. (29)

Note that by contracting with the triad, the canonical
variables K, and P°? can be expressed as internal tensors
K;; and P*. So the key issue is to find the expression of 7/

in terms of new variables. Let 7¢¢ = (7Tb, E¢ K;;, PM).

We can solve it from the following equatlons with respect
to the symplectic structure (27) and (28):

, OE/(z) omy(2) (a”p)
od B _5Kab(x)57t"d(y) 6K oy (x) 67°(y)\ 5
(Kt i)} = [ (0 W) =0,

Let z¢¢ = 7°¢ — U4, where
1 .
7ol = S (ECE) np B — EE*xiE])  (31)
and U = U“(E%,K,;;, PV). Note that the Euclidean

metric §;; is employed to raise or lower the internal indices
i,j,k,..., while h, is employed to raise or lower the
external spatial indices a, b, c, .... Then the first equation in
(30) is satisfied automatically, while the second and third
equations in (30) give

_ -1 griplj (e pd)
U = E'K|PYESE} . (32)
Hence we recover 7°? in extended phase space as
cd 1 (e pd) _j pfi cpdi k pf 1 i plj e d)
r —ﬁ(Ei E/m Bl — E{E“n}Ey ) —EK[P EVE}.
(33)

By a tedious calculation, the Poisson bracket between two
7 reads
(hachb + hchda + hadGcb

{0, 70} = 7

+ hPAGe) ()6 (x. y). (34)

AV
- ))dzo. (30)

where G* = E-'E¢EYG with GY = 2al B/l 4K, Pil.
Note that on the extended phase space G/ generates exactly
the internal SO(3) rotations of the new variables, which
keep the original variables (h,,, 7¢; K, P¢?) invariant.
Hence to go back to the original phase space, we need to
impose the “rotation” constraint

1 .
G(A) = EL d3XGijA/l é 0 (35)

on the extended phase space, where A is an arbitrary
internal antisymmetric tensor-valued test function. In ad-
dition, the functions G(A) constitute a closed constraint
algebra as

{G(A), GN)} = G([A,N]). (36)
It is easy to check that
{G(A). hyp(x)} =0. {G(A).z(x)} =0,
{G(A).Kup(x)} =0, {G(A).P“(x)}=0.  (37)

B. Triad formalism as a first-class system

We want to show that all previous constraints together
with the rotation constraints on the extended phase space
constitute a first-class constrained system. Note that, except
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for G(A), all other constraints can be obtained by the naive
substitution of h,,, 74, K, and P4 in (10) and (11) with
(29) and (33), which are denoted as P’, Q', H, and Hj,
respectively. Since the expressions of P, Q', H,, and Hj,
may contain the rotation constraint which can be neglected
on the constraint surface, one usually uses some alternative
expressions of those constraints without the terms contain-
ing the rotation constraint. We denote P =P + Zp,
Q=9 +Zy,H,=H,+Z,, and Hy = H|, + Z,, where
Zp, Lo, Z, and Z vanish on the constraint surface of the
rotation constraint. Since P, Q', H), and H|, are defined in
terms of (29) and (33), (37) ensures that 7', Q', H], and Hj,
are invariant under the internal rotation generated by G(A).
Together with (36), we conclude that

|

5H’( )5H’ () _

{G,P}.{G,Q},{G,H,},{G,Hy} x GZ0.

Thus G forms an ideal of the constraint algebra.
Since (10) and (11) are indeed first class, we have
shown that P, Q, H,, and H, together with G;; are
also first class in extended phase space. Since the con-
straint algebra in the original phase space is known
[22], one can use the symplectic reduction formulas (30)
and (34) to derive the constraint algebra in extended
phase space. For instance, let Hy(¢) = [, EH)d’x and

Hy(n) = [, nHyd’x be the smeared Hamiltonian con-

straints. To calculate {H{(&),Hy(n)}, we can first

calculate

{Hy(&). Ho(n)} = / <57ra (x) 21;;(( ))

= {Hy($),

where Hy = Hy(hyp, 74, K 4, P°Y) is the Hamiltonian
constraint coordinatized by (hah,zz‘d; K., 73“1), and
{Ho(&). Ho(n)}r, takes the same result as that of the
original constraint algebra. Then we substitute all functions
of (hap, 7% K 4, P¢4) by functions of (n'a, Ky PH.
Thus we obtain the constraint algebra in extended phase
space by naive substitution as

{H\.H)} «xH, ® P & G, {H,,H,} xH. ® G,
(H)H)} < H\® G, {P.H)} <P & Q.

{9 Hy} xP' & H,® G, {9 H,} x Q & G,
{P.H,} P, {P, 9} xP. (39)

Then it is straightforward to calculate the algebra for the
constraints with G linear combination as

{Ho.Ho} = {Hy+ Zo, Hy + Zy}
= {Hp. Hy} +{Z0. Zo},
{Hav Hb} = {Hil +Za7H?; + Zb}
= {Ho Hy} +{Z0. Zs},
{Ho, Ha} = {Ho +Zo, Hy + Za}
= {Hy. Hy} +{Z. 2.}
(40)
Since the constraints form a first-class system in extended

phase space, the physical d.o.f. of Weyl gravity can also be
readas6=9+6-3-1-2-3.

)}, + / /2 SHy(¢) 5Ho ’7){ ab(x), 7

<~ 3x

5 () 57 () “(y)rd’y, (38)

C. Conformal, diffeomorphism and rotation
constraints in extended phase space

The naive substitution of the conformal constraints (11)
in terms of new variables reads

P =P =6;PI L0,
Q' = Q= -2 E¢ + K;/P) 2 (41)

It is easy to check that they Poisson commute with G(A):

Plwy)} ={G(A), Qwy

where we omitted the “primes.” Q(w,) and P(w, ) still
generate conformal transformations. Note that the minus
sign in the expression of Q arises from the fact that in the
new coordinates we employed the densitized triad E? as the

{G(A), )} =0, (42)

momentum variable conjugate to 7.
The naive substitution of the diffeomorphism constraint
in (10) reads
H!, = E'D 7}

— D,(nl,E?) + PUD,K;;

1 : 4 o
+5(G; JEY D, E} — D, (G;ELEY))£0.  (43)
By removing the terms containing the rotation constraint,
we obtain

H, = E'D,r, — D,(nl,E?) + PUD,K;; £0. (44)
It turns out that it is H, rather than H/, that generates the
spatial diffeomorphisms of the new variables, since the
smeared version of H, takes the form
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M@ﬂzéd%ﬂ@m@—mwﬂﬁ+ﬂmﬁw
= / dBx(Edeml + PU£K;), (45)
Zr

where £“ is any test vector field on X, satisfying a suitable
boundary condition.
The Poisson bracket between two rotation constraints
can be calculated as
{G(A).G(N)} = G(IA.N)). (46)
Itis easy to see that the canonical transformations generated
by G(A) on (x,, E?) are exactly the internal rotation as in
GR [12,14]. G(Aj also generates internal rotations on

(K,],Pkl) as

(K0, G(A)} = 'Ky (x) + A K (x) = [A K ),
[PU(), G(A)} = A PU(x) + P (x) = [A, PJI(x)
(@)

The infinitesimal conformal transforms generated by
Q(w,) and P(w, ) are calculated as

{7(x), Qw,)} = 2w,m} (x),
{E¢(x), Q(wy)} = 2w,Ef (x),
{Kij(x), Qwy)} = —w,K;j(x),
{PY(x), Qws)} = w,PY(x) (48)
and
{7, (x), P(wy)} = 0,
{E{(x),P(o,)} =0,
{Kij(x)’P(wJ_)} = 51’ij(9€>’
{P(x),P(w,)} =0, (49)

respectively. The conformal generator P only affects K;;
and thus the U¢? part of 7¢.

IV. CONNECTION-DYNAMICAL FORMALISM
A. The first scheme

In the triad formalism studied in the last section, the
configuration variable 7, is a Lie algebra 80(3) [or 811(2)]
valued one-form. However, 7/, is not a connection since the
rotation constraint is not the Gaussian constraint of a gauge
theory. Similar to the case of GR, we can construct a 311(2)
connection by a canonical transformation on the extended
phase space as

Al =T +yri, (50)

where I, is the 81(2) spin connection determined by Ejb-:

A
Ty = 57 ef(Ope; — Dues; + eaeidpel)  (51)

and y is an arbitrary nonzero real number. We further define
WED = lEb Then (Al WE%) constitute a new canonical

pair. Combmmg the rotation constraint GVe; ;; = £ 0 with the
compatibility condition

D,E¢ = 0,E¢ + €;3ThE™ = 0, (52)
we obtained the standard Gaussian constraint:
Gi = 0,VE! + €3 ALVE™ + €, K/ PF£0.  (53)

Hence A’ is an 8u(2) connection, and the internal tensor
K;; and P* play the role of the source of this gauge theory.

The fundamental Poisson brackets can be derived from
the symplectic structure (27) and (28) as

{AL(x), VE}(v)} = 8,858° (x, ),
[Ky(0), PR} = 88,8 ),
{AL(x). AL ()} = {Ak(x). K ;;(»)}
={AL(x), P (»)} =
{WE¢ (x), VE (y)} = {VE( (x), ,(y)}
= {VE{ (x), PM(y)} = (54)

Since the Gaussian constraint is a linear combination of the
rotation constraint and the compatibility condition, it also
contributes a closed constraint algebra:

{9(A), G(N)} = G(IA, N)). (55)
The curvature of Al reads

Fiy, = 20,AL) + ¢/ i ALAS, (56)

]

One can define a new covariant derivative D, associated

with connection A}, by
D,V =9,V +¢ ALV (57)

The original geometric variables can be rewritten in terms
of new variables as

hy, = y(J’)E(Y)EL(J’)Ebi’
1

ed _ NWECOED (Al — TR
g ZV(V)E[ Ej VE; (Ag = To)VE
_ <7>E5(y)Edj(AZ — FZ)(”E? _ ZK;'PU(V)EZ(,C(”E?},
K, = y(J’)E(}’)Eé(J’)E{,KU,
Ped — N E-N 0D EIPH, (58)

Then the constraints can be recast as
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G: = D,VE? + 2¢€;1 K7, Pk,

H,=F,VE} + PVD,K;; — yni,G; £0,

Q = —2(Al, —TH)WE! — K,;PV£0

Hy =y My + 7 "Hp + He + rHp £0, (59)

where H, and H, can be derived from (44) and (10) by naive substitution, respectively, and the terms H,, Hp, H and Hp

can be expressed in term of new variables as

HA:—

1
PP,
2./ OE /

Hp = (ﬂEEli(y)Ejf)(r)E—l [D,D,PY — 4¢K(7) ﬂakpbpf
- 25”7)]{[ )ﬂ'm
- 2K, jKl,PU,

— 4Pz,
He = Kii(r)ﬂZ(V)Ea/ - 3[(( x, WES

~\/ WEC penC** .

HD:

26MPID, Dty + 6PH* Dz, Dl
17)] Eleakbv

(60)

Note that ")z’ = yzl, = AL — T does not depend on y actually, and we have made use of the conformal constraints Q and P

for sake of obtaining H and Hc. The expression of Cpe, C*P¢,

reads

Cabcncabcn = €abd€fgc (DaKbc>Dngd + €abd€fgd(DaKbc)DfK c’ (61)

which can be rewritten in term of new variables as

CoupenC¢y = VET'WELWELelimekin(D K ;) — 20Ul K™ €1),,) (DK ji — 20K (j€1045)

1 g1 (V)EZ(J’) EbP (D, K- 2k

! e'kl)(DbKij —2(’/)ﬂmKﬂ(i€j)mn>

_<7)E—1(}')Eai(7)E?(DaKjl_2() kgmie )km)(Db g =20 Kp(iel)np)' (62)

Note that, except for the Hamiltonian constraint, all of the
rest of the constraints do not contain the parameter y
explicitly. Hence y does not affect the gauge transforma-
tions they generate. However, the Hamiltonian constraint
consists of four polynomials of y with different powers.
This fact may lead to different dynamics for different values
of y in the quantum theory.

The Poisson bracket between connection variable A’ (x)
and conformal constraint Q(w,) reflects the spatial con-
formal transformation of the connection variable. The
conformal constraint reads

Qw,) = - / PR(AL ~T)VE! + K Py, (63)

Hence we have

{AL(x), Qwe)} = =2w,(x)[Al(x) = Th(x)]
+ €*VE WE O yw, (x). (64)

B. The second scheme

Unlike GR, Weyl gravity is conformally invariant.
Equation (48) shows that the conformal transformations
of the conjugate pair 7/, and E? admit the form in the
canonical transformation in the last subsection. Thus it is
reasonable to consider the possibility that the canonical

transformations with different values of y are actually
conformally equivalent to each other. This is not the case
for the canonical transformations defined in the last
subsection, since the other conjugate pair K;; and Ppr
remains unchanged there while it should be changed by the
conformal transformations. In fact, the conformally equiv-
alent canonical transformations can be defined as

4

- L77"1 = Ipk_ (65)
14

al, = AL =T +yxi, (J’)E?,

KU_)\/}?KUE(Y)KU’ Pkl

Then the original geometric variables are related to the new
variables by

hyy =y WEVELWE, .
1

ed — WECOHED (Al — T\ Eai
7 27/(7’>E[ E;VE (A, r)vE
- (y)Ec:(y)Edj(Ai —T)nES
LECHED
—20KiPli®) Ej ],
Ky =7 s )El( )El(r)[(”’
Ped =y WE WE(WE] PR, (66)

064009-7



QIAN CHEN and YONGGE MA

PHYS. REV. D 98, 064009 (2018)

The constraints can be recast as

G =D,VE + 2ei,-k(7)Kj(V)7>”‘ %0, P = rd,; P20 Q = —2(Al, —T})ES — K, (Pl £
H, = Fi,WEY + Wpiip K, — Wgl (G, £0, Hy =y 2 ((OH, + OHp + OH + 77‘10) %0, (67)
where
1 .
OH, =- piityp...
2./ WE Y
1 y , . , .
WHp = VB <7>E’(‘i (7>E§’) [Dapb(;')pu — 4Oz D, OPI, — 26K P D, N
; 1
ij T k< ’Plj - 25” ,Pkl(]/)ﬂ];(”ﬂ'lb] (7 E P/ EbR;kb,
H e = )Ku( Nl g — 3(r )K(r)ﬂg(V)E;? — 2(7)Kij(7)[(’ rpli
1 y ,
OHp = - e [(NES WEblimekin(D, VK, — 2(7)ﬂg(7)Kr(i€l>pr)(Db(r)Kjk - 2(7),[Z(r)[(5 (€4)gs)
4 (}’)E‘;)(J’)Ebp (Da(r)l(ij — 2(7)72'];(7)]([(1-6<)k[)(Db(7)Kij — 2(?),;21(7)K"(i€j)mn)
- (7)Eai(r>E]b, (D, WK = 2W)gkgmUeh, (D, WK, — 2(7)7[2(7)[(17([,61)”17)]. (68)

Note that the Hamiltonian constraint in (67) consists of four
terms of y with the same power. In this connection-
dynamical formalism, different values of the parameter y
of the basic variables can be generated by particular
conformal transformations. Since Weyl gravity is confor-
mally invariant, the so-called Immirzi parameter ambiguity
can be avoided in the corresponding loop quantum Weyl
gravity. This observation can be confirmed by the fact that
the parameter y can be removed from the expressions of all
the constraints in (67).

V. SUMMARY

In previous sections, the Hamiltonian structure of Weyl
gravity has been studied in detail. The conformal invariance
of the theory is encoded in the conformal constraints Q(w;)
and P(w ), which generate spatial and temporal conformal
transformations, respectively. The relation of the smeared
fields w, and w | with the conformal factor Q is worked out
as (25) and (26). The Hamiltonian geometrodynamics of
Weyl gravity is then recast into the triad formalism by
including the internal gauge d.o.f. of a triad. The relation of
the basic variables in the triad formalism and the original
ones is worked out as (29) and (33). The rotation constraint
(35) is imposed for recovering the phase space of geo-
metrodynamics from the extended phase space. It is shown
that the new constrained system is still first class as that in
geometrodynamics. In comparison to the case of original
phase space, the conformal transformations generated by
P(w,) on the extended phase space take simpler forms.
The variable 7/, conjugate to the densitized triad E’]’ keeps

unchanged by the temporal conformal transformations, and
only the diagonal elements of the components of the
extrinsic curvature K;; are affected by it.

The main purpose of this paper is to construct a certain
connection-dynamical formalism of Weyl gravity, in order
to apply the method of LQG to this theory. This purpose has
been realized by two schemes of canonical transformations
on the extended phase space. In the first scheme, only the
conjugate pair (z u,E”) are transformed into an SU(2)
connection and its momentum while the other conjugate
pair (K,,,P !) keep unchanged. The so-called Immirzi
parameter y ambiguity in LQG of GR exists also in the
corresponding quantum theory of Weyl gravity in this
formalism. However, in the second scheme, both conjugate
pairs are transformed, and the canonical transformations
with different values of the parameter y are related by
certain conformal transformations generated by the con-
straint Q(w,). Therefore, the connection formalisms with
different values of y belong to a conformally equivalent
class. There will be no Immirzi parameter ambiguity in the
corresponding quantum theory in this formalism. This
intriguing feature of the connection formalism of Weyl
gravity deserves further investigating in its loop quantiza-
tion. Another interesting issue in both schemes is the role
played by the conjugate pair (K;;, P*) in the connection-
dynamical formalism. From the expressions of the
Gaussian constraint and diffeomorphism constraint in
(59) or (67), (K;;, PX) or (VK;;, WP) look like certain
internal tensor valued matter fields in GR. This implies a
possible geometrical origin of certain matter fields from
Weyl gravity, which also deserves further investigating in
its quantum theory.
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APPENDIX: CONFORMAL TRANSFORM BY
ASSEMBLED GENERATOR

One can write down the Oth and first-order terms
of exp|[C(w,s, w,)]K,, and then iterate the procedure to
obtain

Oth K.,

Ist WKy, + @ hgp,

2nd 02Ky + 300 by,

3rd a);Kab + 7a)§a)Lha,,,

4th a)‘}Ka,, + ISa)fﬂwlhab,

nth @Ky + (2b,_y + 1o @ hyy,

(n+th o VK + (2, + Daliw, by,

(A1)

Thus we have to solve the sequence b,,; = 2b, + 1 and get its solution as b, = 2" — 1. Therefore the Taylor series of

exp[C(wy, )]0 K, are expressed by two equations:

2" =1 (e

" _
no,Q=w, @

(A2)
n=0
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