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We investigate the effects of massive gravitons on the rotation curves of the Milky Way, spiral galaxies,
and low surface brightness (LSB) galaxies. Using a simple de Rham, Gabadadze, and Tolley (dRGT)
massive gravity model, we find a static spherically symmetric metric and a modified Tolman-Oppenheimer-
Volkoff (TOV) equation. The dRGT nonlinear graviton interactions generate density and pressures, which
behave like dark energy that can mimic the gravitational effects of a dark matter halo. We find that rotation
curves of most galaxies can be fitted well by a single constant-gravity parameter γ ∼m2

gC ∼ 10−28 m−1

corresponding to the graviton mass in the range mg ∼ 10−21 − 10−30 eV depending on the choice of the

fiducial metric parameter C ∼ 1 − 1018 m. Fitting the rotation curve of the Milky Way puts a strong
constraint on the Yukawa-type coupling of the massive graviton exchange as a result of the shell effects.

DOI: 10.1103/PhysRevD.98.064008

I. INTRODUCTION

Since the discovery of asymptotically flat rotation curves
of most observable galaxies—in contrast with the small
amount of visible mass, which is much less than gravita-
tionally required—there have been a number of hypotheses
proposed to explain this phenomenon. These include the
proposal of dark matter halo [1,2] and modified gravity
theories such as modified Newtonian dynamics (MOND)
[3,4], fðRÞ gravity [5], and the two-metric model [6].
However, at galactic scales, gravitational lensing studies
[7,8] strongly favor the existence of the local distribution of
dark matter throughout the space ranging from the galactic
to the supercluster scale, especially when the dynamics of
galaxies are involved.
Extending beyond the galactic scale, expansion effects

of the spacetime start to take over. At this extragalactic
scale, general relativity (GR) requires the existence of
dark energy to explain the accelerated expansion of the
Universe. The two biggest problems in gravitational phys-
ics are the asymptotically flat rotation curves of galaxies
on the scale of kiloparsecs and the accelerated expansion of
spacetime in the extragalactic scale of megaparsecs.
There are certain classes of modified gravity theories that

extend general relativity to address cosmological phenom-
ena; a notable one is massive gravity theory. After the
discovery of gravitational waves from merging black holes
and massive stars by LIGO and VIRGO [9,10], the mass of
gravitons has been severely constrained, at least in certain

straightforward interpretation using dispersion relation.
If the inverse mass or Compton wavelength of the graviton
is of the order of the parsec scale (see also [11] for the
massive graviton being dark matter), then it would be
interesting to see the effects of the massive graviton on the
rotation curves of various types of galaxies: large and small,
bright and dim.
One of the promising massive gravity theories is non-

linear ghost-free dRGT massive gravity [12,13]. The static
spherically symmetric solution in the simplest dRGTmodel
has two additional characteristic scales compared to the
Schwarzschild solution in GR [14], γ and Λ (see Sec. III for
definitions). These parameters can be used to address the
two problems of dark matter and dark energy at the galactic
and extragalactic scales in a single framework of the dRGT
model. Although there is an issue with the cosmological
solution of dRGT massive gravity because of ghost insta-
bilities [15] (see however [16–19]), its phenomenology is
still interesting.
In this work we explore the effects of the massive

graviton self-interactions in the dRGT model on rotation
curves of the Milky Way, as well as a number of
representative spiral galaxies and LSB galaxies, by fitting
with the observational data without adding any additional
dark matter halo profile. First, the theoretical framework
and setup of the dRGT theory are described in Sec. II.
We find that, in a sense, the massive graviton “anisotropic
fluid” behaves like a kind of dark energy (i.e., its equation
of state is Pr ¼ −ρ; however, Pr ≠ Pθ;ϕ), which, interest-
ingly, can mimic the dark matter halo on the galactic scale.
In Sec. III, since the massive graviton acts as anisotropic
fluid and forms a halo, we find a modified TOV equation
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which leads to a dRGT-generalized circular velocity inside
the halo. The bulge parameters of the Milky Way are then
refitted using the de Vaucouleurs profile [20,21] in the
presence of the massive graviton halo. The calculation and
fitting results of the Milky Way and spiral galaxies are
discussed. Section IV explores similar dRGT effects in
the representative LSB galaxies. In Sec. V, we consider the
consequences of the Yukawa-type coupling induced by
the massive graviton exchange. Since the Yukawa potential
generates a noninverse-square-law force, the force from the
outer shell of the mass does not exactly cancel out, and
the force from the inner shell has a repulsive correction
term. The combined effect puts strong constraints on the
Yukawa coupling on the galactic scale. Section VI con-
cludes our work.

II. GENERAL SETUP

We start with the dRGT massive gravity action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
Pl

2
½Rþm2

gUðg; fÞ� þ Sm; ð2:1Þ

whereMPl is the reduced Planck mass, R is the Ricci scalar,
mg is the graviton mass, and U is the self-interacting
potential of the gravitons. To avoid the Boulware-Deser
ghost, the self-interactionsUðg; fÞmust be in the following
form:

U ≡ U2 þ α3U3 þ α4U4;

U2 ≡ ½K�2 − ½K2�;
U3 ≡ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ≡ ½K�4 − 6½K�2½K2� þ 3½K2�2 þ 8½K�½K3� − 6½K4�;

where the tensor Kμ
ν is defined as

Kμ
ν ≡ δμν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμλ∂λφ

a∂νφ
bfab

q
; ð2:2Þ

and ½K� ¼ Kμ
μ and ðKiÞμν ¼ Kμ

ρ1K
ρ1
ρ2…Kρi

ν . The physical
metric is gμν, whereas fμν is a reference (fiducial) metric
and φa are the Stückelberg fields. In this work we use the
unitary gauge φa ¼ xμδaμ; thusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμλ∂λφ
a∂νφ

bfab

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
gμλfλν

q
:

Variation with respect to gμν gives the field equations

Gμ
ν þm2

gX
μ
ν ¼ 8πGTμðmÞ

ν : ð2:3Þ

Note that TμðmÞ
ν is the energy-momentum tensor obtained

from the matter Lagrangian. The massive graviton tensor
Xμ
ν [14,22,23] is given by

Xμ
ν ¼ Kμ

ν − ½K�δμν − α½ðK2Þμν − ½K�Kμ
ν þ 1

2
δμνð½K�2 − ½K2�Þ�

þ 3β½ðK3Þμν − ½K�ðK2Þμν þ 1

2
Kμ

νð½K�2 − ½K2�Þ

−
1

6
δμνð½K�3 − 3½K�½K2� þ 2½K3�Þ�; ð2:4Þ

where α3 ¼ α−1
3

and α4 ¼ β
4
þ 1−α

12
. The terms of order

OðK4Þ disappear under the fiducial metric ansatz:

fμν ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 C2 0

0 0 0 C2sin2θ

1
CCCA; ð2:5Þ

where C is a positive constant.
We find a static and spherically symmetric solution; the

generic physical metric can thus be expressed in the form

ds2 ¼ −nðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ r2sin2θdϕ2: ð2:6Þ

Consequently, the field equations become

−
1

r2
þ f
r2

þ f0

r

¼ m2
g

�
3r − 2C

r
þ αð3r − CÞðr − CÞ

r2
þ 3βðr − CÞ2

r2

�
− 8πGρmðrÞ; ð2:7Þ

−
1

r2
þ f
r2

þ fn0

rn

¼ m2
g

�
3r − 2C

r
þ αð3r − CÞðr − CÞ

r2
þ 3βðr − CÞ2

r2

�
þ 8πGPmðrÞ; ð2:8Þ

f0

2r
−
fn02

4n2
þ f0n0

4n
þ fn0

2rn
þ fn00

2n

¼ m2
g

�
3r − C

r
þ αð3r − 2CÞ

r
þ 3βðr − CÞ

r

�
þ 8πGPmðrÞ: ð2:9Þ

We see that the massive gravitons can be treated as a fluid
where density and pressures depend on the radial coordinate
r only. The self-interactions of gravitons generate energy and
pressures acting as another source of spacetime curvature, in
addition to matter. Since Xμ

ν contains a contribution from
the cosmological constant (δμν in Kμ

ν) and four Stückelberg
scalars, which can be decomposed into helicity 1 and 0
modes [24], the exotic massive graviton fluid owes its
properties to these helicity modes, while the usual tensor
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modes contribute to conventional gravity. From the equations
of motion above, the density and pressures of the massive
gravitons can be identified as

ρgðrÞ¼−
m2

g

8πG

�
3r−2C

r
þαð3r−CÞðr−CÞ

r2
þ3βðr−CÞ2

r2

�
¼−Pr

gðrÞ; ð2:10Þ

Pθ;ϕ
g ðrÞ ¼ m2

g

8πG

�
3r − C

r
þ αð3r − 2CÞ

r
þ 3βðr − CÞ

r

�
:

ð2:11Þ

The pressures are generically anisotropic with Pr
g ≠ Pθ;ϕ

g , so
there is a Poincare stress generated by the massive gravitons
[25,26]. The dRGT massive graviton behaves more like
anisotropic dark energy, with Pr

g ¼ −ρg. Interestingly, it can
mimic the gravitational effects of a dark matter halo in most
kinds of galaxies, as demonstrated in subsequent sections.

III. EFFECTS OF A MASSIVE GRAVITON HALO
IN THE MILKY WAY AND SPIRAL GALAXIES

In this section we find the circular velocity of the
Milky Way and a number of representative spiral galaxies
from the modified TOV equation in the presence of the
dRGT gravitons. The massive gravitons play the role of a
dark matter halo, resulting in the asymptotically flat rotation
curves.
From Eq. (2.7), integrating from 0 to r, we find

fðrÞ ¼ 1 −
2GmðrÞ

r
−
Λr2

3
þ γrþ ζ; ð3:1Þ

where mðrÞ≡ 4π
R
r
0 ρmðrÞr2dr is the accumulated matter

mass within radius r and

Λ≡ −3m2
gð1þ αþ βÞ; ð3:2Þ

γ ≡ −m2
gCð1þ 2αþ 3βÞ; ð3:3Þ

ζ ≡m2
gC2ðαþ 3βÞ: ð3:4Þ

Here, Λ corresponds to the cosmological constant, and γ
and ζ are constants depending on the graviton mass and
other parameters. For mg ¼ 0, the solution reduces to the
conventional GR solution.
To obtain flat space with ζ ¼ 0, we choose α ¼ −3β and

require that β ¼ 1=2þ ϵ ð1 ≫ ϵ > 0Þ in order to obtain
positive Λ, γ and finely tune Λ to the observed value using
the smallness of ϵ. For this particular choice, the density
and pressures of the massive graviton given by (2.10) and
(2.11) take the form

ρg ¼ −
m2

g

8πG

�
3þ 2α −

2C
r
ð1þ αÞ

�
¼ −Pr

g; ð3:5Þ

Pθ;ϕ
g ¼ m2

g

8πG

�
3þ 2α −

C
r
ð1þ αÞ

�
: ð3:6Þ

A notable feature of the massive graviton density is that it
can be negative for the small r region where the radial
pressure is positive, violating energy conditions. For large
r, the pressure becomes negative, while the density is
positive. In order to understand the peculiar behavior of the
contribution from the massive graviton, we rewrite the
density in (3.5) as

ρg ¼
Λ

8πG

�
1 −

r�
r

�
; ð3:7Þ

where Λ ¼ 6ϵm2
g, r� ¼ Cð1þ 1

6ϵÞ. The positive energy
condition is violated at r < r�, which could be a very
large distance for our fine-tuned choice of Λ ∼ 10−52 m−2.
For e.g., mg ¼ 6.16 × 10−21 eV (this is the best-fit value
from the Milky Way rotation curve as we will see later on),
C ¼ 1 m, the value of ϵ is roughly 2 × 10−26, giving
r� ∼ 9 × 1024 m, in the order of Gpc. However, the value
of (negative) ρg is only about 50 g=m3 at r ¼ 1 m and
continues to increase to approach the cosmological con-
stant value ρΛ ¼ Λ=8πG for r ≫ r�.
Even though the negative density region does not totally

lie within the horizon of the supermassive black hole
(SMBH) at the center (the Schwarzschild radius is only
1.2 × 1010 m) and even extends to the intergalactic scale,
its negative density ρg must be added to the energy or
matter that made up the black hole and normal matter
resulting in the total positive mass. The total effects of ρg,
Pg up to r are already integrated into the expression (3.1)
in the last three terms. On the other hand, since the cutoff
scale of effective theory in the dRGT model is Λ3 ¼
ðm2

gMPÞ1=3 ∼ 7 × 10−5 eV, the corresponding transition
radius (Vainshtein radius, see e.g., Ref. [27]) between linear
and nonlinear regimes is thus rV ∼ ðGMm2

g
Þ1=3 ∼ 1013 m for the

Milky Way mass M ¼ 1011 M⊙. For galactic distances of
order kpc ≫ rV, the nonlinear effects of the dRGT are
expected to be mostly suppressed and the modification on
GR becomes apparent.
The mass of SMBH at the center of the Milky Way is

4.1� 0.6 × 106 M⊙ [28], and it is included in the bulge
profile of the galaxy. For the Milky Way, mðrÞ includes the
visiblemass of both the bulge and the disk. The cosmological
constantΛ is1.11247 × 10−52 m−2, which is calculated from
the dark energy density of the Universe [29].
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Substituting Eq. (3.1) into Eq. (2.8) we find

d ln n
dr

¼ 2GmðrÞ þ 8πGPmr3 − 2Λr3
3

þ γr2

rðr − 2GmðrÞ − Λr3
3
þ γr2 þ ζrÞ : ð3:8Þ

When mg ¼ 0, i.e., Λ ¼ γ ¼ ζ ¼ 0, we obtain the usual
TOV equation. Since a galactic scale is generally a non-
relativistic scale, we can use the Newtonian approximation.
From the geodesic equation, the acceleration in the radial
direction is given by

d2r
dt2

¼ 1

2
∂rh00;

where h00 comes from a small perturbation on the metric
tensor, i.e., gμν ¼ ημν þ hμν. For an orbital object the
circular velocity is given by

v2cðrÞ ¼ −
1

2
r∂rh00: ð3:9Þ

We can ignore the pressures of the visible matter and assume
that gravity is weak. Using Eqs. (3.9), (3.1) and nðrÞ ≃ fðrÞ
[from Eqs. (2.7) and (2.8) when ρm is small] we find

vcðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmðrÞ

r
−
Λr2

3
þ γr

2

r
: ð3:10Þ

This is the total circular velocity including effects from both
the visible mass mðrÞ and the massive graviton.
To calculate the contribution of the bulge to the rotation

velocity, we use the de Vaucouleurs law, which is a surface-
brightness profile of most elliptical galaxies, as the surface
mass density profile of the bulge:

ΣðRÞ ¼ Σbe
−κ½ð R

Rb
Þ1=4−1�; ð3:11Þ

where κ ¼ 7.6695 is a dimensionless constant, Rb is a
scale radius, and Σb is the surface density at Rb. Since this
profile is applied to a circular plane (two dimensions), we
have to reproduce the volume mass density ρðrÞ before
calculating MbulgeðrÞ. We show details of the calculations
in Appendix A.
For the disk we use a circular velocity from Ref. [20]

without refitting parameters. We argue that in order to
provide a good fit on the rotation curve, the massive
graviton should yield similar effects as a dark matter halo;
thus, the parameters on those models should not be changed
from Ref. [20] much. Moreover, we assume that v2diskðrÞ ¼
GMdiskðrÞ=r for simplicity. In fact, the disk component
does not have a spherical symmetry; however, for the
exponential disk, the circular velocity of the thin disk is
close to the circular velocity from an equivalent spherical
distribution at large distances [30]. Therefore, we use

GmðrÞ
r

¼ GMbulgeðrÞ
r

þ v2diskðrÞ: ð3:12Þ

In total, we have three free parameters; they are γ, Σ0,
and Rb, where the last two parameters come from the de
Vaucouleurs profile. The best-fit values of the rotation
curve for the Milky Way are

γ ¼ 4.87739 × 10−28 m−1;

Σb ¼ 4.45009 × 1039 kg=kpc2;

Rb ¼ 0.553887 kpc:

If the constant C in the fiducial metric is equal to 1 m,
we find

mg ¼ 6.16304 × 10−21 eV: ð3:13Þ

FIG. 1. The rotation curve of the Milky Way. Observational data (black dots) and circular velocities of the disk (green-dashed line) are
obtained from Ref. [20]. The bulge contribution is refitted and presented as the orange-dashed line. The combination of the bulge, the
disk, and the dRGT gravitons is represented in the blue line, whereas the contribution from the dRGT part in the TOVequation (3.10) is
shown as the black line.
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The result of the massive graviton halo’s fit to the rotation
velocity of the Milky Way is shown in Fig. 1.
In addition to the Milky Way, generically the rotation

curves of spiral galaxies can be fitted reasonably well by
the dRGT massive gravity model with only a single
parameter γ. The existence of bulge, disk, and gas velocities
with flexibility in the value of mass-to-light ratios for each
contribution [31] allows the dRGT model to fit with the
observed rotation curves of most of the spiral galaxies listed
in SPARC [32]. For spiral fitting by Eq. (3.10), we use

GmðrÞ
r

¼ xv2bulgeðrÞ þ yv2diskðrÞ þ zv2gasðrÞ; ð3:14Þ

where x, y, and z represent the dimensionless mass-to-light
ratio of the bulge, disk, and gas, respectively. We show the
fits of four representative spirals in Fig. 2 with the best-fit
parameters listed in Table I.

IV. EFFECTS OF THE MASSIVE GRAVITON
IN LSB GALAXIES

If the massive graviton “dark matter” or massive graviton
effects are mainly responsible for the observed rotation
speeds of visible matter in the galaxies, we would expect
its effect to be seen more in the LSB galaxies where there is
less visible matter in proportion. In this section we explore
the possibility of using the dRGT massive graviton profile
to fit with rotation curves of a number of representative
LSB galaxies as shown in Fig. 3. We assume the con-
tributions from the known matter are given by vgas and vdisk
from the data files in Refs. [34–36]. The total rotation speed
is then

vtotðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmðrÞ

r
−
Λr2

3
þ γr

2

r
; ð4:1Þ

where

FIG. 2. The rotation curve of NGC6195, NGC4157, NGC6946, and UGC8699 with best-fit massive gravity parameters shown in
Table I. The best-fit curve labeled VdRGT is the circular velocity given by Eqs. (3.10) and (3.14). The components Vdisk, Vbulge, and
Vgas are shown with the weight factor multiplied.

TABLE I. The fitting parameter γ of each spiral galaxy
(characterized according to Ref. [33]) where C is calculated
from γ and mg using α ¼ −3β, β ¼ 1=2þ ϵ, and mg ¼
6.16304 × 10−21 eV. The weighing factors of v2bulge, v

2
disk, v

2
gas

are x, y, z, respectively. For the Milky Way, the de Vaucouleurs
parameters of the bulge are refitted, together with the massive
gravity parameter γ, and thus the bulge weight is denoted by
x ¼ 1�.

dRGT γð10−28 m−1Þ x, y, z CðmÞ
Milky Way 4.87739 1�, 1, 0 1.00
NGC6195 (Sb) 6.74171 0.7, 0.4427, 1 1.39
NGC4157 (Sb) 6.43075 0.7, 0.49216, 1 1.32
NGC6946 (Scd) 6.14538 0.4580, 0.6127, 1 1.26
UGC8699 (Sab) 6.70334 0.514856, 1.18365, 1 1.38
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GmðrÞ
r

¼ v2gasðrÞ þ yv2diskðrÞ; ð4:2Þ

where y is the mass-to-light ratio of the stellar disk. Note
that for some galaxies, vgas can become negative in the
central depression regions due to the effective outward
gravity pull; in such a case we make the replacement
v2gasðrÞ → vgasðrÞjvgasðrÞj [32]. For most LSB galaxies, we
set y to zero, i.e., the minimum disk scenario. The best-fit
parameters are shown in Table II (y ¼ 0 when not shown).
Observe that the values of γ are within an order of
magnitude of 10−28 m−1, the same order as the best-fit
value of the Milky Way. However, a few galaxies, e.g.,
UGC1230, UGC5005, F5631, and DDO189, require a
large y in order to fit decently with the dRGT TOV profile

with γ ∼ 10−28 m−1. It should be noted that the best-fit
value of γ for UGC4325 is roughly an order of magnitude
larger than 10−28 m−1. This is due to the fact that rotation
speeds (at the same distances) of UGC4325 are relatively
faster than other LSB galaxies. For small LSB galaxies, the
core-cusp problem [37] remains since the dRGT massive
graviton also generates the cusp and not the core (constant)
density in the central region as shown in all plots. Certainly,
we can assume the change in the profile parameters α, β, C
between the central and faraway region to address the core
problem using the dRGT model. For example, choosing
C ¼ CðrÞ ¼ kr, α ¼ −3β in the central region easily gives
a constant density core ∼k (and a negligible cosmological
constant part) for the small LSB galaxies. However, a more
complete model of how and what determine the changes in

FIG. 3. The rotation curve of UGC4325, DDO64, UGC4173, UGC3371, NGC4455, and NGC1560 with best-fit massive gravity
parameters shown in Table II. The blue line represents the fit of dRGTþ gas, whereas the red-dashed line represents the fit of NFW dark
matter halo þ gas. Note that the galaxy DDO64 does not have the gas velocity data; we fit the plot using the pure dark matter halo and
dRGT only.
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the fiducial metric between regions is definitely required. In
Fig. 3, the NFW fits are presented in comparison to the
dRGT fits to note the similarity of the two profiles. The
best-fit parameters of the NFW fits are shown in Table III.
Here we summarize the results of the LSB galaxies in

Figs. 3 and 4 and Table II.

V. THIN-SHELL EFFECTS OF YUKAWA FORCE
FROM MASSIVE GRAVITON EXCHANGE

We have calculated the Vainshtein radius of the
Milky Way in Sec. III, rV ∼M1=3 ∼ 1013 m. For dwarf
galaxies with M ∼ 106−8 M⊙, the Vainshtein radius is
roughly 1 order of magnitude smaller, rV ∼ 1012 m.
Since the Vainshtein radius lies deep within each galaxy,
we expect to observe effects of the massive graviton fully
at the galactic scale. In addition to the self-interactions of
massive gravitons acting as the source of gravity considered
in previous sections, another effect of the massive graviton
is the Yukawa force between matter—e.g., orbiting stars,
gases, and massive-graviton dark matter—induced from the
massive graviton exchange. It is well known that a mass
inside a spherically symmetric shell of mass will feel no net
gravity if and only if the force is exactly inverse square.
The exchange of massive particles generically produces a
Yukawa-type force per mass, whereby in this situation,
there is a radial component

Fr ¼ −∂rVðrÞ ¼ −∂r

�
−aGMe−mr

r

�
;

¼ −
aGM
r2

ð1þmrÞe−mr ≃ −aGM
�
1

r2
−
m2

2

�
; ð5:1Þ

where a represents the interaction strength relative to the
conventional massless gravity G and m is the mass of the
exchange particle to be identified with mg. We have also
approximated mr ≪ 1 in the last step. For the inner thin
shell of thickness δr ¼ 1=m, an inverse-square law part of

the force will contribute to the total gravity by shifting
G → ð1þ aÞG, while the outer shell receives no correction
from the 1=r2 part of the force. On the other hand, the
Yukawa force also produces a constant force aGMm2=2
between the test mass and the inner and outer shells. For
large shells of mass on the galactic scale, the Yukawa force
could be very large.
Performing the standard shell integration of forces, the

inner and outer thin-shell forces per (test) mass are

F⃗inner ¼ F⃗outer ≃
4πGa
3

ρr2ðδrÞm2r̂ ¼ −
Δv2c
r

r̂; ð5:2Þ

where δr < 1=m is the thickness of the shells. Only the
shell’s mass in the vicinity of the test mass exerts force on
the object due to the short-range nature of the Yukawa
force. For our analysis, we set δr ¼ 1=2m. In SI units, we
replace m → mc=ℏ. Note that the force is outward with
respect to r for positive a, i.e., an attractive Yukawa
potential. There is no contradiction since the Yukawa
potential screens attractive forces to be less than the usual
inverse square, and thus the correction term becomes
repulsive for the inner shell and more attractive to the
outward direction for the outer shell. As a consequence, the
rotation speed will slow down due to the repulsive shell-
force effect (see also [38]).
As is apparent from Eq. (5.2), the Yukawa force is

sensitive to the density of matter at each position r; the
higher the density, the larger the negative contribution to
the rotation speed. The size of the shell effect is also
sensitive to the thickness of the shell determined by the
inverse of the graviton mass. In total, the shell force from
Eq. (5.2) is proportional to am and consistently vanishes
in the zero graviton mass limit. By assuming the matter
density to be approximately the bulge density of the
Milky Way given by Eq. (A3), the shell force from the
Yukawa-type potential puts a constraint on the parameters,

a ≲ 10−9;
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C=meter
p ≲ 1.3 × 10−8; ð5:3Þ

where the best-fit γ ¼ 4.89192 × 10−28 m−1 at 95% C.L.
For larger values of a, the fit becomes worse and the
confidence level drops below 95%.1

Constraint (5.3) gives a strong limit on the Yukawa
coupling, a≲ 10−9 for C < 0.01 m. This constraint is
somewhat consistent with the current limits on the
Yukawa coupling of gravity [39,40]. It should be noted
that there is no direct constraint on C in the galactic scale;
we can choose C to be very large, e.g., 1018 meters with the

TABLE II. The fitting parameter γ of each LSB galaxy, whereC
is calculated from γ and mg using α ¼ −3β, β ¼ 1=2þ ϵ and
mg ¼ 6.16304 × 10−21 eV.

dRGT γð10−28m−1Þ CðmÞ
UGC4325 19.9956 4.11
DDO64 7.49968 1.54
UGC4173 1.5165 0.31
UGC3371 5.0024 1.03
NGC4455 5.52132 1.14
NGC1560 5.62552 1.16
UGC1230 1.06442 (y ¼ 10.2822) 0.22
DDO189 2.90571 (y ¼ 7.03932) 0.60
UGC5005 2.39079 (y ¼ 2.9603) 0.49
F5631 3.89396 (y ¼ 6.05839) 0.80

1Since the shell effects from the Yukawa interaction always
reduce the rotation speed in the asymptotically far region, it will
always make the fit worse. The constraint we put here is when
this effect starts to make the fit at given γ, Σb, Rb to have worse
statistics than 95% C.L.
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compensation of smaller mg by a factor of 109 (since
γ ∼ Cm2

g), and the second constraint from (5.3) on a
will simply be redundant. requirement of additional dark
matter. The best mg will be in the order of 10−30 eV; the
reduced Compton wavelength ƛg ¼ ℏ=mgc ∼ 1023 m, satu-
rating the current limit from the Lunar Laser Ranging
Experiments [41,42].

VI. CONCLUSIONS

In this work, the dRGT massive gravity model is fitted
with the rotation curves of the Milky Way, representative
spiral, and LSB galaxies without the requirement of addi-
tional dark matter. The best-fit parameter γ has values in the
order of 10−28 m−1 for all galaxies. We note the similarity
of the dRGT rotation curves with those from the NFW
profile, while the dRGT has only a single free parameter γ
to fit. Using the rotation curve of the Milky Way, we also
put a severe constraint a < 10−9 on the massive graviton
Yukawa-type coupling, which inevitably generates the shell
forces. The mass of the massive graviton could lie within
the 10−21 − 10−30 eV range depending on the choice of the
fiducial metric parameter C ∼ 1 − 1018 m. Letting C be
dependent on the position (see e.g., [43]) could possibly
explain a much wider range of dark matter effects in small
and large galaxies, especially the small LSB galaxies with
the constant-density core.
Finally, if we extend out to the region of the galaxy

cluster, e.g., the Coma cluster with total mass around

1045 kg and size ∼2 Mpc, the corresponding value of γ that
can explain the velocities of galaxies around the center of
the cluster is remarkably γ ∼ 2GM

r2 ∼ 10−28 m−1. The same
order of magnitude of γ fits the dark matter effect even at
the cluster scale.
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APPENDIX A: DE VAUCOULEURS PROFILE

The de Vaucouleurs profile [21] is a surface-brightness
profile which gives a surface mass density when multiplied
by the mass-to-light ratio. The surface mass density profile
is then assumed to take the following form:

ΣðRÞ ¼ Σbe
−κ½ð R

Rb
Þ1=4−1�; ðA1Þ

where κ ¼ 7.6695, Rb is a scale radius, and Σb is the
surface density at Rb. Since this surface density comes from
projection of a spherical density ρðrÞ (three dimensions)
onto a disk ΣðRÞ (two dimensions), then

FIG. 4. The rotation curve of UGC1230, DDO189, UGC5005, and F5631 with best-fit massive gravity parameters shown in Table II.
The mass-to-light ratios of the stellar disk need to be modified by a factor of 3–10 for these fits, and it is labeled by mVdisk. Massive
gravity effects lift the curve up to larger values at large radii.
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ΣðRÞ ¼ 2

Z
∞

R
ρðrÞ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − R2
p dr: ðA2Þ

Here R is the distance from the center of a disk, whereas r
is the distance from the center of a spherical object. Using
the Abel integral [30], we can calculate the volume mass
density as

ρðrÞ ¼ −
1

π

Z
∞

r

dΣðRÞ
dR

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

p : ðA3Þ

Then,

ρðrÞ ¼
eκð 1

Rb
Þ1=4κΣbG

8;0
0;8

�
r2κ8

16777216R2
b
j 0; 1

8
; 1
4
; 3
8
; 3
8
; 1
2
; 5
8
; 3
4

�
32π4r3=4

;

ðA4Þ

where G8;0
0;8 is the Meijer G function. The mass distribution

of the bulge is then given by

MbulgeðrÞ

¼4π

Z
r

0

ρðrÞr2dr

¼
eκr9=4ð 1

Rb
Þ1=4κΣbG

8;1
1;9

 
r2κ8

16777216R2
b

���� −1
8

0;1
8
;1
4
;3
8
;3
8
;1
2
;5
8
;3
4
;−9

8

!

16π3
:

ðA5Þ

We use this mass distribution to find the mass of the
bulge of the Milky Way in Sec. III, where we have two
fitting parameters, Σb and Rb.

APPENDIX B: NFW DARK MATTER PROFILE

For six LSB galaxies in Fig. 3, we also use the Navarro-
Frenk-White (NFW) profile [1] to fit the circular velocity
in order to demonstrate the similarity between the NFW
and the dRGT profile. For completeness, we summarize the
NFW model here.

Generically, the NFW density profile can be expressed as

ρNFW ¼ ρi
r
rs
ð1þ r

rs
Þ2 : ðB1Þ

Here ρi is related to the density of the Universe, and rs is
the characteristic radius of the halo. Usually, these param-
eters are expressed in another form by the virial theorem;
they are c ¼ r200=r and V200. Note that c is the concen-
tration parameter, r200 is the virial radius at which the
average density of the halo is equal to 200 times the average
density of the Universe, and V200 is the circular velocity at
r200. The circular velocity of the NFW halo is then given by

vNFWðrÞ ¼ V200

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x
lnð1þ cxÞ − cx=ð1þ xÞ
lnð1þ cÞ − c=ð1þ cÞ

s
; ðB2Þ

where x ¼ r=r200.
Therefore, the circular velocity for LSB galaxies is

vtotðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2gasðrÞ þ v2NFWðrÞ

q
; ðB3Þ

where vgas is obtained from Refs. [34,36]. The fitting
parameters of galaxies are shown in Table III.
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