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In this work we analyze the similarities and differences between the equations of motion for the center of
mass and intrinsic angular momentum for isolated sources of gravitational radiation obtained by two
different formulations. One approach is based on the asymptotic formulation of the general relativity,
whereas the other relies on post-Newtonian methods. Several conclusions are obtained which could be
useful for further developments in both approaches.
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I. INTRODUCTION

The recent detections of gravitational waves made by
LIGO [1–4] have increased the interest in the study of
binary systems and in the detection and characterization of
the gravitational radiation emitted by these compact
sources. In these observatories, the initial stage of the data
analysis begins with the filtering of the measured signal. To
improve the signal-to-noise ratio of the detector, the data
output is compared with a bank of templates that represent
the best theoretical predictions for the expected signals. The
theoretical models that are used to construct these templates
are based on post-Newtonian (PN) methods which link the
dynamical variables of the system to the emitted gravitational
radiation in the nonrelativistic stage of the coalescence.
For these compact sources, it is very important to define

the notion of center of mass and spin since the energy and
momentum carried away by the gravitational wave induce a
recoil to the center ofmass of the coalesced binary. Likewise,
the spin of the resulting black hole or neutron star depends
on the emitted gravitational wave. Although care must be
taken to define these notions, in the PN approximation one
starts with a Newtonian definition, since it is assumed that
when the compact objects are far away the gravitational
radiation is negligible and the system is well described by
Newtonian orbiting particles. As the sources get closer, one
redefines these variables using the available Hamiltonian for
the required approximation. However, in the very energetic
regime a general relativity definition should be given.
Otherwise, one is at risk of obtaining erroneous results
for the final recoil speed or final spin of the resulting black
hole or neutron star. The problem lies in the impossibility of
defining locally these variables since the gravitational
radiation gives a vanishing contribution to the stress-energy

tensor, though it carries away energy, momentum, and
angular momentum.
On the other hand, using the notion of asymptotic

flatness together with the inclusion of a three-dimensional
null boundary, called null infinity, one defines global
variables for the isolated system like the Bondi mass
MB, linear momentum Pi

B [5], and the mass dipole-angular
momentum 2-form Mμν. These global variables are con-
structed from suitable integrals at null infinity of the
available radiative fields. This “Gaussian” approach yields
physically meaningful flux laws for the above-mentioned
variables. This fact has been acknowledged in the PN
approach and the flux laws derived for asymptotically flat
spacetimes are used in the PN formalism [6]. Moreover, the
relationship between the local variables describing the
motion of the sources and the Bondi mass, linear and
angular momentum is computed at every stage of the
approximation procedure [6]. Nevertheless, it is not an easy
task in the PN approach to define the center of mass
worldline and relate its motion to the available global
quantities defined at null infinity. Many authors define the
center of mass velocity as Vi ≡ Pi

B=MB. However, in doing
so, one could be neglecting the contribution of the
gravitational radiation to the Bondi momentum. [The
analogous definition of total linear momentum for interact-
ing charged particles explicitly contains the kinematical
particle as well as the Maxwell field contribution; see
Eq. (33.6) in Ref. [7] ]. This in turn could give an erroneous
result when computing the recoil velocity in a given
coalescence problem. One should also mention that without
an adequate definition of center of mass it is impossible to
define the intrinsic angular momentum of the system.
In a recent work, a definition of center of mass and

intrinsic angular momentum for isolated sources of
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gravitational radiation based on global quantities defined at
null infinity was given and their time evolutions were
derived [8]. A key issue in the formulation is the use of a
special set of Newman-Unti congruences that foliate null
infinity as one-parameter families of cuts. Each foliation is
associated with a worldline in a fiducial Minkowski space
called observation space. It was shown that for one such
foliation the associated mass dipole moment vanishes.
Thus, the special worldline with vanishing mass dipole
moment is called the center of mass. Moreover, the angular
momentum of this foliation is called intrinsic angular
momentum. This formulation yields by construction a
regular worldline, and the evolution equations for the
center of mass and spin are derived from the available
Bondi evolution equations for the radiative fields at null
infinity. The whole construction is global and regular since
by assumption all the radiative fields are regular at null
infinity. A nontrivial task in this formulation is to relate
these global variables with the motion of sources in the
spacetime and it is part of ongoing research. In this regard,
a comparison between similar variables that are used in the
PN and our approach should be of great help to obtain a
robust approximation scheme in both formulations.
It is then the purpose of this work to compare the

evolution equations for the center of mass and intrinsic
angular momentum in both formalisms. The first result is
promising: both formulations yield identical results if one
only keeps the quadrupole mode of the radiative field (as
we will see in the derived equations). This is somehow
surprising since the PN approach is based on the motion of
the sources and the asymptotic formulation is based on the
behavior of the radiative fields at null infinity. Using this
result as a guideline we then compute the nontrivial
deviation in both formulations. To do so, we extend our
earlier work since the original derivation only kept quadru-
pole terms. We find that adding an octupolar contribution
yields the first nontrivial difference between the formal-
isms. The slow motion approximation is also assumed in
our approach since the center of mass does not acquire
relativistic velocities as a result of the gravitational radiation
emission. It is also necessary to compare our derivations
with the PN results. As a result of this approximation, spin-
velocity terms will be neglected.
The paper is organized as follows. In Sec. II we give a

summary of our previous results and some mathematical
tools needed for our constructions. In particular, we
introduce the dipole mass moment and total angular
momentum vector for an isolated source coming from
the linkage integral. In Sec. III we derive the main results,
obtaining the relationships between these global variables
together with their time evolution. In Sec. IV we compare
our evolution equations with those coming from the post-
Newtonian formalism. Finally, we conclude this work with
some remarks and conclusions about the PN approach and
our asymptotic formulation.

II. A BRIEF SUMMARY OF ASYMPTOPIA

In this section, we briefly review some results derived
within the framework of asymptotically flat spacetimes that
will be useful for this work.
The notion of an asymptotically flat spacetime [9], the

Newman-Penrose formalism [10], and the notion of mass
dipole/angular momentum introduced by the Winicour-
Tamburino linkage [11] play a central role in our con-
struction. A thorough review of these formalisms can be
found in Refs. [9,12,13].
We first introduce two sets of coordinates labeled by

ðuB; rB; ζ; ζ̄Þ and ðu; r; ζ; ζ̄Þ to denote the Bondi and
Newman-Unti (NU) coordinates, respectively. In both sets,
ðuB; uÞ represents the Bondi and the Newman-Unti time.
These coordinates label foliations of cuts of Iþ, the null
boundary of the null infinity, and are used to identify the
null surfaces that intersect null infinity at the corresponding
cuts. One then introduces affine parameters rB and r along
the null geodesics of the null surfaces now labeled as
uB ¼ const. and u ¼ const. Finally, ζ ¼ eiϕ cotðθ=2Þ is the
complex stereographic coordinate labeling the null geo-
desics of each null surface. Associated with these coor-
dinates one also has available the null tetrads,

ðla; na; ma; m̄aÞ; ð1Þ

ðl�a; n�a; m�a; m̄�aÞ: ð2Þ

Here the � symbols denote the associated vectors with the
NU system. The NU foliations determined by the condition
u ¼ const. are related to those of Bondi through the
transformations,

uB ¼ Zðu; ζ; ζ̄Þ; ð3Þ

rB ¼ Z0r; ð4Þ

where Z is a real function, and Z0 denotes the ∂uZ.
Moreover, these equations allow us to establish a relation
between the sets of vectors. These vectors, or tetrad of
vectors, form a base of the spacetime, and the trans-
formation law between these bases is given by the follow-
ing equations:

l�a ¼
1

Z0

�
la −

L
rB

m̄a −
L̄
rB

ma þ
LL̄
r2B

na

�
; ð5Þ

n�a ¼ Z0na; ð6Þ

m�
a ¼ ma −

L
rB

na; ð7Þ

m̄�
a ¼ m̄a −

L̄
rB

na; ð8Þ
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where

LðuB; ζ; ζ̄Þ ¼ ðZðu; ζ; ζ̄Þ: ð9Þ

Note that ð and ð̄ are two differential operators defined on
the unit sphere, while the operators ð� and ð̄� that we will
introduce later will be defined in the NU frame [8]. The
way in which this function is chosen is one of the main
inputs of this work. We demand that Z satisfy the
regularized null cone (RNC) cut equation [8],

ð̄2ð2Z ¼ ð̄2σ0ðZ; ζ; ζ̄Þ þ ð2σ̄0ðZ; ζ; ζ̄Þ: ð10Þ

A straightforward way to get this equation is to solve the
linearized geodesic deviation equation for the future light
cone from a point. It represents the Huygens part of the
intersection of the future light cone from a given point of
the spacetime with null infinity. In previous works [8,14]
we have discussed in detail the RNC cut equation and we
have shown how to obtain a NU foliation from the null cone
cuts of null infinity. Extra details about the RNC cuts are
given in [15]. One should also mention that the RNC cut
equation coincides with the linearized Mason equation [16]
obtained following a completely different approach.
Other useful variables are 12 complex quantities called

“spin coefficients” and five complex scalars named “Weyl
scalars”. These complex scalars are built from the Ricci
rotation coefficients and from the contraction of the null
vectors with the Weyl tensor, respectively. However, the
most important scalars in our approach are introduced
below:

ψ1 ≃
ψ0
1

r4B
; ψ�

1 ≃
ψ�0
1

r4
; ð11Þ

σ ≃
σ0

r2B
; σ� ≃

σ�0

r2
: ð12Þ

Here the Weyl scalar ψ0�
1 is constructed from the NU tetrad

(2) and ψ0
1 from the tetrad (1). The variables σ0� and σ0 are,

respectively, called the asymptotic NU and Bondi shears.
These quantities are related by the following equations
[8,17]:

ψ0�
1

Z03 ¼ ½ψ0
1 − 3Lψ0

2 þ 3L2ψ0
3 − L3ψ0

4�; ð13Þ

σ0�

Z0 ¼ σ0 − ð2Z: ð14Þ

For any stationary spacetimes, at a linearized level, the
real and imaginary parts of ψ0

1 capture the notion of the
2-form that defines the dipole mass and angular momen-
tum. Thus, for any asymptotically flat spacetimes, a natural
generalization of the dipole mass moment angular

momentum tensor arises from the Winicour-Tamburino
linkage [11] for a given u ¼ const null foliation, which can
be either NU or Bondi. To obtain these components, it is
quite convenient to define a complex vectorD�i þ i

c J
�i (see

Refs. [8,18] for extra details) as

D�i þ iJ�i

c
¼ −c2

12
ffiffiffi
2

p
G

�
2ψ0�

1 − 2σ0�ð�σ̄0� − ð�ðσ0�σ̄0�Þ
Z03

�
i

:

ð15Þ

Now, in a Bondi system the last equation takes the form,

Di þ iJi

c
¼ −c2

12
ffiffiffi
2

p
G
½2ψ0

1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ�i: ð16Þ

It is possible to relate Eqs. (15) and (16) just using the
transformation law introduced before [see Eqs. (13)
and (14)] to obtain the following equation:

D�i ¼ Di þ 3c2

6
ffiffiffi
2

p
G
Re½ðZðΨ − ð2σ̄0Þ þ F�i; ð17Þ

Ji� ¼ Ji þ 3c3

6
ffiffiffi
2

p
G
Im½ðZðΨ − ð2σ̄0Þ þ F�i; ð18Þ

where the rhs of the above equations depends on the Bondi
time uB and theD�i, Ji� of u. Also, the complex function F
is given by

F ¼ −
1

2
ðσ0ðð̄2Z þ ð2Zðσ̄0 − ð2Zðð̄2ZÞ

−
1

6
ðσ̄0ð3Z þ ð̄2Zðσ0 − ð̄2Zð3ZÞ: ð19Þ

Finally, we introduce the notion of Bondi mass and linear
momentum. These equations are usually written as [9]

½ψ0
2 þ ð2σ̄0 þ σ0 _̄σ0�jl¼0 ¼ −

2
ffiffiffi
2

p
G

c2
M; ð20Þ

½ψ0
2 þ ð2σ̄0 þ σ0 _̄σ0�l¼1 ¼ −

6G
c3

Pi: ð21Þ

The superscript i denotes the three-vector associated with a
tensorial spin-s decomposition as we see in the next section.

III. EQUATIONS OF MOTION FOR THE CENTER
OF MASS AND ANGULAR MOMENTUM

A. Approximations and assumptions

We have previously defined the notion of mass dipole
moment and angular momentum associated with a NU or
Bondi congruence. In particular, Eqs. (17)–(18) give a
relation between these variables. Introducing a tensorial
spin-s spherical harmonics decomposition (Y0

0, Y
0
1i, Y

0
2ij,
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etc.) [19] and keeping up to quadrupole and octupole terms,
we can expand the relevant scalars as

σ0 ¼ σijðuBÞY2
2ijðζ; ζ̄Þ þ σijkðuBÞY2

3ijkðζ; ζ̄Þ; ð22Þ

ψ0
1 ¼ ψ0i

1 ðuBÞY1
1iðζ; ζ̄Þ þ ψ0ij

1 ðuBÞY1
2ijðζ; ζ̄Þ

þ ψ0ijk
1 ðuBÞY1

3ijk; ð23Þ

Ψ ¼ −
2

ffiffiffi
2

p
G

c2
M −

6G
c3

PiY0
1iðζ; ζ̄Þ þ ΨijðuBÞY0

2ijðζ; ζ̄Þ
þΨijkðuBÞY0

3ijkðζ; ζ̄Þ: ð24Þ

The complex tensor σij (σijk) represents the radiative
quadrupole (octupole) contribution of the gravitational
wave. The real and imaginary parts of σij (σijk) are,
respectively, called the “electric” and “magnetic” parts.
Since the mass dipole moment should vanish at the

center of mass position, the condition D� ¼ 0 gives the
position of the center of mass in a Bondi coordinate system
by evaluating the rhs of Eq. (17). Similarly, the angular
momentum at the center of mass position J�i ¼ Si is, by
definition, the spin or intrinsic angular momentum of the
system. Finally, Eq. (18) gives a relation between the spin
and the total angular momentum which will be obtained
explicitly in the following subsection.

B. The center of mass and spin

The center of mass worldline XiðuÞ is obtained from (17)
by demanding that the lhs vanish on the u ¼ const cut when
uB ¼ Z1ðu; ζ; ζ̄Þ is inserted in the rhs of the equation.
Furthermore, since by assumption XiðuÞ, σijRðuÞ, and
σijkR ðuÞ are small, also we introduce the first order solution
of the RNC cut (10) as follows:

Z1 ¼ uþ δu; ð25Þ

with

δu ¼ −
1

2
XiðuÞY0

1i þ
1

12
σijRðuÞY0

2ij þ
1

60
σijkR ðuÞY0

3ijk;

ð26Þ

and making a Taylor expansion of Eqs. (17) and (18) up to
first order in δu we get

0 ¼ Di þ c2

6
ffiffiffi
2

p
G
Re½ððΨ − ð3σ̄0Þδu�i

þ 3c2

6
ffiffiffi
2

p
G
Re½ðΨ − ð2σ̄0Þðδuþ F�i ð27Þ

and

Si ¼ Ji þ c3

6
ffiffiffi
2

p
G
Im½ððΨ − ð3σ̄0Þδu�i

þ 3c3

6
ffiffiffi
2

p
G
Im½ðΨ − ð2σ̄0Þðδuþ F�i; ð28Þ

where F is given by (19).
Now, using the definition of δu, Ψ, σ̄0, and considering

only linear terms in δu and δu0, we obtain

MXi ¼ Di þ 8

5
ffiffiffi
2

p
c
σijRP

j: ð29Þ

Also from Eq. (27) we can get the relation between the spin
and the total angular momentum as follows:

Ji ¼ Si þ ϵijkXjPk þ 137c3

168
ffiffiffi
2

p
G
ðσijkR σjkI − σijkI σjkR Þ: ð30Þ

C. Dynamical evolution

The time evolution of Di and Ji can be obtained taking
one time derivative of Eq. (16) together with the equation
for _ψ0

1 [8]. Furthermore, the dynamical of the Bondi mass
and momentum P can be computed from the Bianchi
identity for _ψ0

2. These equations are given by

_Di ¼ Pi þ 3

7

c2ffiffiffi
2

p
G
½ð _σijkR σjkR − σijkR _σjkR Þ�

þ 3

7

c2ffiffiffi
2

p
G
½ð _σijkI σjkI − σijkI _σjkI Þ�; ð31Þ

_Ji ¼ c3

5G
ðσklR _σjlR þ σklI _σjlI Þϵijk

þ 9c3

7G
ðσklmR _σjlmR þ σklmI _σjlmI Þϵijk; ð32Þ

_M ¼ −
c

10G
ð _σijR _σijR þ _σijI _σijI Þ

−
3c
7G

ð _σijkR _σijkR þ _σijkI _σijkI Þ; ð33Þ

_Pi ¼ 2c2

15G
_σjlR _σklI ϵ

ijk −
ffiffiffi
2

p
c2

7G
ð _σjkR _σijkR þ _σjkI _σijkI Þ

þ 3c2

7G
_σjlmR _σklmI ϵijk: ð34Þ

These above equations are used to derive the equation of
motion for the center of mass.
Starting from (29) and taking one time derivative, it is

possible to obtain the relation between the center of mass
velocity and the scalars at null infinity. Considering up to
quadratic terms, this equation reads
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M _Xi ¼ Pi þ 8

5
ffiffiffi
2

p
c
_σijRP

j þ 3c2

7
ffiffiffi
2

p
G
ð _σijkR σjkR − σijkR _σjkR Þ

þ 3c2

7
ffiffiffi
2

p
G
ð _σijkI σjkI − _σjkI σ

ijk
I Þ: ð35Þ

Finally, taking one more time derivative of (35) and
considering up quadratic terms, one obtains the equation
of motion for the center of mass,

MẌi −
8M

5
ffiffiffi
2

p
c
σ̈ijR _Xj

¼ 2c2

15G
_σjlR _σklI ϵ

ijk þ 3c2

7G
_σjlmR _σklmI ϵijk

−
ffiffiffi
2

p
c2

7G
ð _σjkR _σijkR þ _σjkI _σijkI Þ þ 3c2

7
ffiffiffi
2

p
G
ðσ̈ijkR σjkR − σijkR σ̈jkR Þ

þ 3c2

7
ffiffiffi
2

p
G
ðσ̈ijkI σjkI − σijkI σ̈jkI Þ: ð36Þ

Following the same steps for the angular momentum, we
can write

_Si ¼ _Ji þ 137c3

168
ffiffiffi
2

p
G
ðσjkI σjkiR Þ: − 137c3

168
ffiffiffi
2

p
G
ðσjkiI σjkR Þ:

¼ c3

5G
ðσklR _σjlR þ σklI _σjlI Þϵijk

þ 9c3

7G
ðσklmR _σjlmR þ σklmI _σjlmI Þϵijk

þ 137c3

168
ffiffiffi
2

p
G
ðσjkI σjkiR Þ: − 137c3

168
ffiffiffi
2

p
G
ðσjkiI σjkR Þ:: ð37Þ

IV. A COMPARISON WITH THE
POST-NEWTONIAN FORMALISM

In this section we compare our evolution equations with
those coming from the post-Newtonian formalism. The
asymptotic formulation has exact equations of motion for
the total Bondi mass, linear, and angular momentum of the
isolated system. Furthermore, there is a well-defined
procedure to first obtain the center of mass vector and
spin and then derive their equations of motion. Although
we have used a slow motion approximation and kept up to
octupole contributions in a spherical harmonic decompo-
sition, our procedure can in principle be implemented for
any order of approximation and for arbitrary spherical
harmonic contributions. Since the main goal of this work is
to compare our results with those coming from the Post
Newtonian formalism, it is worth mentioning that in the
Post Newtonian approach one does not have available an
exact formula for the center of mass or intrinsic angular
momentum. Rather, one defines those variables up to the
level of approximation considered and computes its

evolution using radiative formulae at null infinity. Thus,
it is not an easy task to match orders of approximation in
these apparently dissimilar approaches to the emission of
gravitational waves.
Nevertheless it is very useful to try to see whether or not

they yield equivalent equations of motion for a compact
source emitting gravitational radiation. A matching of the
formulas could give a robust check for the formulations and
the discrepancies should be useful to detect possible
sources of errors in the formalisms.
We compare below the evolution equations for the total

mass, momentum, and angular momentum of a compact
source of gravitational radiation. In both formalisms, a dot
derivative means derivation with respect to the retarded time.
The PN formalism also uses the Bondi radiative energy,

linear, and angular momentum loss available for asymp-
totically flat space times [20,21],

_EPN ¼ −
G
5c5

Uð1ÞijUð1Þij −
16G
45c7

Vð1ÞijVð1Þij

−
G

189c7
Uð1ÞijkUð1Þijk −

G
84c9

Vð1ÞijkVð1Þijk ð38Þ

_Pi
PN¼−

2G
63c7

Uð1ÞijkUð1Þjkþ 16G
45c7

ϵijkUð1ÞklVð1Þjl

−
4G
63c9

Vð1ÞijkVð1Þjkþ 1G
126c9

ϵijkUð1ÞklmVð1Þjlm ð39Þ

_SiPN ¼ −ϵijkG
�
1

c5
2

5
UklUð1Þjl þ 1

c5
32

45
VklVð1Þjl

þ 1

c7
1

63
UklmUð1Þjlm þ 1

c7
1

28
VklmVð1Þjlm

�
; ð40Þ

where in the above equations the quadrupole and octupole
terms have been included.
Since both formalisms use the same equation for these

global variables, making the following identification of
quadrupole and octupole terms,

σijR → −
ffiffiffi
2

p
G

c3
Uij ð41Þ

σijI →
4

ffiffiffi
2

p
G

3c4
Vij ð42Þ

σijkR → −
G
9c4

Uijk ð43Þ

σijkI →
G
6c5

Vijk; ð44Þ

one obtains identical expressions for the mass and linear
momentum loss formulas. This is not surprising since, as
we said before, both approaches use the same Bondi flux
equations. However, as we will see below, this does not
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imply that the acceleration or the time evolution of the
center of mass are identical in both approaches.
It is worth noting that in the PN formalism most, if not

all, of the results are obtained in the center of mass frame.
In order to compare the acceleration of the center of mass in
both approaches we have to find the appropriate Bondi
frame such that at a given initial time u0 the system was not
radiating, and

Xi
0 ¼ 0; _Xi

0 ¼ Vi
0 ¼ 0; ð45Þ

and therefore

Pi
0 ¼ 0; ð46Þ

i.e., the initial Bondi momentum vanishes in our setup.
Keeping up to quadratic terms in the radiative shear, we get
directly from (35)

MVi ¼ Pi þ 3c2

7
ffiffiffi
2

p
G
ð _σijkR σjkR − σijkR _σjkR Þ

þ 3c2

7
ffiffiffi
2

p
G
ð _σijkI σjkI − σijkI _σjkI Þ; ð47Þ

from which we obtain

Vi ¼ Vi
PN þ 3c2

7M
ffiffiffi
2

p
G
ð _σijkR σjkR − σijkR _σjkR Þ

þ 3c2

7M
ffiffiffi
2

p
G
ð _σijkI σjkI − σijkI _σjkI Þ: ð48Þ

In the above equation we have used the recoil velocity of
the center of mass that is defined in the PN formalism as
Pi
B=MB. As one can see, the two velocities differ by

octupole (and higher) terms.
Integrating again yields a relation between the center of

mass positions in both formalisms,

Xi ¼ Xi
PN þ 3c2

7M
ffiffiffi
2

p
G

Z
T

−∞
ð _σijkR σjkR − σijkR _σjkR Þdt

þ 3c2

7M
ffiffiffi
2

p
G

Z
T

−∞
ð _σijkI σjkI − σijkI _σjkI Þdt: ð49Þ

Regarding the evolution of the intrinsic angular momen-
tum, the PN approach gives a flux law for the angular
momentum in the center of mass frame,

_SiPN ¼ −ϵijkG
�
1

c5
2

5
UklUð1Þjl þ 1

c5
32

45
VklVð1Þjl

þ 1

c7
1

63
UklmUð1Þjlm þ 1

c7
1

28
VklmVð1Þjlm

�
: ð50Þ

This is highly surprising since it has exactly the same rhs as
in Eq. (32). It is worth making a few comments regarding

the above equation. First, Eq. (32) is derived using a
specific definition of angular momentum based on link-
ages. There are many formulas for angular momentum in
general relativity, and all of them coincide if only quadru-
pole terms are taken into account. Only the linkage
formulation yields the rhs of Eq. (32). It deserves further
analysis to understand why the PN formalism yields the
same rhs as in the linkage formula for the angular
momentum loss. The second point is more subtle and
deserves a closer look. It is tacitly assumed in the PN
approach that the center of mass frame corresponds to a
particular Bondi cut at null infinity. However, it has been
shown that the intersection of the future null cone from a
point in the space time with null infinity is not a Bondi cut.
Thus, the lhs of the above equation should not be called the
time derivative of the intrinsic angular momentum. This
issue can be seen more clearly in Eq. (30). When gravi-
tational radiation reaches null infinity, even if we set
Xi ¼ 0, the Bondi angular momentum is not equal to the
intrinsic angular momentum since the cuts are different.
Thus, there is a discrepancy between the angular

momentum flux formulas given by

_Sk ¼ _SkPN þ 137c3

168
ffiffiffi
2

p
G
ðσjkI σjkiR − σjkiI σjkR Þ:: ð51Þ

Directly from (51) it follows that

ΔSk ¼ ΔSkPN þ 137c3

168
ffiffiffi
2

p
G
ðσijI σijkR − σijkI σijRÞ: ð52Þ

Note that both formulations coincide up to quadrupole
terms. Note also that while in the PN approach ΔSkPN does
not mix different types of radiation terms, our equations
contain mixed products of electric and magnetic compo-
nents of the Bondi shear.

V. SUMMARY AND CONCLUSIONS

The purpose of this paper was to compare two for-
mulations of the equations of motion for the center of mass
position and intrinsic angular momentum for isolated
systems emitting gravitational radiation.
The PN approximation relies on the definition of a point

particle in Newtonian mechanics and its generalization to
nontrivial spacetimes. The gravitational radiation is com-
puted in a given Bondi coordinate system. Matching
conditions between the near zone and radiation zone allows
us to relate the source mass and current moments to the
radiation fields.
The asymptotic formulation, on the other hand, uses

asymptotic flatness in general relativity to define global
variables such as the momentum vector or the mass dipole/
angular momentum 2-form of an isolated system. Some
special congruences of cuts at null infinity are then
associated with worldliness on a fiducial Minkowski.
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The center of mass worldline is then defined as the special
congruence where the mass dipole term vanishes.
Since the definitions of center of mass and intrinsic

angular momentum in both formulations are different, one
does not expect to have similar equations of motion.
However, before or after gravitational radiation is emitted,
they should be able to yield the same measurable quantities
of a given astrophysical system. For example, in binary
coalescence, both formulations should give the same
position, velocity, and spin of the final compact object
assuming identical initial conditions. Since the two for-
mulations rely on completely different geometrical setups,
it was an open question as to whether or not they should
give identical measurable quantities and it provided moti-
vation to find an answer.
We have shown that the evolution equations for the

global variables obtained in both formulations have some
similarities. In fact, both formulations yield identical results
if one only keeps the quadrupole mode of the radiative
field. The difference arises when including octupole and
higher terms in the spherical harmonic decomposition of
the radiative field. We conclude that using the same
radiative quadrupole and octupole terms, as can be obtained
by a detector, the equations of motion are different.
It was thus important to check if these differences were

significant for a typical astrophysical scenario, and more
importantly, if these differences predicted different final
measurable quantities.
Using the available formulas for their equations ofmotion,

we performed a simple check using a Newtonian model of
two coalescing particles (given in the Appendix) to see
whether or not the extra terms between the two equations
produced nontrivial differences.
Regarding the time evolution of the intrinsic angular

momentum, we found that they differ by a nonvanishing
term, even if we time average over a period of the gravita-
tional wave, and this difference is of the same order of
magnitude as that of the remaining terms in Eq. (37).
Furthermore, it is not easy to see where these terms should
be coming from in the PN approximation as far as themixing
between quadrupole and octupole terms is concerned.
The equations ofmotion for the center ofmass also exhibit

a difference between the two approaches. However, this
differencemight be zero or negligible for binary coalescence.
If one computes this difference in Newtonian mechanics for
two point particles separated by a distance r in the adiabatic
approximation and takes a time average over a period, this
difference vanishes. This follows from the formulas given
in the Appendix, where the quadrupole and octupole con-
tributions used in the PN formalism to describe black hole
coalescence in circular orbits are explicitly obtained. Thus,
we should not have a difference between the two formalisms
when averaging over a period of the gravitational wave.
We conclude that both formulations yield similar results for
the center of mass motion when considering black hole
coalescence.

On the other hand, gravitational waves emitted by
supernovae come from a completely different physical
scenario and could give different time evolutions. It is
certainly worthwhile to work out this model in the two
approaches.

APPENDIX: COMPACT BINARY SYSTEM

In this Appendix we derive the quadrupole and octupole
moments for two spinning objects with masses m1 and m2

in a circular orbit in the x − y plane, at distances r1 and r2
(respectively) from their common center of mass. The
motion of the objects is considered in the Newtonian
approximation.
The mass parameters are given as m ¼ m1 þm2,

δm ¼ m1 −m2 and the symmetric mass ratio is given by
η ¼ m1m2=m2.
We define x⃗ ¼ r⃗1 − r⃗2 to be the relative vector between

the particles. Its separation is then given by rs ¼ jx⃗j.
The motion of the two objects in the center of mass frame

can be reformulated as the motion of a particle of reduced
mass μ, under the action of an external force that depends
on the distance rs ¼ r1 þ r2. If this particle describes a
circular motion of radius rs, its acceleration is Ω2rs.
Newton’s second law is written

μΩ2rs ¼
Gm1m2

r2s
; ðA1Þ

and then the angular frequency of the orbit is

Ω ¼
�
Gm
r3s

�
1=2

: ðA2Þ

In terms of Ω we can write

r⃗1 ¼
M2

M
rsðcosΩt; sinΩtÞ ðA3Þ

r⃗2 ¼ −
M1

M
rsðcosΩt; sinΩtÞ: ðA4Þ

The position and relative velocity are

x⃗ ¼ r⃗1 − r⃗2 ¼ rsðcosΩt; sinΩtÞ ðA5Þ

_x⃗ ¼ v⃗ ¼ rsΩð− sinΩt; cosΩtÞ: ðA6Þ

From [22,21], we have the following expressions for the
quadrupole and octupole moments:

IijN ¼ ηmxhiji ðA7Þ

IijkN ¼ −ηδmxhijki ðA8Þ
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JijN ¼ −ηδmϵabhixjiavb ¼ −
δm
m

Lhixji ðA9Þ

Jijk ¼ ηð1 − 3ηÞmϵabhixjkiavb

¼ ð1 − 3ηÞLhixjki: ðA10Þ

In the main text of this work, a comparison is made using
the mass parameters of the collision of two black holes,
recently detected by LIGO [1]. In this binary system the
mass parameters are

M1 ¼ 36 M⊙ ðA11Þ

M2 ¼ 29 M⊙ ðA12Þ

MF ¼ 62 M⊙ ðA13Þ

η ¼ M1M2

M2
≈ 16 ðA14Þ

δm ¼ 7 M⊙: ðA15Þ

With these mass parameters, the quadrupole and octupole
radiative moments are

IijN ≈ 1040 M⊙

�
xixj −

1

3
δijx2

�
ðA16Þ

IijkN ≈ −112 M⊙

�
xixjxk −

1

5
x2ðδjkxi þ δikxj þ δijxkÞ

�

ðA17Þ

JijN≈ ¼ −112 M⊙

�
1

2
ðϵabixjxavb þ ϵabjxixavbÞ

−
1

3
δijϵ

kabxavbxk
�

ðA18Þ

JijkN ≈ −48880 M⊙

�
1

3
ðLixjxk þ Ljxkxi þ LkxixjÞ

−
1

15
x2ðδijLk þ δkjLi þ δikLjÞ

−
2

15
Laxaðδijxk þ δkjxi þ δikxjÞ

�
: ðA19Þ

Explicitly the nonzero radiative moments remain

IzzN ¼ −1040
M⊙r2s
3

ðA20Þ

IxxN ¼ 1040
M⊙r2s
6

½1þ 3 cosð2ΩtÞ� ðA21Þ

IyyN ¼ 1040
M⊙r2s
6

½1 − 3 cosð2ΩtÞ� ðA22Þ

IxyN ¼ IyxN ¼ 1040 M⊙r2s ½sinΩt cosΩt� ðA23Þ

IxxxN ¼ −112
M⊙r3s
2

cosΩt
�
−
1

5
þ cos 2Ωt

�
ðA24Þ

IxxyN ¼ IxyxN ¼ IyxxN

¼ −112
M⊙r3s
10

sinΩt½3þ 5 cos 2Ωt� ðA25Þ

IxyyN ¼ IyxyN ¼ IyyxN

¼−112
M⊙r3s
10

cosΩt½3−5sin2Ωt� ðA26Þ

IxzzN ¼ IzxzN ¼ IzzxN

¼ 112
M⊙r3s
5

cosΩt ðA27Þ

IyyyN ¼ 112
M⊙r3s
2

sinΩt
�
1

5
þ sin 2Ωt

�
ðA28Þ

IyzzN ¼ IzyzN ¼ IzzyN ¼ 112
M⊙r3s
5

sinΩt ðA29Þ

JxzN ¼ JzxN ¼ −112
M⊙r3s
2

Ω cosΩt ðA30Þ

JyzN ¼ JzyN ¼ −112
M⊙r3s
2

Ω sinΩt ðA31Þ

JxyzN ¼ JxzyN ¼ JyxzN

¼ −48880
M⊙r4s
3

Ω sinΩt cosΩt ðA32Þ

JyzxN ¼ JzxyN ¼ JzyxN

¼ −48880
M⊙r4s
3

Ω sinΩt cosΩt: ðA33Þ

Using the above formulas and inserting the relevant
terms in the center of mass equation of motion, one then
concludes that for this binary system both formulations
yield similar results when taking an average value over a
period.
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