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We discuss a class of teleparallel scalar-torsion theories of gravity, which is parametrized by five free
functions of the scalar field. The theories are formulated covariantly using a flat, but nonvanishing spin
connection. We show how the actions of different theories within this class are related via conformal
transformations of the tetrad and redefinitions of the scalar field, and derive the corresponding
transformation laws for the free function in the action. From these we construct a number of quantities
which are invariant under these transformations, and use them to write the action and field equations in
different conformal frames. These results generalize a similar formalism for scalar-tensor theories of
gravity, where the invariants have been used to express observables independently of the conformal frame.
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I. INTRODUCTION

An important and well-studied class of gravity theories,
which have been used to address cosmological observa-
tions such as the accelerating expansion of the Universe at
present and early times in its history, is given by scalar-
tensor gravity theories [1,2]. These theories have in
common that they contain one or more scalar fields, which
in general are nonminimally coupled to the metric of
spacetime. The gravitational dynamics of the theory is
then determined through the curvature of the Levi-Civita
connection of the metric, as well as the dynamics of the
scalar fields. A class of such theories of particular interest is
defined in terms of four free functions in the action
functional, where any specific choice of these functions
defines a concrete theory [3].

A curious property of the aforementioned class of scalar-
tensor theories is their behavior under conformal trans-
formations. It has been shown that said transformations
constitute maps between different theories within this class
[3]. It is an ongoing debate whether these conformally
related theories are equivalent in their physical predictions
[4-11]. An important contribution to this debate is the
definition of a number of invariant quantities, which can
then be used to express physical observables such that they
become independent of the choice of the conformal frame
[12,13].

Another thoroughly studied class of gravity theories
is given by teleparallel models of gravity, where the
gravitational interaction is attributed not to the curvature
of the Levi-Civita connection, but to the torsion of a flat
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connection [14—17]. The underlying teleparallel geometry
provides another possible starting point for constructing
new gravity theories by coupling scalar fields to torsion,
and a number of such models have been studied [18-23],
as well as the question of conformal transformations.
However, in these studies it is conventional to assume a
fixed, vanishing spin connection, which potentially leads to
the issue of local Lorentz symmetry breaking [24,25], as
spurious degrees of freedom may appear [19,26-28], and
only recently the covariant formulation of teleparallel
gravity [29] has been adopted to scalar-torsion gravity [30].

The aim of our work is to combine several aspects of the
aforementioned studies. We study a class of teleparallel
scalar-torsion theories of gravity in the covariant formu-
lation, which is constructed in analogy to the aforemen-
tioned class of scalar-(curvature)-tensor gravity theories,
and contains scalar-tensor gravity as a subclass. Any
specific theory of this class is determined by a particular
choice of five free functions of the scalar field. We study the
behavior of these theories under conformal transformations
of the underlying teleparallel geometry, and show that such
transformations relate different theories to each other. We
then show that such classes of conformally related theories
can be characterized by a number of invariant quantities, in
full analogy to their scalar-tensor counterparts, and use
these to define particular conformal frames.

This article belongs to a series of three articles on
teleparallel scalar-torsion theories of gravity in the covar-
iant formulation. In the first article [31] we discussed the
most general class of theories in which a scalar field is
coupled to the tetrad and spin connection of teleparallel
gravity, with the only restriction that the action is invariant
under local Lorentz transformations and the matter fields

© 2018 American Physical Society
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do not couple to the spin connection (while allowing a
coupling to the scalar field). The results derived in the first
article were then used and applied to a particular subclass of
scalar-torsion theories, which we called L(7,X,Y,¢)
theories, in the second article [32]. The class of theories
we discuss in this article is a further restriction of the
aforementioned class of L(7,X,Y, ¢) theories.

The outline of this article is as follows. In Sec. II we
briefly review the dynamical fields of scalar-torsion theory
based on teleparallel geometry and define the class of
theories we consider here by giving their action functionals.
The field equations for this class of theories are shown in
Sec. III. We then turn our focus to conformal transforma-
tions. In Sec. IV we derive how conformal transformations
and scalar field redefinitions act on the scalar-torsion
action. We then identify a set of invariant quantities under
these transformations in Sec. V. These are used to define
particular conformal frames in Sec. VI. In Sec. VII we show
how these results can be generalized to multiple scalar
fields. Specific examples are shown in Sec. VIII, in
particular the relation to scalar-tensor theories of gravity.
We end with a conclusion in Sec. IX.

II. DYNAMICAL FIELDS AND ACTION

We start our discussion by introducing the dynamical
fields and for the class of teleparallel scalar-torsion theories
we consider in this article. Similarly to our previous work
[31,32] the dynamical fields are given by a coframe field
0 = 0,dx*, a flat spin connection o’ = o’ pudx* and a
scalar field ¢p. The frame field dual to the coframe field 6¢
will be denoted e, = e,*0,,. We denote quantities related to
the flat spin connection with a bullet (¢). This in particular
applies to the torsion tensor

17, = e/ (0,e% — 0,e, + c;)abﬂebp - &)abyebﬂ), (1)

the superpotential

S

o =5 Ty +T

vup puv T;wp) ~ 9pu Tﬁo‘v + gvaﬁow (2)

N =

and the torsion scalar

1
T =3T7,5,". (3)

Here we made use of the metric

9w = nabeaﬂebw (4)
where 7., = diag(—l, 1,1,1) is the Minkowski metric.

Quantities associated to the Levi-Civita connection Vﬂ
will be denoted with an open circle (o). Further, we define
the scalar field kinetic term

1
X==S0".b.. (5)
as well as the derivative coupling term

Y =g“T" (6)

which will enter the gravitational action introduced below.

The class of scalar-torsion theories we consider in this
article has been studied, e.g., in the context of f(T,B)
theories [33], where

B=R+T =2V,T" (7)

The gravitational part of the action we use here is given by

S,00%0" s8] = 55 [ [FA@)T +28(p)X
+2C(¢)Y = 2K2V(¢p)]0d*x, (8)

where A, B, C, V are free functions of the scalar field and
0 = det®”, is the volume element of the tetrad. Note that
the action is reminiscent of scalar-tensor gravity, where a
similar class of actions may be considered [3]. This
similarity is not by accident, and we will explore it further
in Sec. VIII D. One immediately sees that this action is of
the form

8,0 @y, ] = A L(T.X.Y,$)0d*x, (9)

where the Lagrangian is given by

1

L=—
2k2

(AT +2B(¢)X +2C(¢)Y] - V(¢).  (10)

This class of actions has been studied in our previous work
[32], and it follows that all results derived therein also apply
to the theories we study in this article. We will make use of
this relation in the following section for deriving the field
equations.

We further remark that alternatively we could study the
action

1

— 32 | [FA@T + 280

—C(¢)B — 2*V(¢p)]0d*x, (11)

8,10, "}, @]

which is equivalent to the action (8) for C = c, up to a
boundary term. However, we will not do so for two reasons.
First, the action (11) allows for an arbitrary shift C—
C + C, of the function C by a constant C,, which changes
the action by a boundary term, and hence does not alter the
field equations. This arbitrariness is not present in the
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action (8). Further, we will see in Sec. VII that the action (8)
allows for a larger class of generalizations to multiple scalar
fields, which affects the possibilities to choose particular
conformal frames.

In addition to the gravitational part of the action, we now
define a matter part. Also in analogy to scalar-tensor gravity
we consider a matter coupling to a conformally rescaled
tetrad, such that the matter action is of the form

S,[09. 9.1 = SS[ea g y1] = S5[05, 41], (12)

with another free function « of the scalar field, and where
we defined 63¢ = ¢*#)9¢. The notation involving a super-
script § will be explained in Sec. VI A. For the variation of
the matter action we write

88,10 . 1] = / (©,486%, + 96¢ + w57 )0d*x. (13)
M

It follows from the structure (12) of the matter action that its
variation can also be written as

3SROS . 11 = A{ (©34603¢, + w} oy )93d*x

— A (@ e*(56, + a'6°,6¢)
+ wP5y|6%d*x. (14)

By comparing with the general variation (13) of the matter
action we find that the matter terms ©, and 9, which
appear as coefficients of the variations 66, and 6¢ and
which will enter the scalar and tetrad field equations, are
related by

9=d00, =d0. (15)

We will make use of this relation when we display the field
equations. These will be discussed in the following section.

III. FIELD EQUATIONS

We now come to the field equations for the class of
scalar-torsion theories introduced in the previous section,
which are derived from the action (8) and (12). For brevity,
we will not display the full derivation of the field equations
here, but make use of the relation (10) to the class of
theories defined by the action (9), whose field equations
have been derived explicitly in our previous work [32].

It follows from the structure of the dynamical fields that
there are field equations derived by variations of the tetrad,
the flat spin connection and the scalar field. However, it
follows from the local Lorentz invariance of the action that
the connection field equations are identical to the anti-
symmetric part of the tetrad field equations, so that the spin

connection becomes a pure gauge degree of freedom, and
only the symmetric part of the tetrad field equations
remains independent; see [31] for a detailed discussion.
Here we make use of this fact and display only the
independent parts of the field equations. For this purpose
we compare the action with that of the more general
L(T,X,Y,¢) theory [32] and derive the terms

A(®) B(¢)

LT:_ X = LY_
22 k2’ Kr

Ly =S AT+ 2B@X+2C Y-V, (16)

which enter the gravitational field equations. We start with
the symmetric part of the tetrad field equations, which take
the form

1 o
A/S(Mv)pd)»/’ + EA(2VPSW)1’ - S(Mp T))pe + Tg/w)

1
+ <§B - Cl) ¢,p¢,o—gpo—gﬂv
- (B - C/)¢,;4¢,v + C(S(uv)p¢,p
+V, V.- Opg,,) + K2V, = K6, (17)

where we used the fact that

S(ﬂv)pgb,ﬂ = T(Hb)p¢-ﬂ + Tﬂp(ﬂ¢~v) - Tﬂpo‘ﬁﬁgﬂv' (18)

We can further simplify this expression using the identity

o

1 1 ° 1o
VoS = ES(//) T))po + ETg/w =Ry — ERg;w (19)

for the Einstein tensor, such that the symmetric part of the
tetrad field equations finally reads

o 1 o
(.A, + C)S(W)p(f)‘p + A<le - ERgW>
1
+ (ZB - C/> ¢./}¢.(rgﬂ”g;w

- (B - C/)¢,ﬂ¢,b + C(%ﬂ%uql) - &lgbg/w)

+ K2V, = K26,

(20)

The antisymmetric part of the tetrad field equations, which
is identical to the connection field equations, is given by

(A +CO) Ty, = 0. (21)

Finally, the scalar field equation takes the form
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1 | o
SAT=BO$ = B¢, +CY,T,% + &V = @,

(22)

where the trace © =609,0,/ = ¢*0,, of the energy-
momentum tensor enters the scalar field equation through
the relation (15). These are the field equations for the class
of theories defined by the action (8) and (12).

If one naively tries to solve these field equations one
encounters the difficulty that the scalar field equation (22)
contains second derivatives of both the tetrad and the scalar
field. In order to find solutions, it iS more convenient to
remove the second derivatives of the tetrad by a suitable
linear combination of the tetrad field equations; this
procedure is also called “debraiding” [34]. Using the

identity S,/ = —2T,**, we take the trace
—2(A +C)T,", — AR+ (B=3C)g" ¢,
_3C0¢ + 42V = 20 (23)

of the symmetric part (20). Together with the relation (7)
we find the debraided scalar field equation

(A" + C)(AT = 20T ¢,) — (2AB + 3¢2) g
+ (BC = AB = 3CC) g .., + 26 (AV' +2CV)
— 2(24d +C)®. (24)

We see that the trace ® may act as the source of the scalar
field through the coupling term Y in the gravitational action
(8) also when the matter action (12) is independent of the
scalar field. Hence, it is reasonable to say that the scalar
field is minimally coupled when the debraided equa-
tion (24) is source free, 2Ad’ + C = 0; otherwise, we call
it nonminimally coupled.

while for its matter part S,, holds

2109, @, 7] = S3[e¥D)fa 3] = ST [V @) rid)ga 411,
(28)

2]

By comparison to the original action (8) and (12) we find
that the new action S, evaluated at the transformed (barred)

()T + 2 DC(f(¢))f (#)

—6A(f(¢))r”

The debraided scalar field equation (24) contains no
second derivatives of the tetrad. However, it is not possible
to remove the second derivatives of the scalar field from the
tetrad field equations (20) by the same procedure. In order
to achieve a full debraiding of this type, one has to perform
a conformal transformation to a particular frame. We will
discuss conformal transformations in the following section,
and show how this debraiding is done in Sec. VIC.

IV. CONFORMAL TRANSFORMATIONS

We now discuss the behavior of the action (8) and (12)
introduced in Sec. II under conformal transformations of
the tetrad and redefinitions of the scalar field. Under this
type of transformation the dynamical variables change
according to

éaﬂ = er(tﬁ)gaw el =e"Pe

d=f(h). (25)
while the spin connection o’ » and matter variables y are
not affected. As a consequence, also the terms in the
gravitational part (8) of the action change according to the
rules

T =e2(T+4/Y +12(/)%X),
Y=eZf(Y+6/X), X=e2(f)2X; (26)

see [32] for a more detailed derivation.

We then consider a different action functional S with
gravitational part S , and matter part S,»» which is obtained
from the original action (8) and (12) by replacing the
parameter functions A, B, C, V, a with a new set of
parameter functions A B,C.V,a. Evaluating this new
action functional for the transformed fields 6 and ¢ we
find, making use of the relations (25) and in turn also (26),
that the gravitational part S, of the new action satisfies

— 247 (p)]Y — 22 DIV (f())
() +6C(f())f'(#)7 (¢))1X}0d"x, (27)

fields, reproduces the original action S, evaluated at the
untransformed (unbarred) fields,

= Sg[ga’cz)abv ¢]7
= S,[0°.¢.1"]. (29)

5,0.,.7
5,16 ¢.x"]

provided that the parameter functions of the two actions are
related to each other by the rules
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A= e¥ A, (30a)
B = ¥ (Bf? - 6 Ay + 6Cf'y'), (30b)
C= e (Cf —2AY), (30¢)
V=¥V, (30d)
a=a+y. (30e)

Here we have omitted the function arguments for brevity;
it is understood that transformed (barred) functions depend
on ¢ = f(¢), while all other (unbarred) functions depend
on ¢. Hence, we may say that the action functionals S and
S, with parameter functions related by (30), are related by
the conformal transformation (25). Since they are of the
same form, we may also say that the transformation (25)
preserves the form of the action.

We finally remark that the transformation of the matter
action also induces a transformation of the matter terms in
the field equations, which can be written in the form
©) 0 = 70,

, = e70 9 =eY(y0 + f'9);

(31)

H uvs

see [32] for a detailed derivation. These relations will be
used later, when we apply the conformal transformations to
the field equations. Note also that the transformations (31),
together with the relation (30e), preserve the relation (15) in
the sense that 6 = &@'©.

One can see from the transformation behavior (30) of the
parameter functions that there exist particular quantities
constructed from these functions which transform trivially
under conformal transformations. We will explicitly con-
struct such quantities in the following section.

V. INVARIANT QUANTITIES

We have seen in the previous section that the class of
theories we consider in this article exhibits a form-invari-
ance of their actions under conformal transformations of
the tetrad and redefinitions of the scalar field. This form
invariance and the corresponding transformation (30) of its
constituting parameter functions A, B, C, V, a are remi-
niscent of scalar-tensor gravity, where a similar trans-
formation behavior can be found [3]. In the latter class
of theories it has motivated the introduction of a set of
invariant functions [12]; these functions have subsequently
been used to express a number of physical observables in a
frame independent form [35-38]. We now show that the
same type of invariants can also be introduced for the
class of scalar-torsion theories we consider here, and we
expect them to be of similar use for expressing physical
observables independently of the choice of the conformal

frame, as we will argue in more detail towards the end of
this section.

From the transformation rules (30a), (30d) and (30e) one
can see immediately that the functions

1, = (32)

are invariant under conformal transformations and scalar
field redefinitions. Here invariance means that under a
transformation of the form (25) they change according to

Ti(p(x)) = Ti(f($(x))) = Ti($(x)), (33)

which means that the functional forms of Z; and Z; differ,
but their values evaluated at each spacetime point x agree,
provided that the scalar field is appropriately transformed,
for i = 1, 2. In contrast, the functions F and H defined by

_2AB-3ARCHA] L CH A

4 A2 ’ 24 (34)

are invariant under conformal transformations of the tetrad,
but transform covariantly under redefinitions of the scalar
field. This means that they incur an additional factor, and
transform as

FO) = g 7@ H@B) =5 H@). (09)

as can be seen from the transformation rules (30b)
and (30c). The same behavior can be found also for the
quantities

_ B—=6d[C+d Al _CH+2dA
9= 2o ’ K= e (36)
i.e., they likewise transform as
_ - 1 _ - 1
=— , K(¢) = ——<K(¢). 37

They are related to the previously defined invariants by the
relations

1/ 1/ 1/
F=T,G+32 (1k-2 —Tk-1
37 ( i 42,)’ =tk

(38)

The invariant & is closely related to the notion of minimal
coupling we introduced at the end of Sec. III. We see that
the scalar field is minimally coupled, i.e., the debraided
field equation (24) is source free, if and only if JC = 0. This
condition is invariant under conformal transformations and
scalar field redefinitions.
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There are numerous possibilities to construct further
invariants from those introduced above. For example, one
may find quantities which are also invariant under scalar
field redefinitions by taking the indefinite integrals

/ VF($)dg,

and similarly for G and K. Also note that quotients Z7/Z"; of
invariants are again invariants, and that one may form
invariant derivative operators; however, we will not pursue
this direction further within the scope of this article, since
these constructions are identical to those that may be
defined in the case of scalar-tensor theories of gravity
[12]. Instead, we will make use of the invariants to
construct particular conformal frames, and derive expres-
sions for the action functional and field equations which are
invariant under conformal transformations. This will be
done in the next section.

/ (). (39)

VI. CONFORMAL FRAMES

We have seen in Sec. IV that under a conformal trans-
formation of the tetrad and a redefinition of the scalar field
of the form (25) the action (8) and (12) retains its form,
provided that the defining functions of the scalar field are
also transformed using the rules (30). This freedom of
transforming the action is also present in scalar-tensor
theories of gravity, where it is commonly used to transform
the action into two particular classes of parametrizations,
known as Jordan and Einstein frames, in which the action
and field equations exhibit additional properties. It has
further been shown that these frames in scalar-tensor
theories of gravity can be expressed in terms of a particular
set of invariant quantities. We will now show that the same
is possible also for the class of scalar-torsion theories we
discuss in this article, making use of the invariants we
defined in the preceding section.

We start by making use of the similarity to scalar-tensor
gravity to define the Jordan frame in Sec. VI A and the
Einstein frame in Sec. VI B. We will see that in contrast to
scalar-tensor gravity, the naively defined Einstein frame
does not lead to a complete debraiding of the scalar and
tetrad field equations, as discussed at the end of Sec. III.
However, we will define another frame in Sec. VIC in
which this debraiding is obtained. Note that we will leave
the scalar field unchanged in this section, (}5 = ¢b, unless
otherwise noted.

A. Jordan frame

We start with the Jordan frame, whose associated tetrad
we define as

It follows directly from this definition that the Jordan frame
tetrad is invariant under conformal transformations and
scalar field redefinitions of the original field variables in the
sense that

63a = ¢xh)ga = (ADF7(P)ga — (AD)ga — §3a.  (41)

Using the definition (40) for the function y3, substituting it
into the transformation rules (30) and comparing the
obtained transformed (barred) parameter functions with
the invariants detailed in Sec. V, we find the relations

=3 1 o3 o3
A3 = 7o BY = 26, C3 =2K,
1
o3 Iz (o3
V8 =22 43=0, (42)
Tf

where we have replaced the bars with superscripts g, in
order to indicate that this is the Jordan frame parametriza-
tion. The action can now be written in the form

SS [93(1’ (':)abﬂ ¢’)(I]

1 | B « «
= 2_1@/.4 [—I] @) TS +4G(p)XS + 4K (p)YS

- 2«2 i—%ézﬂ O3d'x + SH[059 4. (43)

A number of remarks are in order. First, note that the matter
action functional in the Jordan frame action (43) agrees
with the action functional we used in the definition (12) of
the matter action; this is the reason for using the notation

involving the superscript §. Further, we see that 53
depends only on the Jordan frame tetrad and matter fields,
and carries no additional, explicit dependence on the scalar
field besides the implicit dependence through the definition
(40). This is the most important advantage and typical
reason for using the Jordan frame, since also the resulting
matter field equations w? = 0 are expressed in terms of the
Jordan frame tetrad and matter fields only, without further
dependence on the scalar field. It further follows that the

term 93 obtained from varying the matter action S3 with
respect to the scalar field, while keeping the Jordan frame
tetrad fixed, vanishes, and hence does not appear in the
field equations, which we will show below.

We also remark that the gravitational part of the Jordan
frame action (43) is defined only up to a redefinition of the
scalar field. This means that we may define a different
Jordan frame action S by replacing the invariant parameter
functions 7,,7Z,,G,K by their barred counterparts
7 ljz,@, K, which we then evaluate at the transformed
scalar field,
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SS [93“7 C:)alw &J(I]

18 L 48()%5 1 4R(5) TS
=52 / [ 70 TS +4G()XS + 4K ()Y
— 2K 2I§(¢):| 96d4x+56[9‘5a ] (44)
739
Substituting ¢ = f(¢p) we then find that the new action 59,
evaluated at ¢, agrees with the original action S5, evaluated
at ¢, provided that their defining parameter functions obey
the transformation rules (33) and (37). Note that we do not
need to transform the matter part of the action (43) here, as
it is independent of the scalar field.
We now express the field equations in the Jordan frame.
The symmetric tetrad field equations

7, A

H 1 ° 1 °F
288 P, + = (R;‘y - ERdg,‘fy)
+ (g - 2IC/)¢ p¢ agljpdg;

G =Ky + 2KV T - )
+R 2 = ef (45)
1
and connection field equations
HTSP ) =0 (46)

are essentially unchanged compared to their general frame
forms (20) and (21), while the scalar field equation (22)
becomes

o 260° ¢ - G5, + 2KV, TS

7,7, - 27,7,

2Li1d2 142

K =0, (47)

7

and hence does not contain the matter energy-momentum

tensor. Note, however, that the matter energy-momentum

still acts as a source for the scalar field through the

debraiding discussed at the end of Sec. III. This can be

seen from the debraided scalar field equation (24), which
reads

F+3H? 3

H
e B

1
2— T3 ZICS‘WD 4——
7, (L 2RSS, )

T {zqu - 3K) - 215] P
1

AHT, + T,

+ 2«2
A

= 2203 (48)

in the Jordan frame.

B. Einstein frame

We then come to the Einstein frame, which we construct
following essentially the same procedure as for the Jordan
frame above, but using the conformal transformation
defined by

oCa — or*(#)

0 = VAP ) =3I A,
(49)

Similarly to the Jordan frame, also the Einstein frame tetrad
is invariant under conformal transformations and scalar
field redefinitions of the original field variables,

0% = \/A($)0° = \/ A(p)e"D9" = \[ A(p)d° = 6°°.

(50)

Using the transformation rules (30) and the invariant
quantities defined in Sec. V, we find that the parameter
functions in the Einstein frame in terms of invariants are
given by
AC =1,

B¢ =2F, C¢ =2H,

1
V€ =1,, ¢ zilnIl. (51)

In this case the action takes the form

SC[6° <, 0"y b 1]

=— [ [-T® +4F(¢)X€ + 4H(p)Y®
2K M

— 27T, ($))0%d*x + SBIV/T ()65 ). (52)

Also in this case we add a few remarks. First, note that we
have expressed the matter part of the action through the

Jordan frame action functional S3. This is necessary in
order to implement the particular relation between the
dependences of the action on the tetrad and the scalar field
imposed by the structure of the action (12). We also see that
in this case the matter action carries an explicit dependence
on the scalar field, in addition to the implicit dependence
incurred from the Einstein frame tetrad. In contrast, the
scalar field does not appear in the term involving the torsion
scalar T¢. This is the characteristic property of the Einstein

frame if one follows the analogy to scalar-tensor gravity,
°E
where the scalar field does not couple to the Ricci scalar R

in the Einstein frame.

We further remark that also in this case the action is
uniquely defined only up to scalar field redefinitions, as is
also the case in the Jordan frame; i.e., if we define a new
action S€ such that
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S‘(f[e(fa’ C:)ab’ 4_57)(1]

=—— [ [-T® +4F($)X® + 4H(p)Y®
2K M

—262T,($))6%d*x + SB[\ T, ()65 1], (53)

and substitute the transformed scalar field ¢ = f(¢), then
we reproduce the original action (52) for ¢, provided that
the invariant parameter functions satisfy the transformation
rules (33) and (35). Also in this case the matter part Sg of
the action is invariant, since Z,(¢) = Z,(¢) by the defi-
nition of the invariants.

Next, we come to the field equations. We find that the
symmetric tetrad field equations (20) are given by

° ¢ 1-6
2HS5“,)F¢,p + R/w —-5R g;(fu + (f - 2H/)¢,p¢,o‘g@po—gﬂu

2
, oEoE o &
- 2(F -H )¢,/4¢,y + 2H(vy vy ¢ -0 ¢gﬂb)
+ K* I, g5, = K*65,, (54)

the connection field equations (21) read
HTG/’Wqﬁ_/,] =0, (55)

and the scalar field equation (22) takes the form

o °¢
—2F0 ¢—F' ¢, ,+2HV, T§" +k*1, =k*a OF.
(56)

Finally, after debraiding we find the scalar field equa-
tion (24) in the form

°¢
QH(TC + 2HSS™¢p ) — 4(F +3H*)O ¢
+ [AH(F = 3H') = 2F)d" ..,
+2K2(4HI, + T,') = 2*KZ,0€. (57)

From the symmetric part (54) we see an important differ-
ence between scalar-tensor and scalar-torsion theories of
gravity: in the scalar-tensor case there are no second
derivatives of the scalar field in the metric field equation
in the Einstein frame, leading to a complete debraiding of
the metric and scalar field equations [34]; this is not the
case for the tetrad field equations of the class of scalar-
torsion theories we discuss here, since the second order
derivatives enter with a nonvanishing factor C¢ = 2H.
Hence, the Einstein frame loses its debraiding property.
One may argue that this fact renders the name Einstein
frame questionable; we will comment on this below. Our
choice to define the Einstein frame via A® = 1 is motivated
simply by its analogy to scalar-tensor gravity.

C. Debraiding frame

As we have seen above, the Einstein frame in the class of
scalar-torsion gravity theories we consider in this article
does not have the debraiding property which would cause
the second derivatives of the scalar field to drop out of the
field equations for the tetrad. However, one can see from
the structure of the field equations (20) that also in this case
a debraiding can be achieved by performing a conformal
transformation such that in the new frame, which we
indicate by a superscript ®, the condition C® =0 is
satisfied. By comparison with the transformation rule
(30c) we then find that this conformal transformation must
satisfy

__ @) 58)

r® () )

Note that in contrast to the algebraic conditions (40)
and (49) for the Jordan and Einstein frame transformations
we obtain a differential equation, which fixes y® only up to
an additive constant. Hence, also the corresponding
debraiding tetrad 6°¢ = e”* (@04 is determined only up
to a constant factor. This could be fixed by the additional
constraint that y®(¢hy) = 73 for some ¢, such that

P =5 [ G )

However, this constraint would depend on the original
frame, since also the frame transition function y@ itself
depends on the original frame. Hence, we will not follow
this route. We will discuss other choices below, which do
not have this problem.

Even without fixing the free constant factor in the
definition of the debraiding tetrad #®“ one can determine
the parameter functions in the debraiding frame up to a
constant factor (or an additive constant in the case of a®).
By comparison with the invariants introduced in Sec. V and
using the condition C® = 0 we find the relations

(In A®) = 2H, (60a)
(InB®)" = [In (F + 3H?))' + 2H, (60b)
=0, (60c)
(InV®)" = (InZ,) + 4H, (60d)
@ =1,K. (60e)

From the last line (60e) we see that the condition
a®(¢hy) = ag, such that
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() = o + / "L@GK@dp. 61

now uniquely fixes a® independently of the original frame,
since it is expressed fully in terms of invariants. Note that
this also fixes the remaining parameter functions A%, B2,
V®, since they can be expressed in terms of invariants
and a® through the definitions (32) and (34), and thus take
the form

eZoz2> e2oz9
AD = , B®=2 F + 3H?),
40
e 1—2
Vo (62)
I3
|
. 1 o202 (9) o202 ()
SP[0° 0", . =—/ {——Tg T h)
A Y W Py 7.()

+ Sg[eag((/))gﬁ u’xl]’

Finally, it also fixes the frame transition function through
y® = a—a®. Hence, this condition uniquely fixes the
debraiding frame and only leaves the freedom to redefine
the scalar field. One easily checks that this definition of the
debraiding frame is now indeed independent of the original
frame, since

920 = o1 (D)ge = dD)-a"(P)ga — o=a*Dg3a (63)

and both a® and the Jordan frame tetrad 3¢ are invariants.

We are now in the position to express the action and field
equations in the debraiding frame. We start with the action,
which now takes the form

[F(¢) +3H(9)]X® — 2 VL) }9®d4x

(&)
(64)

and hence does not contain the term Y. We remark that also in this frame one still has the freedom to redefine the scalar field,
as it is also the case in the Jordan and Einstein frames we discussed before. We then come to the symmetric part (20) of the

tetrad field equations, which reads

YHSD 1+ R
) %ot R =3

1 oo
—=R gp + (F+3H) (P 0 .57 g — 20 ub ) + K

D
> 62{1 IQ ® Kzzl
Il HY e2ag

or. (65)

The antisymmetric part (21), which is identical to the connection field equations, becomes

HT ¢, = 0. (66)

Finally, the scalar field equation (22) is given by

°D
HT® — 2(F + 3H*) 0 ¢ — (F' +2FH + 6H> + 6HH ) > ., + K>

We see that now indeed the tetrad and scalar field
equations are debraided; i.e., the former contains only
second derivatives of the tetrad, while the latter contains
only second derivatives of the scalar field.

We conclude our discussion of the debraiding frame
with a final remark. One may argue that this frame could
more rightfully be called the Einstein frame, since the
debraiding essentially turns the scalar field into another
source term for the tetrad instead of interrelating their
dynamics. One could equally well argue that there is no
Einstein frame, since even in the debraiding frame
the scalar field is nonminimally coupled to torsion through
the term A®($)T in the action. However, we will not
enter this discussion here, as it is merely a question of
nomenclature.

2a° 272

e KL IC
AL H+T,)) =—%

Il eZa

e°. (67

This concludes our discussion of scalar-torsion theories
of gravity with a single field coupled to the tetrad and the
spin connection. It is natural to ask whether the results we
obtained also apply to theories with multiple scalar fields.
This question will be explored in the following section.

VII. GENERALIZATION TO MULTIPLE
SCALAR FIELDS

In the previous sections we have considered a single
scalar field in addition to the tetrad and spin connection as
the dynamical variables of the gravitational interaction.
We now generalize our statements and results to multiple
scalar fields. This will be done in several steps. We define
the generalized action in Sec. VII A, and derive the
corresponding field equations in Sec. VII B. Conformal
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transformations are discussed in Sec. VII C. From these we
finally derive invariants in Sec. VII D and discuss particular
conformal frames in Sec. VII E.

A. Action

Instead of a single scalar field ¢» we now consider a scalar
field multiplet ¢ = (¢*,A =1,...,N) of N scalar fields.
This imposes two changes on the class of scalar-torsion
theories defined by the action (8) and (12). First, instead of
the single kinetic and derivative coupling terms X and Y
one may now form the terms

1
X = —Sguet. Y =Tl (6)
making use of all scalar fields. Note that X4? is symmetric,
X8l = 0. Second, the free parameter functions on the

action may now depend on all scalar fields. Hence, we
generalize the action (8) such that it reads

S,00°6" 0] = 51 [ [FA@IT + 2B,u(p)x*

20, (@)YA — 22V())0d% k. (69)

We remark that now also the functions B,z and C, carry
scalar field indices, which are contracted with the corre-
sponding indices of X2 and Y. Note that B,z must be
symmetric, Bjyp = 0, since any antisymmetric contribu-
tion would cancel in the contraction with the symmetric
term X“8. Also in the matter action (12) the free function «,
which determines the conformally related tetrad coupled to
matter, now depends on all scalar fields,

Sul0% 4 1] = Si[e“ @0, ). (70)

The particular form of the matter action now imposes a
relation between the sources d, in the scalar field equa-
tions, which are obtained from the variation

8S,[07. ¢* '] = A (0,480, + 9,6¢" + w5y )0d*x,
(71)

and the energy-momentum tensor ®,#, which generalizes
the relation (15) and reads

19A = a’AG“HG‘)a”. (72)

This relation will be used during the remainder of this
section.

We now also see why we favored the form (8) over the
equivalent form (11). A similar generalization of the latter
to multiple scalar fields would yield an action of the form

5,100 o) = - /M = A()T + 2B, (¢)XAE —C(h)B

2
—22V(¢h)]0d*x, (73)

which is equivalent to the action (69) (up to a boundary
term) only if Cy = C A» where we use the comma notation to
indicate derivatives with respect to scalar fields ¢*. This
imposes an additional restriction on the parameter functions
C4, and in particular implies Cj4 ) = 0. Here we will not
make this restriction, and work with the action (69) with
arbitrary parameter functions Cy.

B. Field equations

We can then proceed with the field equations for the
multi-scalar-torsion theories. As we did in the single field
case in Sec. III, we omit their derivation here, since the
action (69) is a special case of the more general multi-
scalar-torsion generalization of the L(T, X, Y, ¢) class of
theories [32], where the Lagrangian is given by

L= 35 AT + 2B, X 1 2C,($)V] - Vi),

(74)

Hence, we can make use of the field equations derived
for this more general theory, together with the variational
derivatives

BAB CA
LT——Z—KZ, LXAB— K2 N LyA :K—z,
1
Ly = 52 [—AAT + 2BpeaXBC€ 4+ 2Cp4YE] =V 4. (75)

Here we restrict ourselves to displaying the final form of the
field equation as given in Sec. III. For the symmetric part
(20) we find

o 1 o
(A,A + CA>S(;41/)'D¢?/) + A (R;w - ERg;w)
1
+ <§ Bap — C(A.B)> é: frglmg/w

- (BAB - C(AB))¢?[¢€ + CA (vﬂvy(ﬁA - D¢Ag;w)
+ k*Vg,, = K*0,, (76)

while the antisymmetric part (21) reads
3(A 4 +CH)T7? [;wqﬁé)] +2C gt =0, (77)

and the scalar field equations (22) are given by
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1 ° 1
EA,AT — B,pg? — (BAB.C - iBBC,A> 7 dh9S
+ CAV,,TUW + 2C[A'B]Tﬂﬂv¢i + K'ZV’A - K'2(X’A®. (78)

Note the appearance of a few additional terms containing
Cja,p» which do not appear in the single field case detailed
in Sec. III, since they vanish due to the antisymmetrization
brackets, and which would also vanish if we used the action
(73). Finally, we may also perform a debraiding of the
scalar field equations, i.e., remove the second order
derivatives of the tetrad by adding a suitable multiple of
the trace

—2(Aa +COTH ¢, — AR + (Bap — 3Ca 3) g ¢ 8%
—3C, 04" + 4V = K20, (79)

The resulting field equations then take the form

A(Ap +Cy)T + [A4AC ) — 2C4 (A + Cp)| T, /97

- (2ABsp + 3CACB)|E|¢B + (CaBpc —2ABap ¢
+ ABgca = 3CaCp.c) ¢ P5PS + 2k (AV 4 4 2C4 V)
=12(2Aay +C,)0. (80)

One may pose the question whether also the second
derivatives of the scalar field can be removed from the
tetrad field equations (76) in a suitable frame; we will see in
Sec. VIIC that this is not always possible.

C. Conformal transformations

Turning our attention to conformal transformations, we
see that also the action (69) and (70) retains its form under
conformal transformations and scalar field redefinitions
given by

09, = e}'((ﬁ)gaw et =e7Pe

¢ =),
(81)

in the same sense as explained in detail in Sec. IV. In the
following we will also collectively write ¢ = f(¢p) for
the scalar field redefinition. Proceeding in analogy to the
calculation (27) and (28) and comparing the transformed
action to its original form, we find that the functions
parametrizing the action must transform as

A—d (32a)
_ 9¢CagP - - 0¢°
Byp = e <BCD o 0P ~ 6.Ay A7 + 6CCW7’.B)>’
(82b)

_ 0P -
CA = 62}/ (Cgﬁ—ZA}"A>, (82C)
V=V, (82d)
a=a+y. (82¢)

This transformation behavior generalizes the relations
(30). Note that instead of the derivative f’ we now find the
Jacobian of the function f.

Finally, we remark that also in the case of multiple scalar
fields the corresponding relation (72) between the source
terms in the field equations is preserved under their
conformal transformation, which is given by

0, =¢70

Hv

0—c0, 8,—e(7,6+25
U =e ’ A—¢€ VA +@ B |
(83)

which generalizes the transformation rule (31).

D. Invariant quantities

The form of the transformations (82) motivates the
definition of a number of quantities which are invariant
under conformal transformations and either invariant or
covariant under redefinitions of the scalar fields, proceed-
ing in full analogy to the quantities defined in Sec. V. First
note that the transformation behavior (82a), (82d) and (82¢)
of the functions A, V, a agrees with the single field case
given by the relations (30a), (30d) and (30e). Hence, the
quantities Z; and Z, retain their invariant character, and we
keep their definitions (32). For the remaining quantities,
which carry scalar field indices in the case of multiple
scalar fields, we must adapt their definitions. For F and H
we extend the definitions (34) to

 2ABup—6A4uCr ~3A4A,

Cat+ Ay
AB = 4 A2 Hy=——F7—

A 2./4 s
(84)

while the definitions (36) of G and IC generalize to

BAB - 60(’(ACB) - 6a‘Aa’B.A

o CA + 2(1‘A.A
262" -

262(1

Gap= . Ka

(85)

By comparison with the transformations (82) we then
see that these quantities are invariant under conformal
transformations, but transform covariantly under scalar
field redefinitions,
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_ 8¢C 3¢D _ ad)B

‘7:AB = 8$A 64‘53 *7:CD’ HA = 855/" HBv

_ 0¢CogP . 0¢°

Gap = WW Geps Ka= W’Cs, (86)

where we again encounter the inverse Jacobian of the
function f. It is worth noting that this transformation
behavior has the same form as that of tensor fields on a
manifold, whose points are the values of the multiplet of
scalar fields, under general coordinate transformations.
However, we will not pursue this interpretation here, as
it would exceed the scope of this article. We also remark
that the quantities (84) and (85) are related to each other by

7, T,
Fap :IlgAB+3I_11<IIK_4_Z]-]>,

which generalizes the similar relations (38).

E. Conformal frames

We finally also generalize the particular conformal
frames discussed in Sec. VI to multiple scalar fields. For
the Jordan frame shown in Sec. VI A this is straightforward.
Starting from the conformal transformation (40) we find
that the relations (42) generalize to

[o3 1 < (o3
A = I_l BXB =20, CZS =2K4.
o3 IZ [3
V=22 a3=0, (88)
i

Also the Einstein frame detailed in Sec. VI B immediately
generalizes. From the transformation (40) we find the
parameter functions

A® =1

BSEB - 2]?,43, Cg - 2HA,

VE T, o= %mz]. (89)
Proceeding in analogy to Sec. VI, one may now express the
action shown in Sec. VII A and field equations shown in
Sec. VII B in these conformal frames. We will not explicitly
display the result here, as it is essentially the same as in the
single field case and easy to derive.

The situation is qualitatively different for the debraiding
frame introduced in Sec. VIC. One can see from the
symmetric tetrad field equation (76) that the second order
derivatives of the scalar fields can be removed from the
tetrad field equations in a particular “debraiding” frame D
only by imposing Cf = 0. By comparison to the trans-
formations (82a) and (82c) we then find the condition

KA
2A(9)°

ra(#) = (90)

which can be satisfied only if there exists some function
such that H, = ﬂ,A-

This concludes our general discussion of scalar-torsion
and multi-scalar-torsion theories of gravity. In order to
show the applicability of our results and relate them to other
works, we will provide a few examples in the following
section.

VIII. EXAMPLES

We finally connect our results to a number of example
theories. Note that some authors use different sign con-
ventions, in particular for the signature of the metric tensor;
however, these can simply be absorbed into a suitable
redefinition of the parameter functions in the action. Here
we discuss teleparallel dark energy and its generalizations
in Sec. VIII A; include a nonminimal coupling to the
boundary term in Sec. VIIIB; and come to the multi-
scalar-torsion equivalent of F(T,B) gravity theories in
Sec. VIII C. Finally, we show how our results reduce to a
number of well-known results in multi-scalar-tensor gravity
in Sec. VIIID.

A. Teleparallel dark energy and its generalizations

The first example we show is the classical teleparallel
dark energy model [18]. Its action can be written in the
form

1
= [ |-am t 5 0t = 7T) - Vi) |0,

2k?
(91)

with coupling constant £ and potential V. By comparison
with the general form (8) we find the parameter functions

A =1+ 2k%E¢2, B= -« C=0, y=V.

(92)
One usually considers this model to be given in the Jordan
frame, such that @ = 0. Various generalizations of this

model have been considered:
(1) Interacting dark energy [21]:

$,= [ |- om + 3 s —eF @)
- V(¢)] 0d*x, (93)

where the function A is replaced by A=1+
262EF ().

064004-12



SCALAR-TORSION .... Ill. ANALOGUE OF ...

PHYS. REV. D 98, 064004 (2018)

(2) Brans-Dicke type action with a general coupling to
torsion [19]:

SQ = / |: F(¢> T- a)guy¢,y¢,y - V(¢) 9d4x7

M B 2K‘2
(94)

where A = F(¢) and B = 2«*w.
(3) Brans-Dicke type action with a dynamical kinetic
term [23]:

Sg = A |:_2i’i_2T - #gﬂyd)#qb,u - V(¢) 9d4x’

(95)

where A = ¢ and B = 2w(¢)/ .

Note that all these models satisfy =0, and so are
considered minimally coupled according to our convention,
despite their nonminimal coupling between the scalar field
and the torsion scalar. This is due to the fact that this type of
coupling does not introduce the trace ® of the energy-
momentum tensor as a source into the debraided scalar field
equation (24).

B. Nonminimal coupling to the boundary term

In addition to the torsion scalar, as in the original
teleparallel dark energy model [18] discussed above, one
may also include a similar type of coupling to the boundary

term B = R +T =2V, T",. The corresponding action
functional reads [39]
r 1. . 2 2 4
Sg: _F+§(gﬂ ¢.M¢,u_§¢ T_)(¢ B)_V(¢) 0d*x
M K
(96)

with constants &, y and a general potential V. We see that
this action is of the form (11), with parameter functions
given by

B=—«2,

V=V.

A= 1426647,
& = 224, (97)
It follows that the action may be brought to the form (8) by
integration by parts, where the remaining parameter func-
tion becomes

C=C =4y g. (98)
Note that for ¢ 4+ y = 0 the action reduces to scalar-tensor
gravity with a nonminimally coupled scalar field, while for
x = 0 one obtains the teleparallel dark energy model [18]
shown in Sec. VIIIA. Also in this case one usually

considers a = 0. We further remark that also more general
models with multiple scalar fields coupled to the boundary
term are considered, which may similarly be written in the
form (73) [40].

C. Scalar-torsion equivalent of F(T,B) gravity

A more general action involving the boundary term B is
given by F(T, B) gravity and reads [33]

1
5, =50 /M F(T, B)0d‘x. (99)

In order to bring it to the form (11) one introduces two
auxiliary scalar fields ¢, ,, and replaces the arguments of F*
with these fields. Enforcing ¢y =7 and ¢, = B via
Lagrange multipliers and eliminating the Lagrange multi-
pliers from the action one obtains

1
9_2K2 7

—$ FU1O () — poFOV ()]0 *x.

[FAO()T + FOD (p)B + F(¢)
(100)

Comparison with the action (11) yields the parameter
functions
—FO.1)

A= —F(10), B=0, C=

’

1
V= W(@F(LO) + ¢, FOD — F). (101)

Again we can integrate by parts to bring the action to the
form (8), and finally obtain

C,=-rF, ¢, =-F02), (102)
We also remark that in the case that ' does not depend on
its second argument the scalar field ¢, drops out, and the
action reduces to the scalar-torsion equivalent of F(T)
gravity [19].

D. (Multi-)scalar-tensor gravity

We finally discuss a special case for the function C,
which is given by the relation C = —A’, and which can
invariantly be formulated as H = 0. In this case the terms
containing 7 and Y in the action (8) can be combined,

—AT = 2A'Y = — AT — 20, AT,
= AQV,T,% - T) - 2V, (AT, )
— AR — 2V, (AT, ™). (103)

It follows that up to a boundary term, which we neglect
here, the gravitational part of the action reduces to the well-
known scalar-tensor gravity action [3]
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S,10%0° s8] = 5,3 [ [AWR-+2BB)X ~26V(p)od
(104)

This becomes apparent also at the level of the field
equations. In the symmetric field equation (20) the terms
involving the superpotential cancel, and the remaining
terms take the usual form

° Ie 1
A (R;w - ERgpw) + <§ B+ AH) d),/)d),ag/)ﬁgyp

- (B + A//)¢.u¢,v - A/(%ﬂ%uql) - |E|¢gﬂl/)

+ k2Vg,, = K20, (105)
The connection field equations (21) are identically satis-
fied, since the action (104) is independent of the spin
connection. Finally, also the scalar field equation (22)
reduces to its well-known scalar-tensor form, which reads

1+ o]
~5 AR =BOp ~ B h,b, + KV =@, (106)

We finally remark that in this case also the invariant
quantities introduced in Sec. V reduce to their scalar-tensor
counterparts [12].

One easily checks that also the multi-scalar-torsion
action (69) allows for a similar choice of the parameter
functions, which is given by the condition Cy = —A 4 and
thus generalizes the scalar-tensor condition discussed
above. In terms of invariants this condition is expressed
as H, = 0. In this case the action reduces in a similar
fashion as the action (104) and now becomes

$,00%0" 5.9 = 513 | AR+ 2B.()x*”

—22V(¢h)|0d . (107)

From this one recognizes the action functional of multi-
scalar-tensor gravity [41,42], with the metric field equation
given by

° 1e 1
A<Ruv - ERg/w> + (5 BAB + A,AB>¢{L}J¢€>‘gpgguv

- (BAB + A,AB)¢/}4¢§/ - A.A(vﬂvv¢A - D¢Ag;u/>

+ KZVgW = K2®W, (108)

while the scalar field equation reduces to

1 . ° 1
- EAAR —B,p0¢p" - (BAB,C - ZBBC,A> 7Y S + KV 4

=K2a 0. (109)

Finally, one finds that the invariants introduced in Sec. V
reduce to their multi-scalar-tensor expressions [13]. We
also remark that the invariant X4 reduces to the vector of
nonminimal coupling defined in [43].

This concludes our discussion of example theories. We
have seen that the framework we developed in this article
has a wide range of possible future applications, and that it
reduces to the known calculations in (multi)-scalar-tensor
gravity for a suitably chosen class of actions.

IX. CONCLUSION

In this article we have discussed a class of teleparallel
scalar-torsion theories of gravity defined by five free
functions of the scalar field, whose action has a similar
structure to that of scalar-tensor gravity. We have studied
their field equations and behavior under conformal trans-
formations of the tetrad, as well as redefinitions of the
scalar field. In particular, we have shown that such trans-
formations relate different theories of this class, defined by
a set of transformed parameter functions, to each other. As
one of the main results we have derived a number of
functions of the scalar field, which are composed from the
free functions in the action, and which are either invariant
or transform covariantly under these transformations.
Further, we have discussed different conformal frames,
and obtained conditions for minimally coupling of the
scalar field and for separating the highest order derivatives
in the field equations. We also generalized our results to
multiple scalar fields.

The framework of invariants we developed generalizes
the formerly developed framework of invariants in scalar-
tensor and multi-scalar-tensor gravity theories [12,13]. It
allows us to easily translate the action and field equations of
any scalar-torsion theory of gravity, defined in an arbitrary
frame, to any other frame, and in particular to the Jordan
and Einstein frames known from scalar-tensor gravity. We
have also shown that our framework reduces to the (multi-)
scalar-tensor framework of invariants in the case that one of
the scalar-torsion invariants vanishes. We expect this
framework to be of the same use in describing phenom-
enological aspects of scalar-torsion gravity in a frame
independent fashion, as it is also the case for its scalar-
tensor counterpart [35-37].

As another interesting result we have shown that a
naively defined Einstein frame, in which there is no direct
coupling between the scalar field and the torsion scalar,
does not lead to a debraiding of the field equations as is the
case in scalar-tensor theories [34]. Instead, debraiding is
achieved in a different class of frames, in which the
coefficient of the kinetic coupling term of the scalar field
vanishes, and which is defined only up to a free parameter.
We also demonstrated that in the case of multiple scalar
fields such a frame choice is possible only for a restricted
class of actions.
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Our results invite for a number of further studies of the
class of theories we discussed. From the phenomenological
point of view, observational properties such as the post-
Newtonian limit, speed and polarizations of gravitational
waves or cosmological parameters may be determined for
a generic scalar-torsion action, in analogy to a similar
treatment of scalar-tensor gravity. By comparison with
observations this would yield constraints on the free
functions in the action. Further, foundational aspects of
this class of theories may be studied, such as the number
of degrees of freedom of the presence of energy con-
ditions. We also remark that an analogous discussion of
conformal transformations, invariants and frames should
also be possible for a similar class of theories in which
the scalar field is nonminimally coupled to nonmetricity
instead of torsion [44].

Finally, this work also invites for extensions to more
general classes of gravity theories. A topic of particular
interest is given by using Horndeski’s class of gravity
theories [45] as an alternative starting point instead of the
classical scalar-tensor class of theories [3]. One may expect
that also this class of theories can equivalently be formu-
lated in terms of teleparallel geometry, in the same fashion

as has been done for Lovelock gravity [46] and for the
teleparallel equivalent of (multi-)scalar-tensor gravity in
this article. One may further expect this class to be closed
under special conformal transformations, and extensible by
general conformal transformations, as it is also the case for
the curvature formulation of Horndeski gravity [47].
Finally, one may follow the spirit of this article and study
possible extensions of these classes of theories with a more
general action involving additional couplings to torsion,
which cannot be expressed in terms of curvature. We leave
these kinds of studies for future work.
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