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We discuss a class of teleparallel scalar-torsion theories of gravity, which is parametrized by five free
functions of the scalar field. The theories are formulated covariantly using a flat, but nonvanishing spin
connection. We show how the actions of different theories within this class are related via conformal
transformations of the tetrad and redefinitions of the scalar field, and derive the corresponding
transformation laws for the free function in the action. From these we construct a number of quantities
which are invariant under these transformations, and use them to write the action and field equations in
different conformal frames. These results generalize a similar formalism for scalar-tensor theories of
gravity, where the invariants have been used to express observables independently of the conformal frame.
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I. INTRODUCTION

An important and well-studied class of gravity theories,
which have been used to address cosmological observa-
tions such as the accelerating expansion of the Universe at
present and early times in its history, is given by scalar-
tensor gravity theories [1,2]. These theories have in
common that they contain one or more scalar fields, which
in general are nonminimally coupled to the metric of
spacetime. The gravitational dynamics of the theory is
then determined through the curvature of the Levi-Cività
connection of the metric, as well as the dynamics of the
scalar fields. A class of such theories of particular interest is
defined in terms of four free functions in the action
functional, where any specific choice of these functions
defines a concrete theory [3].
A curious property of the aforementioned class of scalar-

tensor theories is their behavior under conformal trans-
formations. It has been shown that said transformations
constitute maps between different theories within this class
[3]. It is an ongoing debate whether these conformally
related theories are equivalent in their physical predictions
[4–11]. An important contribution to this debate is the
definition of a number of invariant quantities, which can
then be used to express physical observables such that they
become independent of the choice of the conformal frame
[12,13].
Another thoroughly studied class of gravity theories

is given by teleparallel models of gravity, where the
gravitational interaction is attributed not to the curvature
of the Levi-Cività connection, but to the torsion of a flat

connection [14–17]. The underlying teleparallel geometry
provides another possible starting point for constructing
new gravity theories by coupling scalar fields to torsion,
and a number of such models have been studied [18–23],
as well as the question of conformal transformations.
However, in these studies it is conventional to assume a
fixed, vanishing spin connection, which potentially leads to
the issue of local Lorentz symmetry breaking [24,25], as
spurious degrees of freedom may appear [19,26–28], and
only recently the covariant formulation of teleparallel
gravity [29] has been adopted to scalar-torsion gravity [30].
The aim of our work is to combine several aspects of the

aforementioned studies. We study a class of teleparallel
scalar-torsion theories of gravity in the covariant formu-
lation, which is constructed in analogy to the aforemen-
tioned class of scalar-(curvature)-tensor gravity theories,
and contains scalar-tensor gravity as a subclass. Any
specific theory of this class is determined by a particular
choice of five free functions of the scalar field. We study the
behavior of these theories under conformal transformations
of the underlying teleparallel geometry, and show that such
transformations relate different theories to each other. We
then show that such classes of conformally related theories
can be characterized by a number of invariant quantities, in
full analogy to their scalar-tensor counterparts, and use
these to define particular conformal frames.
This article belongs to a series of three articles on

teleparallel scalar-torsion theories of gravity in the covar-
iant formulation. In the first article [31] we discussed the
most general class of theories in which a scalar field is
coupled to the tetrad and spin connection of teleparallel
gravity, with the only restriction that the action is invariant
under local Lorentz transformations and the matter fields*manuel.hohmann@ut.ee
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do not couple to the spin connection (while allowing a
coupling to the scalar field). The results derived in the first
article were then used and applied to a particular subclass of
scalar-torsion theories, which we called LðT; X; Y;ϕÞ
theories, in the second article [32]. The class of theories
we discuss in this article is a further restriction of the
aforementioned class of LðT; X; Y;ϕÞ theories.
The outline of this article is as follows. In Sec. II we

briefly review the dynamical fields of scalar-torsion theory
based on teleparallel geometry and define the class of
theories we consider here by giving their action functionals.
The field equations for this class of theories are shown in
Sec. III. We then turn our focus to conformal transforma-
tions. In Sec. IV we derive how conformal transformations
and scalar field redefinitions act on the scalar-torsion
action. We then identify a set of invariant quantities under
these transformations in Sec. V. These are used to define
particular conformal frames in Sec. VI. In Sec. VII we show
how these results can be generalized to multiple scalar
fields. Specific examples are shown in Sec. VIII, in
particular the relation to scalar-tensor theories of gravity.
We end with a conclusion in Sec. IX.

II. DYNAMICAL FIELDS AND ACTION

We start our discussion by introducing the dynamical
fields and for the class of teleparallel scalar-torsion theories
we consider in this article. Similarly to our previous work
[31,32] the dynamical fields are given by a coframe field

θa ¼ θaμdxμ, a flat spin connection ω
• a

b ¼ ω
• a

bμdxμ and a
scalar field ϕ. The frame field dual to the coframe field θa

will be denoted ea ¼ eaμ∂μ. We denote quantities related to
the flat spin connection with a bullet (•). This in particular
applies to the torsion tensor

Tρ
μν ¼ eaρð∂μeaν − ∂νeaμ þ ω

• a
bμebν − ω

• a
bνebμÞ; ð1Þ

the superpotential

Sρμν ¼
1

2
ðTνμρ þ Tρμν − TμνρÞ − gρμTσ

σν þ gρνTσ
σμ ð2Þ

and the torsion scalar

T ¼ 1

2
Tρ

μνSρμν: ð3Þ

Here we made use of the metric

gμν ¼ ηabθ
a
μθ

b
ν; ð4Þ

where ηab ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric.

Quantities associated to the Levi-Cività connection ∇∘ μ

will be denoted with an open circle (∘). Further, we define
the scalar field kinetic term

X ¼ −
1

2
gμνϕ;μϕ;ν; ð5Þ

as well as the derivative coupling term

Y ¼ gμνTρ
ρμϕ;ν; ð6Þ

which will enter the gravitational action introduced below.
The class of scalar-torsion theories we consider in this

article has been studied, e.g., in the context of fðT; BÞ
theories [33], where

B ¼ R
∘ þ T ¼ 2∇∘ νTμ

μν: ð7Þ

The gravitational part of the action we use here is given by

Sg½θa;ω• ab;ϕ� ¼
1

2κ2

Z
M
½−AðϕÞT þ 2BðϕÞX

þ 2CðϕÞY − 2κ2VðϕÞ�θd4x; ð8Þ

where A, B, C, V are free functions of the scalar field and
θ ¼ det θaμ is the volume element of the tetrad. Note that
the action is reminiscent of scalar-tensor gravity, where a
similar class of actions may be considered [3]. This
similarity is not by accident, and we will explore it further
in Sec. VIII D. One immediately sees that this action is of
the form

Sg½θa;ω• ab;ϕ� ¼
Z
M
LðT; X; Y;ϕÞθd4x; ð9Þ

where the Lagrangian is given by

L ¼ 1

2κ2
½−AðϕÞT þ 2BðϕÞX þ 2CðϕÞY� − VðϕÞ: ð10Þ

This class of actions has been studied in our previous work
[32], and it follows that all results derived therein also apply
to the theories we study in this article. We will make use of
this relation in the following section for deriving the field
equations.
We further remark that alternatively we could study the

action

Sg½θa;ω• ab;ϕ� ¼
1

2κ2

Z
M
½−AðϕÞT þ 2BðϕÞX

− C̃ðϕÞB − 2κ2VðϕÞ�θd4x; ð11Þ

which is equivalent to the action (8) for C ¼ C̃0, up to a
boundary term. However, we will not do so for two reasons.
First, the action (11) allows for an arbitrary shift C̃ ↦
C̃ þ C̃0 of the function C̃ by a constant C̃0, which changes
the action by a boundary term, and hence does not alter the
field equations. This arbitrariness is not present in the
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action (8). Further, we will see in Sec. VII that the action (8)
allows for a larger class of generalizations to multiple scalar
fields, which affects the possibilities to choose particular
conformal frames.
In addition to the gravitational part of the action, we now

define a matter part. Also in analogy to scalar-tensor gravity
we consider a matter coupling to a conformally rescaled
tetrad, such that the matter action is of the form

Sm½θa;ϕ; χI� ¼ SJm½eαðϕÞθa; χI� ¼ SJm½θJa; χI�; ð12Þ

with another free function α of the scalar field, and where
we defined θJa ¼ eαðϕÞθa. The notation involving a super-
script J will be explained in Sec. VI A. For the variation of
the matter action we write

δSm½θa;ϕ; χI� ¼
Z
M
ðΘa

μδθaμ þ ϑδϕþϖIδχ
IÞθd4x: ð13Þ

It follows from the structure (12) of the matter action that its
variation can also be written as

δSJm½θJ a; χI� ¼
Z
M
ðΘJ

a
μδθJ a

μ þϖJ
I δχ

IÞθJd4x

¼
Z
M
½ΘJ

a
μeαðδθaμ þ α0θaμδϕÞ

þϖJ
I δχ

I�θJd4x: ð14Þ

By comparing with the general variation (13) of the matter
action we find that the matter terms Θa

μ and ϑ, which
appear as coefficients of the variations δθaμ and δϕ and
which will enter the scalar and tetrad field equations, are
related by

ϑ ¼ α0θaμΘa
μ ¼ α0Θ: ð15Þ

We will make use of this relation when we display the field
equations. These will be discussed in the following section.

III. FIELD EQUATIONS

We now come to the field equations for the class of
scalar-torsion theories introduced in the previous section,
which are derived from the action (8) and (12). For brevity,
we will not display the full derivation of the field equations
here, but make use of the relation (10) to the class of
theories defined by the action (9), whose field equations
have been derived explicitly in our previous work [32].
It follows from the structure of the dynamical fields that

there are field equations derived by variations of the tetrad,
the flat spin connection and the scalar field. However, it
follows from the local Lorentz invariance of the action that
the connection field equations are identical to the anti-
symmetric part of the tetrad field equations, so that the spin

connection becomes a pure gauge degree of freedom, and
only the symmetric part of the tetrad field equations
remains independent; see [31] for a detailed discussion.
Here we make use of this fact and display only the
independent parts of the field equations. For this purpose
we compare the action with that of the more general
LðT; X; Y;ϕÞ theory [32] and derive the terms

LT ¼−
AðϕÞ
2κ2

; LX ¼
BðϕÞ
κ2

; LY ¼
CðϕÞ
κ2

;

Lϕ ¼
1

2κ2
½−A0ðϕÞTþ2B0ðϕÞXþ2C0ðϕÞY�−V 0ðϕÞ; ð16Þ

which enter the gravitational field equations. We start with
the symmetric part of the tetrad field equations, which take
the form

A0SðμνÞρϕ;ρ þ
1

2
Að2∇∘ ρSðμνÞρ − SðμρσTνÞρσ þ TgμνÞ

þ
�
1

2
B − C0

�
ϕ;ρϕ;σgρσgμν

− ðB − C0Þϕ;μϕ;ν þ CðSðμνÞρϕ;ρ

þ∇∘ μ∇
∘
νϕ −□

∘
ϕgμνÞ þ κ2Vgμν ¼ κ2Θμν; ð17Þ

where we used the fact that

SðμνÞρϕ;ρ ¼ TðμνÞρϕ;ρ þ Tρ
ρðμϕ;νÞ − Tρ

ρσϕ;σgμν: ð18Þ

We can further simplify this expression using the identity

∇∘ ρSðμνÞρ −
1

2
SðμρσTνÞρσ þ

1

2
Tgμν ¼ R

∘
μν −

1

2
R
∘
gμν ð19Þ

for the Einstein tensor, such that the symmetric part of the
tetrad field equations finally reads

ðA0 þ CÞSðμνÞρϕ;ρ þA
�
R
∘
μν −

1

2
R
∘
gμν

�

þ
�
1

2
B − C0

�
ϕ;ρϕ;σgρσgμν

− ðB − C0Þϕ;μϕ;ν þ Cð∇∘ μ∇
∘
νϕ −□

∘
ϕgμνÞ

þ κ2Vgμν ¼ κ2Θμν: ð20Þ

The antisymmetric part of the tetrad field equations, which
is identical to the connection field equations, is given by

ðA0 þ CÞTρ½μνϕ;ρ� ¼ 0: ð21Þ

Finally, the scalar field equation takes the form
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1

2
A0T − B□

∘
ϕ −

1

2
B0gμνϕ;μϕ;ν þ C∇∘ μTν

νμ þ κ2V 0 ¼ κ2α0Θ;

ð22Þ

where the trace Θ ¼ θaμΘa
μ ¼ gμνΘμν of the energy-

momentum tensor enters the scalar field equation through
the relation (15). These are the field equations for the class
of theories defined by the action (8) and (12).
If one naively tries to solve these field equations one

encounters the difficulty that the scalar field equation (22)
contains second derivatives of both the tetrad and the scalar
field. In order to find solutions, it is more convenient to
remove the second derivatives of the tetrad by a suitable
linear combination of the tetrad field equations; this
procedure is also called “debraiding” [34]. Using the
identity Sμμν ¼ −2Tμ

μν, we take the trace

− 2ðA0 þ CÞTμ
μνϕ;ν −AR

∘ þ ðB − 3C0Þgμνϕ;μϕ;ν

− 3C□
∘
ϕþ 4κ2V ¼ κ2Θ ð23Þ

of the symmetric part (20). Together with the relation (7)
we find the debraided scalar field equation

ðA0 þ CÞðAT − 2CTμ
μνϕ;νÞ − ð2AB þ 3C2Þ□

∘
ϕ

þ ðBC −AB0 − 3CC0Þgμνϕ;μϕ;ν þ 2κ2ðAV 0 þ 2CVÞ
¼ κ2ð2Aα0 þ CÞΘ: ð24Þ

We see that the trace Θ may act as the source of the scalar
field through the coupling term Y in the gravitational action
(8) also when the matter action (12) is independent of the
scalar field. Hence, it is reasonable to say that the scalar
field is minimally coupled when the debraided equa-
tion (24) is source free, 2Aα0 þ C ¼ 0; otherwise, we call
it nonminimally coupled.

The debraided scalar field equation (24) contains no
second derivatives of the tetrad. However, it is not possible
to remove the second derivatives of the scalar field from the
tetrad field equations (20) by the same procedure. In order
to achieve a full debraiding of this type, one has to perform
a conformal transformation to a particular frame. We will
discuss conformal transformations in the following section,
and show how this debraiding is done in Sec. VI C.

IV. CONFORMAL TRANSFORMATIONS

We now discuss the behavior of the action (8) and (12)
introduced in Sec. II under conformal transformations of
the tetrad and redefinitions of the scalar field. Under this
type of transformation the dynamical variables change
according to

θ̄aμ ¼ eγðϕÞθaμ; ēaμ ¼ e−γðϕÞeaμ; ϕ̄¼ fðϕÞ; ð25Þ

while the spin connection ω
• a

b and matter variables χ are
not affected. As a consequence, also the terms in the
gravitational part (8) of the action change according to the
rules

T̄ ¼ e−2γðT þ 4γ0Y þ 12ðγ0Þ2XÞ;
Ȳ ¼ e−2γf0ðY þ 6γ0XÞ; X̄ ¼ e−2γðf0Þ2X; ð26Þ

see [32] for a more detailed derivation.
We then consider a different action functional S̄ with

gravitational part S̄g and matter part S̄m, which is obtained
from the original action (8) and (12) by replacing the
parameter functions A, B, C, V, α with a new set of
parameter functions Ā; B̄; C̄; V̄; ᾱ. Evaluating this new
action functional for the transformed fields θ̄a and ϕ̄ we
find, making use of the relations (25) and in turn also (26),
that the gravitational part S̄g of the new action satisfies

S̄g½θ̄a;ω• ab; ϕ̄� ¼
1

2κ2

Z
M
½−Āðϕ̄ÞT̄ þ 2B̄ðϕ̄ÞX̄ þ 2C̄ðϕ̄ÞȲ − 2κ2V̄ðϕ̄Þ�θ̄d4x

¼ 1

2κ2

Z
M
f−e2γðϕÞĀðfðϕÞÞT þ 2e2γðϕÞ½C̄ðfðϕÞÞf0ðϕÞ − 2Āγ0ðϕÞ�Y − 2κ2e4γðϕÞV̄ðfðϕÞÞ

þ 2e2γðϕÞ½B̄ðfðϕÞÞf02ðϕÞ − 6ĀðfðϕÞÞγ02ðϕÞ þ 6C̄ðfðϕÞÞf0ðϕÞγ0ðϕÞ�Xgθd4x; ð27Þ

while for its matter part S̄m holds

S̄m½θ̄a; ϕ̄; χI� ¼ SJm½eᾱðϕ̄Þθ̄a; χI� ¼ SJm½eᾱðfðϕÞÞþγðϕÞθa; χI�:
ð28Þ

By comparison to the original action (8) and (12) we find
that the new action S̄, evaluated at the transformed (barred)

fields, reproduces the original action S, evaluated at the
untransformed (unbarred) fields,

S̄g½θ̄a;ω• ab; ϕ̄� ¼ Sg½θa;ω• ab;ϕ�;
S̄m½θ̄a; ϕ̄; χI� ¼ Sm½θa;ϕ; χI�; ð29Þ

provided that the parameter functions of the two actions are
related to each other by the rules
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A ¼ e2γĀ; ð30aÞ

B ¼ e2γðB̄f02 − 6Āγ02 þ 6C̄f0γ0Þ; ð30bÞ

C ¼ e2γðC̄f0 − 2Āγ0Þ; ð30cÞ

V ¼ e4γV̄; ð30dÞ

α ¼ ᾱþ γ: ð30eÞ

Here we have omitted the function arguments for brevity;
it is understood that transformed (barred) functions depend
on ϕ̄ ¼ fðϕÞ, while all other (unbarred) functions depend
on ϕ. Hence, we may say that the action functionals S and
S̄, with parameter functions related by (30), are related by
the conformal transformation (25). Since they are of the
same form, we may also say that the transformation (25)
preserves the form of the action.
We finally remark that the transformation of the matter

action also induces a transformation of the matter terms in
the field equations, which can be written in the form

Θμν ¼ e2γΘ̄μν; Θ ¼ e4γΘ̄; ϑ ¼ e4γðγ0Θ̄þ f0ϑ̄Þ;
ð31Þ

see [32] for a detailed derivation. These relations will be
used later, when we apply the conformal transformations to
the field equations. Note also that the transformations (31),
together with the relation (30e), preserve the relation (15) in
the sense that θ̄ ¼ ᾱ0Θ̄.
One can see from the transformation behavior (30) of the

parameter functions that there exist particular quantities
constructed from these functions which transform trivially
under conformal transformations. We will explicitly con-
struct such quantities in the following section.

V. INVARIANT QUANTITIES

We have seen in the previous section that the class of
theories we consider in this article exhibits a form-invari-
ance of their actions under conformal transformations of
the tetrad and redefinitions of the scalar field. This form
invariance and the corresponding transformation (30) of its
constituting parameter functions A, B, C, V, α are remi-
niscent of scalar-tensor gravity, where a similar trans-
formation behavior can be found [3]. In the latter class
of theories it has motivated the introduction of a set of
invariant functions [12]; these functions have subsequently
been used to express a number of physical observables in a
frame independent form [35–38]. We now show that the
same type of invariants can also be introduced for the
class of scalar-torsion theories we consider here, and we
expect them to be of similar use for expressing physical
observables independently of the choice of the conformal

frame, as we will argue in more detail towards the end of
this section.
From the transformation rules (30a), (30d) and (30e) one

can see immediately that the functions

I1 ¼
e2α

A
; I2 ¼

V
A2

ð32Þ

are invariant under conformal transformations and scalar
field redefinitions. Here invariance means that under a
transformation of the form (25) they change according to

Ī iðϕ̄ðxÞÞ ¼ Ī iðfðϕðxÞÞÞ ¼ I iðϕðxÞÞ; ð33Þ

which means that the functional forms of I i and Ī i differ,
but their values evaluated at each spacetime point x agree,
provided that the scalar field is appropriately transformed,
for i ¼ 1, 2. In contrast, the functions F and H defined by

F ¼ 2AB − 3A0½2C þA0�
4A2

; H ¼ C þA0

2A
ð34Þ

are invariant under conformal transformations of the tetrad,
but transform covariantly under redefinitions of the scalar
field. This means that they incur an additional factor, and
transform as

F̄ ðϕ̄Þ ¼ 1

f02ðϕÞF ðϕÞ; H̄ðϕ̄Þ ¼ 1

f0ðϕÞHðϕÞ; ð35Þ

as can be seen from the transformation rules (30b)
and (30c). The same behavior can be found also for the
quantities

G ¼ B − 6α0½C þ α0A�
2e2α

; K ¼ C þ 2α0A
2e2α

; ð36Þ

i.e., they likewise transform as

Ḡðϕ̄Þ ¼ 1

f02ðϕÞGðϕÞ; K̄ðϕ̄Þ ¼ 1

f0ðϕÞKðϕÞ: ð37Þ

They are related to the previously defined invariants by the
relations

F ¼ I1Gþ 3
I1

0

I1

�
I1K −

I1
0

4I1

�
; H ¼ I1K −

I1
0

2I1

:

ð38Þ

The invariant K is closely related to the notion of minimal
coupling we introduced at the end of Sec. III. We see that
the scalar field is minimally coupled, i.e., the debraided
field equation (24) is source free, if and only if K ¼ 0. This
condition is invariant under conformal transformations and
scalar field redefinitions.
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There are numerous possibilities to construct further
invariants from those introduced above. For example, one
may find quantities which are also invariant under scalar
field redefinitions by taking the indefinite integrals

Z ffiffiffiffiffiffiffiffiffiffiffi
F ðϕÞ

p
dϕ;

Z
HðϕÞdϕ; ð39Þ

and similarly for G andK. Also note that quotients I 0
i=I

0
j of

invariants are again invariants, and that one may form
invariant derivative operators; however, we will not pursue
this direction further within the scope of this article, since
these constructions are identical to those that may be
defined in the case of scalar-tensor theories of gravity
[12]. Instead, we will make use of the invariants to
construct particular conformal frames, and derive expres-
sions for the action functional and field equations which are
invariant under conformal transformations. This will be
done in the next section.

VI. CONFORMAL FRAMES

We have seen in Sec. IV that under a conformal trans-
formation of the tetrad and a redefinition of the scalar field
of the form (25) the action (8) and (12) retains its form,
provided that the defining functions of the scalar field are
also transformed using the rules (30). This freedom of
transforming the action is also present in scalar-tensor
theories of gravity, where it is commonly used to transform
the action into two particular classes of parametrizations,
known as Jordan and Einstein frames, in which the action
and field equations exhibit additional properties. It has
further been shown that these frames in scalar-tensor
theories of gravity can be expressed in terms of a particular
set of invariant quantities. We will now show that the same
is possible also for the class of scalar-torsion theories we
discuss in this article, making use of the invariants we
defined in the preceding section.
We start by making use of the similarity to scalar-tensor

gravity to define the Jordan frame in Sec. VI A and the
Einstein frame in Sec. VI B. We will see that in contrast to
scalar-tensor gravity, the naively defined Einstein frame
does not lead to a complete debraiding of the scalar and
tetrad field equations, as discussed at the end of Sec. III.
However, we will define another frame in Sec. VI C in
which this debraiding is obtained. Note that we will leave
the scalar field unchanged in this section, ϕ̄ ¼ ϕ, unless
otherwise noted.

A. Jordan frame

We start with the Jordan frame, whose associated tetrad
we define as

θJa ¼ eγ
JðϕÞθa ¼ eαðϕÞθa; γJðϕÞ ¼ αðϕÞ: ð40Þ

It follows directly from this definition that the Jordan frame
tetrad is invariant under conformal transformations and
scalar field redefinitions of the original field variables in the
sense that

θJa ¼ eαðϕÞθa ¼ eᾱðϕ̄ÞþγðϕÞθa ¼ eᾱðϕ̄Þθ̄a ¼ θ̄Ja: ð41Þ

Using the definition (40) for the function γJ, substituting it
into the transformation rules (30) and comparing the
obtained transformed (barred) parameter functions with
the invariants detailed in Sec. V, we find the relations

AJ ¼ 1

I1

; BJ ¼ 2G; CJ ¼ 2K;

VJ ¼ I2

I2
1

; αJ ¼ 0; ð42Þ

where we have replaced the bars with superscripts J, in
order to indicate that this is the Jordan frame parametriza-
tion. The action can now be written in the form

SJ½θJa;ω
• a

b;ϕ; χI�

¼ 1

2κ2

Z
M

�
−

1

I1ðϕÞ
TJ þ 4GðϕÞXJ þ 4KðϕÞYJ

− 2κ2
I2ðϕÞ
I2
1ðϕÞ

�
θJd4xþ SJm½θJa; χI�: ð43Þ

A number of remarks are in order. First, note that the matter
action functional in the Jordan frame action (43) agrees
with the action functional we used in the definition (12) of
the matter action; this is the reason for using the notation
involving the superscript J. Further, we see that SJm
depends only on the Jordan frame tetrad and matter fields,
and carries no additional, explicit dependence on the scalar
field besides the implicit dependence through the definition
(40). This is the most important advantage and typical
reason for using the Jordan frame, since also the resulting
matter field equationsϖJ

I ¼ 0 are expressed in terms of the
Jordan frame tetrad and matter fields only, without further
dependence on the scalar field. It further follows that the
term ϑJ obtained from varying the matter action SJm with
respect to the scalar field, while keeping the Jordan frame
tetrad fixed, vanishes, and hence does not appear in the
field equations, which we will show below.
We also remark that the gravitational part of the Jordan

frame action (43) is defined only up to a redefinition of the
scalar field. This means that we may define a different
Jordan frame action S̄J by replacing the invariant parameter
functions I1; I2;G;K by their barred counterparts
Ī1; Ī2; Ḡ; K̄, which we then evaluate at the transformed
scalar field,
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S̄J½θJa;ω
• a

b; ϕ̄; χI�

¼ 1

2κ2

Z
M

�
−

1

Ī1ðϕ̄Þ
TJ þ 4Ḡðϕ̄ÞX̄J þ 4K̄ðϕ̄ÞȲJ

− 2κ2
Ī2ðϕ̄Þ
Ī2
1ðϕ̄Þ

�
θJd4xþ SJm½θJa; χI�: ð44Þ

Substituting ϕ̄ ¼ fðϕÞ we then find that the new action S̄J,
evaluated at ϕ̄, agrees with the original action SJ, evaluated
at ϕ, provided that their defining parameter functions obey
the transformation rules (33) and (37). Note that we do not
need to transform the matter part of the action (43) here, as
it is independent of the scalar field.
We now express the field equations in the Jordan frame.

The symmetric tetrad field equations

2
H
I1

SJðμνÞ
ρϕ;ρ þ

1

I1

�
R
∘ J
μν −

1

2
R
∘ J

gJμν

�

þ ðG − 2K0Þϕ;ρϕ;σgJρσgJμν

− 2ðG −K0Þϕ;μϕ;ν þ 2Kð∇∘ J

μ ∇
∘ J

ν ϕ −□

∘ J
ϕgJμνÞ

þ κ2
I2

I2
1

gJμν ¼ κ2ΘJ
μν ð45Þ

and connection field equations

HTJρ½μνϕ;ρ� ¼ 0 ð46Þ

are essentially unchanged compared to their general frame
forms (20) and (21), while the scalar field equation (22)
becomes

−
I1

0

2I2
1

TJ − 2G□
∘ J

ϕ − G0gJμνϕ;μϕ;ν þ 2K∇∘ J

μ T
J
ν
νμ

þ κ2
I1I2

0 − 2I1I2
0

I3
1

¼ 0; ð47Þ

and hence does not contain the matter energy-momentum
tensor. Note, however, that the matter energy-momentum
still acts as a source for the scalar field through the
debraiding discussed at the end of Sec. III. This can be
seen from the debraided scalar field equation (24), which
reads

2
H
I1

�
1

I1

TJ þ 2KSJμ
μνϕ;ν

�
− 4

F þ 3H2

I2
1

□

∘ J
ϕ

þ
�
4KðG − 3K0Þ − 2

G0

I1

�
gJμνϕ;μϕ;ν

þ 2κ2
4HI2 þ I2

0

I3
1

¼ 2κ2KΘJ ð48Þ

in the Jordan frame.

B. Einstein frame

We then come to the Einstein frame, which we construct
following essentially the same procedure as for the Jordan
frame above, but using the conformal transformation
defined by

θEa ¼ eγ
EðϕÞθa ¼

ffiffiffiffiffiffiffiffiffiffiffi
AðϕÞ

p
θa; γEðϕÞ ¼ 1

2
lnAðϕÞ:

ð49Þ

Similarly to the Jordan frame, also the Einstein frame tetrad
is invariant under conformal transformations and scalar
field redefinitions of the original field variables,

θEa ¼
ffiffiffiffiffiffiffiffiffiffiffi
AðϕÞ

p
θa ¼

ffiffiffiffiffiffiffiffiffiffiffi
ĀðϕÞ

q
eγðϕÞθa ¼

ffiffiffiffiffiffiffiffiffiffiffi
ĀðϕÞ

q
θ̄a ¼ θ̄Ea:

ð50Þ

Using the transformation rules (30) and the invariant
quantities defined in Sec. V, we find that the parameter
functions in the Einstein frame in terms of invariants are
given by

AE ¼ 1; BE ¼ 2F ; CE ¼ 2H;

VE ¼ I2; αE ¼ 1

2
ln I1: ð51Þ

In this case the action takes the form

SE½θE a;ω
• a

b;ϕ; χI�

¼ 1

2κ2

Z
M
½−TE þ 4F ðϕÞXE þ 4HðϕÞYE

− 2κ2I2ðϕÞ�θEd4xþ SJm½
ffiffiffiffiffiffiffiffiffiffiffiffi
I1ðϕÞ

p
θEa; χI�: ð52Þ

Also in this case we add a few remarks. First, note that we
have expressed the matter part of the action through the
Jordan frame action functional SJm. This is necessary in
order to implement the particular relation between the
dependences of the action on the tetrad and the scalar field
imposed by the structure of the action (12). We also see that
in this case the matter action carries an explicit dependence
on the scalar field, in addition to the implicit dependence
incurred from the Einstein frame tetrad. In contrast, the
scalar field does not appear in the term involving the torsion
scalar TE. This is the characteristic property of the Einstein
frame if one follows the analogy to scalar-tensor gravity,

where the scalar field does not couple to the Ricci scalar R
∘ E

in the Einstein frame.
We further remark that also in this case the action is

uniquely defined only up to scalar field redefinitions, as is
also the case in the Jordan frame; i.e., if we define a new
action S̄E such that
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S̄E½θEa;ω
• a

b; ϕ̄; χI�

¼ 1

2κ2

Z
M
½−TE þ 4F̄ ðϕ̄ÞXE þ 4H̄ðϕ̄ÞYE

− 2κ2Ī2ðϕ̄Þ�θEd4xþ SJm½
ffiffiffiffiffiffiffiffiffiffiffiffi
Ī1ðϕ̄Þ

q
θEa; χI�; ð53Þ

and substitute the transformed scalar field ϕ̄ ¼ fðϕÞ, then
we reproduce the original action (52) for ϕ, provided that
the invariant parameter functions satisfy the transformation
rules (33) and (35). Also in this case the matter part SJm of
the action is invariant, since Ī1ðϕ̄Þ ¼ I1ðϕÞ by the defi-
nition of the invariants.
Next, we come to the field equations. We find that the

symmetric tetrad field equations (20) are given by

2HSEðμνÞ
ρϕ;ρ þ R

∘ E
μν −

1

2
R
∘ E

gEμν þ ðF − 2H0Þϕ;ρϕ;σgEρσgμν

− 2ðF −H0Þϕ;μϕ;ν þ 2Hð∇∘ E

μ∇
∘ E

ν ϕ −□

∘ E
ϕgEμνÞ

þ κ2I2gEμν ¼ κ2ΘE
μν; ð54Þ

the connection field equations (21) read

HTEρ½μνϕ;ρ� ¼ 0; ð55Þ

and the scalar field equation (22) takes the form

−2F□

∘ E
ϕ−F 0gEμνϕ;μϕ;νþ2H∇∘ E

μ TE
ν
νμþ κ2I2

0 ¼ κ2α0ΘE:

ð56Þ

Finally, after debraiding we find the scalar field equa-
tion (24) in the form

2HðTE þ 2HSEμ μνϕ;νÞ − 4ðF þ 3H2Þ□
∘ E

ϕ

þ ½4HðF − 3H0Þ − 2F 0�gEμνϕ;μϕ;ν

þ 2κ2ð4HI2 þ I2
0Þ ¼ 2κ2KI1ΘE: ð57Þ

From the symmetric part (54) we see an important differ-
ence between scalar-tensor and scalar-torsion theories of
gravity: in the scalar-tensor case there are no second
derivatives of the scalar field in the metric field equation
in the Einstein frame, leading to a complete debraiding of
the metric and scalar field equations [34]; this is not the
case for the tetrad field equations of the class of scalar-
torsion theories we discuss here, since the second order
derivatives enter with a nonvanishing factor CE ¼ 2H.
Hence, the Einstein frame loses its debraiding property.
One may argue that this fact renders the name Einstein
frame questionable; we will comment on this below. Our
choice to define the Einstein frame viaAE ¼ 1 is motivated
simply by its analogy to scalar-tensor gravity.

C. Debraiding frame

As we have seen above, the Einstein frame in the class of
scalar-torsion gravity theories we consider in this article
does not have the debraiding property which would cause
the second derivatives of the scalar field to drop out of the
field equations for the tetrad. However, one can see from
the structure of the field equations (20) that also in this case
a debraiding can be achieved by performing a conformal
transformation such that in the new frame, which we
indicate by a superscript D, the condition CD ¼ 0 is
satisfied. By comparison with the transformation rule
(30c) we then find that this conformal transformation must
satisfy

γD0ðϕÞ ¼ −
CðϕÞ
2AðϕÞ : ð58Þ

Note that in contrast to the algebraic conditions (40)
and (49) for the Jordan and Einstein frame transformations
we obtain a differential equation, which fixes γD only up to
an additive constant. Hence, also the corresponding
debraiding tetrad θD a ¼ eγ

DðϕÞθa is determined only up
to a constant factor. This could be fixed by the additional
constraint that γDðϕ0Þ ¼ γD0 for some ϕ0, such that

γDðϕÞ ¼ γD0 −
1

2

Z
ϕ

ϕ0

Cðϕ̃Þ
Aðϕ̃Þ dϕ̃: ð59Þ

However, this constraint would depend on the original
frame, since also the frame transition function γD itself
depends on the original frame. Hence, we will not follow
this route. We will discuss other choices below, which do
not have this problem.
Even without fixing the free constant factor in the

definition of the debraiding tetrad θDa one can determine
the parameter functions in the debraiding frame up to a
constant factor (or an additive constant in the case of αD).
By comparison with the invariants introduced in Sec. Vand
using the condition CD ¼ 0 we find the relations

ðlnADÞ0 ¼ 2H; ð60aÞ

ðlnBDÞ0 ¼ ½ln ðF þ 3H2Þ�0 þ 2H; ð60bÞ

CD ¼ 0; ð60cÞ

ðlnVDÞ0 ¼ ðln I2Þ0 þ 4H; ð60dÞ

αD0 ¼ I1K: ð60eÞ

From the last line (60e) we see that the condition
αDðϕ0Þ ¼ αD0 , such that
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αDðϕÞ ¼ αD0 þ
Z

ϕ

ϕ0

I1ðϕ̃ÞKðϕ̃Þdϕ̃; ð61Þ

now uniquely fixes αD independently of the original frame,
since it is expressed fully in terms of invariants. Note that
this also fixes the remaining parameter functions AD, BD,
VD, since they can be expressed in terms of invariants
and αD through the definitions (32) and (34), and thus take
the form

AD ¼ e2α
D

I1

; BD ¼ 2
e2α

D

I1

ðF þ 3H2Þ;

VD ¼ e4α
D
I2

I2
1

: ð62Þ

Finally, it also fixes the frame transition function through
γD ¼ α − αD. Hence, this condition uniquely fixes the
debraiding frame and only leaves the freedom to redefine
the scalar field. One easily checks that this definition of the
debraiding frame is now indeed independent of the original
frame, since

θD a ¼ eγ
DðϕÞθa ¼ eαðϕÞ−αDðϕÞθa ¼ e−α

DðϕÞθJa; ð63Þ

and both αD and the Jordan frame tetrad θJ a are invariants.
We are now in the position to express the action and field

equations in the debraiding frame. We start with the action,
which now takes the form

SD½θD a;ω
• a

b;ϕ; χI� ¼
1

2κ2

Z
M

�
−
e2α

DðϕÞ

I1ðϕÞ
TD þ 4

e2α
DðϕÞ

I1ðϕÞ
½F ðϕÞ þ 3H2ðϕÞ�XD − 2κ2

e4α
DðϕÞI2ðϕÞ
I2
1ðϕÞ

�
θDd4x

þ SJm½eαDðϕÞθD a; χI�; ð64Þ

and hence does not contain the term Y. We remark that also in this frame one still has the freedom to redefine the scalar field,
as it is also the case in the Jordan and Einstein frames we discussed before. We then come to the symmetric part (20) of the
tetrad field equations, which reads

2HSDðμνÞ
ρϕ;ρ þ R

∘D
μν −

1

2
R
∘D

gDμν þ ðF þ 3H2Þðϕ;ρϕ;σgDρσgDμν − 2ϕ;μϕ;νÞ þ κ2
e2α

D
I2

I1

gDμν ¼
κ2I1

e2α
D ΘD

μν: ð65Þ

The antisymmetric part (21), which is identical to the connection field equations, becomes

HTD ρ½μνϕ;ρ� ¼ 0: ð66Þ

Finally, the scalar field equation (22) is given by

HTD − 2ðF þ 3H2Þ□
∘ D

ϕ − ðF 0 þ 2FHþ 6H3 þ 6HH0ÞgD μνϕ;μϕ;ν þ κ2
e2α

D

I1

ð4I2Hþ I2
0Þ ¼ κ2I2

1K

e2α
D ΘD: ð67Þ

We see that now indeed the tetrad and scalar field
equations are debraided; i.e., the former contains only
second derivatives of the tetrad, while the latter contains
only second derivatives of the scalar field.
We conclude our discussion of the debraiding frame

with a final remark. One may argue that this frame could
more rightfully be called the Einstein frame, since the
debraiding essentially turns the scalar field into another
source term for the tetrad instead of interrelating their
dynamics. One could equally well argue that there is no
Einstein frame, since even in the debraiding frame
the scalar field is nonminimally coupled to torsion through
the term ADðϕÞT in the action. However, we will not
enter this discussion here, as it is merely a question of
nomenclature.

This concludes our discussion of scalar-torsion theories
of gravity with a single field coupled to the tetrad and the
spin connection. It is natural to ask whether the results we
obtained also apply to theories with multiple scalar fields.
This question will be explored in the following section.

VII. GENERALIZATION TO MULTIPLE
SCALAR FIELDS

In the previous sections we have considered a single
scalar field in addition to the tetrad and spin connection as
the dynamical variables of the gravitational interaction.
We now generalize our statements and results to multiple
scalar fields. This will be done in several steps. We define
the generalized action in Sec. VII A, and derive the
corresponding field equations in Sec. VII B. Conformal
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transformations are discussed in Sec. VII C. From these we
finally derive invariants in Sec. VII D and discuss particular
conformal frames in Sec. VII E.

A. Action

Instead of a single scalar field ϕwe now consider a scalar
field multiplet ϕ ¼ ðϕA; A ¼ 1;…; NÞ of N scalar fields.
This imposes two changes on the class of scalar-torsion
theories defined by the action (8) and (12). First, instead of
the single kinetic and derivative coupling terms X and Y
one may now form the terms

XAB ¼ −
1

2
gμνϕA

;μϕ
B
;ν; YA ¼ Tμ

μνϕA
;ν; ð68Þ

making use of all scalar fields. Note that XAB is symmetric,
X½AB� ¼ 0. Second, the free parameter functions on the
action may now depend on all scalar fields. Hence, we
generalize the action (8) such that it reads

Sg½θa;ω• ab;ϕA� ¼ 1

2κ2

Z
M
½−AðϕÞT þ 2BABðϕÞXAB

þ 2CAðϕÞYA − 2κ2VðϕÞ�θd4x: ð69Þ

We remark that now also the functions BAB and CA carry
scalar field indices, which are contracted with the corre-
sponding indices of XAB and YA. Note that BAB must be
symmetric, B½AB� ¼ 0, since any antisymmetric contribu-
tion would cancel in the contraction with the symmetric
term XAB. Also in the matter action (12) the free function α,
which determines the conformally related tetrad coupled to
matter, now depends on all scalar fields,

Sm½θa;ϕA; χI� ¼ SJm½eαðϕÞθa; χI�: ð70Þ

The particular form of the matter action now imposes a
relation between the sources ϑA in the scalar field equa-
tions, which are obtained from the variation

δSm½θa;ϕA; χI� ¼
Z
M
ðΘa

μδθaμ þ ϑAδϕ
A þϖIδχ

IÞθd4x;

ð71Þ

and the energy-momentum tensor Θa
μ, which generalizes

the relation (15) and reads

ϑA ¼ α;Aθ
a
μΘa

μ: ð72Þ

This relation will be used during the remainder of this
section.
We now also see why we favored the form (8) over the

equivalent form (11). A similar generalization of the latter
to multiple scalar fields would yield an action of the form

Sg½θa;ω• ab;ϕA� ¼ 1

2κ2

Z
M
½−AðϕÞTþ2BABðϕÞXAB− C̃ðϕÞB

−2κ2VðϕÞ�θd4x; ð73Þ

which is equivalent to the action (69) (up to a boundary
term) only if CA ¼ C̃;A, where we use the comma notation to
indicate derivatives with respect to scalar fields ϕA. This
imposes an additional restriction on the parameter functions
CA, and in particular implies C½A;B� ¼ 0. Here we will not
make this restriction, and work with the action (69) with
arbitrary parameter functions CA.

B. Field equations

We can then proceed with the field equations for the
multi-scalar-torsion theories. As we did in the single field
case in Sec. III, we omit their derivation here, since the
action (69) is a special case of the more general multi-
scalar-torsion generalization of the LðT; X; Y;ϕÞ class of
theories [32], where the Lagrangian is given by

L ¼ 1

2κ2
½−AðϕÞT þ 2BABðϕÞXAB þ 2CAðϕÞYA� − VðϕÞ:

ð74Þ

Hence, we can make use of the field equations derived
for this more general theory, together with the variational
derivatives

LT ¼ −
A
2κ2

; LXAB ¼ BAB

κ2
; LYA ¼ CA

κ2
;

LϕA ¼ 1

2κ2
½−A;AT þ 2BBC;AXBC þ 2CB;AYB� − V ;A: ð75Þ

Here we restrict ourselves to displaying the final form of the
field equation as given in Sec. III. For the symmetric part
(20) we find

ðA;A þ CAÞSðμνÞρϕA
;ρ þA

�
R
∘
μν −

1

2
R
∘
gμν

�

þ
�
1

2
BAB − CðA;BÞ

�
ϕA
;ρϕ

B
;σgρσgμν

− ðBAB − CðA;BÞÞϕA
;μϕ

B
;ν þ CAð∇

∘
μ∇
∘
νϕ

A −□

∘
ϕAgμνÞ

þ κ2Vgμν ¼ κ2Θμν ð76Þ

while the antisymmetric part (21) reads

3ðA;A þ CAÞTρ½μνϕA
;ρ� þ 2C½A;B�ϕA

;μϕ
B
;ν ¼ 0; ð77Þ

and the scalar field equations (22) are given by
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1

2
A;AT − BAB□

∘
ϕB −

�
BAB;C −

1

2
BBC;A

�
gμνϕB

;μϕ
C
;ν

þ CA∇
∘
μTν

νμ þ 2C½A;B�Tμ
μνϕB

;ν þ κ2V ;A ¼ κ2α;AΘ: ð78Þ

Note the appearance of a few additional terms containing
C½A;B�, which do not appear in the single field case detailed
in Sec. III, since they vanish due to the antisymmetrization
brackets, and which would also vanish if we used the action
(73). Finally, we may also perform a debraiding of the
scalar field equations, i.e., remove the second order
derivatives of the tetrad by adding a suitable multiple of
the trace

− 2ðA;A þ CAÞTμ
μνϕA

;ν −AR
∘ þ ðBAB − 3CA;BÞgμνϕA

;μϕ
B
;ν

− 3CA□
∘
ϕA þ 4κ2V ¼ κ2Θ: ð79Þ

The resulting field equations then take the form

AðA;A þ CAÞT þ ½4AC½A;B� − 2CAðA;B þ CBÞ�Tμ
μνϕB

;ν

− ð2ABAB þ 3CACBÞ□
∘
ϕB þ ðCABBC − 2ABAB;C

þABBC;A − 3CACB;CÞgμνϕB
;μϕ

C
;ν þ 2κ2ðAV ;A þ 2CAVÞ

¼ κ2ð2AαA þ CAÞΘ: ð80Þ

One may pose the question whether also the second
derivatives of the scalar field can be removed from the
tetrad field equations (76) in a suitable frame; we will see in
Sec. VII C that this is not always possible.

C. Conformal transformations

Turning our attention to conformal transformations, we
see that also the action (69) and (70) retains its form under
conformal transformations and scalar field redefinitions
given by

θ̄aμ ¼ eγðϕÞθaμ; ēaμ ¼ e−γðϕÞeaμ; ϕ̄A ¼ fAðϕÞ;
ð81Þ

in the same sense as explained in detail in Sec. IV. In the
following we will also collectively write ϕ̄ ¼ f ðϕÞ for
the scalar field redefinition. Proceeding in analogy to the
calculation (27) and (28) and comparing the transformed
action to its original form, we find that the functions
parametrizing the action must transform as

A ¼ e2γĀ; ð82aÞ

BAB ¼ e2γ
�
B̄CD

∂ϕ̄C

∂ϕA

∂ϕ̄D

∂ϕB − 6Āγ;Aγ;B þ 6C̄C
∂ϕ̄C

∂ϕðA γ;BÞ

�
;

ð82bÞ

CA ¼ e2γ
�
C̄B

∂ϕ̄B

∂ϕA − 2Āγ;A

�
; ð82cÞ

V ¼ e4γV̄; ð82dÞ

α ¼ ᾱþ γ: ð82eÞ

This transformation behavior generalizes the relations
(30). Note that instead of the derivative f0 we now find the
Jacobian of the function f .
Finally, we remark that also in the case of multiple scalar

fields the corresponding relation (72) between the source
terms in the field equations is preserved under their
conformal transformation, which is given by

Θμν¼ e2γΘ̄μν; Θ¼ e4γΘ̄; ϑA ¼ e4γ
�
γ;AΘ̄þ∂ϕ̄B

∂ϕA ϑ̄B

�
;

ð83Þ

which generalizes the transformation rule (31).

D. Invariant quantities

The form of the transformations (82) motivates the
definition of a number of quantities which are invariant
under conformal transformations and either invariant or
covariant under redefinitions of the scalar fields, proceed-
ing in full analogy to the quantities defined in Sec. V. First
note that the transformation behavior (82a), (82d) and (82e)
of the functions A, V, α agrees with the single field case
given by the relations (30a), (30d) and (30e). Hence, the
quantities I1 and I2 retain their invariant character, and we
keep their definitions (32). For the remaining quantities,
which carry scalar field indices in the case of multiple
scalar fields, we must adapt their definitions. For F and H
we extend the definitions (34) to

FAB ¼
2ABAB−6A;ðACBÞ−3A;AA;B

4A2
; HA ¼

CAþA;A

2A
;

ð84Þ

while the definitions (36) of G and K generalize to

GAB ¼
BAB−6α;ðACBÞ−6α;Aα;BA

2e2α
; KA ¼

CAþ2α;AA
2e2α

:

ð85Þ

By comparison with the transformations (82) we then
see that these quantities are invariant under conformal
transformations, but transform covariantly under scalar
field redefinitions,
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F̄AB ¼ ∂ϕC

∂ϕ̄A

∂ϕD

∂ϕ̄B FCD; H̄A ¼ ∂ϕB

∂ϕ̄A HB;

ḠAB ¼ ∂ϕC

∂ϕ̄A

∂ϕD

∂ϕ̄B GCD; K̄A ¼ ∂ϕB

∂ϕ̄A KB; ð86Þ

where we again encounter the inverse Jacobian of the
function f . It is worth noting that this transformation
behavior has the same form as that of tensor fields on a
manifold, whose points are the values of the multiplet of
scalar fields, under general coordinate transformations.
However, we will not pursue this interpretation here, as
it would exceed the scope of this article. We also remark
that the quantities (84) and (85) are related to each other by

FAB ¼ I1GAB þ 3
I1

0

I1

�
I1K −

I1
0

4I1

�
;

HA ¼ I1KA −
I1;A

2I1

; ð87Þ

which generalizes the similar relations (38).

E. Conformal frames

We finally also generalize the particular conformal
frames discussed in Sec. VI to multiple scalar fields. For
the Jordan frame shown in Sec. VI A this is straightforward.
Starting from the conformal transformation (40) we find
that the relations (42) generalize to

AJ ¼ 1

I1

; BJ
AB ¼ 2GAB; CJA ¼ 2KA;

VJ ¼ I2

I2
1

; αJ ¼ 0: ð88Þ

Also the Einstein frame detailed in Sec. VI B immediately
generalizes. From the transformation (40) we find the
parameter functions

AE ¼ 1; BE
AB ¼ 2FAB; CEA ¼ 2HA;

VE ¼ I2; αE ¼ 1

2
ln I1: ð89Þ

Proceeding in analogy to Sec. VI, one may now express the
action shown in Sec. VII A and field equations shown in
Sec. VII B in these conformal frames. We will not explicitly
display the result here, as it is essentially the same as in the
single field case and easy to derive.
The situation is qualitatively different for the debraiding

frame introduced in Sec. VI C. One can see from the
symmetric tetrad field equation (76) that the second order
derivatives of the scalar fields can be removed from the
tetrad field equations in a particular “debraiding” frame D
only by imposing CDA ¼ 0. By comparison to the trans-
formations (82a) and (82c) we then find the condition

γD;AðϕÞ ¼ −
CAðϕÞ
2AðϕÞ ; ð90Þ

which can be satisfied only if there exists some function H̃
such that HA ¼ H̃;A.
This concludes our general discussion of scalar-torsion

and multi-scalar-torsion theories of gravity. In order to
show the applicability of our results and relate them to other
works, we will provide a few examples in the following
section.

VIII. EXAMPLES

We finally connect our results to a number of example
theories. Note that some authors use different sign con-
ventions, in particular for the signature of the metric tensor;
however, these can simply be absorbed into a suitable
redefinition of the parameter functions in the action. Here
we discuss teleparallel dark energy and its generalizations
in Sec. VIII A; include a nonminimal coupling to the
boundary term in Sec. VIII B; and come to the multi-
scalar-torsion equivalent of FðT; BÞ gravity theories in
Sec. VIII C. Finally, we show how our results reduce to a
number of well-known results in multi-scalar-tensor gravity
in Sec. VIII D.

A. Teleparallel dark energy and its generalizations

The first example we show is the classical teleparallel
dark energy model [18]. Its action can be written in the
form

Sg ¼
Z
M

�
−

T
2κ2

þ 1

2
ðgμνϕ;μϕ;ν − ξϕ2TÞ − VðϕÞ

�
θd4x;

ð91Þ

with coupling constant ξ and potential V. By comparison
with the general form (8) we find the parameter functions

A ¼ 1þ 2κ2ξϕ2; B ¼ −κ2; C ¼ 0; V ¼ V:

ð92Þ

One usually considers this model to be given in the Jordan
frame, such that α ¼ 0. Various generalizations of this
model have been considered:
(1) Interacting dark energy [21]:

Sg ¼
Z
M

�
−

T
2κ2

þ 1

2
ðgμνϕ;μϕ;ν − ξFðϕÞTÞ

− VðϕÞ
�
θd4x; ð93Þ

where the function A is replaced by A ¼ 1þ
2κ2ξFðϕÞ.
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(2) Brans-Dicke type action with a general coupling to
torsion [19]:

Sg ¼
Z
M

�
−
FðϕÞ
2κ2

T − ωgμνϕ;μϕ;ν − VðϕÞ
�
θd4x;

ð94Þ

where A ¼ FðϕÞ and B ¼ 2κ2ω.
(3) Brans-Dicke type action with a dynamical kinetic

term [23]:

Sg ¼
Z
M

�
−

ϕ

2κ2
T −

ωðϕÞ
ϕ

gμνϕ;μϕ;ν − VðϕÞ
�
θd4x;

ð95Þ

where A ¼ ϕ and B ¼ 2κ2ωðϕÞ=ϕ.
Note that all these models satisfy K ¼ 0, and so are
considered minimally coupled according to our convention,
despite their nonminimal coupling between the scalar field
and the torsion scalar. This is due to the fact that this type of
coupling does not introduce the trace Θ of the energy-
momentum tensor as a source into the debraided scalar field
equation (24).

B. Nonminimal coupling to the boundary term

In addition to the torsion scalar, as in the original
teleparallel dark energy model [18] discussed above, one
may also include a similar type of coupling to the boundary

term B ¼ R
∘ þ T ¼ 2∇∘ μTμν

ν. The corresponding action
functional reads [39]

Sg¼
Z
M

�
−

T
2κ2

þ1

2
ðgμνϕ;μϕ;ν−ξϕ2T−χϕ2BÞ−VðϕÞ

�
θd4x

ð96Þ

with constants ξ, χ and a general potential V. We see that
this action is of the form (11), with parameter functions
given by

A ¼ 1þ 2κ2ξϕ2; B ¼ −κ2;

C̃ ¼ 2κ2χϕ2; V ¼ V: ð97Þ

It follows that the action may be brought to the form (8) by
integration by parts, where the remaining parameter func-
tion becomes

C ¼ C̃0 ¼ 4κ2χϕ: ð98Þ

Note that for ξþ χ ¼ 0 the action reduces to scalar-tensor
gravity with a nonminimally coupled scalar field, while for
χ ¼ 0 one obtains the teleparallel dark energy model [18]
shown in Sec. VIII A. Also in this case one usually

considers α ¼ 0. We further remark that also more general
models with multiple scalar fields coupled to the boundary
term are considered, which may similarly be written in the
form (73) [40].

C. Scalar-torsion equivalent of FðT;BÞ gravity
A more general action involving the boundary term B is

given by FðT; BÞ gravity and reads [33]

Sg ¼
1

2κ2

Z
M
FðT; BÞθd4x: ð99Þ

In order to bring it to the form (11) one introduces two
auxiliary scalar fields ϕ1;2, and replaces the arguments of F
with these fields. Enforcing ϕ1 ¼ T and ϕ2 ¼ B via
Lagrange multipliers and eliminating the Lagrange multi-
pliers from the action one obtains

Sg ¼
1

2κ2

Z
M
½Fð1;0ÞðϕÞT þ Fð0;1ÞðϕÞBþ FðϕÞ

− ϕ1Fð1;0ÞðϕÞ − ϕ2Fð0;1ÞðϕÞ�θd4x: ð100Þ

Comparison with the action (11) yields the parameter
functions

A ¼ −Fð1;0Þ; B ¼ 0; C̃ ¼ −Fð0;1Þ;

V ¼ 1

2κ2
ðϕ1Fð1;0Þ þ ϕ2Fð0;1Þ − FÞ: ð101Þ

Again we can integrate by parts to bring the action to the
form (8), and finally obtain

C1 ¼ −Fð1;1Þ; C2 ¼ −Fð0;2Þ: ð102Þ

We also remark that in the case that F does not depend on
its second argument the scalar field ϕ2 drops out, and the
action reduces to the scalar-torsion equivalent of FðTÞ
gravity [19].

D. (Multi-)scalar-tensor gravity

We finally discuss a special case for the function C,
which is given by the relation C ¼ −A0, and which can
invariantly be formulated as H ¼ 0. In this case the terms
containing T and Y in the action (8) can be combined,

−AT − 2A0Y ¼ −AT − 2∂μATν
νμ

¼ Að2∇∘ μTν
νμ − TÞ − 2∇∘ μðATν

νμÞ
¼ AR

∘
− 2∇∘ μðATν

νμÞ: ð103Þ

It follows that up to a boundary term, which we neglect
here, the gravitational part of the action reduces to the well-
known scalar-tensor gravity action [3]
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Sg½θa;ω• ab;ϕ� ¼
1

2κ2

Z
M
½AðϕÞR∘ þ2BðϕÞX−2κ2VðϕÞ�θd4x:

ð104Þ

This becomes apparent also at the level of the field
equations. In the symmetric field equation (20) the terms
involving the superpotential cancel, and the remaining
terms take the usual form

A
�
R
∘
μν −

1

2
R
∘
gμν

�
þ
�
1

2
B þA00

�
ϕ;ρϕ;σgρσgμν

− ðB þA00Þϕ;μϕ;ν −A0ð∇∘ μ∇
∘
νϕ −□

∘
ϕgμνÞ

þ κ2Vgμν ¼ κ2Θμν: ð105Þ

The connection field equations (21) are identically satis-
fied, since the action (104) is independent of the spin
connection. Finally, also the scalar field equation (22)
reduces to its well-known scalar-tensor form, which reads

−
1

2
A0R

•
− B□

∘
ϕ −

1

2
B0gμνϕ;μϕ;ν þ κ2V 0 ¼ κ2α0Θ: ð106Þ

We finally remark that in this case also the invariant
quantities introduced in Sec. V reduce to their scalar-tensor
counterparts [12].
One easily checks that also the multi-scalar-torsion

action (69) allows for a similar choice of the parameter
functions, which is given by the condition CA ¼ −A;A and
thus generalizes the scalar-tensor condition discussed
above. In terms of invariants this condition is expressed
as HA ¼ 0. In this case the action reduces in a similar
fashion as the action (104) and now becomes

Sg½θa;ω• ab;ϕA� ¼ 1

2κ2

Z
M
½AðϕÞR∘ þ 2BABðϕÞXAB

− 2κ2VðϕÞ�θd4x: ð107Þ

From this one recognizes the action functional of multi-
scalar-tensor gravity [41,42], with the metric field equation
given by

A
�
R
∘
μν −

1

2
R
∘
gμν

�
þ
�
1

2
BAB þA;AB

�
ϕA
;ρϕ

B
;σgρσgμν

− ðBAB þA;ABÞϕA
;μϕ

B
;ν −A;Að∇

∘
μ∇
∘
νϕ

A −□

∘
ϕAgμνÞ

þ κ2Vgμν ¼ κ2Θμν; ð108Þ

while the scalar field equation reduces to

−
1

2
AAR

•
−BAB□

∘
ϕB−

�
BAB;C−

1

2
BBC;A

�
gμνϕB

;μϕ
C
;νþ κ2V ;A

¼ κ2α;AΘ: ð109Þ

Finally, one finds that the invariants introduced in Sec. V
reduce to their multi-scalar-tensor expressions [13]. We
also remark that the invariant KA reduces to the vector of
nonminimal coupling defined in [43].
This concludes our discussion of example theories. We

have seen that the framework we developed in this article
has a wide range of possible future applications, and that it
reduces to the known calculations in (multi)-scalar-tensor
gravity for a suitably chosen class of actions.

IX. CONCLUSION

In this article we have discussed a class of teleparallel
scalar-torsion theories of gravity defined by five free
functions of the scalar field, whose action has a similar
structure to that of scalar-tensor gravity. We have studied
their field equations and behavior under conformal trans-
formations of the tetrad, as well as redefinitions of the
scalar field. In particular, we have shown that such trans-
formations relate different theories of this class, defined by
a set of transformed parameter functions, to each other. As
one of the main results we have derived a number of
functions of the scalar field, which are composed from the
free functions in the action, and which are either invariant
or transform covariantly under these transformations.
Further, we have discussed different conformal frames,
and obtained conditions for minimally coupling of the
scalar field and for separating the highest order derivatives
in the field equations. We also generalized our results to
multiple scalar fields.
The framework of invariants we developed generalizes

the formerly developed framework of invariants in scalar-
tensor and multi-scalar-tensor gravity theories [12,13]. It
allows us to easily translate the action and field equations of
any scalar-torsion theory of gravity, defined in an arbitrary
frame, to any other frame, and in particular to the Jordan
and Einstein frames known from scalar-tensor gravity. We
have also shown that our framework reduces to the (multi-)
scalar-tensor framework of invariants in the case that one of
the scalar-torsion invariants vanishes. We expect this
framework to be of the same use in describing phenom-
enological aspects of scalar-torsion gravity in a frame
independent fashion, as it is also the case for its scalar-
tensor counterpart [35–37].
As another interesting result we have shown that a

naively defined Einstein frame, in which there is no direct
coupling between the scalar field and the torsion scalar,
does not lead to a debraiding of the field equations as is the
case in scalar-tensor theories [34]. Instead, debraiding is
achieved in a different class of frames, in which the
coefficient of the kinetic coupling term of the scalar field
vanishes, and which is defined only up to a free parameter.
We also demonstrated that in the case of multiple scalar
fields such a frame choice is possible only for a restricted
class of actions.
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Our results invite for a number of further studies of the
class of theories we discussed. From the phenomenological
point of view, observational properties such as the post-
Newtonian limit, speed and polarizations of gravitational
waves or cosmological parameters may be determined for
a generic scalar-torsion action, in analogy to a similar
treatment of scalar-tensor gravity. By comparison with
observations this would yield constraints on the free
functions in the action. Further, foundational aspects of
this class of theories may be studied, such as the number
of degrees of freedom of the presence of energy con-
ditions. We also remark that an analogous discussion of
conformal transformations, invariants and frames should
also be possible for a similar class of theories in which
the scalar field is nonminimally coupled to nonmetricity
instead of torsion [44].
Finally, this work also invites for extensions to more

general classes of gravity theories. A topic of particular
interest is given by using Horndeski’s class of gravity
theories [45] as an alternative starting point instead of the
classical scalar-tensor class of theories [3]. One may expect
that also this class of theories can equivalently be formu-
lated in terms of teleparallel geometry, in the same fashion

as has been done for Lovelock gravity [46] and for the
teleparallel equivalent of (multi-)scalar-tensor gravity in
this article. One may further expect this class to be closed
under special conformal transformations, and extensible by
general conformal transformations, as it is also the case for
the curvature formulation of Horndeski gravity [47].
Finally, one may follow the spirit of this article and study
possible extensions of these classes of theories with a more
general action involving additional couplings to torsion,
which cannot be expressed in terms of curvature. We leave
these kinds of studies for future work.
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