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We discuss the most general class of teleparallel scalar-torsion theories of gravity in their covariant
formulation. The only restrictions we impose are the invariance of the action under diffeomorphisms and
local Lorentz transformations, as well as vanishing direct coupling of the matter fields to the teleparallel
spin connection. In this general setting we discuss the implications of local Lorentz invariance and
diffeomorphism invariance and derive the general structure of the field equations. Further, we show how
different theories of this class are related to each other by conformal transformations of the tetrad and
redefinitions of the scalar field. We finally show how the formalism can be generalized to an arbitrary
number of scalar fields, and provide a few examples.
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I. INTRODUCTION

The most successful theory of gravity is general relativity
(GR), as it has been proven to be consistent with a wide
range of observations on different scales. It attributes
the gravitational interaction to the curvature of the Levi-
Cività connection of a (pseudo-)Riemannian geometry.
Nevertheless, GR is challenged by a number of observa-
tions in cosmology, such as the accelerating phases in the
early and late Universe [1–3]. Further, it is challenged by its
tension with quantum theory, as so far no fully conclusive
theory of quantum gravity has been derived. These aspects
have motivated the study of numerous alternative gravity
theories. A large class of such theories is based on the idea
that gravity is not attributed to the curvature of the torsion-
free Levi-Cività connection, but to the torsion of a flat, i.e.,
curvature-free connection. This attempt is known as tele-
parallelism, since the flat connection allows for a path-
independent parallel transport of tangent vectors [4–7]. An
interesting feature of teleparallel gravity is its possible
interpretation as a gauge theory of the translation group,
which brings it closer to other fundamental interactions
which are modeled as gauge theories [8–10].
In its original formulation, teleparallel theories of gravity

have been based on the Weitzenböck connection defined by
a tetrad field such that the corresponding spin connection
coefficients vanish. However, this formulation has been
shown to be problematic due to the breaking of local
Lorentz invariance [11,12], as spurious degrees of freedom
(d.o.f.) may appear [13–16]. In order to solve these
problems a covariant formulation has been adopted, in

which a flat, but in general nonvanishing spin connection
is introduced [17]. It has been shown that a naive
variation of the action with respect to the spin connection
is too restrictive, as it does not yield the desired field
equations, and so either a different method of variation [18]
or different physical principles [19] must be employed.
Further, it has been shown for different classes of tele-
parallel theories that a constrained variation of the
spin connection yields a set of field equations, which is
identical to the antisymmetric part of the tetrad field
equations [18,20].
While the simplest and most well-studied teleparallel

gravity theory is equivalent to general relativity, and hence
known as the teleparallel equivalent of general relativity
(TEGR), it provides an alternative starting point for
modifications, in order to address the mentioned challenges
to GR. A possible modification of TEGR is the introduction
of a scalar field nonminimally coupled to torsion [21];
this is similar to introducing a scalar field nonminimally
coupled to curvature as a modification of GR. Numerous
models of this type have been studied [15,22–25].
However, it is common to employ the Weitzenböck con-
nection in order to derive the torsion, which leads to the
aforementioned potential issues arising from breaking local
Lorentz invariance. These issues are addressed in a covar-
iant formulation of scalar-torsion theories, and it has been
shown that the relation between the field equations for the
tetrad and the spin connection also holds in this case [26].
The aim of this article is to generalize the aforemen-

tioned results to a larger class of teleparallel scalar-torsion
theories of gravity, where we allow the scalar field to couple
in an arbitrary way to all other (gravitational and matter)
fields, and impose as only restrictions the invariance of the*manuel.hohmann@ut.ee
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action under diffeomorphisms and local Lorentz trans-
formations, as well as a vanishing coupling between the
matter fields and the teleparallel spin connection. For this
class of theories we derive the field equations and study the
implications of the imposed restriction. In particular, we
discuss the question whether the local Lorentz invariance
relates the antisymmetric part of the tetrad field equations
to the connection field equations, as has been proven for
narrower classes of theories. We also discuss how different
theories within this class can be related to each other by
performing conformal transformations of the tetrad and
scalar field redefinitions.
This article is the first in a series of three articles, and

develops the general framework for the aforementioned
class of scalar-torsion theories. Special subclasses will be
discussed in two subsequent articles: a class we denote
LðT; X; Y;ϕÞ and whose gravitational action depends
on four scalar quantities derived from the gravitational
variables is developed in the second article [27]; this class
will be further restricted to a class which has properties
similar to scalar-tensor gravity in the third and last
article [28].
The outline of this article is as follows. In Sec. II we list

the fundamental fields present in the class of theories we
consider and introduce the notation we will use. These are
then used in Sec. III to define the action, and set the
notation for its variation. This variation is exploited in the
following three sections: to derive the implications of local
Lorentz invariance in Sec. IV and diffeomorphism invari-
ance in Sec. V, and to derive the field equations in Sec. VI.
Conformal transformations are discussed in Sec. VII. We
generalize our discussion to multiple scalar fields in
Sec. VIII. A few examples are given in Sec. IX. We end
with a conclusion in Sec. X.

II. FIELDS IN SCALAR-TORSION GRAVITY
AND THEIR RELATIONS

The most important difference between teleparallel
theories of gravity and theories based on Riemannian
geometry is that the fundamental field defining the geom-
etry is not a metric, but a coframe field θa, which can be
expressed as a set of four 1-forms

θa ¼ θaμdxμ ð1Þ

labeled with a Lorentz index, which constitute a basis of the
cotangent space T�

xM for all spacetime points x ∈ M. The
corresponding dual bases of the tangent spaces TxM
constitute a frame field ea, which can be expressed as a
set of four vector fields

ea ¼ eaμ∂μ: ð2Þ

Since there is a one-to-one correspondence between the
frame and coframe fields, both are conventionally denoted

by the term tetrad. Further, we consider a flat Lorentz spin

connection ω
• a

b, which is likewise given by 1-forms:

ω
• a

b ¼ ω
• a

bμdxμ: ð3Þ

All quantities related to this connection, which is also
called the teleparallel connection, will be denoted by a
bullet ð•Þ. Note that being Lorentzian implies antisymme-

try, ω• ðabÞ ¼ 0, where indices are raised and lowered with
the Minkowski metric ηab, while flatness implies vanishing
curvature:

R
• a

b ¼ dω• ab þ ω
• a

c ∧ ω
• c

b ¼ 0: ð4Þ

In addition to the tetrad and the spin connection, we
consider a scalar field ϕ. Finally, we consider a set of
matter fields χI , which we label by an index I. For
simplicity of notation, we will assume that the matter
fields χI are also given by differential forms of rank kI .
However, this is not essential for our derivation, and more
general choices are possible.
For our calculations we will make use of the fact that,

given a tetrad, spin connection ω
• a

b is uniquely determined
by its torsion:

Ta ¼ D
•
θa ¼ dθa þ ω

• a
b ∧ θb; ð5Þ

where D
•
denotes the covariant exterior derivative. In order

to invert the relation (5) and determine the spin connection
from the torsion, it is most convenient to introduce the
contortion

Kab ¼
1

2
ðιeb ιecTa þ ιec ιeaTb − ιea ιebTcÞθc; ð6Þ

as well as the Levi-Cività connection

ω
∘
ab ¼ −

1

2
ðιeb ιecdθa þ ιec ιeadθb − ιea ιebdθcÞθc; ð7Þ

whose associated quantities we denote with an open
circle (∘), and which is uniquely defined by having

vanishing torsion, D
∘
θa ¼ 0. It allows us to write the spin

connection as

ωab ¼ ω
∘
ab þ Kab ¼

1

2
ðιeb ιecTa þ ιec ιeaTb − ιea ιebTc

− ιeb ιecdθa − ιec ιeadθb þ ιea ιebdθcÞθc: ð8Þ

These are the geometric objects we will need in order to
define the action for the class of theories we consider here.
This will be done in the next section.
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III. ACTION AND VARIATION

The general form of the action for the dynamical fields
listed in the previous section, for the class of theories we
consider in this article, is given by

S½θa;ω• ab;ϕ; χI� ¼ Sg½θa;ω• ab;ϕ� þ Sm½θa;ϕ; χI�; ð9Þ

where Sg denotes the gravitational part of the action, while
Sm denotes its matter part. Note in particular that we allow
for a nonminimal coupling between the scalar field ϕ and
the matter fields χI , but no such couplings for the tele-
parallel spin connection.
Using the formalism of differential forms, the variation

of the action with respect to the dynamical fields can be
written in a very compact form. For the matter part Sm of
the action we write a general variation as

δSm ¼
Z
M
ðΣa ∧ δθa þ Ψ ∧ δϕþΩI ∧ δχIÞ; ð10Þ

where we introduced the energy-momentum 3-forms Σa, a
4-form Ψ and ð4 − kIÞ-forms ΩI .

1 Writing the variation in
this form implies that any integration by parts, which is
necessary in order to eliminate derivatives of the variations
of the dynamical fields, has already been performed. Note
that we wrote Ψ ∧ δϕ, even though δϕ is a scalar; this is
done simply for consistency of the notation.
For the variation of the gravitational part Sg of the action,

we introduce a similar notation:

δSg ¼
Z
M

�
Δa ∧ δθa þ 1

2
Ξa

b ∧ δω
• a

b þΦ ∧ δϕ

�
; ð11Þ

with 3-formsΔa and Ξa
b, as well as a 4-formΦ. We choose

Ξa
b to be antisymmetric, ΞðabÞ ¼ 0, since any symmetric

part would cancel when contracted with the variation of the
(also antisymmetric) Lorentz spin connection.
Using the one-to-one correspondence between spin

connections and their torsion discussed in Sec. II, one
may also substitute the teleparallel spin connection in the
gravitational action with the teleparallel torsion, and write
its variation in the form

δSg ¼
Z
M
ðϒa ∧ δθa þ Πa ∧ δTa þΦ ∧ δϕÞ; ð12Þ

with 3-forms ϒa, 2-forms Πa and the same 4-form Φ as
above. Both forms of the variation can easily be related
using the definition (5) of the torsion, from which one
derives the variation

δTa ¼ δD
•
θa ¼ dδθa þ δω

• a
b ∧ θb þ ω

• a
b ∧ δθb

¼ D
•
δθa þ δω

• a
b ∧ θb: ð13Þ

Substituting this expression in the variation (12) then yields

δSg¼
Z
M
½ðϒa−D

•
ΠaÞ∧ δθa−Πa ∧ θb ∧ δω

• a
bþΦ∧ δϕ�:

ð14Þ

By comparison with the variation (11) one finds the
relations

Δa ¼ ϒa − D
•
Πa; Ξab ¼ −2Π½a ∧ θb�: ð15Þ

Conversely, one can make use of the relation (8) to express
the variation of the spin connection through the variation of
the torsion. Using a similar procedure as given above one
obtains

Πa ¼ 1

4
ιec ιebΞ

bc ∧ θa − ιebΞ
ab;

ϒa ¼ Δa þ D
•
�
1

4
ιec ιebΞ

bc ∧ θa − ιebΞ
ab

�
: ð16Þ

It is straightforward to check that the relations (15) and (16)
are indeed inverses of each other.
In the following sections we will make use of these

formulas, and consider the particular variations induced by
local Lorentz transformations and diffeomorphisms.

IV. LOCAL LORENTZ INVARIANCE

We now further demand that the action (9) be invariant
under (infinitesimal) local Lorentz transformations λab with
λðabÞ ¼ 0, which act on the tetrad and spin connection as

δλθ
a ¼ λabθ

b;

δλω
• a

b ¼ λacω
• c

b − ω
• a

cλ
c
b − dλab ¼ −D

•
λab: ð17Þ

It thus follows that the torsion transforms as

δλTa ¼ λabTb: ð18Þ

We remark that the scalar field and the matter fields we
consider are Lorentz scalars and hence transform trivially
under local Lorentz transformations, such that δλϕ ¼ 0

and δλ χ
I ¼ 0.

We start with the variation of the matter action under
Lorentz transformations, which is given by

δλSm ¼
Z
M
Σa ∧ ðλabθbÞ ¼

Z
M
Σ½a ∧ θb�λab: ð19Þ

1More precisely, the introduced objects Σa;Ψ;ΩI are twisted
forms, which means that their sign changes under changing the
orientation of the spacetime manifold. However, this distinction
will not be relevant for the purpose of this article, and so we omit
it for simplicity.
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This vanishes for arbitrary local Lorentz transformations if
and only if the energy-momentum 3-forms satisfy the
symmetry condition

Σ½a ∧ θb� ¼ 0: ð20Þ

Note that this holds both on shell and off shell, since we
have not used any field equations.
We then proceed analogously with the gravitational

action. Writing its variation in the form (12), one finds
that under local Lorentz transformations it transforms by

δλSg ¼
Z
M
½ϒa ∧ ðλabθbÞ þ Πa ∧ ðλabTbÞ�

¼
Z
M
ðϒ½a ∧ θb� þ Π½a ∧ Tb�Þλab: ð21Þ

It follows that the action is locally Lorentz invariant if and
only if

ϒ½a ∧ θb� þ Π½a ∧ Tb� ¼ 0: ð22Þ

Again we remark that this must hold both on shell and
off shell. We can equivalently start from the variation (11)
and find

δλSg ¼
Z
M

�
Δa ∧ ðλabθbÞ −

1

2
Ξa

b ∧ D
•
λab

�

¼
Z
M

�
Δ½a ∧ θb� −

1

2
D
•
Ξab

�
λab: ð23Þ

Hence, the condition for local Lorentz invariance reads

Δ½a ∧ θb� −
1

2
D
•
Ξab ¼ 0: ð24Þ

Using the relations (15) and (16) one easily checks that the
conditions (22) and (24) are equivalent.

V. DIFFEOMORPHISM INVARIANCE AND
ENERGY-MOMENTUM CONSERVATION

We now come to the discussion of diffeomorphism
invariance. Recall that under an infinitesimal diffeomor-
phism generated by a vector field ξ any tensor field changes
by its Lie derivative. For a differential form τ, the Lie
derivative can be expressed as

Lξτ ¼ ιξdτ þ dιξτ; ð25Þ

which is also known as Cartan’s (magic) formula.
We are in particular interested in the variation of the

matter action under diffeomorphisms, which is given by

δξSm ¼
Z
M
ðΣa ∧ Lξθ

a þΨ ∧ Lξϕþ ΩI ∧ Lξχ
IÞ: ð26Þ

Note that on shell the Euler-Lagrange equations ΩI ¼ 0
hold, so that the last term vanishes. We will therefore
consider only the first two terms, keeping in mind that the
resulting formulas hold only on shell. Using the Cartan
formula we can write

δξSm ¼
Z
M
ðΣa ∧ Lξθ

a þ Ψ ∧ LξϕÞ

¼
Z
M
½Σa ∧ ðdιξθa þ ιξdθaÞ þΨ ∧ ιξdϕ�

¼
Z
M
ðdΣa ∧ ιξθ

a þ Σa ∧ ιξdθa þΨ ∧ ιξdϕÞ

¼
Z
M
ðdΣa þ Σb ∧ ιeadθ

b þ Ψ ∧ ιeadϕÞξa: ð27Þ

Here we have expressed ξ in the tetrad basis ea to obtain the
scalar functions ξa ¼ ιξθ

a. The induced variation of the
matter action vanishes for arbitrary vector fields ξ if and
only if

dΣa þ Σb ∧ ιeadθ
b ¼ −Ψ ∧ ιeadϕ: ð28Þ

Note that for the Levi-Cività connection (7) holds:

Σb ∧ω
∘ b

a ¼−
1

2
ðΣb ∧ θcÞðιea ιecdθbþ ιec ιebdθa− ιeb ιeadθcÞ

¼−ðΣb ∧ θcÞιea ιecdθb
¼ Σb ∧ ιeadθ

b: ð29Þ

This finally allows us to write the diffeomorphism invari-
ance condition as

dΣa − ω
∘ b

a ∧ Σb ¼ D
∘
Σa ¼ −Ψ ∧ ιeadϕ: ð30Þ

This is the covariant conservation of the energy-momentum
3-forms. In the case of a minimal (vanishing) coupling of
the scalar field to the matter fields, Ψ ¼ 0, one obtains the

usual energy-momentum conservation D
∘
Σa ¼ 0.

VI. FIELD EQUATIONS

We finally discuss the field equations of the general
action (9). Already in the previous section we have
mentioned the matter field equations, which take the simple
form

ΩI ¼ 0: ð31Þ

The scalar field equation simply reads
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Φþ Ψ ¼ 0: ð32Þ

Next, we come to the tetrad field equations. These can most
easily be read off from the variation (11), using the fact that
the tetrad and the spin connection are varied independently,
and take the form

Δa þ Σa ¼ 0: ð33Þ

Using the relation (15), they can also be written in the form

ϒa − D
•
Πa þ Σa ¼ 0: ð34Þ

Note that the structure of the tetrad field equations is the
same as for the most general class of teleparallel gravity
theories without a scalar field [20]. The only difference lies
in the fact that now all terms may carry an implicit
dependence on the scalar field ϕ. It is helpful to consider
the antisymmetric part of these field equations separately
from the symmetric part. It can be written in different
alternative forms. From the expressions (33) and (34) we
find

Δ½a ∧ θb� ¼ ϒ½a ∧ θb� − D
•
Π½a ∧ θb� ¼ 0; ð35Þ

where we used the symmetry (20) of the energy-momentum
3-forms. Using the Lorentz invariance conditions (22) and
(24) we can also write

1

2
D
•
Ξab ¼ −D

• ðΠ½a ∧ θb�Þ ¼ −D
•
Π½a ∧ θb� − Π½a ∧ Tb� ¼ 0:

ð36Þ

Finally, we come to the field equation for the spin
connection. Recall that the spin connection in teleparallel
gravity theories is demanded to be flat, i.e., have vanishing
curvature (4). Hence, we may allow only variations of the
connection which preserve this condition, and they must

thus be of the form δω
• a

b ¼ D
•
πab with πðabÞ ¼ 0. From

the variation (11) one then immediately finds the field
equations

D
•
Ξab ¼ 0: ð37Þ

Note that these are simply the antisymmetric tetrad field
equations (36), which follows from the fact that the
teleparallel connection is a pure gauge d.o.f. This is a
direct generalization of the similar result for a number of
subclasses of teleparallel gravity theories [18,20,26] and
one of the main results of this article.

VII. CONFORMAL TRANSFORMATIONS

An interesting feature of the class of scalar-torsion
theories discussed in this article is its invariance under
conformal transformations of the tetrad and redefinitions
of the scalar field. In order to show this, we consider a
transformation of the tetrad and the scalar field of the form

θ̄a ¼ eγðϕÞθa; ēa ¼ e−γðϕÞea; ϕ̄ ¼ fðϕÞ; ð38Þ

where γ and f are functions of the scalar field which
determine the transformation. Note that we do not trans-
form the spin connection, as it is a pure gauge d.o.f., and
any allowed transformation could be absorbed by a local
Lorentz transformation. It then follows that the torsion
transforms as

T̄a ¼ eγðTa − γ0θa ∧ dϕÞ: ð39Þ

In order to transform the terms in the field equations
detailed in Sec. VI, which have been obtained from the
variations of the action displayed in Sec. III, we further
need to transform the variations of the dynamical fields. For
the variation of the tetrad one finds

δθ̄a ¼ eγðδθa þ γ0θaδϕÞ; ð40Þ

while the variation of the scalar field transforms as

δϕ̄ ¼ f0δϕ: ð41Þ

We also note that the variation of the torsion transforms as

δT̄a ¼ eγ½δTa − γ0δθa ∧ dϕ − γ0θa ∧ dδϕ

þ ðγ0Ta − γ02θa× ∧ dϕ − γ00θa ∧ dϕÞδϕ�: ð42Þ

Using these expressions, it is now straightforward to
transform the variation of the action. For the variation
(10) of the matter action we find

δSm ¼
Z
M
ðΣ̄a ∧ δθ̄a þ Ψ̄ ∧ δϕ̄þ Ω̄I ∧ δχ̄IÞ

¼
Z
M
½eγΣ̄a ∧ δθa þ ðf0Ψ̄þ γ0eγΣ̄a ∧ θaÞ

∧ δϕþ Ω̄I ∧ δχI�: ð43Þ

By comparison with the original expression (10) we can
thus read off the transformation rules

Σa ¼ eγΣ̄a; Ψ ¼ f0Ψ̄þ γ0eγΣ̄a ∧ θa; ΩI ¼ Ω̄I:

ð44Þ

We finally invert these relations, in order to obtain the
transformed (barred) quantities. These read
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Σ̄a ¼ e−γΣa; Ψ̄ ¼ 1

f0
ðΨ − γ0Σa ∧ θaÞ; Ω̄I ¼ ΩI:

ð45Þ

The same procedure can be applied to the gravitational part
of the action. From the variation (11) we obtain the
transformation rules

Δ̄a ¼ e−γΔa; Ξ̄a
b ¼ Ξa

b; Φ̄ ¼ 1

f0
ðΦ − γ0Δa ∧ θaÞ:

ð46Þ

Applying the same procedure to the equivalent variation
(12) yields, after a more lengthy calculation, the corre-
sponding transformation rules

ϒ̄a ¼ e−γðϒa − γ0Πa ∧ dϕÞ; Π̄a ¼ e−γΠa;

Φ̄ ¼ 1

f0
½Φ − γ0ðϒa − D

•
ΠaÞ ∧ θa�: ð47Þ

The same set of transformation rules can also be obtained
by applying the transformation (46) to the relations (15)
and (16). One now easily checks that all dynamical and
constraint equations derived in Secs. IV–VI retain their
form under these transformations, i.e., under replacing all
quantities with their transformed (barred) counterparts.
Note that for the energy-momentum conservation equa-
tion (30) this includes replacing the Levi-Cività connection
with the transformed connection

ω̄
∘
ab ¼ ω

∘
ab þ γ0ðηacιebdϕ − ηbcιeadϕÞ ∧ θc; ð48Þ

which is obtained by applying the transformation (38) to
the definition (7). This yields the conservation equation

0 ¼ D̄
∘
Σ̄a þ Ψ̄ ∧ ιēadϕ̄ ¼ e−γðD∘ Σa þΨ ∧ ιeadϕÞ; ð49Þ

whose proof requires also the symmetry (20) of the energy-
momentum 3-forms, and is omitted here for brevity. For
the Lorentz invariance conditions displayed in Sec. IV and
the field equations shown in Sec. VI the same notion of
invariance under conformal transformations and redefini-
tions of the scalar field follows immediately, and will thus
likewise be omitted here. This shows that the class of
theories considered in this section, as well as all results
derived, are invariant under these transformations, which is
another important result we present in this article.
We conclude this section with a remark that, due to being

very generic, the class of theories we consider here is
invariant also under a significantly larger group of trans-
formations. In principle one may replace the tetrad θa and
scalar field ϕ by arbitrary functions of these original
variables and their derivatives, while the action still retains

the form (9). A particularly interesting type of trans-
formation is given by disformal transformations

θ̄a ¼ Cðϕ; XÞθa þDðϕ; XÞηabðιebdϕÞdϕ ð50Þ

with X ¼ −ηabðιeadϕÞðιebdϕÞ=2, which is defined by two
functions C and D satisfying additional constraints to yield
an invertible transformation [29]. It is straightforward to
derive the corresponding transformation laws as we have
done for the conformal transformations in this section.
However, we will not enter this calculation, as it would
exceed the scope of this article.

VIII. GENERALIZATION TO MULTIPLE
SCALAR FIELDS

Instead of a single scalar field ϕwe now consider a scalar
field multiplet ϕ ¼ ðϕA; A ¼ 1;…; NÞ of N scalar fields.
The action (9) of the theory now depends on all scalar
fields, and thus takes the form

S½θa;ω• ab;ϕA; χI� ¼ Sg½θa;ω• ab;ϕA� þ Sm½θa;ϕA; χI�: ð51Þ

This action must accordingly be varied with respect to all
scalar fields, and thus the expressions for the variation
generalize correspondingly. For the variation of the matter
action (10) we now have the structure

δSm ¼
Z
M
ðΣa ∧ δθa þ ΨA ∧ δϕA þΩI ∧ δχIÞ; ð52Þ

while the variation (11) of the gravitational action in
connection variables reads

δSg ¼
Z
M

�
Δa ∧ δθa þ 1

2
Ξa

b ∧ δω
• a

b þΦA ∧ δϕA

�
;

ð53Þ

or, equivalently, the variation (12) in torsion variables,

δSg ¼
Z
M
ðϒa ∧ δθa þ Πa ∧ δTa þΦA ∧ δϕAÞ: ð54Þ

The dynamical equations derived from these variations
receive only minor modifications. Most notably, the
energy-momentum conservation (30) for the matter fields
now reads

D
∘
Σa ¼ −ΨA ∧ ιeadϕ

A; ð55Þ

and there are N scalar field equations of the form of (32),

ΦA þ ΨA ¼ 0: ð56Þ

However, all other field equations retain their structure,
although the terms therein depend on a larger number of
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scalar fields. Also the constraint equations associated to
local Lorentz invariance detailed in Sec. IV remain
unchanged, since the scalar fields are not affected by local
Lorentz transformations.
The difference between a single scalar field and multiple

scalar fields becomes most apparent in the discussion of
invariance under conformal transformations and scalar field
redefinitions, which we presented in Sec. VII. In the multi-
scalar-torsion case the combined transformation (38) reads

θ̄a ¼ eγðϕÞθa; ēa ¼ e−γðϕÞea; ϕ̄A ¼ fAðϕÞ: ð57Þ

Hence, instead of a single function f there are N functions
fA defining the scalar field redefinition, and these functions
as well as the conformal transformation γ depend on the
multiplet ϕ of all scalar fields. Alternatively, we may write
ϕ̄ ¼ f ðϕÞ for the scalar field redefinition. Also the formulas
for the transformation behavior of derived quantities
receive correction terms. In particular, we find the trans-
formation (39) of the torsion

T̄a ¼ eγðTa − γ;Aθ
a ∧ dϕAÞ; ð58Þ

as well as the transformation (48) of the Levi-Cività
connection

ω̄
∘
ab ¼ ω

∘
ab þ γ;AðηacιebdϕA − ηbcιeadϕ

AÞ ∧ θc; ð59Þ

where we introduced the notation

γ;A ¼ ∂
∂ϕA γ ð60Þ

for the derivative with respect to one of the scalar fields.
This now allows us to generalize the transformation
behavior of the variation of the action. In particular, the
formula (40) generalizes to

δθ̄a ¼ eγðδθa þ γ;Aθ
aδϕAÞ; ð61Þ

while the formula (41) generalizes to

δϕ̄A ¼ ∂ϕ̄A

∂ϕB δϕ
B: ð62Þ

Here the factor on the right-hand side is simply the
Jacobian of the function f , which determines the scalar
field redefinition. Further, the variation of the torsion
transforms as

δT̄a ¼ eγ½δTa − γ;Aδθ
a ∧ dϕA − γ;Aθ

a ∧ dδϕA

þ ðγ;ATa − γ;Aγ;Bθ
a ∧ dϕB − γ;ABθ

a ∧ dϕBÞδϕA�;
ð63Þ

generalizing the transformation formula (42). By compari-
son with the variation of the action we then find that the
terms in the field equations transform as

Ψ̄A ¼ ∂ϕB

∂ϕ̄A ðΨB − γ;BΣa ∧ θaÞ;

Φ̄A ¼ ∂ϕB

∂ϕ̄A ðΦB − γ;BΔa ∧ θaÞ;

ϒ̄a ¼ e−γðϒa − γ;AΠa ∧ dϕAÞ; ð64Þ

while the remaining terms keep their transformation
behavior detailed by the relations (45), (46) and (47).
One now easily checks that also this larger class of theories,
with N scalar fields instead of a single field, satisfies the
same notion of being closed under conformal transforma-
tions of the type (57), in the sense that the action and the
field equations retain their form.

IX. EXAMPLES

In order to show the applicability of the results we
obtained in the previous sections, we finally display two
examples. Here we restrict ourselves to classes of theories,
which are by themselves very general, and contain a wide
range of well-studied teleparallel scalar-torsion models. In
particular, we discuss gravity theories defined by a con-
stitutive relation in Sec. IX A, and a newly introduced class
of theories defined by a free function of four scalar
quantities in Sec. IX B.

A. Constitutive relations and second
order field equations

In a recent work [20] we showed how the action of any
teleparallel gravity theory with second order field equations
can be expressed in the form

Sg½θa;ω• ab� ¼
1

2

Z
M
Ta ∧ Haðθa; TaÞ; ð65Þ

where the excitation 2-forms Ha are defined by a con-
stitutive relation as an algebraic function Haðθa; TaÞ of the
coframe and the torsion. We argued that also a scalar field
may be included in the constitutive relation, Haðθa; Ta;ϕÞ,
and gave a specific example. This motivates considering a
class of theories based on a constitutive relation involving
an arbitrary number of scalar fields, whose action reads

Sg½θa;ω• ab;ϕA� ¼ 1

2

Z
M
Ta ∧ Haðθa; Ta;ϕAÞ þ Sϕ½θa;ϕA�;

ð66Þ

where the scalar field action Sϕ determines the dynamics of
the scalar fields through suitable kinetic and potential
terms, and is also assumed to be locally Lorentz invariant.
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It is now straightforward to apply the analysis performed in
this article to this class of theories; see [20], where this is
already partially done.
We conclude the discussion of this class of theories with

a remark on its behavior under conformal transformations.
It can be seen from the transformation laws (39) and (58) of
the torsion that the appearing factor eγ, which rescales the
torsion tensor, can be absorbed into the transformation of
the constitutive relation Haðθa; Ta;ϕÞ. However, this is not
the case for the additive term involving derivatives of the
scalar field, which is in general nonminimally coupled to
torsion, and thus cannot be decomposed into contributions
to the constitutive relation and the scalar field action Sϕ.

B. LðT;X;Y;ϕÞ theory
The nonminimal derivative coupling between the scalar

field and the torsion tensor arising from a conformal
transformation of the action (66) motivates studying actions
in which such terms are included. We therefore propose a
new generic class of theories, which is constructed by
assuming a Lagrangian that is a free function of four scalar
quantities, which we define as follows. First, we write the
torsion in the tetrad basis as

Ta ¼ 1

2
Ta

bcθ
b ∧ θc; Ta

bc ¼ ιec ιebT
a: ð67Þ

We then define the superpotential

Sabc ¼
1

2
χa

bc
d
efTd

ef; ð68Þ

where the constitutive tensor is given by

χa
bc

d
ef ¼ ηadη

e½bηc�f þ 2δ½cd η
b�½eδf�a − 4δ½ca ηb�½eδ

f�
d : ð69Þ

From this we can define the torsion scalar

T ¼ 1

2
Ta

bcSabc ¼
1

4
TabcTabc þ

1

2
TabcTcba − Ta

baTcb
c:

ð70Þ

We further define the scalar field kinetic term

X ¼ −
1

2
ηabιeadϕιebdϕ; ð71Þ

as well as the kinetic coupling term

Y ¼ Ta
abιecdϕη

bc: ð72Þ

Finally, the gravitational Lagrangian of the theory is given
as a free function of the three aforementioned quantities and
the scalar field, such that the gravitational part of the action
reads

Sg½θa;ω• ab;ϕA� ¼
Z
M
LðT; X; Y;ϕÞθ0 ∧ θ1 ∧ θ2 ∧ θ3:

ð73Þ
With the definitions given above it is now straightforward to
use the formalism detailed in this article in order to derive the
gravitational field equations; see [27] for a detailed dis-
cussion and full derivation of various properties of this class
of theories. In particular, we show that this class of theories is
algebraically closed under conformal transformation; i.e., a
conformal transformation of the action (73) yields another
action of the same form, but with a different functional form
of the Lagrangian L. We finally remark that also in this case
the field equations are (at most) of second derivative order,
since the action functional contains at most first order
derivatives of the fundamental field variables.

X. CONCLUSION

In this article we have discussed the most general class of
scalar-torsion theories of gravity, in which one or more
scalar fields are coupled to the tetrad and flat spin
connection of teleparallel geometry. We have restricted
the theories only by demanding invariance under local
Lorentz transformations and diffeomorphisms, as well as
by excluding a direct coupling of matter fields to the
teleparallel spin connection. As the main result, we have
investigated a number of statements, which have been
previously discussed in the context of narrower classes of
teleparallel gravitational theories, and proven that they also
hold for this very broad class of theories. In particular, we
have shown how the condition of local Lorentz invariance
causes the field equations for the teleparallel spin con-
nection to be equal to the antisymmetric part of the tetrad
field equations. As a consequence, the spin connection
becomes a pure gauge d.o.f. Further, we have shown that
conformal transformations of the tetrad and scalar field
redefinitions relate different theories within this class.
In order to show the applicability of the results we derived

in this work, we listed two classes of example theories which
are covered by the formalism we derived, and which by itself
are broad enough to contain plenty of interesting theories and
subclasses. Both classes have in common that their field
equations are at most of second derivative order, since their
actions are constructed only from terms that are of first
derivative order in the fundamental fields. However, note that
wemade no restriction on the derivative orders in the theories
we considered in this article. Hence, more general examples,
involving also higher derivatives, may be conceived.
Various other aspects of the generic class of scalar-tensor

theories we discussed here may be studied. For example, it
may be discussed how spacetime symmetries can be
exploited in order to narrow the possible solutions for
the fundamental fields, to simplify the field equations, and
potentially derive generic solutions for a larger class of
theories [30,31]. One may also consider using the
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derivations presented here in order to discuss phenomeno-
logical aspects, or construct a general formalism for the
phenomenology of scalar-torsion theories of gravity.
Finally, one may exploit alternative formulations of tele-
parallel gravity, for example, as a higher gauge theory [32],
in order to extend our results to related classes of gravity
theories based on more general geometric backgrounds.
The work we presented here is foundational, and allows

for various generalizations. While in this article we con-
sidered only conformal transformations of the tetrad and
scalar field redefinitions in order to relate different theories
in the generic class we studied, also more general trans-
formations may easily be calculated, and enlarge the classes
of related theories. A particular example worth mentioning
is given by disformal transformations, which are used in
scalar-tensor theories in order to relate different theories
from the (beyond) Horndeski class [29]. This could in turn
be exploited in order to construct the teleparallel equivalent
of Horndeski gravity, in full analogy to the previously
derived teleparallel equivalent of Lovelock gravity [33].
In this article we considered only scalar fields which are

nonminimally coupled to the tetrad and spin connection of
teleparallel geometry. One may relax this condition and

also allow for more general tensor fields in the gravitational
part of the action. Of particular interest could be additional
fields carrying Lorentz indices, which would therefore
transform nontrivially under local Lorentz transformations.
As with the scalar fields in this article, one may also allow
these additional fields to couple nonminimally to matter
fields. Finally, one may relax the condition that there is no
direct coupling between matter and the teleparallel spin
connection. This would be interesting in particular in the
presence of spinning matter, which is the source of torsion
in Einstein-Cartan gravity, where torsion appears as an
independent d.o.f. in addition to the metric.
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