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It is (or should be) well known that specification of a heat bath requires both a temperature and a
4-velocity, the rest frame of the heat bath. In static spacetimes there is a very natural and unique candidate
for the 4-velocity of the heat bath, the normalized timelike Killing vector. However in stationary nonstatic
spacetimes the situation is considerably more subtle, and several different “natural” 4-velocity fields
suitable for characterizing the rest frame of a heat bath can be defined—thus Buchdahl’s 1949 analysis for
the Tolman temperature gradient in a stationary spacetime is only part of the story. In particular, the heat
bath most suitable for describing the Hawking radiation from a rotating black hole is best described in terms
of a gradient flow normal to the spacelike hypersurfaces, not in terms of Killing vectors.
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I. INTRODUCTION

In 1930, Tolman [1] and later Tolman and Ehrenfest
[2], discovered the existence of relativistic temperature
gradients for fluids in thermal equilibrium in static space-
times. (See also the related Refs. [3–5]). In more modern
language, the locally measured temperature is typically
presented as

TðxÞ ¼ T0

kKk ; ð1:1Þ

where kKk is the norm of the static Killing vector which
is parallel to the fluid 4-velocity, and T0 is a position-
independent constant, which represents the physical tem-
perature at the zero gravitational potential hypersurface.
(For recent discussions see Refs. [6,7]. For somewhat older
reviews on relativistic thermodynamics see Refs. [8–10]).
Herein we argue that the standard presentation requires
some important caveats and extensions.
In 1949 Buchdahl [11] formally extended Tolman’s

result to fluids in stationary spacetimes following the
timelike Killing vector

Ka ¼ ð∂tÞa ¼ ð1; 0; 0; 0Þa; ð1:2Þ

with a result that looks superficially identical to Tolman’s
result, but with some additional subtleties that we explore
and extend in the current article.
One key point is this: Temperature is certainly a scalar,

but defining a heat bath also requires you to specify the
4-velocity of the heat bath. In his 1928–1933 papers,
Tolman was always dealing with static spacetimes, where
the notion of a preferred 4-velocity exists and to pick the
static observer was a very natural choice. This can most

easily be seen by putting the metric into its preferred block-
diagonal form,

ds2 ¼ gttdt2 þ gijdxidxj; ð1:3Þ

in which the “Killing flow” is defined to be the unique
naturally defined 4-velocity,

Va ¼ K̂a ¼ Ka

kKk ¼ ð1; 0; 0; 0Þaffiffiffiffiffiffiffiffi−gtt
p : ð1:4Þ

(As discussed below, this Killing flow is compatible with
thermal equilibrium). One can then rewrite Tolman’s result
for static spacetimes as

TðxÞ ¼ T0

kKk ¼ T0ffiffiffiffiffiffiffiffi−gtt
p : ð1:5Þ

However, this result needs to be modified for stationary
nonstatic spacetimes. We argue that Buchdahl’s 1949 result
[11], known and used up to today, is actually incomplete
and valid only for a very specific class of 4-velocities.
Choosing an ADM-like decomposition for the metric,

ds2 ¼ −N2dt2 þ hijðdxi − vidtÞðdxj − vjdtÞ; ð1:6Þ

with inverse

gab ¼
� −1=N2 −vj=N2

−vi=N2 hij − vivj=N2

�
; ð1:7Þ

there is now no unique naturally defined 4-velocity.
One possible option is to nevertheless keep using the

Killing flow, though even the Killing flow is not unique in
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stationary spacetimes with axial symmetry (such as the
physically important Kerr and Kerr–Newman black holes
[12–14]). We have more to say on this point below, where
we consider arbitrary (constant coefficient) linear combi-
nations of the time translation and axial Killing vectors.
Another appealing option is to consider the “normal

flow” (which is orthogonal to the constant time slices),

N̂a ¼ −
∇at
k∇tk ¼ Nð−1; 0; 0; 0Þa: ð1:8Þ

In static spacetimes the normal flow and Killing flow can be
made to coincide, but not otherwise.
Collectively, these observations indicate that some care

and delicacy should be invoked when extending the
discussion of Tolman temperature gradients to stationary
spacetimes—this is the entire import of the discus-
sion below.

II. PHOTON GAS

Start by observing that a photon gas in internal equi-
librium satisfies the equation of state

ρ ¼ 3p ¼ aT4: ð2:1Þ
Here the ρ ¼ 3p condition comes from the fact that
photons have zero rest mass, while a is the radiation
constant coming from the Stefan-Boltzmann law. Now
consider the relativistic Euler equation for a perfect fluid

ðρþ pÞAa ¼ −ðδab þ VaVbÞ∇bp: ð2:2Þ
For a photon gas this first simplifies to

Aa ¼ −ðδab þ VaVbÞ∇b lnT: ð2:3Þ
But, as an absolute minimum condition, internal thermal
equilibrium implies

Vb∇bT ¼ 0: ð2:4Þ
(In thermal equilibrium the temperature should be time
independent as one moves with the fluid). So the Euler
equation further reduces to

Aa ¼ −∇a lnT: ð2:5Þ
This now intimately connects thermal gradients with the
4-acceleration of the photon fluid.
However, as shown by Tolman and Ehrenfest [2], and

recently discussed in a modern reinterpretation [6,7] of
Maxwell’s two-column argument [15,16], the temperature
gradient must not depend on the substance, or on the
state of matter. Therefore this result, Eq. (2.5), is auto-
matically extended to arbitrary systems in internal thermal
equilibrium.
Specifically, for any photon gas in free fall we have

A ¼ 0, and so TðxÞ is actually a position-independent

constant, as expected. Tolman temperature gradients are
zero for any fluid following a geodesic path.
In counterpoint, if the heat bath is accelerating (that is,

the 4-acceleration is nonzero), then expanding around some
fiducial point xa0, to lowest order we have

TðxÞ ¼ Tðx0Þf1þ Aaðxa − xa0Þ þOð½Δx�2Þg: ð2:6Þ

Therefore, for any accelerating thermal bath, we do expect
temperature gradients in thermal equilibrium.
Making this statement even more clear, Eq. (2.5) tells us

the relation between the fluid’s 4-acceleration and its
temperature gradient, regardless of whether the spacetime
is Minkowski, or Schwarzschild, or Kerr-Newman. The
spacetime can be flat, curved, stationary, static, whatever—
if the 4-acceleration of the fluid (assumed to obey the
relativistic Euler equation and to be in internal equilibrium)
is given, the temperature gradient can be obtained.

III. TOLMAN 1930: KILLING FLOW

For completeness, let us now see how a simplified
derivation of Tolman’s result can be obtained. (The
derivation is simplified in the sense that this derivation
makes it clear that the Einstein equations are absolutely not
necessary for obtaining relativistic temperature gradients).
Consider a static spacetime with the metric presented in

the block-diagonal form of Eq. (1.3). It is a standard well-
known result that world lines “at rest” are subject to a
nonzero 4-acceleration given by

Aa ¼ ∇a ln
ffiffiffiffiffiffiffiffi
−gtt

p
: ð3:1Þ

(A formal proof of this result is subsumed into the more
general Buchdahl result discussed below). Combined
with Eq. (2.5) this immediately leads to the condition
TðxÞ ffiffiffiffiffiffiffiffi−gtt

p ¼ ðconstantÞ, which is Tolman’s key result
[1,2]. As alluded to above, extending this result to sta-
tionary spacetimes requires care and delicacy.

IV. BUCHDAHL 1949: KILLING FLOW

From a modern perspective Buchdahl’s 1949 result can
be extended as follows: Suppose we have some arbitrary
timelike Killing vector (not necessarily the time-translation
Killing vector; neither does it need to be hypersurface
orthogonal) in a spacetime which is either static or sta-
tionary. Now assume a fluid following some world line in
this metric. We want to know whether this system exhibits
Tolman-like temperature gradients or not. If we choose the
fluid to follow integral curves of the Killing vector, as in

Va ¼ K̂a ¼ Ka

kKk ; ð4:1Þ

then the fluid 4-acceleration can be easily computed.
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We start by noting that

Ka∇aðgbcKbKcÞ ¼ 2gbcðKa∇aKbÞKc

¼ 2Ka∇ðaKcÞKc ¼ 0: ð4:2Þ

We now compute

Aa ¼ Vb∇bVa ¼ Vb∇b

�
Ka

kKk
�

¼ Vb∇bKa

kKk : ð4:3Þ

Here we have used the fact that gabKaKb ¼ −kKk2, so
Kb∇bkKk ¼ 0. Applying Killing’s equation,

Aa ¼ −
Vb∇aKb

kKk ¼ 1

2

∇aðkKk2Þ
kKk2 : ð4:4Þ

Then

Aa ¼ ∇a ln kKk: ð4:5Þ

This purely kinematic result, valid for any Killing flow,
really is the key part of Buchdahl’s 1949 result; the rest is
(in view of Tolman’s 1930 analysis) straightforward.
Combined with Eq. (2.5) this immediately leads to

TðxÞ ¼ T0

kKk : ð4:6Þ

Here K is now any timelike Killing vector, as long as the
fluid follows integral curves of that same Killing vector.
It is then clear how temperature gradients depend on the

system’s 4-velocity. For a distorted rotating body (without
axial symmetry) there is only one timelike Killing vector,
keeping life simple. But for a stationary axisymmetric
spacetime (e.g., the Kerr or Kerr-Newman spacetimes)
there are two “fundamental” Killing vectors—the time-
translation and rotational Killing vectors. Any (constant)
linear combination of these Killing vectors is again a
Killing vector—so there are infinitely many timelike
Killing vectors to choose from, each one with a different
norm, resulting in distinct internal temperature gradients.
The physics message here is this: When applying the

Tolman temperature gradient argument in stationary space-
times, even if you restrict attention to Killing flows, you
have to extremely carefully specify the 4-velocity of the
particular thermal bath you are interested in. The situation
is even more subtle once one considers normal flows.

V. EQUILIBRIUM NORMAL FLOW

In a stationary spacetime the other natural option is
to take the fluid to follow a normal flow, such that
Va ∝ −gab∇bt. [See Eq. (1.8).]

Explicitly,

Va ¼ N̂a ¼ ð1; viÞ
N

; ð5:1Þ

or even

Va ¼ −
∇at
k∇tk ; k∇tk ¼

ffiffiffiffiffiffiffiffi
−gtt

p
¼ 1

N
: ð5:2Þ

Here the minus sign is introduced to keep Va future
directed. Besides that, normal flows are automatically
vorticity free in the sense that ω ¼ �ðV ∧ dVÞ ¼ 0, a
commonly occurring condition in many physically inter-
esting situations [17,18].
By construction we have Ka∇at ¼ 1 for the timelike

Killing vector. This implies that, for the Lie derivative,
we have

LK∇at ¼ Kb∇b∇atþ∇aKb∇bt ¼ 0: ð5:3Þ

That is, LK∇at ¼ 0, implying LKk∇atk ¼ 0. Also,
since we want the fluid traveling along the normal flow
to be in internal equilibrium, the fluid should see a “time-
independent” environment. Whence we must demand the
two (somewhat nontrivial) compatibility conditions,

Va∇aN ¼ 0; ð5:4Þ

and

Va∇ap ¼ 0: ð5:5Þ

The second compatibility condition is actually the natural
extension of the previously imposed thermal equilibrium
condition Va∇aT ¼ 0, originally applied to a photon gas to
obtain (2.5), but now extended to general fluids.
For such an equilibrium-compatible normal flow, cal-

culating the 4-acceleration is easy but slightly different
from the calculation for a Killing flow,

Aa ¼ Vb∇bVa ¼ −Vb∇b

� ∇at
k∇tk

�
¼ −

Vb∇b∇at
k∇tk : ð5:6Þ

We cannot now apply Killing’s equation; instead we can
use ∇b∇at ¼ ∇a∇bt, so that

Aa ¼ −
Vb∇a∇bt
k∇tk ¼ −

1

2

∇aðk∇tk2Þ
k∇tk2 : ð5:7Þ

In this way, for a normal flow satisfying the compati-
bility condition (5.4), we have the following purely
kinematic result,

Aa ¼ −∇a ln k∇tk: ð5:8Þ

TOLMAN-LIKE TEMPERATURE GRADIENTS IN … PHYS. REV. D 98, 064001 (2018)

064001-3



Given Eq. (5.1), this is equivalent to

Aa ¼ ∇a lnN: ð5:9Þ
Note VaAa ¼ 0. This is formally somewhat similar to
Buchdahl’s result for Killing flows; see Eq. (4.5), with
kKk → N.
In static spacetimes (in block-diagonal form) we have

gttgtt ¼ 1, implying that for the time-translation Killing
vector k∇tkkKk ¼ 1. Therefore, for static spacetimes, both
Tolman’s original computation for 4-acceleration and the
normal flow calculation just shown can be made to
coincide. For stationary spacetimes, on the other hand,
they can and typically will be physically different.
Combined with Eq. (2.5) this immediately leads to

TðxÞ ¼ T0k∇tk ¼ T0

ffiffiffiffiffiffiffiffi
−gtt

p
¼ T0

N
: ð5:10Þ

This is the analogue of Buchdahl’s 1949 result, but now
applied to (equilibrium-compatible) normal flows. Note
this is a very different physical setup from the Buchdahl
1949 result [11], even if the final result superficially looks
very similar.

VI. EXAMPLE: FREE FALL NORMAL FLOW

Let us now consider several simple illustrative examples.

A. Schwarzschild/Reissner-Nordstrom

For either Schwarzschild or Reissner-Nordstrom space-
times let us choose to use Painleve-Gullstrand coordinates
[19–24], wherein

ds2 ¼ −dt2 þ
�
dr −

ffiffiffiffiffiffiffiffiffiffiffiffi
2mðrÞ

r

r
dt

�2

þ r2ðdθ2 þ sin2θdϕ2Þ:

ð6:1Þ
(The spacetime is in this case static, but not manifestly
static, since we have chosen to write the metric in non-
diagonal form).
Consider the normal flow Va ∝ −gab∇bt. Then N ¼ 1,

and k∇tk ¼ 1=N ¼ 1, from which Eq. (5.9) implies a zero
4-acceleration. That is, our “reference fluid” is in free fall.
Using then Eq. (2.5), we obtain that TðxÞ ¼ ðconstantÞ.
So we explicitly see that a fluid in a freely falling box (in

Schwarzschild or Reissner-Nordstrom spacetime) will not
exhibit a Tolman temperature gradient (which is exactly
what you should expect based on the equivalence princi-
ple). Furthermore, this particular normal flow automatically
satisfies the compatibility conditions (5.4) and (5.5)
a priori.
This agrees with our previous general analysis of Sec. II,

but now we have a completely explicit expression for the
4-velocity of the relevant thermal bath,

Va ¼ ð1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðrÞ=r

p
; 0; 0Þ: ð6:2Þ

B. Static spherically symmetric spacetimes

Any static spherically symmetric spacetime can (at least
locally) be put in the form

ds2 ¼ −dt2 þ hðrÞðdr − vðrÞdtÞ2 þ r2ðdθ2 þ sin2θdϕ2Þ:
ð6:3Þ

(The spacetime is static, but not manifestly static, since we
have chosen to write the metric in nondiagonal form).
The normal flow is now

Va ¼ ð1; vðrÞ; 0; 0Þ; ð6:4Þ
and is again geodesic. A freely falling fluid following this
trajectory will not see any Tolman temperature gradient.

C. Kerr/Kerr-Newman

For the Kerr or Kerr-Newman spacetime let us choose to
work in the Doran coordinate system [13,25,26]. The
normal flow, in these Doran coordinates, is

N̂a ¼ −∇at ¼ ð−1; 0; 0; 0Þa: ð6:5Þ
We have k∇tk ¼ N−1 ¼ 1. (See for instance
Refs. [13,25,26]). From Eq. (5.9) this implies A ¼ 0.
That is, our reference fluid is now in free fall, obeying
the compatibility conditions (5.4) and (5.5), and we again
deduce TðxÞ ¼ ðconstantÞ.
Thus, again we see that a gas confined in a freely falling

box (in Kerr or Kerr-Newman spacetime) does not exhibit a
Tolman temperature gradient (which is exactly what you
should expect based on the equivalence principle).

VII. EXAMPLE: TEMPERATURE GRADIENTS
FOR BLACK HOLE SPACETIMES

A. Some Killing flows

When dealing with axisymmetric spacetimes in which
the geometry is asymptotically flat, the natural timelike
Killing vector is (1,0,0,0), adopting coordinates (t, r, θ, ϕ),
and the rotational Killing vector is (0,0,0,1). In this way,
vectors of the form (1,0,0,Ω) are also timelike Killing
vectors for such a spacetime.
Looking at some interesting cases,
(i) The Ω ¼ 0 Killing vector (1,0,0,0) is well behaved

at spatial infinity, giving us

TðxÞ ¼ T0ffiffiffiffiffiffiffiffi−gtt
p ¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2 − hijvivj
q ; ð7:1Þ

where vi is defined in (1.6). However, for both Kerr
or Kerr Newman, its norm kð1; 0; 0; 0Þk is 0 at the
ergosurface—not at the horizon.

(ii) For Kerr or Kerr Newman, setting Ω → ΩH the
angular velocity of the horizon, the Killing vector
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ð1; 0; 0;ΩHÞ has a norm kð1; 0; 0;ΩHÞk, which is 0
at the horizon—not at the ergosurface. But this
Killing vector has the annoying feature that its norm
also vanishes in the asymptotic region, near
r sin θ ≈ 1=ΩH. (This is merely an “annoyance,”
not a “problem”; the same thing happens for a
rotating coordinate system in flat Minkowski space).
In this situation

TðxÞ ¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − hϕϕðvϕ −ΩHÞ2

q : ð7:2Þ

This clearly is a different generalization of Tolman’s
result.

So either the Killing vector is well behaved at spatial
infinity, but problematic at the ergosurface, or it is well
behaved at the horizon but problematic sufficiently far from
the axis of rotation. Worse, if we take a generic constant Ω
such that 0 ≠ Ω ≠ ΩH then the resulting Killing vector
Ka ¼ ð1; 0; 0;ΩÞ has null surfaces (and so formally infinite
local Tolman temperatures) that correspond neither to the
horizons nor to the ergosurfaces. This now leads us to
analyze what happens when the flows are not generated by
Killing vectors.

B. ZAMO normal flow

In the specific case of axial symmetry, the normal flow
Va ∝ −gab∇bt is often referred to as a zero angular
momentum observer (ZAMO) flow. Now let us further
specialize to Boyer-Lindquist coordinates, where (under
mild technical conditions) we can, using (t, r, θ, ϕ)
coordinates, block diagonalize the metric into the form
[27,28]

gab ¼

2
6664
gtt 0 0 gtϕ
0 grr 0 0

0 0 gθθ 0

gtϕ 0 0 gϕϕ

3
7775: ð7:3Þ

The inverse metric is easily computed,

gab ¼

2
6664

gϕϕ=g2 0 0 −gtϕ=g2
0 1=grr 0 0

0 0 1=gθθ 0

−gtϕ=g2 0 0 gtt=g2

3
7775: ð7:4Þ

Here g2 ¼ gttgϕϕ − g2tϕ, and detðgabÞ ¼ g2grrgθθ.
Note that gtt ¼ 0 defines the ergosurfaces, where the

time-translation Killing vector ð1; 0; 0; 0Þa becomes null. In
contrast, horizons are defined by the condition gtt ¼ ∞,
equivalent to ðgttÞ−1 ¼ 0. If gtϕ → 0, then horizons and
ergosurfaces coalesce, but for gtϕ ≠ 0 they are distinct.

The normal flow, in these Boyer-Lindquist coordinates,
is then

N̂a ¼ −
∇at
k∇tk ¼ ð−1; 0; 0; 0Þffiffiffiffiffiffiffiffi

−gtt
p ¼

ffiffiffiffiffiffiffiffi−g2
gϕϕ

r
ð−1; 0; 0; 0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt þ

g2tϕ
gϕϕ

s
ð−1; 0; 0; 0Þ: ð7:5Þ

The corresponding flow vector (contravariant vector) is

Va ¼ N̂a ¼
ffiffiffiffiffiffiffiffi
gϕϕ
−g2

r �
1; 0; 0;−

gtϕ
gϕϕ

�
: ð7:6Þ

In terms of the time-translation and axial Killing vectors
(and now defining ϖ ¼ −gtϕ=gtt), we have

Va ¼ ½KT �a þϖ½Kϕ�a
kKT þϖKϕk

: ð7:7Þ

This is not a (normalized) Killing vector, becauseϖ is not a
constant; it still has (r, θ) dependence. Indeed we have

kKT þϖKϕk2 ¼ −ðgtt þ 2ϖgtϕ þϖ2gϕϕÞ

¼ −
�
gtt −

g2tϕ
gϕϕ

�

¼ −
g2
gϕϕ

¼ −
1

gtt
¼ N2: ð7:8Þ

This particular normal flow automatically satisfies the
compatibility conditions (5.4) and (5.5) [because both N
and p are functions of (r, θ) only, whereas the vector Va lies
in the (t, ϕ) plane].
Since this is a special case of a normal flow we still find

TðxÞ ¼ T0k∇tk ¼ T0

N
¼ T0

ffiffiffiffiffiffiffiffi
−gtt

p
: ð7:9Þ

In terms of these Boyer-Linquist coordinates and the free
parameters m and a,

TðxÞ ¼ T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mrðr2 þ a2Þ

ða2 − 2mrþ r2Þðr2 þ a2cos2θÞ

s
:

Noticing that ða2 − 2mrþ r2Þ ¼ 0 defines the event hori-
zon, we have

TðxÞ ¼ T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mrðr2 þ a2Þ

ðr − rþÞðr − r−Þðr2 þ a2cos2θÞ

s
;

where r� represent the outer and inner horizons for a Kerr
black hole.
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So for this particular ZAMO gradient flow, which is
definitely not a Killing flow, the redshifted temperature is
well behaved from just above the horizon all the way out to
spatial infinity with

TðxÞ → T0 for r → ∞

and diverging only at the event horizon. This observation is
useful for thinking about how to redshift the Hawking
temperature for Kerr and Kerr-Newman black holes from
the horizon (where the locally measured Hawking temper-
ature diverges) out to spatial infinity (where the locally
measured Hawking temperature is finite).
Note that the choice of coordinates (e.g., Boyer-

Lindquist versus Doran) does not change the physics;
rather the choice of coordinates guides one as to choosing
some physically appropriate 4-velocity for the heat bath;
and it is this physical choice of 4-velocity for the heat bath
that is responsible for physical differences in the Tolman
temperature gradient.

VIII. CONCLUSIONS

We have seen that the existence and nature of Tolman
temperature gradients depends both on the spacetime in
question and on the choice of 4-velocity for the heat bath of
interest. For a heat bath that follows the trajectories of any
timelike Killing vector one has

Aa ¼ ∇a ln kKk ¼ −∇a lnT; TðxÞ ¼ T0

kKk :

For a heat bath that follows the trajectories of a suitably
chosen normal flow one has

Aa ¼ ∇a lnN ¼ −∇a lnT; TðxÞ ¼ T0

N
:

Sometimes these are the same (static spacetimes in block-
diagonal form), but typically they are different.
Also, given gravity’s universality, the temperature gra-

dient in thermal equilibrium states cannot depend on which
material one is considering. In this way, the relation
between fluid 4-acceleration and the equilibrium temper-
ature gradient present in the system must be the same as
that obtained for a photon gas in this paper, given by

Aa ¼ −∇a lnT:

This general formula must work for all possible thermo-
dynamically compatible 4-velocity fields. By choosing a
free-fall normal flow, the Tolman temperature gradient can
be made to vanish. By choosing a normal flow compatible
with Boyer-Lindquist coordinates, one can make a plau-
sible definition of redshifted Hawking temperature that
works all the way from the horizon to spatial infinity.
Finally it is worth emphasizing yet again that the existence

of Tolman temperature gradients cannot be separated from
some choice as to the 4-velocity of the heat bath. This has
been implicit in many previous calculations [29–36], but it is
worthwhile to make this point explicit.
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relativité, C. R. Acad. Sci. (Paris) 173, 677 (1921).

[20] A. Gullstrand, Allgemeine Lösung des statischen Einkör-
perproblems in der Einsteinschen Gravitationstheorie,
Ark. Mat. Astron. Fys. 16, 1 (1922).

[21] W. G. Unruh, Experimental Black Hole Evaporation, Phys.
Rev. Lett. 46, 1351 (1981).

[22] M. Visser, Acoustic propagation in fluids: An unexpected
example of Lorentzian geometry, arXiv:gr-qc/9311028.

[23] M. Visser, Acoustic black holes: Horizons, ergospheres, and
Hawking radiation, Classical Quantum Gravity 15, 1767
(1998).

[24] C. Barceló, S. Liberati, and M. Visser, Analogue gravity,
Living Rev. Relativity 8, 12 (2005); 14, 3 (2011).

[25] C. Doran, A new form of the Kerr solution, Phys. Rev. D 61,
067503 (2000).

[26] A. J. S. Hamilton and J. P. Lisle, The river model of black
holes, Am. J. Phys. 76, 519 (2008).

[27] R. M. Wald, General Relativity (University of Chicago
Press, Chicago, 1984).

[28] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[29] W. Israel, Thermofield dynamics of black holes, Phys. Lett.
57A, 107 (1976).

[30] G. Abreu and M. Visser, Tolman Mass, Generalized Surface
Gravity, and Entropy Bounds, Phys. Rev. Lett. 105, 041302
(2010).

[31] G. Abreu and M. Visser, Entropy bounds for uncollapsed
rotating bodies, J. High Energy Phys. 03 (2011) 056.

[32] G. Abreu and M. Visser, Entropy bounds for uncollapsed
matter, J. Phys. Conf. Ser. 314, 012035 (2011).

[33] G. Abreu, C. Barceló, andM. Visser, Entropy bounds in terms
of the w parameter, J. High Energy Phys. 12 (2011) 092.

[34] T. Padmanabhan, Gravity and the thermodynamics of
horizons, Phys. Rep. 406, 49 (2005).

[35] S. Kolekar and T. Padmanabhan, Ideal gas in a strong
gravitational field: Area dependence of entropy, Phys. Rev.
D 83, 064034 (2011).

[36] S. Bhattacharya, S. Chakraborty, and T. Padmanabhan,
Entropy of a box of gas in an external gravitational
field—revisited, Phys. Rev. D 96, 084030 (2017).

TOLMAN-LIKE TEMPERATURE GRADIENTS IN … PHYS. REV. D 98, 064001 (2018)

064001-7

https://doi.org/10.1088/1367-2630/12/9/095014
http://arXiv.org/abs/1802.04785
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
http://arXiv.org/abs/gr-qc/9311028
https://doi.org/10.1088/0264-9381/15/6/024
https://doi.org/10.1088/0264-9381/15/6/024
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.1103/PhysRevD.61.067503
https://doi.org/10.1103/PhysRevD.61.067503
https://doi.org/10.1119/1.2830526
https://doi.org/10.1016/0375-9601(76)90178-X
https://doi.org/10.1016/0375-9601(76)90178-X
https://doi.org/10.1103/PhysRevLett.105.041302
https://doi.org/10.1103/PhysRevLett.105.041302
https://doi.org/10.1007/JHEP03(2011)056
https://doi.org/10.1088/1742-6596/314/1/012035
https://doi.org/10.1007/JHEP12(2011)092
https://doi.org/10.1016/j.physrep.2004.10.003
https://doi.org/10.1103/PhysRevD.83.064034
https://doi.org/10.1103/PhysRevD.83.064034
https://doi.org/10.1103/PhysRevD.96.084030

