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We consider how a nearly massless scalar field conformally and disformally coupled to matter can affect
the dynamics of gravitationally interacting bodies. We focus on the case of two interacting objects, and we
obtain the effective metric driving the dynamics of the two-body system when reduced to one body in the
center-of-mass frame. We then concentrate on the case of a light particle in the scalar and gravitational
fields generated by a heavy object and find the effects of the conformal and disformal couplings on the
body’s trajectory such as the advance of the perihelion and the Shapiro time delay. The disformal coupling
leads to a negligible contribution to the Shapiro effect and therefore no constraint from the Cassini
experiment. On the other hand, it contributes to the perihelion advance leading to a weak bound on the
strength of the disformal coupling itself. Finally, we remark that the disformal coupling gives rise to a
contribution to the perihelion advance which varies quadratically with the mass of the heavy body, leading
to possible strong effects for stars in the vicinity of astrophysical black holes. For neutron stars in a binary
system, the disformal effects vary as the quartic power of the size of the orbit which might lead to
interesting consequences in the inspiralling phase prior to a merger.
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I. INTRODUCTION

Nearly massless scalar fields are ubiquitous in cosmol-
ogy [1–3]. They could play a role in generating the late-
time acceleration of the expansion of the Universe. They
could also belong to an extended gravitational sector of the
theory describing the Universe [4–7]. In this work, we shall
consider that such a scalar could be both conformally and
disformally coupled tomatter [8]. The effects of a conformal
coupling are well known [9,10] and must be suppressed in
the Solar System in order to comply with gravitational tests
such as the ones performed by the Cassini probe [11]
(existence of a fifth force) or the Lunar Laser Ranging
experiment (test of the strong equivalence principle in the
Earth-moon-Sun system) [12]. The resulting bounds on the
coupling β are severe, and screening mechanisms have been
invoked in order to comply with rather unnaturally small
values of β [13–16]. Another type of interaction, the
disformal coupling, could also play a role in the interactions
between matter and the scalar field. This coupling has been
constrained using numerous probes [17–28]. It can influence
the dynamics of compact bodies as a one-loop effective
interaction similar to the Casimir-Polder force can be
generated between such objects [29]. It can also have effects
on the atomic energy levels or even the burning rate of stars

in astrophysics [30]. Finally, as a four-body interaction, it
can be tested at accelerators such as the LHC [31].
In this paper, we will focus on the gravitational physics
of such a disformal coupling [25,26], in conjunction with a
conformal coupling, in the presence of celestial bodies. We
will derive an effective one-bodymetric which describes the
dynamics of two such interacting bodies at leading order in
GN . This will allow us to consider the disformal effects on
the classical tests such as the advance of perihelion or the
time delay of radio-wave signals. The effective one-body
metric may also eventually allow us to consider the
inspiralling emission of a gravitational wave by two rotating
bodies, although we leave it for further work.
We find that the Shapiro time delay as probed by the

Cassini experiment does not depend (or depends only
slightly) on the disformal coupling. On the other hand,
the perihelion advance of a light body in the presence of a
heavy object is nonvanishing. We find that it varies
quadratically with the mass of the heavy object and
quartically with the size of the orbit. This may have
consequences for the dynamics of stars in the vicinity of
astrophysical black holes [32] or during the inspiralling
phase of neutron star mergers.
In Sec. II, we study the solutions to the Klein-Gordon

equation involving a conformal and disformal coupling to
matter for point sources. In Sec. III, we consider the case of
two interacting bodies, while in Sec. IV IV, we consider
the dynamics of a light particle close to a heavy body.
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We discuss possible consequences for the dynamics of stars
close to astrophysical black holes and binary systems of
neutron stars in Sec. V.

II. DISFORMAL RADIATION

A. Ladder expansion

In this section, we consider the scalar emission from a
moving body when the coupling between matter and the
scalar field is mediated by the metric,

gμν ¼ A2ðϕÞgEμν þ
2

M4
∂μϕ∂νϕ; ð2:1Þ

where the conformal factor,

AðϕÞ ¼ eβϕ=mPl ; ð2:2Þ

is characterized by the constant coupling β and the
disformal interaction is specified by the suppression scale
M. We could have chosen more complex function [33] such
as a quadratic function AðϕÞ, e.g., as for the environmen-
tally dependent dilaton [34] and symmetron [35]. Here we
consider the simplest case of a field independent coupling
β. Similarly the disformal part could be more complex with
1=M4 → Bðϕ; ð∂ϕÞ2Þ. In the following, we focus on the
simplest case where the disformal coupling depends only
on the constant coupling scale M. Matter couples mini-
mally to gμν such that the total action reads

S¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
RE

16πGN
−
1

2
ð∂ϕÞ2−VðϕÞ

�
þSmðψ i;gμνÞ

ð2:3Þ

in the Einstein frame for the Einstein-Hilbert action and we
have introduced a potential VðϕÞ for the scalar field. The
matter fields are denoted by ψ i and their action is Sm. In the
following, we will focus of nearly massless scalar and take
VðϕÞ ¼ 0. We could have considered the case of screened
models with a nontrivial VðϕÞ [36]. Effectively in this case,
and in a given environment such as the Solar System, the
mass of the scalar field between the Sun and the planets is
small; i.e., the scalar field is not Yukawa-screened, and in
the screened models with either the chameleon or the
Damour-Polyakov screenings, the scalar charge of these
objects βeff is reduced to pass the Solar System tests such as
the Cassini bound [11]. We leave a detailed analysis of
screened models for the future and concentrate on the case
of a massless field with a small coupling β.
The gravitational dynamics are dictated by the Einstein

equation

Rμν −
1

2
Rgμν ¼ 8πGNðTμν þ Tϕ

μνÞ ð2:4Þ

where the matter energy-momentum tensor is

Tμν ¼ −
2ffiffiffiffiffiffiffiffi
−gE

p δSm
δgμν

E
ð2:5Þ

and the corresponding one for the scalar field is

Tϕ
μν ¼ ∂μϕ∂νϕ −

ð∂ϕÞ2
2

gEμν: ð2:6Þ

The dynamics of the scalar field are given by the Klein-
Gordon equation

□ϕ ¼ −β
T
mPl

þ 1

M4
DμðA−2ðϕÞ∂νϕTμνÞ ð2:7Þ

whereDμ is the covariant derivative for the Einstein metric.
The Bianchi identity implies the nonconservation equation

DμTμν ¼
βT
mPl

∂νϕ −
1

M4
DμðA−2ðϕÞ∂λϕTμλÞ∂νϕ: ð2:8Þ

In the following, we will be interested in the leading terms
at the 1=mPl order in ϕ. Indeed, this leads to contributions
to the interaction potential between two objects in βϕ=mPl
proportional to GN . As we are only focussing on the
leading GN contributions to the dynamics of interacting
bodies and to leading order in 1=M4, we can safely consider
that the matter energy momentum is conserved

DμTμν ¼ 0 ð2:9Þ

at this order leading to the Klein-Gordon equation

□ϕ ¼ −β
T
mPl

þ 1

M4
Dμ∂νϕTμν: ð2:10Þ

The Klein-Gordon equation can be solved iteratively as

ϕ ¼ ϕð0Þ þ δϕ ð2:11Þ

where

□ϕð0Þ ¼ −β
T
mPl

ð2:12Þ

is nontrivial when β ≠ 0 and

□δϕ −
1

M4
Dμ∂νδϕTμν ¼ 1

M4
Dμ∂νϕ

ð0ÞTμν: ð2:13Þ

Defining the retarded propagator G as

□Gðx; x0Þ ¼ δð4Þðx − x0Þ ð2:14Þ

we have
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ϕð0ÞðxÞ ¼ −
β

mPl

Z
d4x0Gðx − x0ÞTðx0Þ ð2:15Þ

and we can find a series representation of the solution
corresponding to an expansion in ladder diagrams

δϕ ¼
X
n≥0

δϕðnÞ ð2:16Þ

where

□δϕð0Þ ¼ 1

M4
Dμ∂νϕ

ð0ÞTμν: ð2:17Þ

and

□δϕðnþ1Þ ¼ 1

M4
Dμ∂νδϕ

ðnÞTμν: ð2:18Þ

This implies that

δϕð0Þ ¼ 1

M4

Z
d4x0Gðx − x0ÞDμ∂νϕ

ð0Þðx0ÞTμνðx0Þ ð2:19Þ

and

δϕðnþ1ÞðxÞ ¼ 1

M4

Z
d4x0Gðx − x0ÞDμ∂νδϕ

ðnÞðx0ÞTμνðx0Þ:

ð2:20Þ

Each iteration brings in another insertion of the energy-
momentum tensor and is suppressed by a higher power of
M4. Hence, to be consistent with our approximation, we
only consider the first two steps. Notice that the solution
vanishes in the absence of a conformal coupling β.
We have neglected the possible effects coming from the

cosmological background density. When the matter system
is embedded in the cosmological background with an
energy-momentum Tμν

cosmo, one can separate the scalar field
as ϕ ¼ ϕcosmo þ ϕ̄, where

□ϕcosmo ¼ −β
Tcosmo

mPl
þ 1

M4
Dμ∂νϕcosmoT

μν
cosmo; ð2:21Þ

and the background metric is now of the Friedmann-
Lemaitre-Robertson-Walker type. The local matter density
generates a scalar field such that

□ϕ̄ ¼ −β
T
mPl

þ 1

M4
Dμ∂νϕ̄Tμν þ 1

M4
Dμ∂νϕ̄T

μν
cosmo

þ 1

M4
Dμ∂νϕcosmoTμν: ð2:22Þ

There are two new source terms which involve the
cosmological energy-momentum tensor and the derivatives
of the cosmological solution. As the cosmological matter

density is negligible compared to the matter density in the
moving objects we are considering and the variation of the
cosmological solution is on time scales much larger than
the rapid motion of the moving bodies, we can safely
neglect the new source terms. Within this quasistatic
approximation, the only effect of the cosmological back-
ground is to add to the solution generated by the local
matter density a slowly varying background scalar field
ϕcosmo.

B. Point source

We now focus on a point source of mass m whose
energy-momentum tensor reads

Tμν ¼ m
Z

dτAðϕÞuμuνδð4Þðxμ − xμðτÞÞ ð2:23Þ

where τ is the proper time of the particle in the Einstein
frame such that

uμ ¼ dxμ

dτ
ð2:24Þ

and uμuμ ¼ −1. Notice that, as we work in the Einstein
frame, the mass of the particle becomes mAðϕÞ which
is field dependent. We will work in the case where
βϕ=mPl ≪ 1 which will be valid as long as β ¼ Oð1Þ
as, to leading order, βϕ=mPl ∼ 2β2ΦN for an object with
Newtonian potential ΦN . For the objects that we consider,
such as the Sun, ΦN ≪ 1, and we can therefore omit the
AðϕÞ ∼ 1 in the mass. When the cosmological background
is taken into account, at leading order, one can keep track of
the effects of the slow variation of the background scalar
field by retaining the slow time variation of the mass of the
particles using m → AðϕcosmoÞm.
We will be interested in the effects of a point source on

the geometry of space at the leading GN order and its
consequences on the effective geometry driving the motion
of interacting particles. Hence, it is sufficient to consider
the evolution of the point particle in Minkowski space and
contract the tensors with ημν. Defining the velocity

vi ¼ dxi

dx0
ð2:25Þ

for the particle, we find that

T ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p
δð3Þðxi − xiðx0ÞÞ ð2:26Þ

where we have x0 ¼ x0ðτÞ. Hence an ultrarelativistic
particle has a traceless energy momentum, in agreement
with the tracelessness of Tμν for a relativistic fluid. Using
the Green’s function in Minkowski space,
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Gðx; x0Þ≡Gðx − x0Þ ¼ −
1

2π
θðx0 − x00Þδððx − x0Þ2Þ;

ð2:27Þ

we find that

ϕð0ÞðxÞ ¼ −
βm

4πmPl

1

1 − v⃗:n⃗0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p

jx⃗ − x⃗ðx00Þj ; ð2:28Þ

which matches the usual solution of the Poisson equation
for a static scalar field sourced by a static point particle. We
have defined the unit vector

n⃗0 ¼ x⃗ − x⃗ðx00Þ
jx⃗ − x⃗ðx00Þj ð2:29Þ

and similarly

n⃗ ¼ x⃗ − x⃗ðx0Þ
jx⃗ − x⃗ðx0Þj : ð2:30Þ

Here we have introduced the retarded time,

x00 ¼ x0 − jx⃗ − x⃗ðx00Þj: ð2:31Þ
In the same vein, the first iteration of the ladder expansion
reads

δϕð0ÞðxÞ ¼ −
m

4πM4γ

∂μ∂νϕ
ð0Þuμuν

jjx⃗ − x⃗ðx00Þj − v⃗:ðx⃗ − x⃗ðx00ÞÞj ;

ð2:32Þ

where uμ ¼ γð1; viÞ and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p
. The higher-order

terms can be deduced by iteration.
For small velocities, we can expand

x0 − x00 ¼ ð1þ δÞjx⃗ − x⃗ðx0Þj ð2:33Þ

where

δ ∼ n⃗:v⃗þ v⃗2

2
þ ðn⃗:v⃗Þ2

2
ð2:34Þ

at second order in the velocity and the scalar field becomes

ϕð0ÞðxÞ ¼ −
βm

4πmPl

1 − v⃗2
2
þ v⃗2⊥

2

jx⃗ − x⃗ðx0Þj ; ð2:35Þ

where we have defined the projection of the velocity in the
direction perpendicular to n⃗ as

v⃗⊥ ¼ v⃗ − ðv⃗:n⃗Þn⃗: ð2:36Þ

This result can also be deduced using Lorentz invariance. In
the frame where the particle is static, the solution is

− βm
4πmPl

1
jx⃗0−x⃗0ðx0Þj where the distance in the static frame

jx⃗0 − x⃗0ðx0Þj is longer by a factor ð1þ ðv⃗:n⃗Þ2
2

Þ. Notice that
we always work at the v⃗2 order as this is enough to deduce
the form of the effective metric between two bodies in the
leading GN approximation.
As a side result, we obtain the Green’s function for the

spatial Klein-Gordon equation in the presence of a slowly
moving particle

□G0ðxÞ ¼ δð3Þðxi − xiðx0ÞÞ ð2:37Þ

which is given by

G0ðxÞ ¼ −
1

4π

1þ v⃗2⊥
2

jx⃗ − x⃗ðx0Þj : ð2:38Þ

This will be useful when solving for the Newtonian
potential.
At leading order, we have for the derivatives of the scalar

field

∂0ϕ
ð0Þ ¼ −

βγm
4πmPl

v⃗:ðx⃗ − x⃗ðx0ÞÞ
jx⃗ − x⃗ðx0Þj3 ð2:39Þ

and

∂iϕ
ð0Þ ¼ βm

4πγmPl

ðxi − xiðx0ÞÞ
jx⃗ − x⃗ðx0Þj3 ð2:40Þ

which should also depend on the acceleration ai ¼ dvi

dx0. In
the following, we will use the fact that the acceleration
involves one power of GN and therefore these terms appear
at higher order in the GN expansion, i.e., with the
approximation that the acceleration

a⃗A ¼ −
GNmAðx⃗ − x⃗AÞ

jx⃗ − x⃗Aj3
ð2:41Þ

is of order GN and induces corrections in G2
N that we have

neglected. For the velocity dependent part we find that

δϕð0Þ ¼ 0 ð2:42Þ

explicitly when only one particle is involved. This is also a
result which follows from Lorentz invariance as in the
frame where the particle is static, the solution ϕð0Þ is time
independent. For two bodies, the solution does not vanish
and will be given below.

III. TWO-BODY SYSTEM

A. The scalar field of moving particles

When two moving bodies are present, the solution to the
Klein-Gordon equation at leading order in 1=M4 can be
obtained in two steps. The first steps consist of solving
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□ϕð0Þ ¼ −β
TA þ TB

mPl
; ð3:1Þ

where the energy-momentum tensor contains both the parts
from particles A and B. The solution is simply given by the
linear combination

ϕð0Þ ¼ ϕð0Þ
A þ ϕð0Þ

B ð3:2Þ

where we have

ϕð0Þ
A;BðxÞ ¼ −

βmA;Bð1 − v⃗2A;B
2
þ v⃗2A;B⊥

2
Þ

4πmPljx⃗ − x⃗A;Bj
: ð3:3Þ

This solution sources the next step in the iteration process
where

ϕðxÞ ¼ ϕð0ÞðxÞ þ δϕð0ÞðxÞ ð3:4Þ

is given by

δϕð0ÞðxÞ ¼ 1

M4

Z
d4x0Gðx − x0Þ∂μ∂νðϕð0Þ

A ðx0Þ

þ ϕð0Þ
B ðx0ÞÞðTμν

A ðx0Þ þ Tμν
B ðx0ÞÞ: ð3:5Þ

This leads to four contributions,

δϕð0Þ
αβ ðxÞ ¼ −

mα

4πM4γ

∂μ∂νϕ
ð0Þ
β ðxαÞuμαuνα

jx⃗ − x⃗αj
; ð3:6Þ

where α; β ¼ A, B. Notice that here the v⃗2A;B and v⃗2A;B⊥
corrections in (3.3) are negligible as we neglect the quartic

terms in the velocities. It turns out then that δϕð0Þ
AA and δϕð0Þ

BB
both vanish while

δϕð0Þ
AB ¼−

βmAmB

16π2mPl

ðv⃗A− v⃗BÞ2−3ðn⃗AB:ðv⃗A− v⃗BÞÞ2
M4jx⃗− x⃗Ajjx⃗B− x⃗Aj3

δϕð0Þ
BA ¼−

βmAmB

16π2mPl

ðv⃗A− v⃗BÞ2−3ðn⃗AB:ðv⃗A− v⃗BÞÞ2
M4jx⃗− x⃗Bjjx⃗B− x⃗Aj3

ð3:7Þ

where n⃗AB is the unit vector between A and B. Notice
that this involves only the Galilean invariant combina-
tion ðv⃗A − v⃗BÞ.

B. The gravitational fields of moving particles

We now consider the interaction between two particles A
and B which are conformally and disformally coupled to
the scalar field. We shall work to leading order in GN and
1=M4 and in the nonrelativistic limit where v⃗2A;B ≪ 1. The
action for the two bodies can be obtained using

S ¼ −mA

Z
dτA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gBμνu

μ
Au

ν
A

q

−mB

Z
dτB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gAμνu

μ
Bu

ν
B

q
þ δSAB; ð3:8Þ

where the correction term δSAB comes from the evaluation
of the field action, both from general relativity and its scalar
counterpart.
This calculation can be performed in a number of ways

but we shall find convenient to work in the nonrelativistic
limit of GR [37,38]. To do so, let us decompose the Einstein
metric according to

ds2 ¼ −e2ΦN ðdt − AidxiÞ2 þ e−2ΦNγijdxidxj; ð3:9Þ

where ΦN is the Newtonian potential and Ai is responsible
for gravi-magnetism. We have chosen to treat the spatial
metric γij ¼ δij as flat. In this gauge, the Einstein-Hilbert
action can be written as

SEH ¼ −
1

16πGN

Z
d4x

�
2ðDiΦNÞ2 −

e2ΦN

4
F2

þ 4 _AiDjΦN þ 6 _ΦNe−4ΦN

�
ð3:10Þ

in a (3þ 1) decomposition of the Kaluza-Klein type. The
covariant derivative is Di ¼ ∂i þ Ai∂t and the field
strength Fij ¼ ∂iAj − ∂jAi where indices are raised and
lowered with the flat δij. The Einstein-Hilbert action must
be complemented with a gauge fixing action which
imposes the harmonic gauge ∂νð ffiffiffiffiffiffi−gp

gμνÞ ¼ 0 and reads
now

SGF ¼
1

32πGN

Z
d4xððe2ΦNDiAi þ 4e−2ΦN _ΦNÞ2 − _A2

i Þ:

ð3:11Þ

The equations of motion are then

□ΦN ¼ 4πGNðT00 þ Ti
iÞ ð3:12Þ

for the Poisson equation and

□Ai ¼ 16πGNT0i ð3:13Þ

for the Maxwell equation of gravi-magnetism. The
Newtonian potential is modified compared to the static
case by the fact that the sources are moving compared to a
nearly Minkowski background. As a result, distances are
effectively contracted by special relativistic effects. The
solution to the Poisson equation for a single moving source
of velocity v⃗A reads
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ΦNðxÞ ¼ −
GNmA

jx⃗ − x⃗Aj
�
1þ 3

2
v⃗2A þ v⃗2A;⊥

2

�
; ð3:14Þ

where the correction factor comes from the fact that Ti
i

brings one factor of v⃗2A. Another factor of v⃗
2
A=2 comes from

the time dilation factor dτA ¼ γ−1dx0 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2A

p
Þdx0

between proper time and background time. Finally, the
Klein-Gordon equation must be solved with a spatial Dirac
function as a source. We have already obtained this solution
in the form of the Green’s function G0, i.e., (2.38). Here we
have introduced

n⃗ ¼ x⃗ − x⃗A
jx⃗ − x⃗Aj

ð3:15Þ

as the unit vector pointing towards x⃗ from x⃗A and defined
the perpendicular velocity

v⃗⊥ ¼ v⃗ − ðn⃗:vÞn⃗ ð3:16Þ
such that v⃗2⊥ ¼ v⃗2 − ðv⃗:n⃗Þ2. This result is nothing but the
Newtonian potential after a boost as Lorentz invariance is
preserved by the harmonic gauge [39]. Similarly the vector
field is given by

Ai ¼ −4
GNmAviA
jx⃗ − x⃗Aj

ð3:17Þ

which is again the result of boosting the static Newtonian
metric [39].

C. The two-body action

1. The gravitational action

The previous solutions to the field equations contribute
to the gravitational action and can be expressed as a
function of the velocities of the two moving bodies and
their positions. Denoting by

gEμν ¼ ημν þ hμν ð3:18Þ
the Einstein metric, the gravitational action comprising
both the Einstein-Hilbert term and the gauge fixing leads to

SEH þ SGF ¼ −
1

4

Z
d4xhμνTμν: ð3:19Þ

Removing the infinite self-energies, the action for interact-
ing particles is obtained as

SEH þ SGF ¼ −
1

4

Z
d4xðhAμνTμν

B þ hBμνT
μν
A Þ; ð3:20Þ

where hA;Bμν is the field generated by A (respectively B). It is
useful to notice the identity (up to acceleration terms which
are of higher order in GN),

d
dt

ðn⃗AB:v⃗BÞ ¼
v⃗2B⊥ − v⃗A⊥:v⃗B⊥

jx⃗B − x⃗Aj
≡ 0; ð3:21Þ

where n⃗AB is the unit vector between A and B and we have
v⃗⊥A ¼ v⃗A − ðv⃗A:n⃗ABÞn⃗AB (similarly for v⃗⊥B ). The last equal-
ity is to be taken as integrated in an action where total
derivatives are irrelevant. The corresponding gravitational
Lagrangian becomes

LEH þ LGF ¼ −
GNmAmB

jxB − xAj
�
1þ 3

2
ðv⃗2A þ v⃗2BÞ

− 4v⃗A:v⃗B þ 1

2
v⃗A⊥:v⃗B⊥

�
: ð3:22Þ

These terms appear as counterterms to avoid any double-
counting in the overall action including matter.

2. The matter action

We can now expand the matter action to second order in
the velocity field and get the Lagrangian for particle A in
the fields generated by particle B

LA ¼ −mAeΦ
B
NðxAÞAðϕ̄BðxAÞÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2AB

i v
i
A − e−4Φ

B
NðxAÞv⃗2A −

2

M4
DA

r
ð3:23Þ

and symmetrically for particle B. We will use explicitly the
fact that

∂0ϕ
ð0Þ
B ðxÞ ¼ −∂⃗ϕð0Þ

B ðxÞ:v⃗B: ð3:24Þ

and we will denote by

DA ¼ ð∂⃗ϕð0Þ
B ðxAÞ:v⃗BÞ2 þ ð∂⃗ϕð0Þ

B ðxAÞ:v⃗AÞ2

− 2ð∂⃗ϕð0Þ
B ðxAÞ:v⃗AÞð∂⃗ϕð0Þ

B ðxAÞ:v⃗BÞ: ð3:25Þ

the part of the action which comes from the disformal term
of the metric. The scalar field in this action is ϕ̄BðxÞ where
the divergent self-energy contributions have been removed
at x⃗ ¼ x⃗A, i.e.,

ϕðxÞ ¼ ϕ̄BðxÞ þO

�
1

jx⃗ − x⃗Aj
�
: ð3:26Þ

where explicitly

ϕ̄BðxÞ ¼ ϕð0Þ
B ðxÞ þ δϕð0Þ

BAðxÞ ð3:27Þ

is the field generated by the particle B evaluated at particle

A. Notice that there is a component δϕð0Þ
BAðxÞ which comes

from the backreaction on the scalar field generated by B
due to the motion of particle A; see (2.19). This
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contribution is not divergent and involves the second

derivative of the field ϕð0Þ
B generated by particle B.

Expanding the Lagrangian for particle A to second order
in the velocities and to leading order in GN and 1=M4, we
obtain

LA ¼ 1

2
mA

�
1þ β

mPl
ϕ̄BðxAÞ

�
v⃗2A −mA −mAΦB

NðxAÞ

−
βmA

mPl
ϕ̄BðxAÞ þmAAB

i v
i
A −

3

2
mAΦB

NðxAÞv⃗2A

þ mA

M4
DA: ð3:28Þ

The terms involving the conformal coupling renormalize
the kinetic energy and the potential energy of the particle.
Let us focus first on the terms coming from the kinetic

energy and the Newtonian potential only. We get for the
two particles,

Lmatter ⊃
1

2
mAv⃗2A þ 1

2
mBv⃗2B −mA −mB −mAΦB

NðxAÞ

−mBΦA
NðxBÞ −

3

2
mAΦB

NðxAÞv⃗2A

−
3

2
mBΦA

NðxBÞv⃗2B −
8GNmAmBv⃗A:v⃗B

jx⃗A − x⃗Bj
: ð3:29Þ

We can add the counterterms SEH þ SGF to obtain the
Lagrangian

Lgrav ¼
1

2
mAv⃗2A þ 1

2
mBv⃗2B −mA −mB þ GNmAmB

jx⃗B − x⃗Aj
þ GNmAmB

2jx⃗A − x⃗Bj
ð3v⃗2A þ 3v⃗2B − 8v⃗A:v⃗B þ v⃗A⊥:v⃗B⊥Þ:

ð3:30Þ

We can now add the contributions of the scalar field to this
Lagrangian in order to evaluate the effects of both the
conformal and disformal interactions.

3. The scalar action

Here we collect all the scalar field expressions allowing
one to complete the action for two moving particles. The
scalar field contributes to the scalar Lagrangian − 1

2
ð∂ϕÞ2.

After integration by parts and upon using the equation of
motion we find

Lscalar ¼ −
1

2

Z
d3x

�
βϕðxÞ
mPl

ðTAðxÞ þ TBðxÞÞ

þ 1

M4
∂μϕðxÞ∂νϕðxÞðTAμν þ TBμνÞðxÞ

�
ð3:31Þ

After expanding

TA;BðxÞ ¼ −mA;B

�
1 −

v⃗2A;B
2

�
δð3Þðx⃗ − x⃗A;BÞ ð3:32Þ

and using (3.21) to replace
v⃗2A;B⊥

jx⃗A−x⃗Bj ≡ v⃗A⊥:v⃗B⊥
jx⃗A−x⃗Bj , the first term

becomes

−
1

2

Z
d3x

βϕðxÞ
mPl

ðTAðxÞ þ TBðxÞÞ

¼ −
2β2GNmAmB

jxB − xAj
�
1 −

v⃗2A
2
−
v⃗2B
2
þ v⃗A⊥:v⃗B⊥

2

�

þ β

2mPl
mAδϕ

ð0Þ
BAðxAÞ þ

β

2mPl
mBδϕ

ð0Þ
ABðxBÞ; ð3:33Þ

where the last term involves the fields from which the self
energy divergences have been removed

δϕð0Þ ≡ δϕð0Þ
AB;BA þO

�
1

jx⃗ − x⃗B;Aj
�
: ð3:34Þ

Expanding the last term of the action in terms of the

regularized field with no self energy divergences ϕð0Þ
A;B in

(3.3), we have finally as

Lscalar ¼ −
2β2GNmAmB

jxB − xAj
�
1 −

v⃗2A
2
−
v⃗2B
2
þ v⃗A⊥:v⃗B⊥

2

�

þ β

2mPl
mAδϕ

ð0Þ
BAðxAÞ þ

β

2mPl
mBδϕ

ð0Þ
ABðxBÞ

−
mA

2M4
DA −

mB

2M4
DB ð3:35Þ

which acts as a counterterm preventing any double count-
ing too. The end result for the scalar Lagrangian when
adding the scalar contributions in the matter action and the
scalar one is

LS ¼
2β2GNmAmB

jxB − xAj
�
1þ v⃗A⊥:v⃗B:⊥

2

�
−

β

2mPl
mAδϕ

ð0Þ
BAðx⃗AÞ

−
β

2mPl
mBδϕ

ð0Þ
ABðx⃗BÞ þ

β

2mPl
mAϕ

ð0Þ
B ðx⃗AÞÞv2A

þ β

2mPl
mBϕ

ð0Þ
A ðx⃗BÞÞv2B þ mA

2M4
DA þ mB

2M4
DB:

ð3:36Þ

This can be explicitly evaluated and gives
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LS ¼ −
β2GNmAmB

jxB − xAj
ðv⃗2A þ v⃗2BÞ þ

2β2GNmAmB

jxB − xAj

×

�
1þ v⃗A⊥:v⃗B:⊥

2

�
þ β2GN

4π
mAmBðmA þmBÞ

×
ððv⃗A − v⃗BÞ⊥Þ2 − ððv⃗A − v⃗BÞ:n⃗ABÞ2

M4jxA − xBj4
ð3:37Þ

This contributes to the effective dynamics of the two-body
system.

4. The complete action

The complete Lagrangian for the two-body system
combines both the gravitational Lagrangian Lgrav and the
contribution from the scalars LS

LAB ≡ Lgrav þ LS ¼
1

2
mAv⃗2A þ 1

2
mBv⃗2B −mA −mB

þ GNð1þ 2β2ÞmAmB

jx⃗B − x⃗Aj
þ GNmAmB

2jx⃗A − x⃗Bj
ðð3 − 2β2Þv⃗2A

þ ð3 − 2β2Þv⃗2B − 8v⃗A:v⃗B þ ð1þ 2β2Þv⃗A⊥:v⃗B⊥Þ

þ β2GN

4π
mAmBðmA þmBÞ

×
ððv⃗A − v⃗BÞ⊥Þ2 − ððv⃗A − v⃗BÞ:n⃗ABÞ2

M4jx⃗A − x⃗Bj4
: ð3:38Þ

This Lagrangian is all that is required to obtain the effective
metric in the center-of-mass frame at leading order in GN

and 1=M4.

D. The role of counterterms

The calculations of the previous section have been
carried out for two particles interacting both gravitationally
and via a scalar field. The Lagrangian for a two-body
system has been obtained in several steps for which the
role of counterterm played by the gravitational and scalar
actions is crucial. For the gravitational and scalar inter-
action mediated by the conformal coupling, the counter-
terms serve only as book keeping devices which ensure that
double counting does not occur. Let us illustrate this with
the case of two bodies A and B with nonrelativistic
velocities v⃗A;B. At leading order the scalar field is the
sum of two contributions, each sourced by the mass of the
particles, so we find

ϕðxÞ ¼ ϕð0Þ
A ðxÞ þ ϕð0Þ

B ðxÞ ð3:39Þ

where

ϕð0Þ
A ðxÞ ∼ −

βmA;B

4πmPljx⃗ − x⃗A;Bj
: ð3:40Þ

where we have dropped the velocity dependent parts as we
are here only interested in the static interaction potential
between the bodies. The contributions to the matter
Lagrangian from this scalar field read simply

LAB ⊃ −mA
βϕð0Þ

B ðxAÞ
mPl

−mB
βϕð0Þ

A ðxBÞ
mPl

¼ 4β2GNmAmB

jx⃗A − x⃗Bj
ð3:41Þ

where we have removed the divergent self-energy parts.
Notice that this is twice the interaction potential between
particles A and B. This double counting which occurs as we
have added the matter actions for both particles is, in fact,
absent as the scalar field Lagrangian − 1

2
ð∂ϕÞ2 gives a

counterterm

ΔLAB ⊃ mA
βϕð0Þ

B ðxAÞ
2mPl

þmB
βϕð0Þ

A ðxBÞ
2mPl

ð3:42Þ

such that the overall Lagrangian only contains one copy of
the interaction potential. The same compensation occurs for
the Newtonian potential between the two particles. Notice
that one could have used a “symmetrization” principle and
obtain the same result by taking the interaction potential
obtained from the action of particle A and then, realizing
that it is symmetric in A → B, inferred that this must be the
actual interaction potential between the two particles. We
could have also symmetrized the result from the action of
particle A by adding a contribution for which A → B and
dividing the overall result by two. The proper and unam-
biguous way of obtaining the interaction potential is the one
we have outlined, i.e., calculating both the matter, gravity
and scalar actions.
For the disformal coupling the matter action for particles

A and B involves four contributions which depend on the
disformal coupling. The first two come from the fact that
the moving particles source the scalar field in a velocity-
dependent way leading to two terms

LAB ⊃ −
β

mPl
mAδϕ

ð0Þ
BAðxAÞ −

β

mPl
mBδϕ

ð0Þ
ABðxBÞ ð3:43Þ

where the self-energy parts have been removed. Notice that
the two contributions involve different combinations of the
masses, i.e., respectively,m2

AmB andm2
BmA. Moreover they

are Galilean invariant and involve only the difference
v⃗A − v⃗B. The disformal part of the Jordan metric leads
to two other terms

LAB ⊃ −
mA

M4
ð∂μϕ

ð0Þ
B ðxAÞvμAÞ2 −

mB

M4
ð∂μϕ

ð0Þ
A ðxBÞvμBÞ2

ð3:44Þ

where vμA;B ¼ ð1; v⃗A;BÞ at this order, and we have

∂0ϕ
ð0Þ
A;B ¼ −∂⃗ϕð0Þ

A;B:v⃗A;B. The scalar field action plays the
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same role as in the gravitational and conformal cases and
simply removes half of the previous terms

ΔLAB ¼ β

2mPl
mAδϕ

ð0Þ
BAðxAÞ þ

β

2mPl
mBδϕ

ð0Þ
ABðxBÞ

þ mA

2M4
ð∂μϕ

ð0Þ
B ðxAÞvμAÞ2 þ

mB

2M4
ð∂μϕ

ð0Þ
A ðxBÞvμBÞ2:

ð3:45Þ

Overall the disformal contributions to the Lagrangian can
be combined into two pairs

−
β

2mPl
mAδϕ

ð0Þ
BAðxAÞ þ

mB

2M4
ð∂μϕ

ð0Þ
A ðxBÞvμBÞ2

¼ β2GN

4π
m2

AmB
ððvA − vBÞ⊥Þ2
M4jxA − xBj4

ð3:46Þ

where

mB

2M4
ð∂μϕ

ð0Þ
A ðxBÞvμBÞ2 ¼

mB

2M4
DB ð3:47Þ

and symmetrically for A → B. It is important to notice
that the two pairs have different origins. The term

− β
2mPl

mAδϕ
ð0Þ
BAðxAÞ comes from the matter action of particle

A and the corresponding counterterm. The term
mB
2M4 ð∂μϕ

ð0Þ
A ðxBÞvμBÞ2 comes from the matter action for B

and its counterterm. It turns out that the contribution from
the matter action for A combines with the term from the
matter action for B, and vice versa.
This implies that one cannot isolate the action for either

A or B in order to investigate the dynamics of the two-body
system. This is particular to the disformal interaction
compared to the gravitational and conformal ones. In
hindsight, one could have taken the action for particle A
minus the associated counterterm and obtained the correct
action by symmetrizing the result in A → B, i.e., by taking
half the sum of the Lagrangian. On the contrary if one only
selected the leading term inmAm2

B in the matter action for A
one would wrongly omit the term in mAm2

B coming from
the action for B which combine pairwise as in (3.46).
Overall, a much more straightforward way of obtaining the
complete action for the two-body system with the disformal
interaction is to calculate the matter, gravitational and
scalar actions as we have done.

E. Center-of-mass dynamics

The previous Lagrangian (3.38) involving the two bodies
A and B can be projected onto a single particle Lagrangian
by going to the center-of-mass frame. We will do this by
first introducing the Newtonian center-of-mass frame
coordinates

X⃗ ¼ mAx⃗A þmBx⃗B
mA þmB

; x⃗ ¼ x⃗A − x⃗B ð3:48Þ

from which we get the velocities

v⃗A;B ¼ V⃗ þ μ

mA;B
v⃗: ð3:49Þ

The total Lagrangian becomes the sum of a free Lagrangian
(x ¼ jx⃗j)

L0 ¼
1

2
μv⃗2 þ 1

2
MV⃗2 þ GNmAmB

x
ð3:50Þ

where the reduced mass is

μ ¼ mAmB

mA þmB
ð3:51Þ

and the total mass M ¼ mA þmB. The interaction
Lagrangian is

Lint ¼
GNmAmB

2x
ð−ð1þ 2β2ÞV⃗2 þ ðð3 − 2β2Þμ−2

þ ð1þ 2β2Þm−1
A m−1

B Þμ2v⃗2 − ð1þ 2β2Þðm−1
A

−m−1
B Þμv⃗:V⃗ − ð1þ 2β2Þ

�
ðV⃗:n⃗Þ2

−
μ2

mAmB
ðm−1

A −m−1
B Þðv⃗:n⃗Þ2 þ μðv⃗:n⃗ÞðV⃗:n⃗ÞÞ

�

ð3:52Þ

together with the disformal term

Ldis ¼
β2GN

4πM4x4
μM2ðv⃗2⊥ − ðv⃗:n⃗Þ2Þ ð3:53Þ

We have identified n⃗ ¼ n⃗AB here. The absence of X⃗
dependence implies that

P⃗ ¼ ∂L
∂V⃗ ð3:54Þ

is conserved. We set the center-of-mass momentum to zero
P⃗ ¼ 0 and integrate out V⃗ at leading order in GN

MV⃗ ¼ GNðmA −mBÞμ
2x

ð1þ 2β2Þðv⃗þ ðv⃗:n⃗Þn⃗Þ: ð3:55Þ

The effective Lagrangian for the velocity v⃗ is then given by
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Leff ¼
1

2
μv⃗2 þGNμMð1þ 2β2Þ

x

þ GNμM
2x

ðð3 − 2β2Þv⃗2 þ ð1þ 2β2Þνv⃗2

þ ð1þ 2β2Þνðv⃗:n⃗Þ2Þ þ β2GNðv⃗2⊥ − ðv⃗:n⃗Þ2Þ
4π

μM2

x4M4

ð3:56Þ

where we have introduced the parameter

ν ¼ mAmB

ðmA þmBÞ2
: ð3:57Þ

Using the identity, at leading order in GN ,

d
dt

ðv⃗:n⃗Þ≡ v⃗2 − ðv⃗:n⃗Þ2
x

ð3:58Þ

the Lagrangian becomes equivalent to

Leff ¼
1

2
μv⃗2 þGNμMð1þ 2β2Þ

x

þ GNμM
2x

ðð3 − 2β2Þv⃗2 þ 2ð1þ 2β2Þνv⃗2Þ

þ β2GNðv2⊥ − ðv⃗:n⃗Þ2Þ
4π

μM2

x4M4
: ð3:59Þ

Let us introduce the effective metric

geff00 ¼ −
�
1 −

2GNMð1þ 2β2Þ
x

�

geffij ¼
�
1þ 2GNMð1 − 2β2Þ

x

�
δij

þ β2GN

2π

M2

x4M4
ðδij − 2ninjÞ ð3:60Þ

and the reduced Lagrangian

Lred ¼ −geffμν vμvν ð3:61Þ

where vμ ¼ ð1; viÞ. Then we have to leading order that the
center-of-mass Lagrangian can be reconstructed using

Leff ¼ −μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lred þ 2νðLred − 1Þ2

q
: ð3:62Þ

The first term is the Lagrangian of a particle of mass μ
subject to the effective metric created by the mass M. The
quadratic correction in the square root in ν is due to the fact
that the masses are not light masses. The extrema of Leff
can be obtained by extremizing Lred which depends on the
effective metric geffμν .
The effective metric (3.60) is known to provide an exact

result in the post-Minkowskian limit [40], i.e., at leading

order inGN , and to all order in the velocity in the conformal
case. Here we have retrieved this result using the low v⃗2

expansion and we have extended it to include the first
correction in 1=M4 due to the disformal coupling.
Moreover the derivation of the effective metric is usually
carried out in the Hamiltonian formalism whereas we have
worked at the Lagrangian level and at the lowest order in v⃗2

as it sufficient to reconstruct the effective metric.
Notice that the disformal correction has been assumed

throughout to be the leading correction to the Newtonian
case implying that we can consider this effective metric in
situations where

M
x3

≲M4

β2
≲m2

Pl

x2
: ð3:63Þ

If the first inequality were nearly saturated then Newtonian
orbits would be largely affected whereas if the second
inequality were violated wewould have to take into account
the higher-order corrections to the metric in GR. Taking as
an example the orbit of Mercury at an average distance of
6 × 107 km from the Sun this leads to

2 × 10−3 MeV≲ Mffiffiffi
β

p ≲ 7.5 × 10−2 MeV ð3:64Þ

for the disformal interaction to play a relevant role. As the
Cassini bound [11] leads to β2 ≲ 10−5, this implies that
gravitational effects of the disformal coupling could be
relevant for planetary orbits when

M ≲ 4 × 10−3 MeV: ð3:65Þ

Of course, the disformal interaction becomes relevant for
larger values of M in situations where the Newtonian
potential is larger, such as the orbits of two neutron stars in
their inspiralling phase where objects of masses similar to
the Sun’s orbit are at a few hundreds of kilometers from
each other. We will comment on this case below.

IV. THE DYNAMICS OF A LIGHT PARTICLE

In this section, we focus on the dynamics of a light
particle and in particular the classical tests of general
relativity such as the Shapiro time delay and the perihelion
advance. In the following, we neglect the influence of the
cosmological background which would result in a time
variation of masses due to the conformal factor AðϕcosmoÞ.
We focus on the effects due to the disformal coupling. The
effects of the time drift of masses, or equivalently Newton’s
constant, in Brans-Dicke theories are well documented as
can be found in [41]. Typically, the relative variation of
masses should be less than one percent of the Hubble rate.
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A. Violation of the equivalence principle

In this section, we focus on the light particle case which
can be obtained from the two-body analysis by setting
ν → 0. In this case, the light particle of mass mB ≪ mA
evolves with the dynamical Lagrangian

Leff ¼ −mB

ffiffiffiffiffiffiffiffi
Lred

p
: ð4:1Þ

where the effective metric is given by

geff00 ¼ −
�
1 −

2GNmAð1þ 2β2Þ
x

�

geffij ¼
�
1þ 2GNmAð1 − 2β2Þ

x

�
δij

þ β2GN

2π

mA
2

x4M4
ðδij − 2ninjÞ ð4:2Þ

The effective action is the one of a particle evolving in the
background metric given by (4.2). Notice that the disformal
part involves both the perpendicular and parallel velocities.
This is different from the trajectories of photons which
follow the null trajectories of the Jordan metric

ds2J ¼ −gμνdxμdxν ≡ 0 ð4:3Þ

where the Jordan metric is given by

g00 ¼ −
�
1 −

2GNmAð1þ 2β2Þ
x

�

gij ¼
�
1þ 2GNmAð1 − 2β2Þ

x

�
δij

þ β2GN

π

mA
2

x4M4
ninj: ð4:4Þ

which involves the parallel velocity only. As a result the
equivalence principle is violated between photons and
matter. This follows from the fact that for nonrelativistic
matter particles, the mass of a light particle cannot be
neglected completely and generates a field contribution

δϕð0Þ
AB whose presence in the matter action of the massive

particle is of the same order as the disformal terms in the
matter action of the light particle; see the discussion in
Sec. III D. We will analyze what differences this induces in
both the Shapiro effect, i.e., the time delay of photons, and
in the perihelion advance, i.e., the motion of a light particle.

B. Shapiro time delay

The study of the time delay of radio waves compared to
its counterpart in GR is crucial as it gives direct access to
modifications of GR in the environment of a massive object
A, typically the Sun. It is convenient to introduce the metric

potential ΦðrÞ ¼ ΦNðrÞ þ β ϕð0ÞðrÞ
mPl

such that

ΦðrÞ ¼ −
GeffmA

r
: ð4:5Þ

where the effective Newton constant is here

Geff ¼ ð1þ 2β2ÞGN: ð4:6Þ
We are interested in the time delay of signals sent between
two points such that to leading order the photon trajectory
is a straight line with an impact parameter b, i.e., in terms of
polar coordinates

r ¼ b
cos θ

: ð4:7Þ

Along this trajectory, the time delay compared to GR is due
to the corrections to the metric felt by the photons. This
reads

ds2J ¼ −ð1þ 2ΦÞdt2 þ
�
1 − 2ð1þ 2γÞΦ

þ sin2 θ cos4 θ
GNβ

2m2
A

πM4b4

�
dx2 ð4:8Þ

where dx2 ¼ dr2 þ r2dθ2 ¼ b2

cos4 θ dθ
2 and dr2 ¼ sin2 θdx2.

The last contribution to dx2 comes from the disformal
interaction. We have also introduced the parameter

γ ¼ −
2β2

1þ 2β2
: ð4:9Þ

Let us apply this result to the trajectory of photons between
two points C andDwhich can be taken to be the location of
the Earth and of the Cassini satellite [11]. We have,
therefore,

dt
dx

¼ 1 − 2ð1þ γÞΦþ sin2 θ cos4 θ
GNβ

2m2
A

2πM4b4
ð4:10Þ

along the photon trajectory. The time delay due the
modification of gravity is

dδt
dx

¼ −2γΦþ sin2 θ cos4 θ
GNβ

2m2
A

2πM4b4
ð4:11Þ

such that Φ ¼ − GeffmA
b cos θ. Using dx ¼ b

cos2 θ dθ, this
implies that

dδt
dθ

¼ 2γGeff
mA

cos θ
þ sin2 θ cos2 θ

GNβ
2m2

A

2πM4b3
: ð4:12Þ

Let us assume that the two massive bodies where the signal
is received and emitted follow circular trajectories, for
simplicity, around the massive body. This implies that, for
instance, cos θC ¼ b=rC and, therefore, a variation of the
position of the emitter or the receiver by dθC;D corresponds
to a change of impact parameter db ¼ −rC;D sin θC;DdθC;D.
As a result, the variation of the time delay due to a variation
of the impact parameter is
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dδt
db

¼ −2γGeff
mA

b

�
1

sin θC
þ 1

sin θD

�

− sin θC cos3 θC
GNβ

2m2
A

2πM4b4
− sin θD cos3 θD

GNβ
2m2

A

2πM4b4
:

ð4:13Þ

The probes such as Cassini which are used to investigate
the time delay for radio waves are going behind the Sun for
θC;D ∼ π

2
. As a result, the contribution to the time delay from

the disformal interaction is negligible. The time delay as
measured between two positions of the emitter, after a
round trip, with impact parameters b1 and b2 is, therefore,
given by

δt1 − δt2 ¼ −8γGeffmA ln
b1
b2

ð4:14Þ

and does not depend on the disformal interaction.

C. The perihelion advance

One of the classical tests of general relativity is the
advance of perihelion of mercury. Here we will calculate
the advance of perihelion for a light particle around a heavy
body when the conformal and disformal interactions are
present. The study of the dynamics of such a light object is
easier to carry out going back to the original Lagrangian
(4.2). In particular, we consider that time and space are
parametrized in proper time τB. The trajectories of massive
objects are such that

geffμνu
μ
Bu

ν
B ¼ −1; ð4:15Þ

where

uμB ¼ dxμ

dτB
: ð4:16Þ

In this section, we put τ ¼ τB and define _¼ d=dτ. In polar
coordinates, in the orbital plane, and using

dΩ2 ¼ dθ2 ð4:17Þ

we have

geff00 ¼ −1þ 2
GNmAð1þ 2β2Þ

r

geffrr ¼ 1þ 2
GNmAð1 − 2β2Þ

r
−
GNβ

2m2
A

2πM4r4

geffθθ ¼ r2
�
1þ 2

GNmAð1 − 2β2Þ
r

þGNβ
2m2

A

2πM4r4

�
: ð4:18Þ

Notice that the disformal contribution appears both in the
radial and tangential parts of the metric. As the Lagrangian

is independent of θ, the angular momentum J is conserved,
implying that

r2
�
1þ 2

GNmAð1 − 2β2Þ
r

þ GNβ
2m2

A

2πM4r4

�
_θ ¼ J

mB
: ð4:19Þ

Similarly, the absence of any explicit time dependence in x0
implies that

�
1 − 2

GNmAð1þ 2β2Þ
r

�
_x0 ¼ k; ð4:20Þ

where k is a constant. The constraint (4.15) implies that

k2

ð1−2
GNmAð1þ2β2Þ

r Þ
−
�
1þ2

GNmAð1−2β2Þ
r

−
GNβ

2m2
A

2πM4r4

�
_r2

−
J2

m2
B

1

r2ð1þ2
GNmAð1−2β2Þ

r þGNβ
2m2

A
2πM4r4 Þ

¼1. ð4:21Þ

The dynamics are most conveniently analyzed by changing
coordinates and introducing the spherical distance,

r̃2 ¼
�
1þ 2GNmA

r
ð1 − 2β2Þ

�
r2; ð4:22Þ

which corresponds to writing the angular part of the metric
as gθθ ¼ r̃2 in the absence of disformal interaction. We
obtain that to leading order in GN ,

r̃ ¼ rþ GNmAð1 − 2β2Þ; ð4:23Þ

and _̃r ¼ _r. This implies that angular momentum conserva-
tion can be reformulated as

r̃2
�
1þGNβ

2m2
A

2πM4r̃4

�
_θ ¼ J

mB
: ð4:24Þ

At leading order in GN and reverting to r̃ → r for
convenience, we have now

k2

ð1−2
GNmAð1þ2β2Þ

r Þ
−
�
1þ2

GNmAð1−2β2Þ
r

−
GNβ

2m2
A

2πM4r4

�
_r2

−
J2

m2
Br

2ð1þGNβ
2m2

A
2πM4r4 Þ

¼1: ð4:25Þ

Let us now introduce the Binet variable u ¼ 1=r such that

_r ¼ −
J
mB

du
dθ

: ð4:26Þ

We then obtain the following differential equation,
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�
du
dθ

�
2
�
1 − 8GNβ

2mAu −
GNβ

2m2
A

2πM4
u4
�
þ u2

¼ k2 − 1

J2
m2

B þ 2GNð1þ 2β2ÞmAm2
B

J2
u

þ 2GNmAð1þ 2β2Þu3 þ GNβ
2m2

A

2πM4
u6: ð4:27Þ

This is the main equation for the dynamics of planar orbits
involving both conformal and disformal interactions.
By taking the derivative of the previous relation, we

deduce the generalized Binet equation,

d2u
dθ2

þ u ¼
�
4GNβ

2mA þ GNβ
2m2

A

πM4
u3
��

du
dθ

�
2

þGNð1þ 2β2ÞmAm2
B

J2

þGNmAð3 − 2β2Þu2 þGNβ
2m2

A

πM4
u5; ð4:28Þ

which reduces to the one in general relativity when
β ¼ 0. The new terms due to the conformal and disformal
interactions modify the structure of the orbits.
One can construct solutions in perturbation theory

around the classical trajectory,

u0 ¼
GNð1þ 2β2ÞmAm2

B

J2
ð1þ e cos θÞ; ð4:29Þ

where the semilong axis is

a ¼ J2

m2
BmAGNð1þ 2β2Þ

1

1 − e2
; ð4:30Þ

corresponding to

u0 ¼
1

að1 − e2Þ ð1þ e cos θÞ: ð4:31Þ

The first correction to the classical trajectory satisfies

d2u1
dθ2

þ u1 ¼ 4πGNβ
2mA

�
du0
dθ

�
2

þGNmAð3 − 2β2Þu20 þ
GNβ

2m2
A

πM4
u50: ð4:32Þ

Notice that the source terms are all proportional to GN as
befitting our expansion scheme.
We will not solve this equation in full generality. As we

are only interested in the advance of the perihelion, we
select the source terms on the right-hand side of the
perturbed Binet equation (4.32) in cos θ. Higher harmonics
are present and will not give rise to contributions to the
advance of perihelion. As a result, we only need to select
the cos θ source terms which correspond to

d2u1
dθ2

þ u1 ⊃
�
2

e
a2ð1 − e2Þ2GNmAð3 − 2β2Þ

þ e
a5ð1 − e2Þ5

5GNβ
2m2

A

πM4

�
cos θ; ð4:33Þ

whose solution is

u1 ¼ αθ sin θ ð4:34Þ
with

α ¼
�

e
a2ð1 − e2Þ2GNmAð3 − 2β2Þ

þ 5
e

a5ð1 − e2Þ5
GNβ

2m2
A

2πM4

�
: ð4:35Þ

As a result, we have at this order,

u ¼ u0 þ u1

≡ 1

að1 − e2Þ
�
1þ e cos

��
1 −

αa
e
ð1 − e2Þ

�
θ

��
;

ð4:36Þ
and therefore the perihelion advance is given by

Δθ ¼ 2παa
e

ð1 − e2Þ ð4:37Þ

or more directly

Δθ ¼ 2π
GNmA

p

�
ð3 − 2β2Þ þ 5

β2mA

2πM4p3

�
; ð4:38Þ

where we have introduced

p ¼ að1 − e2Þ: ð4:39Þ
The perihelion advance can be written as

Δθ ¼ 2π
GeffmA

p

�
3þ γ

�
4 −

5mA

4πM4p3

��
: ð4:40Þ

The first term is the result in GR corrected by the scalar-
tensor coupling [42], the last term is new and comes from
the disformal interaction. Notice that the GR and conformal
cases have been retrieved while never going beyond the
leading GN corrections.
As the overall result depends on both β andM, no precise

bound on M can be deduced. A reasonable requirement
may be

M4 ≳m⊙

p3
ð4:41Þ

for planets orbiting around the Sun. This is, of course, not
mandatory as β might be very small. For Mercury, this
would simply require that
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M ≳ 10−4 MeV; ð4:42Þ

which is weaker than the Eötwash bound M ≥
0.07 MeV [30].

V. DISCUSSION AND CONCLUSION

We have analyzed the dynamics of bodies interacting
both gravitationally and via a scalar field which can be
exchanged between moving objects. We have seen that the
disformal coupling has an effect only when combined with
a conformal interaction. In this case, the disformal coupling
leads to a change of the advance of perihelion for a light
body and modifies the effective metric which governs the
evolution of two interacting bodies. We have shown that
contrary to GR and conformal couplings for which
the advance of perihelion is proportional to the mass of
the heavy object around which a light particle orbits, the
disformal coupling leads to a quadratic dependence.
Although we have not considered the case of black holes,
as in particular the no-hair theorem implies that no scalar
field is generated outside the horizon, we can certainly
envisage that for astrophysical black holes of several
million solar masses and with accretion discs [43,44], a
large scalar field would be generated and therefore we
expect that because of the large mass of the black holes,
there could be large effects on the dynamics of stars in the
vicinity of the center of a galaxy like the Milky Way. It
would be worth analyzing this possibility and setting
bounds on the disformal coupling from the advance of
perihelion of such stars orbiting the Galactic center. In this
paper, we have also shown that for a two-body system with
conformal and disformal interactions, the center-of-mass
dynamics can be captured by an effective metric at leading
order in GN . The effects of the disformal coupling in the
case of two inspiralling neutron stars could be relevant for
future observations and would give us indications on the
existence of both conformal and disformal interactions

between matter and a scalar field. We expect that the
disformal interaction begins to induce large deviations from
general relativity when

M4 ≲ β2m⊙

R3
ð5:1Þ

for objects of masses around one solar mass at a distance R;
see (4.28). Typically, the Cassini experiment implies
that β2 ≲ 10−5 [11], and therefore the typical order of
magnitude of the upper bound for which disformal effects
might be expected when two neutron stars are separated by
R ∼ 100 km is

M ≲ 3 MeV: ð5:2Þ

This has to be compared with the constraints on disformal
couplings in different environments (see Table 1 in [30]);
i.e., the scale M could be different for physical processes
involving various densities or energy scales. Typically, such
a range for M is compatible with the lower bound on M ≥
0.07 MeV from the Eötwash experiment [30]. In conclu-
sion, we find that disformal effects could play a role in the
merging of two neutron stars when the disformal scale is
M ∼ 1 MeV. The details of this study are left for the future.
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