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We present a new parameterization of quintessence potentials for dark energy based directly upon the
dynamical properties of the equations of motion. Such parameterization arises naturally once the equations
of motion are written as a dynamical system in terms of properly defined polar variables. We have identified
two different classes of parameters, and we dubbed them dynamical and passive parameters. The dynamical
parameters appear explicitly in the equations of motion, but the passive parameters play just a secondary
role in their solutions. The new approach is applied to the so-called thawing potentials, and it is argued that
only three dynamical parameters are sufficient to capture the evolution of the quintessence fields at late
times. This work reconfirms the arbitrariness of the quintessence potentials as the recent observational data
fail to constrain the dynamical parameters.
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I. INTRODUCTION

One of the most famous unsolved mysteries in modern
cosmology is the accelerated expansion of the Universe, an
observation that has been widely confirmed ever since its
discovery in 1998 [1–6]. The accelerated expansion is
commonly attributed to a mysterious matter component
generically dubbed as dark energy (DE). The most accepted
DE model is the cosmological constant [7–9], which is in
fact part of the so-called standard model of cosmology [6].
From this point of view, a cosmological constant represents
a constant vacuum energy which can explain the accel-
erated expansion very well, but its existence is problematic
from the theoretical point of view [7,10–12].
It seems then more natural to consider dynamical models

where the DE component could be explained by extra fields
in the matter budget or by modifications and/or extensions
to our current understanding of the gravitational field [13].
The latter possibility has been just recently weakened by
the detection of gravitational waves produced during the
collision of binary system of neutron stars, mainly because
of the exquisite measurement that confirms that gravita-
tional waves propagate at the speed of light [14–18].
Among the still surviving dynamical models of DE, we
find in particular those of quintessence scalar fields, which
have been present in the literature for almost three decades

[19–21]. In a quintessence model, a scalar field is mini-
mally coupled to gravity and a potential supply the required
negative pressure to drive the accelerated expansion of the
Universe.
A wide range of quintessence potentials has been pro-

posed in the literature [22–28] but none of these have a
confirmation from the observational point of view. Depen-
ding on the evolution of the equation of state parameter of
the scalar field quintessence scalar field models are crudely
classified into two classes [29–32] (i) thawing models and
(ii) freezing models. For thawing models, the potential
becomes shallow at late times and the field gradually slows
down. For freezing models, during the early cosmological
time, the field is almost frozen due to the presence of Hubble
friction and the scalar field starts to slowly roll-down the
potential as the field mass becomes lower than the Hubble
expansion rate. For a more detailed discussion of the
quintessence dynamics we refer to [28,33–35].
In this work, we propose a general method to study the

evolution of quintessence scalar field models with a general
form of the scalar field potential. Using a suitable variable
transformation, the equations of motion are written as a set of
autonomous equations, which directly suggests a general
parametrization of the quintessence potentials without hav-
ing to know their precise form. Such a dynamical systems
analysis of DE models is already popular in the study of
cosmology, for examples and references see [35–38], but so
far they have mostly used the original change of variables
firstly introduced in Ref. [22]. The particular, polar form of
the transformation into a dynamical system which we use in
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this work was first proposed for dark matter models and the
inflationary scenario in [39,40], but see also [41,42] for other
related works. As mentioned above, we shall show that there
is a general parametrization from which almost all the
popular quintessence potentials can be derived. The new
parameters are the responsible for the dynamical behavior of
the quintessence models, and we use this property to put
observational constraints on their values and from this infer
the functional form of the potentials that seem to be preferred
by the data.
A summary of the paper is as follows. In Sec. II, we set

up the mathematical background of the system. This
section includes the formation of the autonomous system,
its polar transformation, and a description of the general
parametrization of the quintessence potentials. In addition,
we provide a generic method to infer the potentials from the
reverse integration of the given parametrization. In Sec. III,
we find approximate solutions to the equations of motion in
their polar form to follow the evolution of the quintessence
variables from the radiation-dominated era up to the present
time. As a result, we obtain analytical expressions that link
initial values of the variables with present quantities of
physical interest that can be used reliably in numerical
solutions. Section IV is devoted to the numerical analysis of
the quintessence solutions and their implementation in an
amended version of the Boltzmann code CLASS. We also
propose a new parametrization of the DE equation of state
that suits well the behavior of the quintessence models, we
study this by making a comparison with full numerical
simulations of the equations of motion. The comparison
with diverse cosmological observations is presented in
Sec. IV by means of a full Bayesian analysis, in order
to put constraints on the dynamical parameters of the
quintessence models. Finally, we present a summary of our
results and an outlook for future research in Sec. VI.

II. MATHEMATICAL BACKGROUND

We consider a flat Friedman-Lemaître-Robertson-
Walker universe which is dominated by the standard matter
fluids plus a quintessence scalar field. We also consider that
all the component of the Universe are barotropic in nature,
i.e., the pressure pj and the density ρj are related one to
each other by the expression pj ¼ wjρj, where wj are the
corresponding (constant) equation of state (EOS) parameter
of each component. The Einstein field equations, the
continuity equation for each matter fluid, and the (wave)
Klein-Gordon equation of scalar field can be written,
respectively, as

H2 ¼ κ2

3

�X
j

ρj þ ρϕ

�
; ð1aÞ

_H ¼ −
κ2

2

�X
j

ðρj þ pjÞ þ ðρϕ þ pϕÞ
�
; ð1bÞ

_ρj ¼ −3Hðρj þ pjÞ; ð1cÞ

ϕ̈ ¼ −3H _ϕ −
dVðϕÞ
dϕ

; ð1dÞ

where κ2 ¼ 8πG, H ≡ _a=a is the Hubble parameter and a
the scale factor of the Universe, VðϕÞ is the scalar potential
and a dot means derivative with respect to cosmic time. The
scalar field energy density ρϕ and pressure pϕ are expressed
in terms of the field variables, respectively, as

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ; pϕ ¼ 1

2
_ϕ2 − VðϕÞ: ð2Þ

In contrast to the corresponding quantities of the barotropic
perfect fluids, the quintessence density and pressure cannot
be handled independently and one necessarily requires to
find separate solutions for ϕ and _ϕ from Eq. (1d). In the
sections below, we will present new variables that help to
solve Eqs. (1) more easily.

A. Dynamical system approach

To write Eq. (1d) as a set of autonomous equations, we
introduce a new set of dimensionless variables [22,40,43]

x≡ κ _ϕffiffiffi
6

p
H
; y≡ κV1=2ffiffiffi

3
p

H
; ð3aÞ

y1 ≡ −2
ffiffiffi
2

p ∂ϕV1=2

H
; y2 ≡ −4

ffiffiffi
3

p ∂2
ϕV

1=2

κH
: ð3bÞ

As a result, Eq. (1d) is transformed into

x0 ¼ −
3

2
ð1 − wtotÞxþ

1

2
yy1; ð4aÞ

y0 ¼ 3

2
ð1þ wtotÞy −

1

2
xy1; ð4bÞ

y01 ¼
3

2
ð1þ wtotÞy1 þ xy2; ð4cÞ

where now a prime is the derivative with respect to the
number of e-foldings, N ≡ lnða=aiÞ and ai is the initial
scale factor of the Universe. In writing Eqs. (4), we
have used the Friedmann constraint (1) in the form
Ωr þ Ωm þ Ωϕ ¼ 1, where the density parameters of the
different matter fields are defined in the standard way as
Ωj ¼ κ2ρj=ð3H2Þ. In addition, the total EoS is given by

wtot ≡ ptot

ρtot
¼ 1

3
Ωr þ x2 − y2: ð5Þ

Equations (4) have been thoroughly used in the literature
to study the properties of quintessence potentials; see, for
instance, Refs. [22,35] and references therein. Their main
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advantage is the possibility to consider a compact phase
space for the variables x and y, so that all trajectories and
critical points of interest can be studied without the intrinsic
difficulties in the standard variables ðϕ; _ϕÞ. One main
limitation of this approach is that the form of the new
potential variables y1 and y2 have to be calculated indi-
vidually for each quintessence potential, and in this respect
they do not offer a clear advantage over the direct solution
of the KG equation (1d), and the solution of the latter still
is the popular approach in the numerical studies of
quintessence models.

B. Polar form of the equations of motion

We now introduce the following polar transformations of
the variables: x ¼ Ω1=2

ϕ sinðθ=2Þ and y ¼ Ω1=2
ϕ cosðθ=2Þ,

where Ωϕ ¼ κ2ρϕ=3H2 is the density parameter associated
to the quintessence field and θ represents an angular degree
of freedom. The system of equations (4), after simple
manipulations, reduces to

θ0 ¼ −3 sin θ þ y1; ð6aÞ

y01 ¼
3

2
ð1þ wtotÞy1 þΩ1=2

ϕ sinðθ=2Þy2; ð6bÞ

Ω0
ϕ ¼ 3ðwtot − wϕÞΩϕ: ð6cÞ

The EoS of the scalar field in terms of the polar variable
is wϕ ¼ pϕ=ρϕ ¼ ðx2 − y2Þ=ðx2 þ y2Þ ¼ − cos θ, which
tells us of the direct relation between the two variables.
Likewise, the ratio of kinetic and potential energies is given

by tan2 θ ¼ ð1=2Þ _ϕ2=VðϕÞ ¼ x2=y2. Equations (6a) and
(6c) are the same for any kind of potential, and it is only
Eq. (6b) that changes for different cases because of the
presence of y2.

C. General form of the quintessence potentials

To find a solution of Eqs. (6) one needs to close the
system of equations, and this can be done whenever the
second potential variable y2 can be written in terms of
the variables θ, y1 and Ωϕ. This is equivalent, in the
standard approach, to the fixing of the scalar field potential.
Then, one possibility is to choose the functional form of
the potential VðϕÞ and to derive from it the form of y2
following the prescriptions in Eqs. (3). In Table I, we give a
list of thawing and freezing quintessence potentials that are
very familiar in the current literature and their correspond-
ing closed form in terms of y2. For those potentials, the
dynamical system (6) becomes an autonomous one upon
which we can use the known mathematical tools of such
systems [44]. It must be noticed that our classification in
thawing and freezing is based upon on the behavior of the
solutions as described in the corresponding references, but
such classifications cannot be read directly from the final
form of y2, as also a proper choice of initial conditions must
be taken into account. More details can be found in
Sec. III below.
One can see that for the examples in Table I the

functional forms of y2 can be expressed in terms of the
variables y and y1, or more precisely, as a polynomial in
terms of the ratio y1=y. It is then natural to consider that
there exists a more general function of y2 in the form

TABLE I. List of quintessence potentials and their corresponding closed form of y2 in terms of the potential
variables y and y1. In general, we see that y2=y is represented by a polynomial form in terms of the variable y1=y.
Also, it should be noticed that some of the potential free parameters, indicated here by the capital Latin letters, as in
the case of the scale energy A4, do not appear in the final form of y2. The only dynamical parameters in the
potentials, that end up in the final form of y2, are indicated by the Greek letter λ [although it should not be confused
with the variable defined in Eq. (9)].

Ref. Potential VðϕÞ Closed form of y2

Thawing potentials
[43,45] A4ð1þ BϕÞ2λ 1−λ

2λ y21=y
[46] A4 exp ð−ϕ2=λ2Þ 12

κ2λ2
y − 1

2
y21=y

[47,48] A4½1þ cosðϕ=λÞ� 3
κ2λ2

y
[49] A4þλϕ−λ − 1

λ ðλ2 þ 1Þy21=y
[50] A4e2λκ

2ϕ2 −24λy − 1
2
y21=y

Freezing potentials
[51,52] A4ð1 − e−λκϕÞ2 −

ffiffiffi
6

p
λy1

[53] A4 coshðλκϕÞ −6λ2yþ 1
2
y21=y

[10] A4½coshðλκϕÞ�−1 6λ2y − 3
2
y21=y

[54] A4½sinhðλ1κϕÞ�−λ2 6λ21λ2y − ð1=λ2Þð1þ λ2=2Þy21=y
[55] A4½eλ1κϕ þ eλ2κϕ� 6λ1λ2yþ

ffiffiffi
6

p ðλ1 þ λ2Þy1 þ 1
2
y21=y
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y2 ¼ y
Xn
i¼0

αi

�
y1
y

�
i
: ð7Þ

where αi are constant coefficients. As also shown in the
examples in Table I, the constant coefficients αi will then
drive the dynamics of the quintessence field, although they
will not be directly related to other free parameters in the
potential, which are denoted with Latin capital letters in the
examples of Table I.1

For completeness, we show in Table II the inverse
process that can be used upon Eq. (7) to obtain from it
different quintessence potentials. The simplest possibility is
αj ¼ 0, for which Eq. (7) can be written as ∂2

ϕV
1=2 ¼ 0 and

then upon integration we obtain VðϕÞ ¼ ðAþ BϕÞ2, where
A, B are integration constants. This is precisely one
particular example (with α2 ¼ 0) of class Ia in Table II.
In the most general case, Eq. (7) can be written as a

differential equation by means of the definitions of the
variables y, y1 and y2 in Eqs. (3). Hence,

∂2
κϕV

1=2 þ V1=2

12

X
j¼0

αj

�
−2

ffiffiffi
6

p ∂κϕV1=2

V1=2

�j

¼ 0; ð8Þ

where the derivatives are calculated with respect to the
dimensionless variable κϕ. Using the auxiliary function
λ ¼ y1=y ¼ −2

ffiffiffi
6

p ∂κϕV1=2=V1=2, we can write Eq. (8) in
the form

∂κϕλ ¼
1

2
ffiffiffi
6

p
�
λ2 þ 2

X
j¼0

αjλ
j

�
: ð9Þ

Thus, the inverse process to find the quintessence potential
if the dynamical parameters αj are given consists in the

integration of the fundamental equation (9). In general
terms, Eq. (9) can be integrated by the method of partial
fraction decomposition, for which we require first to find
the roots of the polynomial on the right hand side. Once a
solution is found for the auxiliary function λ ¼ λðκϕÞ,
the corresponding quintessence potential is obtained from
VðϕÞ ¼ exp ½−λðκϕÞ= ffiffiffi

6
p �.

The cases in Table II are those that correspond to the
quadratic expansion (αj ¼ 0 for j ≥ 3) in Eq. (9). It can be
verified that there is a direct correspondence between the
general cases in Table II with the particular examples
shown in Table I, as long as the constants A, B and C are
adjusted accordingly. From the numerical point of view, the
most general form of the potential is obtained from αj ≠ 0,
and all other forms should be a subclass of this. But
analytically this is not achievable as the integration scheme
is different for different choices of αj, and this is why we
find it more natural to classify the quintessence potentials in
the four classes shown in Table II.

D. Dynamical and passive parameters

We said before that the α-parameters are the only
dynamical ones, and then their allowed values suggest
natural classifications of the potentials in general classes.
We, hereafter, dub them dynamical parameters. Apart from
this, there will be constants of integration (A, B and C in the
examples of Table II), which are then redundant from the
dynamical point of view and do not have any influence of
the behavior of the field solutions, except in the setup of
the initial conditions. We will refer to them as passive
parameters.
To briefly illustrate the difference with respect to the

dynamical ones, let us consider the well known example in
class Ia which is the quadratic potential VðϕÞ ¼ ðm2

ϕ=2Þϕ2

(A ¼ 0, B ¼ mϕ=
ffiffiffi
2

p
and α2 ¼ 0), where mϕ is the mass of

the scalar field [40]. It can be shown that for this case
y1i ¼ 2

ffiffiffi
2

p
B=Hi ¼ 2mϕ=Hi, where Hi is the initial value

TABLE II. Examples of general quintessence potentials that are obtained from the reverse integration of the
definition of the second potential variable y2, see Eqs. (7) and (9). Notice that we only considered the expansion in
Eq. (7) up to the second order, as the inverse process is not analytical if higher order terms are included.

No Structure of y2=y Form of the potentials VðϕÞ
Ia α0 ¼ 0; α1 ¼ 0; α2 ≠ − 1

2 ðAþ BϕÞ 2
ð2α2þ1Þ

Ib α0 ¼ 0; α1 ¼ 0; α2 ¼ − 1
2

A2e2Bϕ

IIa α0 ≠ 0; α1 ¼ 0; α2 ≠ − 1
2 A2 cos ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0κ

2ð1þ 2α2Þ
p

ðϕ − BÞ=2 ffiffiffi
3

p � 2
1þ2α2

IIb α0 ≠ 0; α1 ¼ 0; α2 ¼ − 1
2

A2 exp ð−κ2α0ϕ2=12Þ expð2BϕÞ
IIIa α0 ¼ 0; α1 ≠ 0; α2 ≠ − 1

2 ½A exp ðα1κϕ=
ffiffiffi
6

p Þ þ B� 2
1þ2α2

IIIb α0 ¼ 0; α1 ≠ 0; α2 ¼ − 1
2 A2 exp ½2B exp ðκα1ϕ=

ffiffiffi
6

p Þ�
IVa α0 ≠ 0; α1 ≠ 0; α2 ≠ − 1

2 A2 exp
�

κα1ϕffiffi
6

p ð1þ2α2Þ

�n
cos

h�
− κ2α2

1

24
þ κ2α0

12
ð1þ 2α2Þ

�1
2ðϕ − BÞ

io 2
1þ2α2

IVb α0 ≠ 0; α1 ≠ 0; α2 ¼ − 1
2 A2 exp

h
κα0ϕffiffi
6

p
α1
þ 2B exp

�
κα1ϕffiffi

6
p

�i

1We discuss in Appendix A a more general approach for the
functional form of the ratio y2=y.
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of the Hubble parameter (see also Sec. IV below). The
initial values of the other two dynamical variables, θi and
Ωϕ;i must be fixed by taking additional considerations, like
the expected contribution of the quintessence field at the
present time. Thus, the value of parameter B plays a role in
the setup of the initial conditions of the field variables, even
though it does not affect at all their evolution and dynamics.
More about the free parameters in the potentials, both
dynamical and passive, is discussed in the sections below.

III. APPROXIMATE SOLUTION OF THE
EQUATIONS OF MOTION

Here we will show how to obtain a solution of the
equations of motion (6) that is of general applicability to
any kind of quintessential potential of the (monotonic)
thawing type. This will in turn be useful also to obtain
appropriate initial conditions for the general numerical
solutions that will be used in Sec. IV.
It must be stressed that the thawing condition for the

quintessence models requires that, initially, the EoS is
wϕ ≃ −1 and also that y1 > 0. This means that the
quintessence EoS will deviate from the cosmological
constant value at late times. Notice that the thawing
condition is here chosen by hand, but our formalism also
allows other possibilities (freezing, tracker, skater, etc.),
which we leave for future studies.
We start by noting that from observations we expect the

present value of the quintessence EoS to bewϕ ≃ −1, which
is equivalent in terms of the polar variables to θ < 1.
Moreover, at the epoch when the Universe entered into \the
matter-dominated phase from a radiation-dominated phase,
the scalar field energy density was still very subdominant
Ωϕ ≪ 1. By taking into account the approximations
Ωϕ ≪ 1 and θ ≪ 1, we neglect the second term in
Eq. (6b) and find separate solutions during the radiation
and matter domination eras. We shall then match the
separate solutions at the time of the radiation-matter
equality, and with this we shall try to make a reasonably
good guess of the initial conditions of the Universe which
can lead to the present accelerated Universe.
One final note is that, in the radiation- and matter-

dominated cases, the e-foldings N are different. For
radiation domination Nr ¼ lnða=aiÞ where ai is the initial
value of the scale factor, whereas for matter domination
Nm ¼ lnða=aeqÞ, where aeq is the scale factor of the
Universe at the epoch of radiation-matter equality.

A. Radiation-dominated era

As the Universe is dominated by radiation the total EoS
simply is ωtot ¼ 1=3, and due to the smallness of θ we can
use the following approximations: sin θ ≃ θ and cos θ ≃ 1,
so that also wϕ ≃ −1. Hence, Eqs. (6) reduce to

θ0 ¼ −3θ þ y1; y01 ¼ 2y1; Ω0
ϕ ¼ 4Ωϕ: ð10Þ

The growing solution of Eq. (10), within the radiation
domination era, are given by

θr ¼ θiða=aiÞ2; y1r ¼ y1iða=aiÞ2; Ωϕr ¼ Ωϕiða=aiÞ4;
ð11Þ

where a subindex r denote the solution during radiation
domination and a subindex i denote the initial value of
the corresponding variable. In addition, we also find that
y1 ¼ 5θ, which is just the attractor solution for these
variables during radiation domination.

B. Matter-dominated era

As the Universe is dominated by matter we now consider
that ωtot ¼ 0, and after using the same approximations as in
Eqs. (10) and (6) now become

θ0 ¼ −3θ þ y1; y01 ¼
3

2
y1; Ω0

ϕ ¼ 3Ωϕ: ð12Þ

After solving Eq. (12), we obtain the matter-dominated
solutions:

θm ¼
�
θeq −

2

9
y1eq

�
ða=aeqÞ−3 þ

2

9
y1eqða=aeqÞ3=2;

y1m ¼ y1eqða=aeqÞ3=2; Ωϕm ¼ Ωϕeqða=aeqÞ3: ð13Þ

Here, a subindex m denote the solution during matter
domination and a subindex eq denote the initial value of the
corresponding variable at the time of radiation-matter
equality. In contrast to the previous radiation-dominated
case, we are not neglecting the decaying solution in
Eq. (13) as it will be required below to handle the transition
between the two cosmological eras.
We matched the approximate solutions (11) and (13) at

the time of radiation-matter equality aeq ¼ Ωr0=Ωm0 so that
we can find a solution at matter domination that carries
information about the initial conditions set up in radiation
domination. From Eq. (11), we find the values of the
variables at radiation-matter equality: θeq ¼ θiðaeq=aiÞ2,
y1eq ¼ 5θeq ¼ y1iðaeq=aiÞ2 and Ωϕeq ¼ Ωϕiðaeq=aiÞ4,
which we substitute in Eq. (13) to obtain

θm ¼ 10

9

�
aeq
ai

�
2

θi

��
a
aeq

�
3=2

−
1

10

�
a
aeq

�
−3
�
; ð14aÞ

y1m ¼ a1=2eq

a2i
y1ia3=2; ð14bÞ

Ωϕm ¼ aeq
a4i

Ωϕia3: ð14cÞ
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C. Estimation of initial conditions

Equations (14) can be used to estimate the initial
conditions on the dynamical variables from the present
values of θ and Ωϕ. We will assume that the matter
domination solutions (14) are valid up to the present time.
This is not correct from a formal point of view, but we
have verified the appropriateness of Eqs. (14) by a direct
comparison with numerical solutions, see Sec. IV below.
Hence, by taking a ¼ 1 in Eqs. (14), the initial condi-
tions for the quintessence dynamical variables can be
estimated from

θi ≃
9

10
a2i

Ω1=2
m0

Ω1=2
r0

θ0; ð15aÞ

Ωϕi ≃ a4i
Ωm0

Ωr0
Ωϕ0; ð15bÞ

where we have only taken the leading term in Eq. (14a) for
the expression of θi. The same procedure applied to
Eq. (14b) gives y1i ¼ 5θi, which is exactly the attractor
solution expected during radiation domination, see Eq. (11).

D. Final considerations

We learn from the first of Eqs. (15), because of the direct
relation of the polar variable θ to the scalar field EoS, that
the present value of the latter wϕ0 is an output value that is
directly determined by the initial value θi. This would be in
agreement with the standard field approach to quintessence,
in which one has to try different initial conditions, for both
ϕi and _ϕi, to explore a given range of values for wϕ0. The
main difficulty in the latter is that there is not a straightfor-
ward relation between the pair ðϕi; _ϕiÞ and the present
value wϕ0, and then the search of initial conditions for a
proper sampling of wϕ0 must be done differently for each
potential VðϕÞ. One big advantage of our approach in this
respect is that we can avoid such a hassle and use generic
initial conditions for all cases, irrespective of the particular
form of the potential.
On the other hand, the relation between the present and

initial values of the scalar field density parameter Ωϕ is just
the one that is obtained for a cosmological constant; this is
hardly surprising as one assumption was that the scalar
field EoS was close to −1 for most of the evolution of the
Universe.
One final quantity of interest is the ratio y1=y at the

present time; from the solutions presented above, we find
that

y10
y0

≃
y10
Ω1=2

ϕ0

¼ y1i
Ω1=2

ϕi

≃
9

2

�
2ð1þ wϕ0Þ

Ωϕ0

�
1=2

: ð16Þ

Its present value is basically set up by the initial conditions,
or equivalently, as suggested by the last equality in

Eq. (16), by the present values of the quintessence
parameters. Hence, the ratio y1=y should remain small
for most of the evolution of the Universe if the quintessence
field is to be the dark energy, i.e., if 1þ wϕ0 ∼ 0. This
reinforces our assumption that it is just enough to consider
an expansion up to the second order in Eq. (7), and then the
dynamics of the quintessence fields will be represented, in
general, by the values of the first three coefficients α0, α1
and α2.

IV. GENERAL PROPERTIES OF
QUINTESSENCE MODELS

In this section, we shall study the evolution of the
Universe considering the general form of y2 ¼ α0yþ
α1y1 þ α2y21=y, and we shall explain the general procedure
to constrain the dynamical parameters α.

A. Class Ia and the cosmological constant

We explain here the correspondence, within our
approach, between quintessence and the cosmological
constant. Let us start with the simplest possibility which
is y2 ¼ 0, in terms of the expansion of y2 in Eq. (7) this
also means that: α0 ¼ α1 ¼ α2 ¼ 0. As shown in Table II
this case corresponds to the parabolic potential VðϕÞ ¼
ðAþ BϕÞ2, where A and B are integration constants. The
potential has its minimum at ϕc ¼ −A=B, and then the
mass of the quintessence field is simply given by
m2

ϕ ≡ ∂2
ϕVðϕcÞ ¼ 2B2. Thus, parameter B gives us infor-

mation about the mass scale of the quintessence field,
whereas parameter A tells us about the displacement of the
minimum away from the origin at ϕ ¼ 0. Moreover, there is
now a straightforward interpretation of one of the potential
parameters: y1 ¼ 2

ffiffiffi
2

p
B=H, see Eq. (3b), and then we find

that at all times y1 ¼ 2mϕ=H. The parameter A is left
undetermined as it plays no role in the dynamics of the
quintessence field.
Let us in addition impose B ¼ 0, which also means

that y1 ¼ 0 for the whole evolution. Equation (4b) is
identically satisfied, whereas Eq. (4a) provides the solution
tanðθ=2Þ ¼ tanðθi=2Þða=aiÞ−3; we find that θ → 0 as
ða=aiÞ → ∞, and then also that wϕ → −1 at late times.
This case corresponds to the case VðϕÞ ¼ const., that is, to
the so-called skater models discussed in [56,57]. Skater
models then belong to our class Ia of quintessence
potentials under the condition y1 ¼ 0.2

We now revise the case of a constant EoS wϕ ¼ wϕ0.
Although this can be seen as the simplest generalization of
the cosmological constant, from Eqs. (6) we find that a
constant EoS in the quintessence case could be obtained if,

2The evolution equation for the variable θ in this case simply is
θ0 ¼ −3 sin θ, which in terms of the EoS can be rewritten as
w0
ϕ ¼ −3ð1 − w2

ϕÞ. The foregoing equation is exactly the one for
skater models [56].
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apart from y1 ¼ 0, we also impose θi ¼ − cos−1ð−wϕ0Þ and
θ0 ¼ 0. However, the latter condition cannot be sustained if
θ ≠ 0, see Eq. (6a), and then we get the same situation for
skater models described in the above paragraph in which
θ → 0. That is, the quintessence EoS cannot remain constant
and must evolve towards the value wϕ → −1. These same
calculations show that the only consistent conditions for a
constant EoS are θ ¼ 0 and θ0 ¼ 0, which correspond
exactly to the cosmological constant case.
The morale from this discussion is then twofold. First,

it is not possible to find a quintessence solution that
emulates a constant EoS for DE apart from the cosmo-
logical constant case. And second, in terms of the param-
eters in our approach, the cosmological constant is just the
null hypothesis (θ ¼ 0 and y1 ¼ 0), and then any deviation
from the null value of the dynamical variables and
parameters will be a measurement of the preference of
the data catalogs on the quintessence models.

B. The quintessence EoS

One of the primary cosmological parameters in the
studies of DE is the EoS of the DE field. In our approach,
the EoS is, through the relation wϕ ¼ − cos θ, also one of
the dynamical variables to describe the evolution of the
quintessence field. Here we will discuss the influence of
the dynamical parameters α and in doing so we will
determine the behavior of the EoS under general quintes-
sence potentials.
We show in Fig. 1 the plots of 1þ wϕ as a function of the

redshift z for different values of the dynamical parameters
α0, α1 and α2, respectively. The plots are for the quantity
1þ ωϕ instead of ωϕ as we are interested about the
deviations of the quintessence EoS from the cosmological
constant case. But also because at present we can make
the approximation 1þ wϕ0 ≃ θ20=2, and we see that it is
variable θ that provides such deviations. The numerical
solutions are grouped according to the class in Table II they
belong to and for the indicated values of the dynamical
parameters.
From these plots, one can clearly see that the variation of

the EoS is more sensitive to α2, and less sensitive to the
variation of α0. This is just the expected result as α2 is the
partner coefficient of y21=y

2 in the series expansion (11). It
is interesting to note from Fig. 1 that a desired value of EoS
of the dark energy can be obtained for a wide range of α
parameters. Recent cosmological observations can only
constrain the present value of the EOS, but unless there is
any constraint on the evolution of the EOS it will not be
possible to choose from the solutions for different α
parameters. Hence, our expectation is that the statistical
analysis using cosmological observations in the next
section will not be able to constrain the α parameters.
Additionally, we also see that the curves show a monotonic
growth if the dynamical parameters are positive, but the

curves develop a bump (ie a maximum appears) if the
parameters are negative enough. We can only speculate that
this latter effect seems to be an indication for the possible
appearance of oscillations in the evolution of the EoS, but
we will leave this topic for a future study.
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FIG. 1. Plots of 1þ wϕ as a function of the redshift z for the
values indicated of the dynamical parameters α0 (top), α1
(middle) and α2 (bottom). Notice that the curves deviate from
the cosmological constant value (w ¼ −1) for z < 3, in general
the curves grow monotonically as z → 0 but a small bump
appears if the dynamical parameters take on negative values.
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As for the monotonic growing behavior at late times that
is found for positive values of the dynamical parameters, it
can be fit by the following expression,

1þ wϕ ¼ ð1þ wϕ0Þa3½w1 þ ð1 − w1Þaγ�; ð17Þ

where w1 and γ are free parameters. Notice that wϕ0 is
explicitly present in Eq. (17) to ensure that the actual value
of the EoS is obtained at a ¼ 1. The second term on
the rhs of Eq. (17) corresponds to the expected behavior
during matter domination: from the leading solution in
Eq. (14a), and together with Eq. (15), we obtain that
ð1þ wϕÞm ≃ ð1=2Þθ2m ≃ ð1=2Þθ20a3. Hence, for those cases
in which this approximation is good enough until the
present time we expect that w1 ∼ 1 and γ ∼ 0. Any differ-
ence with respect to these values will signal the transition
from matter to quintessence domination and of the presence
of the dynamical parameters α.
The results from a least-squares fitting of the para-

metrization (17) to the numerical solutions obtained from
CLASS in some selected cases are shown in Table III and in
Fig. 2, in all examples we considered the scale factor a in
the range ½0.1∶1�. It can be verified that the fits are indeed
very good in all cases as the standard errors around the
obtained values of the parameters are ≲1%. Not surpris-
ingly, it is consistently found that γ ≳ 0, which indicates
that the EoS accelerates its growth from −1 as the
quintessence field starts to dominate the matter budget.
Equation (17) can be compared with other parameter-

izations of the dark energy EoS, like the famous Chevalier-
Polarski-Linder one: w ¼ w0 þ w1ð1 − aÞ, which is clearly
inappropriate to describe the evolution of the quintessence
models in this work. There exist other parameterizations,
see for instance [58–63] and references therein, but they
usually have a more complicated form than Eq. (17).
Although they may serve to test more complicated DE
models, they are certainly not the best options to test one
DE model as simple as quintessence.
Like in the case of the CPL parametrization, notice that

Eq. (17) uses the present value of the EoS as an explicit
parameter, but one clear advantage of our approach is that
we are parameterizing the underlying dynamical variable θ,
and then we are recovering the right behavior of the EoS at
early times. Notwithstanding this, we will not pursue a
study of the dynamics represented by the parametrized EoS
(17) because of the obvious degeneracies with the dynami-
cal parameters: one can see from Table III that different
combinations of the α’s will result in similar values of the
free parameters γ and w1. Also, our parameterization (17) is
only valid for redshifts z≲ 10, as for larger redshifts we
need to take into account the full solutions for radiation
domination and the radiation-matter transition, see Sec. III
above. All of this makes any reconstruction of the quintes-
sence potential from the EoS parametrization fruitless, and

then it is more convenient to work directly with the
dynamical variables α extracted from the potentials.

V. OBSERVATIONAL CONSTRAINTS
AND RESULTS

Here we discuss our general strategy to put observational
constraints on the dynamical parameters that characterize
the quintessence field.

A. General setup and data sets

We use an amended version of the Boltzmann code
CLASS [64] and the Monte Carlo code MONTE PYTHON
[65,66]. Amendments to CLASS includes those necessary
for MONTE PYTHON to be able to sample the parameters
that we describe next. There are six parameters that
we want to constrain: θ0, y10, Ωϕ0; α0; α1; α2, but only 5
of them are required as input parameters, namely:
Ωϕ0; θ0;α0; α1;α2, because the value of y10 is to be inferred
from the full numerical evolution. It must be stressed that,
as we sample the values of θ0, we will also be sampling the
present values of the quintessence EoS wϕ0 through the
relation wϕ0 ¼ − cos θ0. In practice, the present EoS is then

TABLE III. The values of the parameters γ and w1 obtained
from a least-squares fit of the parametrization (17) to some of the
numerical solutions in Fig. 1. Notice that, in general, γ ≳ 1, which
means that the leading power in the parametrization (17) is larger
than a3. The standard errors around the obtained values of the
parameters are ≲1%.

Class Ia: α0 ¼ α1 ¼ α2 ¼ 0

ωϕ0 γ w1

−0.952 1.691� 0.016 2.253� 0.003
−0.900 1.627� 0.016 2.264� 0.004
−0.853 1.570� 0.017 2.276� 0.004

Class II: α1 ¼ α2 ¼ 0, and wϕ0 ¼ −0.853
α0 γ w1

1500 38.481� 0.005 3.219 × 10−5 � 9.566 × 10−6

500 19.738� 0.013 3.367 × 10−4 � 6.042 × 10−5

300 13.998� 0.017 1.065 × 10−3 � 1.317 × 10−4

50 3.648� 0.006 0.156� 3.354 × 10−4

10 1.500� 0.020 1.198� 0.001
5 1.500� 0.017 1.665� 0.003

Class IIIa: α0 ¼ α3 ¼ 0, and wϕ0 ¼ −0.853
α1 γ w1

20 5.373� 0.034 0.379� 0.0007
15 4.928� 0.022 0.507� 0.0004
10 5.312� 0.002 0.728� 1.27 × 10−5

5 0.503� 0.048 1.315� 0.0223
2 1.393� 0.018 1.751� 0.019

Class I: α0 ¼ α2 ¼ 0, and wϕ0 ¼ −0.853
α2 γ w1

2 0.599� 0.046 1.474� 0.025
1 1.282� 0.021 1.725� 0.006
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an input value and we will have full control of its sampling,
which is another advantage of our method and variables
over the standard approach to quintessence fields.
As in many other instances, we still need to finely tune

the initial values of the dynamical variables at the begin-
ning of every numerical run. For that, we write y1i ¼ 5θi,
θi ¼ P× Eq. (15a) and Ωϕi ¼ Q× Eq. (15b), where the
values of P and Q are adjusted with the shooting method
already implemented within CLASS for scalar field models.
A few iterations of the shooting routine are enough to find
the correct values of θi, y1i and Ωϕi that lead to the desired
Ωϕ0 and wϕ0 with a very high precision; in all instances, it
has been found that P;Q ¼ Oð1Þ, which indicates that
Eqs. (15) are good approximations to the required initial
conditions. Here we only consider the background dynam-
ics of the quintessence fields and leave the study of their
linear perturbations for a future work.
In doing a full sampling of the dynamical parameters α0,

α1, α2, we will also be sampling the general form of the
potentials shown in Table II. This way we expect to be able

to impose constrains on the dynamical parameters but not
on the passive ones of the potential VðϕÞ. As explained
before, these other parameters are related and can obtained
from the dynamical variables θ0, y10 and Ωϕ0, although this
would have to be done case by case for each one of the
potentials in Table II. For purposes of generality, we will
focus on the constraints to the dynamical parameters and
consider only two examples of constraints on passive
parameters.
We use two data sets that are sensitive to the background

quantities: (i) the SDSS-II/SNLS3 joint light-curve analysis
(JLA) supernova data [67] and (ii) BAO measurements
(baryonic acoustic oscillations). In this case, the following
data sets are included in the likelihood: 2dFGS, MGS,
DR11 LOWZ and DR11 CMASS [68]. We imposed a
Planck2015 prior on the baryonic and cold dark matter
contribution [69–73]: ωb¼0.02230�0.00014 and ωcdm ¼
0.1188� 0.0010; whereas, for the scalar field parameter,
we used flat priors in the range −20 < α0 < 20, −5 <
α1 < 5 and −2 < α2 < 2. The total set of parameters being
sampled are: ωb, ωb, H0, and the scalar field contribution

FIG. 2. Fitting of the proposed parametrization in Eq. (17) to the numerical solutions obtained using the CLASS code corresponding to
the Table III. These plots are for ð1þ wϕÞ=ð1þ wϕ0Þa3 as a function of the scale factor a in the range [0.1: 1]. Top-left plot corresponds
to the class Ia where αi ¼ 0. Top-right corresponds to class II where α1 ¼ α2 ¼ 0. In bottom-left, the plots are for the class IIIa,
α0 ¼ α2 ¼ 0 and in bottom-right the plots are for α0 ¼ α1 ¼ 0 which belongs to class I.
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Ωϕ0 is set by the closure relation for the given θ0, α0, α1 and
α2; whereas the set of derived parameters is: Ωm, Ωϕ, wϕ

and y1.

B. General results

The general constraints on the parameters of the
quintessence models are shown in Fig. 3, where the one-
dimensional and two-dimensional posterior distributions

are represented in a triangle plot; also shown is the mean
likelihood estimate (MELE) (dashed lines), which is
another output from the MONTE PYTHON code. In what
follows, we report our results using the median values of
the one-dimensional posterior (not the mean likelihood)
plus/minus a confidence interval, which is defined as the
range containing 90% of the samples. This particular
choice is because some of the posterior parameters are
not Gaussian. All of our analyses achieved a convergence

FIG. 3. Posterior distributions (solid lines) and mean likelihood (dashed line) for the constrained cosmological parameters using
BAOþ JLA data set plus a PLANCK15 prior. The data sets considered do not show any preference for a particular quintessence
potential. See the text, Sec. IV, for more details.
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ratio (Gelman-Rubin criteria) of R − 1 ≈ 0.005 for the
standard cosmological parameters, although for some of
the scalar field parameters the best convergence ratio we got
did not go below R − 1 ≈ 0.01. Notice that all parameters
are well constrained to some region of the parameter space,
in both the posteriors and the MELE, except for the
dynamical parameters α whose posterior distributions are
plainly flat along the full prior range. This means that the
data sets considered do not show any preference for a
particular quintessence potential.
The present contribution of the quintessence field to the

matter budget results in Ωϕ0 ¼ 0.719þ0.015
−0.015 , which is in

agreement with previous studies [6]. Similarly, we find
that the EoS 1þ wϕ0 < 0.107 and that 0 < y1 < 2.24
(95% C.L.), values that are in agreement with the cosmo-
logical constant value wϕ ¼ −1 and y1 ¼ 0. These results
together show that the quintessence models revolve around
the cosmological constant values.
We now go back to the flat posteriors of the dynamical

parameters α. It means that a solution of the quintessence
field compatible with the observational data set can always
be found for any value of the dynamical parameters, and the
reason behind such result is that the initial conditions of the
quintessence variables can be finely tuned accordingly to
compensate for any α ≠ 0. For instance, for larger values of
any of the dynamical parameters we can start the field
evolution closer to the cosmological constant case, so that
initially wϕ → −1 as much as necessary.
Moreover, the flat posteriors in Fig. 3 also imply that

there is not clear preference for any of the classes of
potentials in Table II. Given this situation, it may be
reasonable to just consider the most economic possibility
which is class Ia in Table II: VðϕÞ ¼ ðAþ BϕÞ2. As
discussed in Sec. II D, one actually recover the quadratic
potential if A ¼ 0 and B ¼ mϕ=

ffiffiffi
2

p
, and then we can say

that for practical purposes no quintessence potential can fit
the data any better than the quadratic potential.
We now turn our attention to the passive parameters in

the quintessence potentials. In contrast to dynamical para-
meters, we shall argue that the passive ones can be
subjected to observational constraints. It must be noticed
that passive parameters, in their role as integration con-
stants in Table II, can only be determined if we fix either
the initial or the final conditions in the solutions of the
equations of motion. In the cosmological context, we are
interested in the final conditions as it is necessary to adjust
the parameters to recover the present values of different
observables.
Taking as a reference the quadratic potential again, for

which the mass of the scalar field mϕ is a passive para-
meter, we show in the top panel of Fig. 4 the posteriors of
different cosmological quantities. The fit indicates that
Ωm0 ¼ 0.304þ0.018

−0.016 , Ωϕ0 ¼ 0.695þ0.016
−0.018 , 1þ wϕ0 < 0.129,

and mϕ < 1.36 × 10−33 eV (95% C.L.). It can be seen
that the preferred value of the EoS is close to −1, and that

the scalar field mass mϕ has an upper bound. The latter
constraint can be easily understood if we recall that the
field mass can be calculated from the expression
mϕ ¼ ð1=2Þy10H0, and then any bounds on the scalar field
mass are directly obtained from those on the present values
y10 and H0.

FIG. 4. (Top) Posterior distributions (solid lines) and mean
likelihood (dashed lines) for the constrained cosmological
parameters corresponding to the quadratic potential in class Ia.
(Bottom) Same as above for the axion potential in class IIa
(α1 ¼ α2 ¼ 0). As anticipated from Fig. 3, the dynamical variable
α0 ¼ 3=ðκ2f2ϕÞ remains unconstrained, whereas there appears an
upper bound for the passive parameter m2

ϕf
2
ϕ<3.66×10−10 eV4.

See the text for more details.
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Other cases, though, are not as clear as the quadratic one.
Let us consider the axion potential, which we write as
VðϕÞ ¼ m2

ϕf
2
ϕ½1þ cosðϕ=fϕÞ�, where mϕ is the mass of

the axion field and fϕ is its so-called decay constant. The
axion potential belongs to class IIa with α0 ¼ 3=ðκ2f2ϕÞ
(together with α1 ¼ 0 ¼ α2), which indicates that, accord-
ing to our classification, fϕ is a dynamical parameter,
whereas the combination m2

ϕf
2
ϕ forms a passive one. The

immediate result is that fϕ cannot be constrained from
cosmological observations, which is at odds with previous
results in the literature (see [74] and references therein).
Our interpretation here is that previous studies were not
able to sample all possible values of fϕ, mostly because of
the intrinsic difficulties in solving the quintessence field
equations in their normal form, see Eq. (1d). Smaller values
of fϕ require the field to start closer to the top of the
potential, and this is a tough numerical task even in our
approach.
As for the passive parameter in the axion potential, it can

be shown that it can be determined from [40]

m2
ϕf

2
ϕ ¼ 3H2

0

κ2α0

�
y210
4

þ α0Ωϕ0cos2ðθ0=2Þ
�
: ð18Þ

The passive parameter of the quintessence potential cannot
be written solely in terms of the cosmological observables
(H0) and the dynamical variables (wϕ0, y10, ρϕ0), and then it
cannot be clearly constrained because of the presence of
the decay constant fϕ. Notice however that if fϕ ≪ 1

(in appropriate units), which corresponds to α0 → ∞, then
m2

ϕf
2
ϕ ≃ ρϕ0ð1 − wϕ0Þ=2, where ρϕ0 is the present quintes-

sence density, and in this limit, there appears an upper
bound for the passive parameter basically inherited from
the one on ρϕ0. Likewise, if fϕ ≫ 1, corresponding to
α0 → 0, we find that mϕfϕ ≃ ðy10H0=2Þfϕ, which shows
that the passive parameter in this limit will be unbounded
from above and that mϕ ≃ ðy10H0=2Þ, which is exactly the
result obtained for the quadratic potential.
The posterior distributions for the axion case are

shown in the bottom panel of Fig. 4. The fit indicates that
Ωm0 ¼ 0.288þ0.037

−0.035 , Ωϕ0 ¼ 0.712þ0.035
−0.037 , 1þ wϕ0 < 0.154,

and m2
ϕf

2
ϕ < 3.66 × 10−10 eV4 (95% C.L.). Apart from

the upper bound for the passive parameter mϕfϕ, the
preferred values of the other parameters are similar to
those of the quadratic potential (top panel in Fig. 4) and
also to those of the general case shown in Fig. 3. Hence, the
study of particular cases does not provide stronger bounds
for the cosmological parameters.

VI. CONCLUSIONS

In this work, we have presented a general study of
quintessence dark energy models that allows a general
comparison with observational data without the need to

specify their functional form. This is possible because the
equations of motion of the quintessence field are written as
an autonomous system and later transformed to a polar
form that automatically satisfies the Friedmann constraint.
Moreover, one of the new dynamical variables in the polar
form is directly related to the quintessence EoS, which then
means that the latter is no longer a parameter derived from
the field equations but rather one that controls the evolution
of the quintessence field.
One interesting finding of this work is the general form

of the quintessence potentials. To close the polar system of
equations one needs the information about a second
potential variable that we called y2. The functional form
of y2 depends on the particular choice of quintessence
potentials, but by observing the results obtained from
different potentials we proposed a series form of y2 that
covers a wide range of models. We have correspondingly
identified four different classes of quintessence potentials
in terms of the series coefficients of y2, which is integrated
back to get the functional form of the quintessence
potentials VðϕÞ that belong to the four classes.
We have found a general solution of the equation of

motion in their polar form by taking into account the
fact that the quintessence EOS is very close to −1 and
subdominant in both the matter- and radiation-dominated
eras. This solution is particularly interesting as it estimates
the information about the initial conditions of the quintes-
sence variables deep inside the radiation era by using the
present values of the cosmological parameters. We have
incorporated the expressions of the initial conditions in
an amended version of the Boltzmann code CLASS, with
which we have worked out the numerical solutions of the
polar equations of motion. This has allowed us to find a
parameterization for the evolution of the EoS that seems to
suit better the case of thawing quintessence than others
proposed in the literature. The parametrization works well
because is based on the analytical solutions found for the
polar variables.
However, we did not consider the new parametrization

of the EoS for a comparison with observations, but we
rather worked directly with the polar equations of motion.
According to our study of the quintessence potentials, we
distinguished two separate set of parameters in them: the
dynamical ones and the passive ones. The dynamical ones
appear explicitly in the equations of motion and then have
a direct influence on the evolution of the field variables.
In contrast, the passive ones are integration constants that
can be expressed as combinations of the polar variables
and other cosmological variables like the Hubble param-
eter. The comparison with observations showed that the
passive variables can in principle be constrained, but that is
not the case of the dynamical parameters in the quintes-
sence potentials, whose posteriors are fully flat. We have
verified that this is in agreement with other results already
published in the literature. This is one of our main results:
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that observations cannot establish a preference for a given
functional form of the quintessence potential.
The dynamical variables were constrained but their

allowed values are close to those of a cosmological con-
stant and in this sense our analysis does not show any
preference for quintessence models over a constant dark
energy density. As a side result, we have also argued that
the results on the dynamical variables can be used to
put constraints on the passive parameters of the field
potentials. This was done for a couple of particular
examples, but our methods can be used for other types
of potentials as well.
In all, our results indicate that there will be always a set

of dynamical parameters which will satisfy the observa-
tional constraints for any given potential. According to our
method, this is because our current observations can only
put an upper bound on the present value of the DE EoS,
0 ≤ 1þ wϕ0 < 0.107 (in the general case, see Sec. V B
above). The degeneracy in our results could be broken if
there were any indication of a nonzero lower value in the
EoS (which would, in turn, rule out a cosmological
constant), as this will narrow the possible evolutionary
paths of the quintessence variables and in consequence the
allowed values of the dynamical variables. But given the
current state of affairs, we cannot but to conclude that
the problem with the arbitrariness of the functional form of
the quintessence potential still remains unsolved.
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APPENDIX A: GENERAL DYNAMICAL SYSTEM
APPROACH FOR QUINTESSENCE FIELDS IN

TERMS OF A ROLL PARAMETER

To show more about the convenience of Eq. (7) as a
general representation of quintessence potentials, we first
write Eq. (4c) as

y01
y
¼ 3

2
ð1þ wtotÞ

y1
y
þ x

y2
y
; ðA1Þ

and in combination with Eqs. (4b) and (7), we find

�
y1
y

�0
¼ x

�
1

2

y1
y
þ y2

y

�
: ðA2Þ

If we use again the function defined in Sec. II C, y1=y ¼
−ð ffiffiffi

6
p

=κÞ∂ϕ lnðVÞ ¼ λ, Eq. (A2) can be written in the form3

λ0 ¼ −xλ2½ΓðλÞ − 1�; ðA3Þ

with Γ≡ V∂2
ϕV=ð∂ϕVÞ2, which is known as the tracking

parameter [53,75–78]. A direct comparison between
Eqs. (A2) and (A3) gives

y2
y
¼ λ2½1 − ΓðλÞ� − 1

2

y1
y
; ðA4Þ

which shows the direct relation between our new potential
variable y2 and the tracking parameter.
Some previous works have considered that, for selected

scalar field potentials, there is a closed form of the tracking
parameter ΓðλÞ in terms of λ [53], and for those same
potentials our dynamical system (4) becomes an autono-
mous one because y2 ¼ y2ðθ; y1;ΩϕÞ. Our method in this
paper suggests that we may as well consider not the
complete form but just a series expansion of ΓðλÞ to find
general solutions of quintessence potentials.
Finally, Eqs. (4a) and (4b) are also rewritten as

x0 ¼ −3xþ 3

2
ð1þ wtotÞxþ

λ

2
y2; ðA5aÞ

y0 ¼ 3

2
ð1þ wtotÞy −

λ

2
xy; ðA5bÞ

which resemble the dynamical system of an exponential
potential firstly studied in Ref. [22].

APPENDIX B: LATE-TIME ATTRACTORS

Here, we discuss about the late time attractor solutions of
the dynamical system (4). We are particularly interested in
late time behaviour of the Universe hence we consider it to
be dominated by dark matter and dark energy only.
The fixed points of the systems can be find out by

solving the three equations θ0 ¼ 0, y01 ¼ 0, Ω0 ¼ 0 simul-
taneously. From the first of the conditions we find that at
the critical point y1c ¼ 3 sin θc. With this the equations of
the critical points reduce to

½9ð1 − Ωϕc cos θcÞ þ Ωϕcðy2c=ycÞ� sin θc ¼ 0; ðB1aÞ

3ð1 −ΩϕcÞΩϕc cos θc ¼ 0: ðB1bÞ

3It must be noticed that λ is related to the conventional roll
parameter λ̃ in quintessence dynamical analysis as λ̃ ¼ λ=

ffiffiffi
6

p
,

where λ̃ ¼ −ð1=κÞ∂ϕ lnðVÞ; see, for instance, Refs. [22,53,75,76].
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If we consider Eq. (B1b), we obtain either Ωϕc ¼ 1
(quintessence domination), Ωϕc ¼ 0 (matter domina-
tion), or θc ¼ π=2. The latter solution is not unique,
but for the purposes in this Appendix we will restrict
ourselves to the range θ ¼ ½0∶π�. We then need to solve
Eq. (B1a) for the series expansion (6) to find all

possible combinations of the critical values. The result-
ant values are summarized in Table IV for the series
expansion of y2=y up to second order. We also
indicate in the last column the classes of potentials
from Table II for which the given critical points
can exist.
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